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Consistent 2-year scaling
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Changes in Scaling
THEN

• Scaling drove down cost
S li d f

NOW
• Scaling drives down cost

M t i l d i f• Scaling drove performance
• Performance constrained
• Active power dominates

• Materials drive performance
• Power constrained
• Standby power dominates

• Independent design-process • Collaborative design-process
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Transistor Performance Trend
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Strain is a critical ingredient in modern transistor scaling
Strain was first introduced at 90nm, and its contribution has 

increased in each subsequent generation
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Uniaxial Strain Enhancement with 
Embedded SiGe (PMOS)Embedded SiGe (PMOS)

Thompson – Intel Ghani – Intel Chidambaram

Kelin Kuhn / ECS Meeting / October 10th, 2010 8

IEDM 2002 / 2004 [28-30] IEDM 2003 [31] TI / Applied Materials
VLSI - 2004 [32] 



Transistor Results: Channel Strain

• Simulations show epitaxial S/D 
transistor has uniaxial 
compressive channel strain

Channel

-0.1

0

compressive channel strain
(Giles VLSI’04, [24])

• TEM electron diffraction 0

-200

-400

measurements confirm 0.6% 
lattice displacement
(Mistry VLSI’04 [26])

SiGe

-600

-800
(Mistry, VLSI 04, [26])

0 0 1
0.1

-1000

LGATE=50nm 0 0.1
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Technology Strain Trend
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Strain is a critical ingredient in modern transistor scaling
Strain was first introduced at 90nm, and its contribution has 

increased in each subsequent generation
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K.P Bandstructure: No Stress
• Bulk heavy hole has 12 nodes 

– 4 of them are in kz=0 plane
• Vertical gate field confines holes into an inversion layer

Moves from a bulk to a confined band structure– Moves from a bulk to a confined band structure
• 8 off-plane nodes projected to kz=0 plane in quantized k.p 

Quantized k Band
kz [110]

Ch l Quantized kz Band
ky
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Channel

1

3

4
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Giles et al., Wang et al.:  IEDM 2004, 2006 11



Uniaxial Stress along [110]

• Uniaxial stress along 
[110] has shear and CC AA[ ]
biaxial components 

• Shear compression 
lowers the energy of

CC AA

lowers the energy of 
(C,D)

• Holes redistribute from 
(A B) to (C D)

k y
(2
/

a)

(A,B) to (C,D)
• The effective mass and 

density of states (DOS) 
f tt i

DDBB
for scattering are 
reduced

1GPa uniaxial stress along [110], (001) surface, 1MV/cm 

kx (2/a)

g [ ], ( ) ,
effective field, 30meV energy contours

Giles et al., Wang et al.:  IEDM 2004, 2006
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Uniaxial vs Biaxial
• Uniaxial strain introduced in a Si 

channel by SiGe in the S/D region.
• Biaxial strain introduced in a SiBiaxial strain introduced in a Si 

channel by SiGe below the 
channel region (or by a bonding 
process starting with SiGe below 
th h l i )

s-Si SGOI, SSGOI SSOI, SSDOI

the channel region). 

Strained Si Strained Si  Strained Si

Si substrate
Si substrate Si substrate

Buried oxide
Buried oxide

 SiGe   SiGe 
 Strained Si 
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Calculated using MASTAR (http://www.itrs.net/models.html)

[001][001] [001][001]

UNIAXIAL
COMPRESSION

BIAXIAL
TENSION

[001][001]

0 1GP 2GP 3GP

[001][001]Kuhn 
IEDM SC 2008
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Kuhn, IEDM SC 2008 +
Wang, IEDM 2006 

NO STRAIN

g,

[001]
UNIAXIALUNIAXIAL

COMPRESSION
BIAXIAL
TENSION

2.5GPa

Calculated using MASTAR (http://www.itrs.net/models.html)

[001] [001]

3D plots 15



Orientation and Strain:
More complex for non-(100) orientations

<110>

(001) Surface (k=0) (001) Surface Vg=-1V
(001) Surface       

Vg=-1V, Sxx=-1GPa(100)

<110>

(110) Surface (k=0) (110) Surface Vg=-1V
(110) Surface        

Vg=-1V, Sxx=-1GPa
(110)

g

<110>

(110)
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Orientation and Strain:
More complex for non-(100) orientations
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Orientation and Strain:
More complex for non-(100) orientations

Sun – U of Florida
JAP 2007

Thompson – U of Florida
IEDM 2006 

Yang – AMD/IBM
IEDM 2007

“While (100) mobilities agree reasonably well, a  strong discrepancy 
exists for (110) mobilities”  - Yang, AMD/IBM, IEDM 2007, with 

reference to Thompson IEDM 2006)

