Moore's Law past 32nm: Future Challenges in Device Scaling

Kelin J. Kuhn Intel Fellow Director of Advanced Device Technology Intel Corporation

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

130 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

90 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

65 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

45 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

Maybe it would help if we SCALED THEM TOO!

130 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

Maybe it would help if we SCALED THEM TOO!

90 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

Maybe it would help if we SCALED THEM TOO!

65 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

Maybe it would help if we SCALED THEM TOO!

45 nm

As near as I can tell: THE key challenge is that the transistors get smaller ...

BUT the *.ppt pictures remain the same size

Maybe it would help if we SCALED THEM TOO!

32 nm

AGENDA

- Scaling history
- Gate control
 - High-k metal-gate
 - Structural enhancements
- Resistance
- Capacitance
- Mobility
 - Strain
 - Orientation
 - Advanced channel materials
- Summary

AGENDA

Scaling history

- Gate control
 - High-k metal-gate
 - Structural enhancements
- Resistance
- Capacitance
- Mobility
 - Strain
 - Orientation
 - Advanced channel materials
- Summary

MOSFET Scaling

Device or Circuit Parameter	Scaling Factor
Device dimension tox, L, W	1/ ĸ
Doping concentration Na	K
Voltage V	1/ ĸ
Current I	1/ ĸ
Capacitance EA/t	1/ ĸ
Delay time/circuit VC/I	1/ ĸ
Power dissipation/circuit VI	$1/\kappa^2$
Power density VI/A	1

R. Dennard, IEEE JSSC, 1974

Classical MOSFET scaling was first described by Dennard in 1974

MOSFET Scaling

Device or Circuit Parameter	Scaling Factor
Device dimension tox, L, W	1/ ĸ
Doping concentration Na	K
Voltage V	1/ ĸ
Current I	1/ ĸ
Capacitance <i>EA/t</i>	1/ ĸ
Delay time/circuit VC/I	1/ ĸ
Power dissipation/circuit VI	1/ κ ²
Power density VI/A	1

R. Dennard, IEEE JSSC, 1974

Classical MOSFET scaling ENDED at the 130nm node (and nobody noticed ...)

90 nm Strained Silicon Transistors

High Stress Film

NMOS

PMOS

SiN cap layer Tensile channel strain

何幾時日月之间終又能引三升日

SiGe source-drain Compressive channel strain

Strained silicon provided increased drive currents, making up for the loss of classical Dennard scaling

45nm High-k + Metal Gate Transistors

45 nm HK+MG

Hafnium-based dielectric Metal gate electrode

High-k + metal gate transistors restored gate oxide scaling at the 45nm node

Changes in Scaling

THEN

- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

90nm

130nm

45nm

Kelin Kuhn / SSDM / Japan / 2009

65nm

17

32nm

Changes in Scaling

THEN

- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

NOW

- Scaling drives down cost
- <u>Materials</u> drive performance
- Power constrained
- <u>Standby power</u> dominates
- <u>Collaborative</u> design-process

90nm

130nm

45nm

Kelin Kuhn / SSDM / Japan / 2009

65nm

32nm

What if CARS Were as Efficient as MICROPROCESSORS?

High-k Metal Gate

BENEFITS

High-k gate dielectric

- Reduced gate leakage
- Continued T_{ox} scaling

CHALLENGES

- High-k gate dielectric
 - Reduced reliability
 - Reduced mobility

Metal gates

- Eliminate polysilicon depletion
- Resolve V_T pinning for poly on high-k gate dielectrics

Metal gates

- Dual bandedge workfunctions
- Thermal stability
- Process integration

High-k Metal Gate: ToxE and Ig

High-k/MG enables 0.7X ToxE scaling while reducing Ig >> 25X for NMOS and 1000X for PMOS

23% better than 65 nm at the same leakage and 100mV lower Vcc. (FO=2 delay of 5.1 ps at loffn = loffp = 100 nA/μm)

K. Mistry - IEDM 2007

The Road to HK+MG Processors

FOUR GENERATION COMPARISON

45nm: 1st gen. HiK-MG Mistry, Intel, IEDM 2007

32nm: 2nd gen. HiK-MG Natarajan, Intel, IEDM 2008

Random and Systematic Variation Trends

Systematic WIW variation is comparable from one generation to the next

Random WIW variation in 32nm is comparable to 45nm and significantly improved over 65nm and 90nm due to HiK-MG

Yield: The best measure of Systematic Variation

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Yield: The best measure of Systematic Variation

-

Nanowire Nanowire

(inte

Looking at all these in more detail

Barral – CEA-LETI– IEDM 2007

Ultra-thin body

Hisamoto – Hitachi / Berkeley– IEDM 1998 [3]

A Folded-channel MOSFET for Deep-sub-tenth Micron Era

Digh Hisamoto, Wen-Chin Lee^{*}, Jakub Kedzierski^{*}, Erik Anderson^{**}, Hideki Takeuchi⁺, Kazuya Asano⁺⁺, Tsu-Jae King^{*}, Jeffrey Bokor^{*}, and Chenming Hu^{*} Central Research Laboratory, Hitachi Ltd., ^{*}) EECS, UC Berkeley, ^{**}) Lawrence Berkeley Laboratory, ⁺) Nippon Steel Corp., ⁺⁺) NKK Corp.

