Next Steps in Moore's Law: Transistor Scaling for the 15nm node and beyond

Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology Portland Technology Development Intel Corporation

(intel)

Changes in Scaling

THEN

- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

NOW

- Scaling drives down cost
- <u>Materials</u> drive performance
- <u>Power</u> constrained
- <u>Standby power</u> dominates
- <u>Collaborative</u> design-process

[] 図.IIIコンゴロ※III Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

Consistent SRAM Density Scaling

川口工工 (1981) Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

intel

X.III コンゴロ※III Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

Ultra-thin body

Barral – CEA-LETI– IEDM 2007

Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

MuGFET

Kavalieros – Intel – IEDM 2006

intel

IN IN THE STATE Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

intel

Bangsaruntip – IBM – IEDM 2009

(intel)

に回答して、 Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

Vertical Architectures

Vertical Architectures

Challenges

Batude – CEA LETI - IEDM 2009 – stacked 110/100

Vertical

Top FET

pMOS SOI (110)

Stacked over

intel

Fig.15: ID-VD characteristics of top FET

> Fig.16:Transfer Voltage characteristic of an inverter: top SOI (110) pFET and bottom SOI (100) nFET

> > Vin [V]

Jung – Samsung - IEEE TED 2010 – 3'D stacked 6T

Active Gate

Transistor Performance Trend

Strain is a critical ingredient in modern transistor scaling Strain was first introduced at 90nm, and its contribution has increased in each subsequent generation

(intel)

ORIENTATION

(100) surface – top down

(110) surface – top down

intel

Standard wafer / direction (100) Surface / <110> channel

(100) Surface / <100> (a "45 degree" wafer)

Non-standard

(110) Surface

Three possible channel directions <110> <111> and <100>

(100) BEST NMOS

(110) <110> BEST PMOS

コンゴロ※IIIC Kelin Kuhn / Nikkei Electronics Symposium / June 29th, 2010

Orientation and Strain: More complex for non-(100) orientations

Kuhn/Packan, Intel, IEDM 2008 ctronics Symposium / June 29th, 2010

Planar Resistive Elements

íntel

Schottky barrier S/D – an option?

(intel)

- In a metal SB-MOS, S/D forms an atomically abrupt Schottky-barrier having the height φb.
- The extreme limit for metal in the S/D regions (with associated improvements in Rext)
- Unconventional operation (field emission device in the ON state)
- Needs complementary devices (midgap silicide or two silicides)

Planar Capacitive Elements

Looking Forward

Low risk

Enhancements in strain technology Enhancements in annealing/implant technology

Medium Risk

Optimized substrate and channel orientation Reduction in MOS parasitic resistance Reduction in MOS parasitic capacitance

High risk UTB devices MuGFETS Nanowires Vertical Devices