

# Intel<sup>®</sup> Compute Module MFS5000SI

**Technical Product Specification** 

Intel order number: E15154-007

**Revision 1.4** 

June 2009

**Enterprise Platforms and Services Division** 



# **Revision History**

| Date           | Revision<br>Number | Modifications                           |
|----------------|--------------------|-----------------------------------------|
| July 2007      | 0.95               | Initial release.                        |
| August 2007    | 0.96               | Updated                                 |
| September 2007 | 1.0                | Updated                                 |
| February 2008  | 1.1                | Updated                                 |
| November 2008  | 1.2                | Updated                                 |
| May 2009       | 1.3                | Updated                                 |
| June 2009      | 1.4                | Updated supported memory configurations |

# Disclaimers

Information in this document is provided in connection with Intel<sup>®</sup> products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel<sup>®</sup> Compute Module MFS5000SI may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel Corporation server baseboards support peripheral components and contain a number of highdensity VLSI and power delivery components that need adequate airflow to cool. Intel's own chassis are designed and tested to meet the intended thermal requirements of these components when the fully integrated system is used together. It is the responsibility of the system integrator that chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation can not be held responsible if components fail or the compute module does not operate correctly when used outside any of their published operating or non-operating limits.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

\*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2007-2009.

# Table of Contents

| 1. | Introduction1 |                                                         |     |  |
|----|---------------|---------------------------------------------------------|-----|--|
|    | .1            | Chapter Outline                                         | . 1 |  |
|    | .2            | Intel <sup>®</sup> Compute Module Use Disclaimer        | . 1 |  |
| 2. | Product       | Overview                                                | .2  |  |
| 2  | 2.1           | Intel <sup>®</sup> Compute Module MFS5000SI Feature Set | . 2 |  |
| 2  | 2.2           | Compute Module Layout                                   | . 3 |  |
|    | 2.2.1         | Connector and Component Locations                       | . 3 |  |
|    | 2.2.2         | External I/O Connector Locations                        | .4  |  |
|    | 2.2.3         | Compute Module Mechanical Drawings                      | . 5 |  |
| З. | Function      | al Architecture                                         | .6  |  |
| 3  | 3.1           | Intel <sup>®</sup> 5000P Memory Controller Hub (MCH)    | .7  |  |
|    | 3.1.1         | System Bus Interface                                    | .7  |  |
|    | 3.1.2         | Processor Support                                       | .7  |  |
|    | 3.1.3         | Memory Subsystem                                        | . 8 |  |
| 3  | 3.2           | Intel <sup>®</sup> 6321ESB I/O Controller Hub1          | 16  |  |
|    | 3.2.1         | PCI Subsystem                                           | 16  |  |
|    | 3.2.2         | Serial ATA Support1                                     | 17  |  |
|    | 3.2.3         | Parallel ATA (PATA) Support1                            | 17  |  |
|    | 3.2.4         | USB 2.0 Support                                         | 18  |  |
| 3  | 3.3           | Video Support                                           | 18  |  |
| 3  | 3.4           | Network Interface Controller (NIC)                      | 19  |  |
|    | 3.4.1         | Intel <sup>®</sup> I/O Acceleration Technology1         | 19  |  |
|    | 3.4.2         | MAC Address Definition1                                 | 19  |  |
| 3  | 8.5           | Super I/O                                               | 19  |  |
| 4. | Connect       | or / Header Locations and Pin-outs2                     | 21  |  |
| 4  | l.1           | Board Connector Information                             | 21  |  |
| 4  | .2            | Power Connectors                                        | 21  |  |
| 2  | .3            | I/O Connector Pin-out Definition                        | 22  |  |
|    | 4.3.1         | VGA Connector                                           | 22  |  |
|    | 4.3.2         | I/O Mezzanine Card Connector                            | 22  |  |
|    | 4.3.3         | Midplane Signal Connector                               | 23  |  |

