
Intel and the Intel logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
*Other names and brands may be claimed as the property of
others.
Copyright © 2007, Intel Corporation. All rights reserved.

Research at Intel
www.intel.com/research

Making Legacy Code Safe and Scalable

• Legacy C software is not designed for multi-core architectures.
• Safety flaws in C make it hard to transform programs to exploit multi-core
architectures, and cause vulnerabilities that limit adoption
• However, it is not practical to rewrite legacy systems in a safer language.

Incrementally add safety and
concurrency to legacy C code

Researchers: Eric Brewer, David Gay, Rob Ennals

UC Berkeley Collaborators: George Necula, Zachary Anderson, Jeremy Condit, Matt Harren,
Bill McCloskey, Feng Zhou

Principles
Practical for use on real code

Minimal changes to source

Port one file at a time

No changes to program behaviour

No lock-in

Dynamic checks where needed

Automatic refactoring of code

Typical programs use locks to synchronize
We provide atomic sections instead

The programmer must declare locking rules

Compiler picks lock order, inserts locking code

mutex m;
acquire(&m);
... operations ...
release(&m);

atomic {
... operations

...
}Traditional way New way

mutex m;
int shared_var protected_by(m);

atomic {
... x = shared_var; ...

}

this access causes m
to be acquired
automatically

Concurrency Support

Code is safer, easier to write:

Deadlocks are prevented

Data races are less likely

Supports gradual migration

Interoperates with explicitly locked code

Switch to annotations + atomic sections
one data structure at a time

Declarative Locking
Concurrency Results

Applied to 50’000 line web server

Replicated most of its locking strategy

- Locks were coarsened in four modules

Appproximately 1% of source lines modified

2-5% overhead

Intel and the Intel logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
*Other names and brands may be claimed as the property of
others.
Copyright © 2007, Intel Corporation. All rights reserved.

Research at Intel
www.intel.com/research

Reference counting used for runtime check
that freed memory blocks have no references.

C code often contains harmless short-lived dangling
references to freed memory blocks.

"Delayed Free Scopes" allow one to briefly permit
such references, delaying all frees until the end of
the scope.

Making Legacy Code Safe and Scalable
Type and Memory Safety for C

Add annotations to check the correctness of an existing application’s
memory usage using compile and runtime checks

Program behaviour is unchanged

Researchers: Eric Brewer, David Gay, Rob Ennals

UC Berkeley Collaborators: George Necula, Zachary Anderson, Jeremy Condit, Matt Harren,
Bill McCloskey, Feng Zhou

Results
Successfully applied to a collection of C benchmarks (some from SPEC 2000/2006)

Successfully applied to a fully bootable Linux kernel

Costs:

- Approximately 1% of source lines modified

- Typical overheads below 50% (type safety) and 35% (memory safety)

Type Safety

1 1

2

1 1

1

1

10

0

00

Delayed Free Scope

All
Gone

Time

X

X X
X

Memory Safety

Annotations provide information on array
bounds, object types:

struct thing{
char *count(buflen) buf;
int buflen;
char *nullterm name;
int tag;
union {

struct x_t x when(tag == X);
struct y_t y when(tag == Y);

} u;
};

Compile and runtime checks enforce safety.
Trusted code provides escape hatch.

	Making Legacy Code Safe and Scalable
	Making Legacy Code Safe and Scalable Type and Memory Safety for C

