Moore's Law past 32nm: Future Challenges in Device Scaling

Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology Intel Corporation

Kelin Kuhn / IWCE / Beijing / 2009

Agenda

^{© 2009} Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Agenda

© 2009 Jupiterimages

History

- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Lithography Scaling Limitations From Broers [1] IEDM Plenary Session 1980

In the limit, microscope objectives with 0.95 N.A. are available and, provided very small fields $(200\mu \times 200\mu)$ are adequate, linewidths < 0.4 μ should be achievable under carefully controlled laboratory conditions, and in very thin resist layers.

Depth of field will be reduced to about $\pm 0.2\mu$. Deep U.V. ($\lambda = 200$ nm - 260nm) lenses will be difficult to build because of the lack of materials that are transparent at these wavelengths and yet have relatively high refractive indices.

1980: Optical Lithography Limit ~ 400nm

Transistor Scaling Limitations From Meindl [2] IEDM Plenary Session 1983

For conservative design margins, typical results suggest that IGFET channel lengths can be reduced to approximately 0.40 microns in E/D NMOS logic gates; 0.30 microns in SMOS transmission gates; and 0.20 microns in E/E CMOS logic gates. Smaller channel lengths can be projected for more aggressive designs. The dominant mechanism imposing these limits is subthreshold drain current due to short channel charge sharing and drain induced barrier lowering.

1983: Transistor architecture limit 200-400nm (SCE)

Transistor Scaling Limitations From Heilmeier [4] IEDM Plenary Session 1984

1984: Transistor architecture limit 300-500nm (laundry list of reasons...)

Moore's Law Scaling

Transistor dimensions scale to improve performance, reduce power, and reduce cost per transistor

1980 to 2008

A 2008 32nm SRAM cell is dwarfed by a 1980 SRAM cell CONTACT

M. Bohr 2007

Agenda

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Planar Challenges

Electrostatics Benefit

MuGFET electrostatics allows either:

- 1) Lg Scaling (support smaller Leff at same loff)
- 2) Vg-Vt scaling (support smaller Vt at same loff)

Additional MuGFET Challenges

Agenda

© 2009 Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Kelin Kuhn / IWCE / Beijing / 2009

"Golden" days of scaling: Who worried about Cfringe?

"Silver" days of scaling: Introduction of epi: Increased fringe due to facet

"Bronze" days of scaling Gate and contact CD dimensions scaling slower than contacted gate pitch – fringe matters

Innovative Spacer Technologies

60nm 0.02 Si-N 0.018 **(a)** 0.016 Absorbance (a.u.) **∡**Β-Ν 0.014 0.012 Si-H N-H 0.01 800.0 0.006 0.004 0.002 0 1000 2200 2600 600 1400 1800 3000 3400 Wavenumber (1/cm)

SPACER REMOVAL Liow – NUS Singapore EDL 2008 [11] SiBCN (Low-K) SPACER Ko –TSMC VLSI 2008 [12]

Agenda

© 2009 Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Technology trends Xj/Tsi, Lg, Racc

Advanced Laser Anneal Technologies

Yamamoto – Fujitsu - IEDM 2007 [15] Multiple laser spikes + RTA

Ortolland – IMEC - VLSI 2008 [16] Non-melt LSA with adv. gate stacks

Low Barrier Height Contacts

 $q\phi_B$ – Schottky Barrier Height (SBH) N_D – Substrate doping conc. A – Contact area

- Limited additional improvement with R_{silicide} (NiSi has the lowest known resistivity at 10.5 μohm-cm)
- SBH optimization has potential for R_{interface} reduction

Schottky theory vs. experimental SBHs for metals on nSi Mukherjee – Intel

Fermi level pinned to mid-gap for most metals on Si

K. Kuhn – IEDM 2008 ng / 2009

Alloy and Implant Modifications to Silicides

Kelin Kuhn / IWCE / Beijing / 2009

Agenda

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

High-k Metal Gate

BENEFITS

High-k gate dielectric

- Reduced gate leakage
- Continued T_{ox} scaling

CHALLENGES

- High-k gate dielectric
 - Reduced reliability
 - Reduced mobility

Metal gates

- Eliminate polysilicon depletion
- Resolve V_T pinning for high-k gate dielectrics

Metal gates

- Dual bandedge workfunctions
- Thermal stability
- Process integration

Gate First vs Replacement Gate

Advantages of replacement gate flow

- High Thermal budget available for Midsection
 - Better Activation of S/D Implants
- Low thermal budget for Metal Gate
 - Large range of Gate Materials available
- Significant enhancement of strain
 - Both NMOS and PMOS benefit

Auth - Intel – VLSI 2008 [23]

High-k Metal Gate: ToxE and Ig

High-k/MG enables 0.7X ToxE scaling while reducing Ig > >25X for NMOS and 1000X for PMOS

FO=2 delay of 5.1 ps at IOFFN = IOFFP = 100 nA/mm 23% better than 65 nm at the same leakage and 100mV lower Vcc.

Mistry - Intel - IEDM 2007 [8]

32nm Transistor Performance vs. Gate Pitch

Highest reported drive current at tightest reported gate pitch Simultaneous performance and density improvement [9]

Kelin Kuhn / IWCE / Beijing / 2009

Agenda

© 2009 Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

OVERALL BEST? (100) and (110) comparisons (no strain) NMOS (100) <110>, PMOS (110) <110>

Sato [25]

Phys. Rev. (1971)

Chang - IBM TED 2004 [26]

Yang – AMD/IBM EDST 2007 [27]

Kelin Kuhn / IWCE / Beijing / 2009

(110) surface <110> channel results when a VFET is fabricated on typical (100) Si - good for PMOS, not for NMOS

(100) surface <100> channel for a VFET fabricated at 45 degrees typical (100) Si – very challenging for lithography at 22nm node

≒▦X.⊪□⊻其凸幾日□F其回燚又⊪ョ重≻|フ!