|      | 4.3.4                                                           | Serial Port Connector                             | 24 |
|------|-----------------------------------------------------------------|---------------------------------------------------|----|
|      | 4.3.5                                                           | USB 2.0 Connectors                                | 25 |
| 5.   | Jumper B                                                        | lock Settings                                     | 26 |
| 5    | .1                                                              | Recovery Jumper Blocks                            | 26 |
|      | 5.1.1                                                           | CMOS Clear and Password Reset Usage Procedure     | 27 |
|      | 5.1.2                                                           | BMC Force Update Procedure                        | 27 |
|      | 5.1.3                                                           | System Status LED – BMC Initialization            | 28 |
| 6.   | Product I                                                       | Regulatory Requirements                           | 29 |
| 6    | .1                                                              | Product Regulatory Requirements                   | 29 |
| 6    | .2                                                              | Product Regulatory Compliance and Safety Markings | 29 |
| 6    | .3                                                              | Product Environmental/Ecology Requirements        | 29 |
| 6    | .4                                                              | Product Environmental/Ecology Markings            | 29 |
| Арр  | endix A: I                                                      | ntegration and Usage Tips                         | 30 |
| Арр  | endix B: E                                                      | BMC Sensor Tables                                 | 31 |
| Арр  | endix C: F                                                      | POST Error Messages and Handling                  | 37 |
| Арр  | Appendix D: Supported Intel <sup>•</sup> Modular Server System4 |                                                   |    |
| Glos | ùlossary41                                                      |                                                   |    |
| Ref  | erence Do                                                       | ocuments                                          | 44 |

# List of Figures

| Figure 1. Component and Connector Location Diagram                                   | 3    |
|--------------------------------------------------------------------------------------|------|
| Figure 2. Intel <sup>®</sup> Compute Module MFS5000SI Front Panel Layout             | 4    |
| Figure 3. Intel <sup>®</sup> Compute Module MFS5000SI – Hole and Component Positions | 5    |
| Figure 4. Compute Module Functional Block Diagram                                    | 6    |
| Figure 5. CEK Processor Mounting                                                     | 8    |
| Figure 6. Memory Layout                                                              | 9    |
| Figure 7. Recommended Minimum Two-DIMM Memory Configuration                          | . 12 |
| Figure 8. Recommended Four-DIMM Configuration                                        | . 13 |
| Figure 9. Single Branch Mode Sparing DIMM Configuration                              | . 14 |
| Figure 10. Recovery Jumper Blocks                                                    | . 26 |
| Figure 11. Intel <sup>®</sup> Modular Server System MFSYS25                          | .40  |

# List of Tables

| Table 1. I <sup>2</sup> C Addresses for Memory Module SMB            | 9  |
|----------------------------------------------------------------------|----|
| Table 2. Maximum 8-DIMM System Memory Configuration – x8 Single Rank | 10 |
| Table 3. Maximum 8-DIMM System Memory Configuration – x4 Dual Rank   | 10 |
| Table 4. PCI Bus Segment Characteristics                             | 16 |
| Table 5. Video Modes                                                 | 18 |
| Table 6. Serial Header Pin-out                                       | 20 |
| Table 7. Board Connector Matrix                                      | 21 |
| Table 8. Power Connector Pin-out (J1A1)                              | 21 |
| Table 9. VGA Connector Pin-out (J6A1)                                | 22 |
| Table 10. 120-pin I/O Mezzanine Card Connector Pin-out               | 22 |
| Table 11. 96-pin Midplane Signal Connector Pin-out                   | 23 |
| Table 12. Internal 9-pin Serial 'A' Header Pin-out (J1B1)            | 25 |
| Table 13. External USB Connector Pin-out                             | 25 |
| Table 14. Recovery Jumpers                                           | 27 |
| Table 15. BMC Sensors                                                | 32 |
| Table 16. Analog Sensor Thresholds                                   |    |
| Table 17. POST Error Messages and Handling                           |    |
| Table 18. POST Error Beep Codes                                      |    |

# 1. Introduction

This Technical Product Specification (TPS) provides board-specific information detailing the features, functionality, and high-level architecture of the Intel<sup>®</sup> Compute Module MFS5000SI. The *Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet* should also be referenced for more in-depth detail of various board subsystems, including chipset, BIOS, System Management, and System Management software.

