
Intel and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
Copyr ight © 2007, Inte l Corporat ion . A l l r ights reserved.

Research at Intel
www.intel.com/research

Simplifying Multithreading & Boosting Performance
Programming with Transactional Memory

Programming Systems Lab

Ali-Reza Adl-Tabatabai, Rick Hudson, Vijay Menon, Yang Ni, Bratin Saha, Tatiana Shpeisman, Adam Welc

Collaborator: Dan Grossman, University of Washington

Transactional memory provides an easy-to-use mechanism for controlling
concurrent access to shared data
• Simple programming model – transactions guarantee atomicity and isolation

• Underlying implementation provides scalability and performance

• Avoids common problems of lock-based synchronization

Multi-threaded programs require concurrency control
John and Mary Smith have $1000 in a joint account.

Account balance is $1100. Mary and John lost $200.

Thread 1: John deposits $100

1. bal = acc.get (“Smith”)

2. bal = bal + 100 (= $1100)

6. acc.put (“Smith”, bal)

Thread 2: Mary deposits $200

3. bal = acc.get (“Smith”)

4. bal = bal + 200 (= $1200)

5. acc.put (“Smith”, bal)

atomic {

deposit $100

} atomic {

deposit $200

}

Transactions

Strong atomicity
• Always guarantees transactional properties

• Treats all memory operations as mini-transactions

• May impose overhead on non-transactional code

• Allows for more reliable multi-threaded programming

Strong atomicity
provides an intuitive
programming model

Scalability on OO7 benchmark

0

1

2

3

4

5

6

7

1 2 4 8 16

Number of processors

Ti
m

e,
 s

ec
on

ds

Locks Weakly atomic transactions Strongly atomic transactions

Weak atomicity
• Commonly accepted model for software transactional memory

• Falsely assumes only transactions access shared data

• May lead to unintuitive implementation-dependent behavior

• Fails where locks work

	Simplifying Multithreading & Boosting Performance�Programming with Transactional Memory