Elegant solution!

Early HOT

SiN

SOI

BOX

Yang – AMD/IBM **VLSI 2004** HOT RO

Yang – IBM IEDM 2003 [27] **First HOT**

Wafer bonding; SOI of opposite type of handle wafer; both options (N and PMOS SOI explored)

Early HOT

SiN

SOI

BOX

epi-Si

(100) Silicon handle wafer

Yang – AMD/IBM VLSI 2004 HOT RO

Yang – IBM IEDM 2003 [27] First HOT

600

pFET on (100) epi-layer on control wafer pFET on (110) epi-layer

on hybrid substrate

500

l_{off} (A/μm)

10

10⁻⁹ – 200

300

400

I_{on} (μΑ/μm)

HOT architecture options

SuperHot

Yang – IBM VLSI 2006 [29] ~Dual SOI HOT

Agenda

© 2009 Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Kelin Kuhn / IWCE / Beijing / 2009

Strain: Importance in scaling

Strain (first introduced at 90nm) is a critical ingredient in modern transistor scaling

Electron mobility enhancement: Biaxial

Etch-stop nitride (CESL)

Kelin Kuhn / IWCE / Beijing / 2009

1300

Embedded SiGe (PMOS)

Embedded SiGe (PMOS)

Enhanced PMOS strain: Gate last HiK-MG

Kelin Kuhn / IWCE / Beijing / 2009

Stress Memorization (SMT)

SMT enhancement with HiK-MG Kubicek – IMEC – VLSI 2008 [45]

Strain enhanced Low-V_T CMOS featuring La/AI-doped HfSiO/TaC and 10ps Invertor Delay

S. Kubicek, T.Schram, E.Rohr, V.Paraschiv, R.Vos, M.Demand, C.Adelmann, T.Witters, L.Nyns, A.Delabie, L.-Å.Ragnarsson, T.Chiarella, C.Kerner, A.Mercha, B.Parvais, M.Aoulaiche[†], C.Ortolland, H.Yu, A.Veloso, L.Witters, R.Singanamalla[†], T. Kauerauf[†], S.Brus, C.Vrancken, V.S.Chang¹, S-Z.Chang¹, R.Mitsuhashi², Y.Okuno², A.Akheyar³, H.-J.Cho⁴, J.Hooker⁵, B. J. O'Sullivan, S.Van Elshocht, K.De Meyer[†], M.Jurczak, P.Absil, S.Biesemans and T.Hoffmann

From the paper: "… the gain from traditional stress boosters (CESL, embedded-SiGe, channel orientation) was maintained on High-κ/Metal gate.."

Embedded Si:C (NMOS)

Ang – NUS-Singapore IEDM 2004 [46] Selective epi SiC (undoped) Liu – IBM VLSI 2007 [47] Implant + SPE Yang–IBM IEDM 2008 In-situ epi P-SiC

Metal stress (gate and contact)

Kang – Sematech IEDM 2006 [49] Auth – Intel VLSI 2008 [23]

Kelin Kuhn / IWCE / Beijing / 2009

Agenda

© 2009 Jupiterimages

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

Strain and Orientation Piezoresistive coefficient as a function of direction

Udo – Infineon – Proc. IEEE Sensors 2004

Krishnamohan – Stanford – IEDM 2008

Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage ^{1,4}Tejas Krishnamohan, ¹Donghyun Kim, ²Thanh Viet Dinh, ³Anh-tuan Pham, ³Bernd Meinerzhagen, ²Christoph Jungemann, ¹Krishna Saraswat 90, [010] 90, [-110] 90. [-110] comp 3 120 60 [110] 0, [10 3 [-11-√2] [-11-√2] stress [, stress] 0, [00-1]] Hstress/Hw/o stress 135 45, [110] 135 45, [-11-√2] 2 2 2 tens 0 0 0, [11-2] 210 330 225 31 225 315 240 300 270 270 270 Si (111)-biaxial (1.5GPa) Si (001)-biaxial (1.5GPa) Si (110)-biaxial (1.5GPa) 90, [010] 90, [+110] 90, [-110] 3 110] 0. [100] H #10 stress 3 Hatreas/Www.stress 120 60 135 45. [110] 135 45. [-11-12] 2 2 2 0, [00-1] 0 0 0,[11-2] 210 330 225 315 315 225 240 300 270 270 270 Si (001)-uniaxial (1.5GPa) Si (110)-uniaxial (1.5GPa) Si (111)-uniaxial (1.5GPa)

Agenda

- History
- Architecture
- Capacitance
- Resistance
- HiK-MG
- Orientation
- Strain
- Strain + Orientation
- Summary

"Looking in the Crystal Ball"

CHANGE	COMMENTS
Further enhancements in strain technology	Low risk – evolutionary change – large suite of proven successful options
Further enhancements in HiK-MG technology	Low risk – continual improvement – driven by strong research/development efforts
Optimized substrate and channel orientation	Medium risk – requires some solution to the (100)<110>N vs (110)/<110>P issue
Reduction in MOS parasitic resistance	Medium risk – new annealing technologies, RE/NM silicide options
Reduction in MOS parasitic capacitance	Medium-high risk – low-k FE dielectrics pose significant process challenges
MuGFETs	High risk – significant challenges with parasitic R, parasitic C and strain

Q&A

© 2009 Jupiterimages

Kelin Kuhn / IWCE / Beijing / 2009