Kelin Kuhn / IEDM 2008 27

reference to Thompson, IEDM 2006) 
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Transistor Performance Trend
1.5

1.0 V, 100 nA I OFF

45nm
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Manufacturable HiK-MG transistors were first 
introduced in the 45nm generation
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Si vs Ge MOSFETs

GateGate

Source
Drainn-Ge

Source
DrainGe

Intel 45nm HiK-MG Si device [43] Intel HiK-MG Ge device

The  introduction of manufacturable HiK-MG 
transistors has led to the                              

reconsideration of Ge channels

Kelin Kuhn / ECS Meeting / October 10th, 2010 

reconsideration of Ge channels
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Challenge of Lattice Mismatch Issues

DirectDirect

Device Layer III-V
DefectsDefectsDefects

DepositionSilicon DepositionSilicon
Silicon

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Dislocations

Silicon
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Dislocations

Si

Stacking faultsStacking faults

SiSi

Kelin Kuhn / ECS Meeting / October 10th, 2010 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Twin Defects
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Twin Defects

Adapted from J. Kavalieros – Intel - VLSI SC 2007
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Si vs Ge Bandstructure/Parameters

Band Masses at Gamma point 
(using kp parameters, in me):

Bandstructure Si, Ge

-1

0
0 0.5 1 1.5 2 2.5 3 3.5L

G

X

G

HH LH SO
Si 0.59 0.15 0.24
Ge 0.38 0.04 0.07

1
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3

E
ne

rg
y 

eV

X
K
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Ge 0.38 0.04 0.07
4

5
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Low Field Long Channel Mobility
(as a function of stress)
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Low Field Long Channel Mobility
(as a function of stress)
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III-V vs Ge:  NMOS
The Lure of High Mobility
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Adapted from J. Kavalieros – Intel - VLSI SC 2007
K. Kuhn – ECS 2010
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Low m* MOSFETs:
“Density of states bottleneck”

From R. Kim

Density-of-states bottleneck

• On-current of a MOSFET I Q

• Velocity υ
– Diffusive : mobility μ, υ = μE

I Q

– Ballistic: injection velocity υinj

– Light m* → high μ, high υinj

• Charge Q
– MOS limit (CQ » Cox), C ≈ Cox

– Light m* → less D (C ) less C less Q

 
1 1 1

G thQ C V V 

 – Light m → less D (CQ), less C, less Q
– More important for thin oxide (large Cox),

“DOS bottleneck”
2

ox Q

Q

C C C

C q D

 



Kelin Kuhn / ECS Meeting / October 10th, 2010 26



5 High-Current L  & -L channels: 5 Approaches
Rodwell et al, 2010 Device  Research Conference 6/21/2010

Rodwell, DRC, 2010
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Use of L-valleys: GaAs From R. Kim

• GaAs 4 nm
ky

[001]
[011] Small DOS with high v

8 L-valleys

k

[011]
single band from 

Γ

Small DOS with high vinj
High DOS with low vinj

kx
[010](100)

ky
[-1-12]

[-211] Multiple bands from More DOS with high vinj

kx
[-110]

Γ and L

(111)
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Different body thicknesses (EOT=1.0 nm)

4 nm2 nm 8 nm4 nm2 nm 8 nm

GaAs>InGaAs>GaSb>Ge>Si GaSb,InGaAs>Ge,GaAs>Si InGaAs>GaSb>Ge,GaAs>Si

Different body thicknesses (EOT=0.5 nm)

4 nm2 nm 8 nm
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From R. Kim



Ge Historical Issues:                  
Still critical today
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Narrow Bandgap
Adapted from Saraswat [59],

BTBTSource

Adapted from Saraswat [59], 
Krishnamohan [60] 
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Band-to-band tunneling: challenge for low Eg materials

Kelin Kuhn / ECS Meeting / October 10th, 2010 31



Narrow Bandgap
Adapted from Saraswat [59], 

Krishnamohan [60] 

High BTBTSource

 

Eg

Drain

h
e

Weak quantum confinement
Narrow effective energy gap

Drain

Reduced BTBT

Source



Eg

h
eStrong quantum confinement

Wide effective energy gap

Drain

Two solutions:   Use lower voltages and/or                   
t fi d t
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use quantum confined systems
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Dielectric Quality

GeGe to
GeGeOO22(110)

GeGe/GeGeOO22
sub‐oxide oxide 
transition

GeGe(111)

transition

Heynes, 2008 [9]

Since HiK-MG dielectrics typically form with a bilayer (the HiK + 
an interface layer) the challenge of germanium oxide still exists.
Germanium oxide exists in several morphologies, unfortunately, 

Kelin Kuhn / ECS Meeting / October 10th, 2010 

g y
most are hydroscopic and/or volatile.
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E. Chagarov, T. Grassman, A. Kummel (UCSD)
a-MO2/Ge without and with Passivation (2010 Sematech)

•Although ideal Ge(100) is 
unpinned,  flat dimers or 
undimerized Ge atoms can pin 
the Fermi level.  