## 1.1 Chapter Outline

This document is divided into the following chapters:

- Chapter 1 Introduction
- Chapter 2 Product Overview
- Chapter 3 Functional Architecture
- Chapter 4 Connector / Header Locations and Pin-outs
- Chapter 5 Jumper Block Settings
- Chapter 6 Product Regulatory Requirements
- Appendix A Integration and Usage Tips
- Appendix B BMC Sensor Tables
- Appendix C Post Error Messages and Handling
- Appendix D Supported Intel<sup>®</sup> Modular Server System

# 1.2 Intel<sup>®</sup> Compute Module Use Disclaimer

Intel<sup>®</sup> Modular Server components require adequate airflow to cool. Intel ensures through its own chassis development and testing that when these components are used together, the fully integrated system will meet the intended thermal requirements. It is the responsibility of the system integrator who chooses not to use Intel-developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the system does not operate correctly when used outside any of their published operating or non-operating limits.

# 2. Product Overview

The Intel<sup>®</sup> Compute Module MFS5000SI is a monolithic printed circuit board with features that were designed to support the high-density compute module market.

# 2.1 Intel<sup>•</sup> Compute Module MFS5000SI Feature Set

| Feature                           | Description                                                                                                                                                                    |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Processors                        | 771-pin LGA sockets supporting one or two Dual-Core or Quad-Core Intel <sup>®</sup> Xeon <sup>®</sup> processors 5000 sequence, with system bus speeds of 1066 MHz or 1333 MHz |  |  |  |  |
| Memory                            | 8 keyed DIMM slots supporting fully buffered DIMM technology (FBDIMM) memory.<br>240-pin DDR2-677 FBDIMMs must be used.                                                        |  |  |  |  |
| Chipset                           | Intel <sup>®</sup> 5000 Chipset family, which includes the following components:                                                                                               |  |  |  |  |
|                                   | <ul> <li>Intel<sup>®</sup> 5000P Memory Controller Hub</li> </ul>                                                                                                              |  |  |  |  |
|                                   | <ul> <li>Intel<sup>®</sup> 6321ESB I/O Controller Hub</li> </ul>                                                                                                               |  |  |  |  |
| On-board                          | External connections:                                                                                                                                                          |  |  |  |  |
| Connectors/Headers                | Two USB 2.0 ports                                                                                                                                                              |  |  |  |  |
|                                   | <ul> <li>Video connector</li> </ul>                                                                                                                                            |  |  |  |  |
|                                   | Internal connectors/headers:                                                                                                                                                   |  |  |  |  |
|                                   | <ul> <li>One DH-10 Serial A debug header</li> </ul>                                                                                                                            |  |  |  |  |
|                                   | <ul> <li>One Intel<sup>®</sup> I/O Mezzanine Connector supporting Dual Gigabit NIC Intel<sup>®</sup> I/O<br/>Expansion Module (Optional)</li> </ul>                            |  |  |  |  |
| On-board Video                    | ATI* ES1000 video controller with 16MB DDR SDRAM                                                                                                                               |  |  |  |  |
| On-board Hard Drive<br>Controller | LSI* 1064e SAS controller                                                                                                                                                      |  |  |  |  |
| LAN                               | Two integrated 10/100/1000 Ethernet ports and two optional 10/100/1000 Ethernet ports, provided by the Dual Gigabit NIC mezzanine module                                       |  |  |  |  |

# 2.2 Compute Module Layout

## 2.2.1 Connector and Component Locations

The following figure shows the board layout of the Intel<sup>®</sup> Compute Module MFS5000SI. Each connector and major component is identified by a number or letter. A description of each identified item is provided below the figure.



