

Data Center Energy Efficiency Research @ Intel Day

20 June 2007

Guy AlLee Milan Milenkovic James Song

Data Center "Pain Points"

IT Needs

- Performance Density
 - Performance / Watt / Sq Ft of Floor Space
 - Today 2W at the wall for every 1W of Compute
 - Which costs 2x to cool, as well
- Visibility into power & thermal consumption Conversion hence Racks are under-populated, DC's are Losses over-designed
 - Lack of instrumentation & tools that optimize rack density & capacity within current facilities
 - Lack of tools need to be cross-OEM (heterogeneous systems)
- Power monitoring and management at group level to match how data centers are designed
 - Need to scale platform level power management to group level (rack, groups of racks, data center)
- Integration between power management, DC management systems and facilities systems

Data Center Energy Efficiency Research

HVDC (High Voltage DC)

- Significant Power Savings (8-10%) by reducing the number of power conversion stages
 - Typical Medium Sized Data Center savings calculates to be \$200,000 / year¹
 - 300-400 V_{DC} so you can distribute power the same distances as AC
 - avoids the 48 V_{DC} distribution issue
- Double to Quadruple the impact
 - Every Watt saved within the system is >1 Watt less needed at the wall
 - e.g. today's systems are 50% efficient from Wall to CPU. Thus each watt saved at the CPU is 2W less needed at the wall.
 - PLUS, every input Watt saved is 1 less Watt of Air Conditioning needed

GEMS/DCPT (Group Enabled Management System / Data Center Power & Thermals)

- Managing Power and Thermals across all the servers in a Rack
- Dynamic monitoring of workload Power & Thermal impacts
 - Avoids over-sizing the power delivery from just summing the nameplate ratings
 - Constantly monitors the actual power usage to make operating decisions
- Distributed and self-organizing
 - GEMS nodes dynamically self-organize, using web services and XML technologies
 - machine-understandable description of nodes' power-management capabilities, instrumentation, and controls

Current Data Centers are < 50% Energy Efficient at the CPU

Power delivery efficiency in data centers ~ 50%

Research at Intel Day

HVDC Demo – Efficiency from Eliminating Power Conversion Stages

AC Data Center Power Conversion Stages

HVDC Data Center Power Conversion Stages

- Eliminate multiple conversion stages
 - 1 DC / AC conversion stage in the UPS; 1 AC / DC conversion stage in PSU; Eliminate the PDU
- 380V DC from Uninterruptible Power Supplies (UPS)

6 Server HVDC Demonstration Setup

Research at Intel Day

GEMS: Group-Enabled Management, applied to Power/Thermals

What is GEMS?

- GEMS: architecture, protocols, well-defined interfaces and policies that enable (1) formation of groups, (2) group-level power and thermal management
- <u>Two separable capabilities</u>, work great together
 - Group formation
 - self-organizing, discovery, description
 - Group-enabled management
 - group-level operations, group policies, and cross-platform P&T optimizations
- <u>Application: group-level power/thermal</u>
 <u>optimization</u>
 - Measured 40% power savings across nodes
- Status: working prototype
 - new JPF POC with DEG integrated NPTM, GEMS
 - new SAP POC with EPI GEMS integrated with virtualization manager for power and thermally aware VM placement and migration
- Where it lives: implemented as added functions in firmware/software on Intel Platform Manageability Container
- Product intercepts: Romley platform, DCPT 2.0 eco-system enablement

How GEMS works?

(intel)

Research at Intel Day

Research at Intel Day

10