2×1/4×2 buckled dimers2×1/4×2 buckled dimers PBE0-Grassman
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Ge(100)-4×2: PBE0Ge(100)-4×2: PBE0

Ge(100)-2x1: PBE0Ge(100)-2x1: PBE0

Free of adsorbates 

• As shown on the left the 
ideal surface has a bulk like 
bandgap due to tilted dimers
which will be absent at oxide-
G i t f
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VB CB Ge interfaces.
• Therefore, oxide must 
passivate ALL tricoodinated
Ge surface atoms

0
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Energy (eV)

00
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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Buckled dimers
VB CB

D it  f ti  th  l l  d i  

Each Ge atom has ½ filled dangling bond

•Density function theory molecular dynamics 
(DFT-MD) was used to bond amorphous HfO2
to Ge(100) and anneal at 700K.  Interface has 
a mix of Ge-O and Ge-Hf bonds. 

O = red, Ge = green, Hf = blue, H = white

No GeO2 needed,  full 
passivation possible 

with HfO2, path to
•Oxides passivate dangling bonds; 100% of 
interfacial Ge have 4 bonds. Interface is 
abrupt and Ge lattice is undisturbed.
•DOS shows a bandgap of 0.8 eV with no 

Ef

with HfO2, path to 
small EOT

g p
midgap states either in the interface or the 
channel. Fermi level shift from dipoles at 
oxide/vacuum interface being fixed.VB CB
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Ge-J. Lee, T. Kaufman-Osborn, A. Kummel (UCSD)
Monolayer Functionalization of Ge (2010 Sematech) 

30 × 30 nm2
O

Ge Ge

HH30 × 30 nm2•The key requirement for scaling oxides on Ge while 
maintaining high mobility is functionalizing the 
Ge(100) with a monolayer of reactive sites.  
•This is challenging as even the most stable 

fully - occupied dimer

O H
H

germanium oxides react with the substrate to form 
volatile suboxide.  
•The Kummel group at UCSD has used STM to show 
that very large doses of water onto clean 300K 
Ge(100) can functionalize 99% of the unit cells with O

Ge Ge or

half - occupied dimer

Ge Geor

half - occupied dimer

or

half - occupied dimer

Ge(100) can functionalize 99% of the unit cells with 
Ge-H and Ge-OH bonds.  
•These bonds are sufficiently reactive with TMA 
(trimethyl aluminum) that the ALD process can be 
initiated at 300K for the first layer.  
K A 300K h b d l d

unoccupied dimer

Ge GeGe Ge

unoccupied dimer

•Key message:  A 300K process has been developed 
to template the ALD processes in nearly every unit 
cell for EOT scaling without disrupting the substrate 
lattice.

 Ge-OH and Ge-H sites cover Ge(100) surface (rectangle) with >106L dose of H2O at 300K
 Fuzzy bright features are unreacted dangling bonds (squares). Can passivate with H or annealing
 ½ ML of Ge-OH perfect template for nucleation of TMA for scaled ALD gate oxide (even HfO2)
XPS studies show this surface reacts at 300K with TMA to form ½ ML of Ge-O-Al bonds which are 
stable up to 450C thereby functionalizing the surface for ALD of high-k. 35



Ge Dielectric:                         
Another strategy: use an Si passivation layergy p y

Zimmerman – Intel/IMEC 
IEDM 2006 [48]

Hellings – IMEC/Leuven 
EDL 2009 [50]

Mitard – IMEC/Leuven 
VLSI 2009 [51]
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IEDM 2006 [48]
Si passivation

EDL 2009 [50]
Si passivation

VLSI 2009 [51]
Si passivation
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Ge Benchmarking
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2007
Batail [52] updated with (48, 50, 51, 52)
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Mitard, IMEC/Leuven, IEDM 2008

Ultra-thin Si cap + 4nm HfO2

Inversion EOT 13A

Kelin Kuhn / ECS Meeting / October 10th, 2010 

Dit integrated over valence band
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Mitard, IMEC/Leuven, VLSI 2009

