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Transactional memory provides an easy-to-use mechanism for controlling 
concurrent access to shared data
• Simple programming model – transactions guarantee atomicity and isolation

• Underlying implementation provides scalability and performance

• Avoids common problems of lock-based synchronization

Multi-threaded programs require concurrency control
John and Mary Smith have $1000 in a joint account.

Account balance is $1100. Mary and John lost $200.

Thread 1: John deposits $100 

1. bal = acc.get (“Smith”)

2. bal = bal + 100  (= $1100)

6. acc.put (“Smith”, bal) 

Thread 2: Mary deposits $200

3. bal = acc.get (“Smith”)

4. bal = bal + 200 (= $1200)

5. acc.put (“Smith”, bal) 

atomic {

deposit $100

} atomic {

deposit $200

}

Transactions

Strong atomicity
• Always guarantees transactional properties

• Treats all memory operations as mini-transactions

• May impose overhead on non-transactional code

• Allows for more reliable multi-threaded programming

Strong atomicity 
provides an intuitive 
programming model

Scalability on OO7 benchmark
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Locks Weakly atomic transactions Strongly atomic transactions

Weak atomicity
• Commonly accepted model for software transactional memory

• Falsely assumes only transactions access shared data

• May lead to unintuitive implementation-dependent behavior

• Fails where locks work
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