Technology Options for 22nm and Beyond

Kelin J. Kuhn

Intel Fellow Intel Corporation

Director of Advanced Device Technology

AGENDA

- Scaling
- Gate control
- Mobility
- Resistance
- Capacitance
- Summary

AGENDA

Scaling

- Gate control
- Mobility
- Resistance
- Capacitance
- Summary

MOSFET Scaling

Device or Circuit Parameter	Scaling Factor		
Device dimension tox, L, W	1/ κ		
Doping concentration Na	К		
Voltage V	1/ κ		
Current I	1/ κ		
Capacitance <i>EA/t</i>	1/ κ		
Delay time/circuit VC/I	1/ κ		
Power dissipation/circuit VI	$1/\kappa^2$		
Power density VI/A	1		

R. Dennard, IEEE JSSC, 1974

Classical MOSFET scaling was first described by Dennard in 1974

MOSFET Scaling

Device or Circuit Parameter	Scaling Factor	
Device dimension tox, L, W	1/ κ	
Doping concentration Na	К	
Voltage V	1/ ĸ	
Current I	1/ ĸ	
Capacitance $\epsilon A/t$	1/ κ	
Delay time/circuit VC/I	1/ ĸ	
Power dissipation/circuit VI	1/ κ ²	
Power density VI/A	1	

R. Dennard, IEEE JSSC, 1974

Classical MOSFET scaling ENDED at the 130nm node (and nobody noticed ...)

90 nm Strained Silicon Transistors

High Stress + Film

NMOS

PMOS

SiN cap layer Tensile channel strain SiGe source-drain Compressive channel strain

Strained silicon provided increased drive currents, making up for the loss of classical Dennard scaling

45nm High-k + Metal Gate Transistors

45 nm HK+MG

Hafnium-based dielectric Metal gate electrode

High-k + metal gate transistors restored gate oxide scaling at the 45nm node

Changes in Scaling

THEN

- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

90nm

130nm

65nm

45nm

E X.IICYIC器 IIII X IIII X Kelin Kuhn / IWJT / Shanghai / 2010

32nm

Changes in Scaling

THEN

- Scaling drove down cost
- **Scaling drove performance** ٠
- **Performance constrained** •
- **Active power dominates** ٠
- Independent design-process

NOW

- Scaling drives down cost
- <u>Materials</u> drive performance
- **Power** constrained
- **Standby power dominates**
- **Collaborative** design-process

130nm

45nm

32nm

g

Kelin Kuhn / IWJT / Shanghai / 2010

Consistent 2-year scaling

(intel

10

Transistor Performance

32 nm transistors continue Moore's Law with improved drive at reduced pitch

Consistent SRAM Density Scaling

K. Zhang, ISCC, 2009; M. Bohr IDF 2010

■ ﷺ 🖂 📰 🔄 🔣 Kelin Kuhn / IWJT / Shanghai / 2010

AGENDA

- Scaling
- Gate control
- Mobility
- Resistance
- Capacitance
- Summary

Nanowire

Looking at all these in more detail

Barral – CEA-LETI– IEDM 2007

Ultra-thin body

Hisamoto – Hitachi / Berkeley– IEDM 1998 [3]

A Folded-channel MOSFET for Deep-sub-tenth Micron Era

Digh Hisamoto, Wen-Chin Lee^{*}, Jakub Kedzierski^{*}, Erik Anderson^{**}, Hideki Takeuchi⁺, Kazuya Asano⁺⁺, Tsu-Jae King^{*}, Jeffrey Bokor^{*}, and Chenming Hu^{*} Central Research Laboratory, Hitachi Ltd., ^{*}) EECS, UC Berkeley, ^{**}) Lawrence Berkeley Laboratory, ⁺) Nippon Steel Corp., ⁺⁺) NKK Corp.

. 1 Folded channel MOSFET layout design and device structure. • bottom is A-A cross section, and the right is B-B cross section

MuGFET

Kavalieros – Intel – IEDM 2006

Vellianitis – NXP-TSMC – IEDM 2007

Kelin Kuhn / IWJT / Shanghai / 2010

MuGFET

Kang – Sematech – VLSI 2008

Chang – TSMC – IEDM 2009

Nanowire FETs

Dupre – CEA-LETI – IEDM 2008

inte

🔳 🖾 🖂 🚽 🖳 Kelin Kuhn / IWJT / Shanghai / 2010

Nanowire FETs

80 10 (b) 10- n-Conv. QWFET V_{G} Drain Current I_{DS} (A) Drain Current I_{DS} (μA) 10= 65 nm $D_{cm} = 12 \text{ nm}$ n-DS-MSM QWFET 60 NiSi 10 $V_{CS} - V_{Text} = 1$ NiSi step of 0.2 10-5 Si Quantum Arsenic Segregation Wire 40 10^{-6} (c) 10^{-1} V_{G} 12 nm p-DS-MSM QWFET 10^{-8} ViSi 20 10^{-9} SIST 10^{-10} V_D **Boron Segregation** 10^{-11} 0.8 0.00.4 12 1_

Bangsaruntip – IBM – IEDM 2009

Wong – NUS Singapore – VLSI 2009

Transistor Performance Trend

Strain is a critical ingredient in modern transistor scaling Strain was first introduced at 90nm, and its contribution has increased in each subsequent generation

Etch-stop nitride (CESL)

Strain: Pitch dependence

Embedded SiGe (PMOS)

(intel)

Embedded Si:C (NMOS)

Ang – NUS-Singapore IEDM 2004 Selective epi SiC (undoped) Yang–IBM IEDM 2008 In-situ epi P-SiC Chung – Nat'l Chiao Tung U. VLSI 2009 Implanted C + SPE

Strain: Pitch dependence

Strain: Pitch dependence

What about strain options less sensitive to pitch?