Kelin Kuhn / ECS Meeting / October 10th, 2010 

Higher Coulomb scattering
For thinner TL SiO2

Higher Coulomb scattering
For 2 or 3nm HfO2
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Zimmerman, IMEC/Intel, IEDM 2006
6A epi-Si, partially 

idi d ft

10x10um
Note respectable high 

field mobility

oxidized after 
growth+4nm HfO2

CET = 16A, 
EOT = 12/12.5A

10x10um structure
Jg not 

influencing Ids

Before/afterBefore/after
Post metallization 

anneal (PMA)
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Ge Benchmarking
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2007
Batail [52] updated with (48, 50, 51, 52)
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Hellings – IMEC/Leuven, EDL 2009
Boron LDD

Batail – ST-Micro, IEDM 2008
Ultra-thin Si cap + 4nm HfO2

Kelin Kuhn / ECS Meeting / October 10th, 2010 43
Selective epitaxy of pure Ge capped with Si



Kita (U. Tokyo) IEDM 2009              
Another strategy: Advanced GeO2 processing

Ge diffusion High-pressure O2
(HPO) suppresses 

surface reaction

Isotope experiment
Suggests Ge diffusion

Possible 
Defects

Low-T oxygen 
Annealing (LOA)

70 atm

Kelin Kuhn / ECS Meeting / October 10th, 2010 36



Lee (U. Tokyo) IEDM 2009               
High pressure O2 (HPO) + Low-Temperature Oxygen Anneal (LOA)
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Kuzum (Stanford) IEDM/TED 2009        
GeOxNy + Low-Temperature Oxygen Anneal (LOA)
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AGENDAAGENDA
• Past (Scaling)Past (Scaling)
• Present (Planar SiGe S/D)
• Future• Future 

–Planar Ge channel
Non planar architectures–Non-planar architectures

–Tunnel FETs
S mmar• Summary
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LENGTHWIDTH
WIDTH = 2H + W

Non-planar 
hit t
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architectures
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MuGFET Benefits

Double-gate relaxes

Nearly ideal sub-
threshold slope 

( )Double-gate relaxes 
Tsi requirements
Fin Wsi > UTB Tsi 
(less scattering, Improved RDF 

(gates tied together)

improved VT shift)
p

(low doped 
channel)

Excellent 
channel 

t l
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controlCan be on 
bulk or SOI
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MuGFET 
with RSD

Benefits
with RSD

Double-gate relaxes

Nearly ideal sub-
threshold slope 

( )Double-gate relaxes 
Tsi requirements
Fin Wsi > UTB Tsi 
(less scattering, Improved RDF 

(gates tied together)

improved VT shift)
p

(low doped 
channel)

Compatible 
with RSD 

technology

Excellent 
channel 

t l
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technology control
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MuGFET Benefits

Double-gate relaxes

Possibility for 
independent gate 

Double-gate relaxes 
Tsi requirements
Fin Wsi > UTB Tsi 
(less scattering, Improved RDF 

operation

improved VT shift)
p

(low doped 
channel)

Excellent 
channel 

t l
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control
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MuGFET 
Variation

Challenges
Variation

(Mitigating RDF 
but acquiring 
Hsi/Wsi/epi)

Gate wraparound
(Endcap coverage)Capacitance 

(fringe to contact/facet)(fringe to contact/facet)
(Plus, additional “dead 

space” elements)

Small fin pitch 
(2 generation scale?)

Fin/gate fidelity on 3’D
(Patterning/etch)( g )

Rext:  
(Xj/Wsi

Topology
(Polish / etch 

h ll )

Fin Strain engr.
(Effective strain 

Kelin Kuhn / ECS Meeting / October 10th, 2010 

(Xj/Wsi 
limitations)

challenges)
(

transfer from a fin 
into the channel)
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Kawasaki  – Toshiba / IBM – IEDM 2009 MuGFET

Sim

Jurczak – IMEC - SOI 2009
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High Mobility SiGe FinFETs

300

350
 SiGe {110}<110>
 SiGe {100}<100>
 Si {110}<110>

(110) SiGe fin 
(Tinv= 1.8nm)

150

200

250 Si {100}<100>
 (100) universal

m
2 /V

-s
)

Si fin      
(Tinv = 1.2nm)

shell/core fin 
(Tinv=1.5nm)

50

100

150

 ef
f (c

m

(100)

( )

U i l (100)

Extracted by
Split CV Method

0 1x1013 2x1013
0

NINV (#/cm3)

(100) Universal (100) 

• SiGe PFETs have higher mobility than Si fins.