|   | Description                       |   | Description                                          |
|---|-----------------------------------|---|------------------------------------------------------|
| А | Midplane Power Connector          | В | Midplane Signal Connector                            |
| С | POST Code Diagnostic LEDs         | D | SAS Controller                                       |
| Е | FBDIMM Slots                      | F | Intel <sup>®</sup> 5000P Memory Controller Hub (MCH) |
| G | CPU #1 Socket                     | Н | Voltage Regulator Heatsink                           |
| Ι | Power/Fault LEDs                  | J | Power Button                                         |
| К | Activity and ID LEDs              | L | Video Connector                                      |
| М | USB1 and USB2 Connectors          | Ν | CPU #2 Socket                                        |
| 0 | Intel® 6321ESB I/O Controller Hub | Ρ | CMOS Battery                                         |
| Q | I/O Mezzanine Card Connector      |   |                                                      |

#### Figure 1. Component and Connector Location Diagram

## 2.2.2 External I/O Connector Locations

The following drawing shows the layout of the external I/O components for the Intel<sup>®</sup> Compute Module MFS5000SI.



| Α | USB ports 1 and 2 | Е | Hard Drive Activity LED |
|---|-------------------|---|-------------------------|
| В | Video             | F | ID LED                  |
| С | I/O ports 1 and 2 | G | Power button            |
| D | NIC ports 1 and 2 | Н | Power and Fault LEDs    |

Figure 2. Intel<sup>®</sup> Compute Module MFS5000SI Front Panel Layout





Figure 3. Intel<sup>®</sup> Compute Module MFS5000SI – Hole and Component Positions

# 3. Functional Architecture

The architecture and design of the Intel<sup>®</sup> Compute Module MFS5000SI is based on the Intel<sup>®</sup> 5000 Chipset Family. The chipset is designed for systems based on the Dual-Core and Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processor 5000 sequence with system bus speeds of 667 MHz, 1066 MHz, and 1333 MHz. The chipset is made up of two main components: the Memory Controller Hub (MCH) for the host bridge and the Intel<sup>®</sup> 6321ESB I/O controller hub for the I/O subsystem. This chapter provides a high-level description of the functionality associated with each chipset component and the architectural blocks that make up the server board. For more in-depth detail of the functionality for each of the chipset components and each of the functional architecture blocks, see the *Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet.* 



#### Figure 4. Compute Module Functional Block Diagram

**Note:** The previous diagram uses the Intel<sup>®</sup> 5000P MCH as a general reference designator for MCH components supported on this server board.

## 3.1 Intel<sup>•</sup> 5000P Memory Controller Hub (MCH)

This section describes the general functionality of the memory controller hub as it is implemented on this server board.

The MCH is a single 1432-pin FCBGA package, which includes the following core platform functions:

System Bus Interface for the processor subsystem Memory Controller PCI Express\* Ports, including the Enterprise South Bridge Interface (ESI) FBD Thermal Management SMBus Interface

Additional information about MCH functionality can be obtained from the Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet and the Intel<sup>®</sup> 5000P Memory Controller Hub External Design Specification.

## 3.1.1 System Bus Interface

The MCH is configured for symmetric multi-processing across two independent front-side bus interfaces that connect to the Dual-Core and Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 sequence. Each front-side bus on the MCH uses a 64-bit wide 1066 or 1333 MHz data bus. The 1333-MHz data bus is capable of transferring data at up to 10.66 GB/s. The MCH supports a 36-bit wide address bus, capable of addressing up to 64 GB of memory. The MCH is the priority agent for both front-side bus interfaces, and is optimized for one processor on each bus.

## 3.1.2 Processor Support

The Intel<sup>®</sup> Compute Module MFS5000SI supports one or two Dual-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5100 sequence or Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5300 and 5400 sequence with system bus speeds of 1066 MHz and 1333 MHz. Previous generations of the Intel<sup>®</sup> Xeon<sup>®</sup> processor are not supported in the Intel<sup>®</sup> Compute Module MFS5000SI. To see a list of the latest processors that have been validated on this product, refer to <u>http://support.intel.com/support/motherboards/server/MFS5000SI/</u> and select the Supported Processors List.