. 1 Folded channel MOSFET layout design and device structure. : bottom is A-A cross section, and the right is B-B cross section

MuGFET

Kavalieros – Intel – IEDM 2006

Vellianitis – NXP-TSMC – IEDM 2007

MuGFET

Kang – Sematech – VLSI 2008

Kawasaki – Toshiba (IBM Alliance) – IEDM 2009

Nanowire FETs

Dupre – CEA-LETI – IEDM 2008

inte

AGENDA

- Scaling history
- Gate control
 - High-k metal-gate
 - Structural enhancements
- Resistance
- Capacitance
- Mobility
 - Strain
 - Orientation
 - Advanced channel materials
- Summary

Challenges for ALL Architectures

Improvement in Planar Elements

Y)(「然」・ローエロ※>11日三)・ワ

 $R_{
m interface} \propto \exp\!\!\left(rac{q\phi_B}{\sqrt{N_D}}
ight)
onumber \ R_{
m interface} \propto rac{1}{A}$

 $q\phi_B$ – Schottky Barrier Height (SBH) N_D – Substrate doping conc. A – Contact area

- Evolutionary R_{acc} improvement through X_j scaling (anneal/implant) until the end of the planar roadmap (thereafter Tsi/Wsi limited)
- R_{epi} / R_{spreading} improvement from raised source/drain (RSD)
- Limited R_{silicide} improvement (NiSi has the lowest known resistivity)
- Significant possibility for R_{interface} improvement, particularly through SBH optimization (R_{interface}).
- R_{contact} improvement from high conductivity metals (copper?)

Improvement in Planar Elements

 $R_{ ext{interface}} \propto \exp\!\!\left(rac{q\phi_B}{\sqrt{N_D}}
ight)
onumber \ R_{ ext{interface}} \propto rac{1}{A}$

 $q\phi_B$ – Schottky Barrier Height (SBH) N_D – Substrate doping conc. A – Contact area

- Evolutionary R_{acc} improvement through X_j scaling (anneal/implant) until the end of the planar roadmap (thereafter Tsi/Wsi limited)
- R_{epi} / R_{spreading} improvement from raised source/drain (RSD)
- Limited R_{silicide} improvement (NiSi has the lowest known resistivity
- Significant possibility for R_{interface} improvement, particularly through SBH optimization (R_{interface}).
- R_{contact} improvement from high conductivity metals (copper?)

Schottky theory vs. experimental SBHs for metals on nSi Mukherjee – Intel

Fermi level pinned to mid-gap for most metals on Si

K. Kuhn – IEDM SC 2008

Alloy and Implant Modifications to Silicides

Copper Contacts

VLSI 2006

Fabrication of Cu contacts

▼■何様は□□「▲回桜又Ⅲヨ三〉□□

53

Kelin Kuhn / SSDM / Japan / 2009

IEDM 2006

Challenges of Cu contacts

Challenges for ALL Architectures

首何幾日日,首同終又世日三

"Golden" days of scaling: Who worried about Cfringe?

Kuhn, Intel, IEDM SC 2008

"Silver" days of scaling: Introduction of epi: Increased fringe due to facet

Kuhn, Intel, IEDM SC 2008

"Bronze" days of scaling Gate and contact CD dimensions scaling slower than contacted gate pitch – fringe matters

Kuhn, Intel, IEDM SC 2008

Innovative Spacer Technologies

SPACER REMOVAL Liow – NUS Singapore EDL 2008 SiBCN (Low-K) SPACER Ko –TSMC VLSI 2008

Resistance

Challenges for ALL Architectures

Transistor Performance Trend

Strain is a critical ingredient in modern transistor scaling Strain was first introduced at 90nm, and its contribution has increased in each subsequent generation

Etch-stop nitride (CESL)

Kelin Kuhn / SSDM / Japan / 2009

71

Strain: Pitch dependence

Embedded SiGe (PMOS)

Embedded Si:C (NMOS)

Ang – NUS-Singapore IEDM 2004 Selective epi SiC (undoped)

Yang–IBM IEDM 2008 In-situ epi P-SiC Chung – Nat'l Chiao Tung U. VLSI 2009 Implanted C + SPE

Strain: Pitch dependence

Strain: Pitch dependence

What about strain options less sensitive to pitch?

Stress Memorization (SMT)

Metal stress (gate and contact)

VLSI 2008

IEDM 2006

Enhanced PMOS strain: Gate last HiK-MG

ORIENTATION

(100) surface – top down

(110) surface – top down

Standard wafer / direction (100) Surface / <110> channel

(100) Surface / <100> (a "45 degree" wafer)

Both <110> directions are the same.