INV

27 November 2010

• Potential for performance > strained Si in non-planar devices
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Nanowire Benefits

Nearly ideal sub-
threshold slope 

( )

Nanowire further 
relaxes Tsi / Wsi Improved RDF 

(gates tied together)

requirements
p

(low doped 
channel)

Excellent 
channel 

t l
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control
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BenefitsNanowire

Nearly ideal sub-
threshold slope 

( )

Nanowire further 
relaxes Tsi / Wsi Improved RDF 

(gates tied together)

requirements
p

(low doped 
channel)

Compatible 
with RSD 

technology

Excellent 
channel 

t l
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technology control
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Nanowire Challenges
Gate conformality

Capacitance 
(fringe to contact/facet)
(Plus, additional “dead 

(dielectric and metal)

V i ti

(
space” elements)

Integrated 
wire fabrication 

(Epitaxy?  Other?)

Wire stability
(bending/warping)

Variation
(Mitigating RDF but 
acquiring a myriad 

of new sources)

( p y )

Mobility degradation
( tt i )

)
(scattering)

Rext:

Fin Strain engr.
(Effective strain 

transfer from ire

Fin/gate fidelity on 3’D
(Patterning/etch)

Kelin Kuhn / ECS Meeting / October 10th, 2010 

Rext:  
(Xj/Wsi 

limitations)

transfer from wire 
into the channel)

Topology
(Polish / etch 
challenges) 52



Stacked Si Nanowire Formation using SiGe

SiGe/Si Superlattice Fin etch Selective SiGe etch

Si

Si

SiGe

SiGe
Si

Si
SiGe

SiGe

Si

Si

SiG

SiGe

BOX
Si

SiGe

BOX
Si Si

SiGe

Suspended 
NWs

27 November 201027 November 2010
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Nanowire FETsDupre – CEA-LETI – IEDM 2008

Bangsaruntip – IBM – IEDM 2009
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Nanowire FETsHashemi/Hoyt – MIT 
IEDM 2008 EDL/ESSDRC 2009

Moselund – Ecole Polytechnique, Switzerland
IEDM 2007IEDM 2007
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Non-planar options

SiN HM
HfO

Si TiN
HfO2

BOXBOX

27 November 2010 71
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TFET (Tunneling Field-Effect Transistor)
G t

Vd

P+ i I A N

Vg
Principle of operation
• Band-to-band- tunneling through source 

barrier, modulated by gate field

Gate

Source Drain

P+ i-InAs NAdvantages
• Steep (< 60 mV/dec) sub-threshold slope
• Large Ion/Ioff ratio

Disadvantages
• Low drive currents
• Ambipolar conduction
• Unidirectional conductionUnidirectional conduction
• Potentially high hot-e- effects

Materials choice?
• A KEY question is whether some clever Tunneling A KEY question is whether some clever 

combination of Si, Ge, or Si1-xGex can 
deliver enough drive current for viable 
TFETs.

barriers

Courtsey M. Luisier (Purdue) 
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Best Demonstrated TFETs
• Still MUCH lower drive currents 

than conventional MOS
• Require band-gap engineering 

1 .0 0 E -0 4

1 .0 0 E -0 3

1 .0 0 E -0 2

32nm MOS
@ Vds = 0.8V

with hetero-junction  layers
• Sub-threshold slope still poor

1 .0 0 E -0 8

1 .0 0 E -0 7

1 .0 0 E -0 6

1 .0 0 E -0 5

0 0 .2 0 .4 0 .6 0 .8 1

[1]

S. Mookerjea et al., IEDM ‘09

[1] K. Jeon, et al., VLSI (11.4.1.-1) 2010  
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[2] W. Choi et al., IEEE-EDL vol.28, no.8, p.743 (2007)
[3] F. Mayer et al., IEDM Tech Dig., p.163 (2008)
[4] T. Krishnamohan et al., IEDM Tech Dig., p.947 (2008)
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Summary
• Strain from e-SiGe S/D PMOS is a critical part of 

modern CMOS technology - replacement technologies 
must exceed the “high bar” set by e-SiGe PMOS.

• Strained SiGe/Ge PMOS offers a potential mobility 
advantage over strained Si. However, gate dielectric 
engineering remains the key roadblock to competitiveengineering remains the key roadblock to competitive 
performance.

• Non-planar architectures will be of increasing interest 
for the 15nm node and beyond Integrating e SiGe S/Dfor the 15nm node and beyond.   Integrating e-SiGe S/D 
and/or Si/SiGe channels in non-planar architectures 
offers significant new challenges.

• TFETs are gaining visibility as potential ultra-low power 
devices, leveraging better than 60mV/dec SS.  
Significant challenges to constructing Si-Ge/SiGe 

Kelin Kuhn / ECS Meeting / October 10th, 2010 

TFETs with competitive drive currents. 
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Questions?
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