### 3.1.2.1 Processor Population Rules

When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. Mixed processor steppings is supported in N and N-1 configurations only. When only one processor is installed, it must be in the socket labeled CPU1. The other socket must be empty.

The board is designed to provide up to 115 A of current per processor. Processors with higher current requirements are not supported.

When using a single processor configuration, a terminator is not required in the second processor socket.

## 3.1.2.2 Common Enabling Kit (CEK) Design Support

The compute module complies with Intel's Common Enabling Kit (CEK) processor mounting and heatsink retention solution. The compute module ships with a CEK spring snapped onto the underside of the server board, beneath each processor socket. The heatsink attaches to the CEK, over the top of the processor and the thermal interface material (TIM). For the stacking order of the chassis, CEK spring, server board, TIM, and heatsink, see the following figure.

The CEK spring is removable, allowing for the use of non-Intel heatsink retention solutions.

**Note:** The processor heatsink and CEK spring shown in the following diagram are for reference purposes only. The actual processor heatsink and CEK solutions compatible with this generation server board may be of a different design.



Figure 5. CEK Processor Mounting

### 3.1.3 Memory Subsystem

The MCH masters four fully buffered DIMM (FBD) memory channels. FBD memory utilizes a narrow highspeed frame-oriented interface referred to as a channel. The four FBD channels are organized into two branches of two channels per branch. Each branch is supported by a separate memory controller. The two channels on each branch operate in lock step to increase FBD bandwidth. On the server board, the four channels are routed to eight DIMM slots and are capable of supporting registered DDR2-533 and DDR2-667 FBDIMM memory (stacked or unstacked). Peak theoretical memory data bandwidth is 6.4 GB/s with DDR2-533 and 8.0 GB/s with DDR2-667.

On the Intel<sup>®</sup> Compute Module MFS5000SI, a pair of channels becomes a branch where Branch 0 consists of channels A and B, and Branch 1 consists of channels C and D. FBD memory channels are organized into two branches for RAID 1 (mirroring) support.



Figure 6. Memory Layout

To boot the system, the system BIOS on the server board uses a dedicated  $I^2C$  bus to retrieve DIMM information needed to program the MCH memory registers. The following table provides the  $I^2C$  addresses for each DIMM slot.

| Device  | Address |
|---------|---------|
| DIMM A1 | 0xA0    |
| DIMM A2 | 0xA2    |
| DIMM B1 | 0xA0    |
| DIMM B2 | 0xA2    |
| DIMM C1 | 0xA0    |
| DIMM C2 | 0xA2    |
| DIMM D1 | 0xA0    |
| DIMM D2 | 0xA2    |

#### Table 1. I<sup>2</sup>C Addresses for Memory Module SMB

#### 3.1.3.1 Memory RASUM Features<sup>1</sup>

The MCH supports several memory RASUM (Reliability, Availability, Serviceability, Usability, and Manageability) features. These features include the Intel<sup>®</sup> x4 Single Device Data Correction (Intel<sup>®</sup> x4 SDDC) for memory error detection and correction, Memory Scrubbing, Retry on Correctable Errors, Memory Built In Self Test, DIMM Sparing, and Memory Mirroring. For more information regarding these features, see the *Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet*.

<sup>&</sup>lt;sup>1</sup> DIMM Sparing and Memory Mirroring features will be made available post production launch with a BIOS update.

### 3.1.3.2 Supported and Nonsupported Memory Configurations

The server board design supports up to eight DDR2-533 or DDR2-667 Fully Buffered DIMMs (FBD memory). Use of identical DIMMs with this server board is recommended. The following tables show the maximum memory configurations supported using the specified memory technology.

| DRAM Technology x8 Single<br>Rank | Maximum Capacity<br>Mirrored Mode | Maximum Capacity<br>Non-Mirrored Mode |
|-----------------------------------|-----------------------------------|---------------------------------------|
| 256 Mb                            | 1 GB                              | 2 GB                                  |
| 512 Mb                            | 2 GB                              | 4 GB                                  |
| 1024 Mb                           | 4 GB                              | 8 GB                                  |
| 2048 Mb                           | 8 GB                              | 16 GB                                 |