Non-standard

(110) Surface

Three possible channel directions <110> <111> and <100>

(100) surface - top down

(110) surface - top down

Standard wafer / direction (100) Surface / <110> channel

Both <110> directions are the

(100) Surface / <100> (a "45 degree" wafer)

Non-standard

(110) Surface

Three possible channel directions <110> <111> and <100>

(100) BEST NMOS

same.

(110) <110> BEST PMOS

PMOS Vertical Devices on (100)

(110) surface <110> channel results when a VFET is fabricated on typical (100) Si - good for PMOS, not for NMOS

(intel)[===X, ||CY=C%+CF=C%X||==>D

NMOS Vertical Devices on (100)

(100) surface <100> channel for a VFET fabricated at 45 degrees typical (100) Si – very challenging for lithography

Kelin Kuhn / SSDM / Japan / 2009

83

Early HOT Elegant solution!

 wfer
 nFET
 pFET
 pFET

 85nm
 85nm
 85nm

 (100) SOI
 (110) epi-Si

 buried oxide
 MS
 (110) epi-Si

 5-5200A 4 0kV 0.3mm x300k SE
 100hm

Yang – AMD/IBM VLSI 2004 HOT RO

Yang – IBM IEDM 2003 [28] First HOT

Wafer bonding; SOI of opposite type of handle wafer; both options (N and PMOS SOI explored)

pFET on (100) epi-layer on control wafer pFET on (110) epi-layer

on hybrid substrate

500

600

10⁻⁹ – 200

300

400

l_{on} (μΑ/μm)

Early HOT **Elegant solution!**

Yang – AMD/IBM **VLSI 2004** HOT RO

Yang – IBM IEDM 2003 [28] **First HOT**

「「「「「「「「「「「」」」「「」」「「」」「「」」「「」」「「」」「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」」「」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」

SOI

BOX

epi-Si

(100) Silicon handle wafer

4.0 kV X150K 200nm

Strain AND orientation optimization

Chan – IBM CICC 2005

Krishnamohan – Stanford IEDM 2008

More complex for non-(100) orientations

(intel)

Kuhn/Packan, Intel, IEDM 2008

Kelin Kuhn / SSDM / Japan / 2009

STRAINED

89

Interesting Alternative Materials

Adapted from Kavalieros – Intel - VLSI SC 2007

Challenges of TOXE scaling in Ge and SiGe

R. Chau, Intel, ESSDERC 2008

At thin electrical oxide thickness (TOXE), all industry/university data show degraded mobility

New oxide invention required to enable a Ge/SiGe channel for future technology nodes

Challenge of Lattice Mismatch Issues

 Low Eg III-V materials (InAs, InSb, Ge) are subject to loff increases due to band-to-band tunneling (and the effect worsens with strain).

- Low Eg III-V materials (InAs, InSb, Ge) are subject to loff increases due to band-to-band tunneling (and the effect worsens with strain).
- Very high mobility materials (ex: InAs, InSb) have low density of states in the Γ-valley, resulting in reduced lon.

Saraswat – Stanford – IEDM 2006

- Low Eg III-V materials (InAs, InSb, Ge) are subject to loff increases due to band-to-band tunneling (and the effect worsens with strain).
- Very high mobility materials (ex: InAs, InSb) have low density of states in the Γ-valley, resulting in reduced lon.
- At high fields, the quantized energy levels in the Γ-valley rise faster than in the L and X valleys, and thus the current is largely carried in the lower mobility L and X-valleys.

- Low Eg III-V materials (InAs, InSb, Ge) are subject to loff increases due to band-to-band tunneling (and the effect worsens with strain).
- Very high mobility materials (ex: InAs, InSb) have low density of states in the Γ-valley, resulting in reduced lon.
- At high fields, the quantized energy levels in the Γ-valley rise faster than in the L and X valleys, and thus the current is largely carried in the lower mobility L and X-valleys.
- Higher k materials (InAs, InSb) have increased subthreshold slope.

III-V Materials as Transistor Channels

In_{0.7}Ga_{0.3}As QW stack is virtually defect-free

Success of III-V Materials as Transistor Channel (Vcc = 0.5V)

R. Chau, ESSDERC 2008

At a gate overdrive = 0.3V, III-V QWFET shows 55% intrinsic drive current gain over strained Si

> At a drain voltage of 0.5V, III-V QWFET shows >20% I_{DSAT} gain over strained Si (despite thicker Toxe and higher R_{SD})

AGENDA

- Scaling history
- Gate control
 - High-k metal-gate
 - Structural enhancements
- Resistance
- Capacitance
- Mobility
 - Strain
 - Orientation
 - Advanced channel materials

Summary

YYY 「総合日本国際文計5日三分ワ!

Looking Forward Past 32nm

Low risk

Further enhancements in strain technology Further enhancements in HiK-MG technology

Medium Risk

Optimized substrate and channel orientation Reduction in MOS parasitic resistance Reduction in MOS parasitic capacitance

High risk

UTB devices MuGFETS Advanced materials (Ge, III-V) Nanowires

Questions???