Stress Memorization (SMT)

Metal stress (gate and contact)

Enhanced PMOS strain: Gate last HiK-MG

ORIENTATION

(100) surface – top down

(110) surface – top down

Standard wafer / direction (100) Surface / <110> channel

(100) Surface / <100> (a "45 degree" wafer)

Both <110> directions are the same.

Non-standard

(110) Surface

Three possible channel directions <110> <111> and <100>

(100) surface - top down

(110) surface - top down

Standard wafer / direction (100) Surface / <110> channel

(100) Surface / <100> (a "45 degree" wafer)

<100> <111> (110) <110>

Non-standard

(110) Surface

Three possible channel directions <110> <111> and <100>

(100) BEST NMOS

same.

ᢂ᠋᠋᠋ᡩ

(110) <110> BEST PMOS

PMOS Vertical Devices on (100)

(110) surface <110> channel results when a VFET is fabricated on typical (100) Si - good for PMOS, not for NMOS

(intel? [] IIII / IIII / IIII / IIII / IIII / Shanghai / 2010

NMOS Vertical Devices on (100)

(100) surface <100> channel for a VFET fabricated at 45 degrees typical (100) Si – very challenging for lithography

EⅢ风川口坐其伯燚H口 F其回燚⊠Ⅲ目≣≻ID/ Kelin Kuhn / IWJT / Shanghai / 2010

Strain and Orientation Piezoresistive coefficient as a function of direction

Udo – Infineon – Proc. IEEE Sensors 2004

Krishnamohan – Stanford – IEDM 2008

Comparison of (001), (110) and (111) Uniaxial- and Biaxial- Strained-Ge and Strained-Si PMOS DGFETs for All Channel orientations: Mobility Enhancement, Drive Current, Delay and Off-State Leakage ^{1,4}Tejas Krishnamohan, ¹Donghyun Kim, ²Thanh Viet Dinh, ³Anh-tuan Pham, ³Bernd Meinerzhagen, ²Christoph Jungemann, ¹Krishna Saraswat 90, [010] 90, [-110] 90. [-110] comp 3 120 60 [110] 0, [10 3 [-11-√2] [-11-√2] stress [, stress] 0, [00-1]] Hstress/Hw/o stress 135 45, [110] 135 45, [-11-√2] 2 2 2 tens 0 0 0, [11-2] 210 330 225 31 225 315 240 300 270 270 270 Si (111)-biaxial (1.5GPa) Si (001)-biaxial (1.5GPa) Si (110)-biaxial (1.5GPa) 90, [010] 90, [+110] 90, [-110] 3 110] 0. [100] H #10 stress 3 Hatreas/Www.stress 120 60 135 45. [110] 135 45. [-11-12] 2 2 2 0, [00-1] 0 0 0,[11-2] 210 330 225 315 315 225 240 300 270 270 270 Si (001)-uniaxial (1.5GPa) Si (110)-uniaxial (1.5GPa) Si (111)-uniaxial (1.5GPa)

Technology trends Xj/Tsi, Lg, Racc

RTA effective annealing times

Cycle	Rampup Rate (C/s)	Typical peak time (s)	Rampdown Rate (C/s)	Effective Time (s)
Soak	75	5-30	40	∼5+t _{hold}
Spike	250	<0.5	75	~1
Flash	1e5-1e6	<1e-6	~1e6	0.1-1 ms
Scanning laser	1e5-1e6	<1e-6	>1e6	0.1-1 ms
Melt (laser)	1e7-1e8	<1e-8	>1e7	10-100ns

Effective annealing times are computed with realistic ramp shapes, assuming dominant Ea~5eV.

Annealing techniques: by physics of activation

Kelin Kuhn / IWJT / Shanghai / 2010

Annealing techniques:

by phys

Flash/submelt laser processes have the potential to "freeze" dopant profiles in place

「「「「「「」」「「」」「「」」」」) Kelin Kuhn / IWJT / Shanghai / 2010

Submelt Laser Anneal Test Stand

- Guassian beam: 400 µm wide (FWHM)
- Spinning stage: dwell time $60 200 \ \mu s$
- Constant dwell time and track spacing are maintained by synchronizing spin speed and x-stage position

Submelt Laser Anneal Test Results

Freezing implants in place: Submelt laser anneal showing no diffusion after 200 µS anneal

Superactivation with solid-phase epitaxial regrowth (SPER)

Laser melt anneal vs RTA, showing increased abruptness and non-equilibrium enhanced activation (superactivation).

IICY其值幾日日日常回蹤又IIIET=>+□ Kelin Kuhn / IWJT / Shanghai / 2010

Planar Capacitive Elements

Innovative Spacer Technologies

SPACER REMOVAL Liow – NUS Singapore EDL 2008 SiBCN (Low-K) SPACER Ko –TSMC VLSI 2008

AGENDA

- Scaling
- Gate control
- Mobility
- Resistance
- Capacitance
- Summary

Looking Forward

Low risk

Enhancements in strain technology Enhancements in annealing/implant technology

Medium Risk

Optimized substrate and channel orientation Reduction in MOS parasitic resistance Reduction in MOS parasitic capacitance

> High risk UTB devices MuGFETS Nanowires