 Table 2. Maximum 8-DIMM System Memory Configuration – x8 Single Rank

| Table 3 Maximum | 8-DIMM System     | Memory Confi | auration - x4 | Dual Rank  |
|-----------------|-------------------|--------------|---------------|------------|
|                 | o-Dilvilvi System |              | yuralion – 74 | Dual Rallk |

| DRAM Technology x4 Dual<br>Rank | Maximum Capacity Mirrored<br>Mode | Maximum Capacity<br>Non-Mirrored Mode |
|---------------------------------|-----------------------------------|---------------------------------------|
| 256 Mb                          | 4 GB                              | 8 GB                                  |
| 512 Mb                          | 8 GB                              | 16 GB                                 |
| 1024 Mb                         | 16 GB                             | 32 GB                                 |
| 2048 Mb                         | 16 GB                             | 32 GB                                 |

The following configurations are not validated or supported with the Intel<sup>®</sup> Compute Module MFS5000SI:

DDR2 DIMMs that are not fully buffered are NOT supported on this server board.

DDR2-533 memory is not planned to be validated on this product.

Mixing memory type, size, speed, and/or rank is not validated and is not supported.

Mixing memory vendors is not validated and is not supported.

Non-ECC memory is not validated and is not supported in a server environment

For a complete list of supported memory for the Intel<sup>®</sup> Compute Module MFS5000SI, refer to the Tested Memory List published in the Intel<sup>®</sup> Server Configurator Tool.

### 3.1.3.3 DIMM Population Rules and Supported DIMM Configurations

DIMM population rules depend on the operating mode of the memory controller, which is determined by the number of DIMMs installed. DIMMs must be populated in pairs. DIMM pairs are populated in the following DIMM slot order: A1 and B1, C1 and D1, A2 and B2, C2 and D2. DIMMs within a given pair must be identical with respect to size, speed, and organization.

Intel supported DIMM configurations for this server board are shown in the following table.

| Supported and Validated configuration : Slot is populated        |
|------------------------------------------------------------------|
|                                                                  |
| Supported but not validated configuration : Slot is<br>populated |
|                                                                  |

Slot is not populated

Mirrorina: Y = Yes and indicates that configuration supports Memory Mirroring. Sparing: Y(x) = Yes and indicates that configuration supports Memory Sparing. Where x =

- 0: Sparing supported on Branch0 only
  - 1: Sparing supported on Branch1 only

0,1: Sparing supported on both branches

| Branch 0       |         |         |           | Branch 1 |           |         |          | Mirroring | Specing  |
|----------------|---------|---------|-----------|----------|-----------|---------|----------|-----------|----------|
| Channel A Chan |         | inel B  | Channel C |          | Channel D |         | Possible | Possible  |          |
| DIMM_A1        | DIMM_A2 | DIMM_B1 | DIMM B2   | DIMM C1  | DIMM C2   | DIMM D1 | DIMM D2  |           |          |
|                |         |         |           |          |           |         |          |           |          |
|                |         |         |           |          |           |         |          |           |          |
|                |         |         |           |          |           |         |          |           | Y (0)    |
|                |         |         |           |          |           |         |          | Y         |          |
|                |         |         |           |          |           |         |          |           | Y (0)    |
|                |         |         |           |          |           |         |          | Y         | Y (0, 1) |

Notes:

- Single channel mode is only tested and supported with a 512-MB x8 FBDIMM installed in DIMM slot A1.
- The supported memory configurations must meet population rules defined above.
- For **best** performance, the number of DIMMs installed should be balanced across both memory branches. For example, a four-DIMM configuration will perform better than a two-DIMM configuration and should be installed in DIMM slots A1, B1, C1, and D1. An eight-DIMM configuration will perform better then a six-DIMM configuration.
- Although mixed DIMM capacities (size, type, timing and/or rank) between channels is supported by the memory controller, mixed DIMMs configurations are not validated or supported with the Intel<sup>®</sup> Compute Module MFS5000SI. Refer to section 3.1.3.2 for supported and nonsupported DIMM configuration information.

#### 3.1.3.3.1 Minimum Non-Mirrored Mode Configuration

The server board is capable of supporting a minimum of one DIMM installed. However, for system performance reasons, Intel's recommendation is that at least 2 DIMMs be installed.

The following diagram shows the recommended minimum DIMM memory configuration. Populated DIMM slots are shown in Grey.



Figure 7. Recommended Minimum Two-DIMM Memory Configuration

**Note:** The server board supports single DIMM mode operation. Intel only validates and supports this configuration with a single 512MB x8 FBDIMM installed in DIMM slot A1.

### 3.1.3.4 Non-mirrored Mode Memory Upgrades

The minimum memory upgrade increment is two DIMMs per branch. The DIMMs must cover the same slot position on both channels. DIMM pairs must be identical with respect to size, speed, and organization.

When adding two DIMMs to the configuration shown in Figure 7, the DIMMs should be populated in DIMM slots C1 and D1 as shown in the following diagram. Populated DIMM slots are shown in **Grey**.



Figure 8. Recommended Four-DIMM Configuration

Functionally, DIMM slots A2 and B2 could also have been populated instead of DIMM slots C1 and D1. However, your system will not achieve equivalent performance. Figure 8 shows the supported DIMM configuration that is recommended because it allows both memory branches from the MCH to operate independently and simultaneously. FBD bandwidth is doubled when both branches operate in parallel.

#### 3.1.3.4.1 Mirrored Mode Memory Configuration

When operating in the mirrored mode, both branches operate in lock step. In mirrored mode, branch 1 contains a replicate copy of the data in branch 0. The minimum DIMM configuration to support memory mirroring is four DIMMs, populated as shown in Figure 8. All four DIMMs must be identical with respect to size, speed, and organization.

To upgrade a four-DIMM mirrored memory configuration, four additional DIMMs must be added to the system. All four DIMMs in the second set must be identical to the first.

#### 3.1.3.4.2 DIMM Sparing Mode Memory Configuration

The MCH provides DIMM sparing capabilities. Sparing is a RAS feature that involves configuring a DIMM to be placed in reserve so it can be used to replace a DIMM that fails. DIMM sparing occurs within a given bank of memory and is not supported across branches.

Two Memory Sparing configurations are supported:

- Single Branch Mode Sparing
- Dual Branch Mode Sparing

3.1.3.4.2.1 Single Branch Mode Sparing



#### Figure 9. Single Branch Mode Sparing DIMM Configuration

- DIMM\_A1 and DIMM\_B1 must be identical in organization, size and speed.
- DIMM\_A2 and DIMM\_B2 must be identical in organization, size and speed.
- DIMM\_A1 and DIMM\_A2 should be identical in organization, size and speed. See note below.
- DIMM\_B1 and DIMM\_B2 should be identical in organization, size and speed. See note below.
- Sparing should be enabled in the BIOS setup.
- The BIOS will configure Rank Sparing Mode.
- The larger of the pairs {DIMM\_A1, DIMM\_B1} and {DIMM\_A2, DIMM\_B2} will be selected as the spare pair unit.

**Note:** Use of identical memory is recommended with the Intel<sup>®</sup> Compute Module MFS5000SI. Mixing memory type, size, speed, rank and/or vendors is not validated and is not supported with this product. Refer to section 3.1.3.2 for supported and nonsupported memory features and configuration information.

### 3.1.3.4.2.2 Dual Branch Mode Sparing

Dual branch mode sparing requires that all eight DIMM slots be populated and compliant with the following population rules.

- DIMM\_A1 and DIMM\_B1 must be identical in organization, size and speed.
- DIMM\_A2 and DIMM\_B2 must be identical in organization, size and speed.
- DIMM\_C1 and DIMM\_D1 must be identical in organization, size and speed.
- DIMM\_C2 and DIMM\_D2 must be identical in organization, size and speed.
- DIMM\_A1 and DIMM\_A2 should be identical in organization, size and speed. See note below.
- DIMM\_B1 and DIMM\_B2 should be identical in organization, size and speed. See note below.
- DIMM\_C1 and DIMM\_C2 should be identical in organization, size and speed. See note below.
- DIMM\_D1 and DIMM\_D2 should be identical in organization, size and speed. See note below.
- Sparing should be enabled in BIOS setup.
- BIOS will configure Rank Sparing Mode.
- The larger of the pairs {DIMM\_A1, DIMM\_B1} and {DIMM\_A2, DIMM\_B2} and {DIMM\_C1, DIMM\_D1} and {DIMM\_C2, DIMM\_D2} will be selected as the spare pair units.

**Note:** Use of identical memory is recommended with the Intel<sup>®</sup> Compute Module MFS5000SI. Mixing memory type, size, speed, rank and/or vendors is not validated and is not supported with this product. Refer to section 3.1.3.2 for supported and nonsupported memory features and configuration information.

# 3.2 Intel<sup>•</sup> 6321ESB I/O Controller Hub

The Intel<sup>®</sup> 6321ESB I/O Controller Hub is a multi-function device that provides four distinct functions: an IO Controller, a PCI-X Bridge, a Gb Ethernet Controller, and an Integrated Baseboard Management Controller (BMC). Each function within the Intel<sup>®</sup> 6321ESB I/O Controller Hub has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller.

A primary role of the Intel<sup>®</sup> 6321ESB I/O Controller Hub is to provide the gateway to all PC-compatible I/O devices and features. The server board uses the following Intel<sup>®</sup> 6321ESB I/O Controller Hub features:

- Dual GbE MAC
- Integrated Baseboard Management Controller (BMC)
- Universal Serial Bus 2.0 (USB) interface
- LPC bus interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- System RTC
- General purpose I/O

This section describes the function of most of the listed features as they pertain to this server board. For more detailed information, see the Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet or the Intel<sup>®</sup> Enterprise South Bridge-2 External Design Specification.

## 3.2.1 PCI Subsystem

The primary I/O buses for the server board are PCI and PCI Express\*. The PCI buses comply with the *PCI Local Bus Specification*, Revision 2.3. The following table lists the characteristics of the PCI bus segments. Details about each bus segment follow the table.

| PCI Bus Segment                                                                  | Voltage | Width  | Speed   | Туре            | On-board Device Support                                                      |
|----------------------------------------------------------------------------------|---------|--------|---------|-----------------|------------------------------------------------------------------------------|
| PCI32<br>Intel <sup>®</sup> 6321ESB I/O<br>Controller Hub                        | 3.3V    | 32 bit | 33 MHz  | PCI             | Used internally for video controller                                         |
| PE1<br>Intel <sup>®</sup> 6321ESB I/O<br>Controller Hub<br>PCI Express*<br>Port2 | 3.3V    | x4     | 10 Gb/S | PCI<br>Express* | This interface is not used in the Intel®<br>Compute Module MFS5000SI design. |
| PE2<br>Intel <sup>®</sup> 6321ESB I/O<br>Controller Hub<br>PCI Express*<br>Port3 | 3.3V    | x4     | 10 Gb/S | PCI<br>Express* | Used internally for LSI* 1064e SAS controller                                |
| PE4, PE5<br>BNB PCI Express*<br>Ports 4,5                                        | 3.3V    | x8     | 20 Gb/S | PCI<br>Express* | I/O Mezzanine slot                                                           |

#### Table 4. PCI Bus Segment Characteristics

| PCI Bus Segment                           | Voltage | Width | Speed   | Туре            | On-board Device Support                                                                  |
|-------------------------------------------|---------|-------|---------|-----------------|------------------------------------------------------------------------------------------|
| PE6, PE7<br>BNB PCI Express*<br>Ports 6,7 | 3.3V    | x8    | 20 Gb/S | PCI<br>Express* | This interface is not used in the Intel <sup>®</sup><br>Compute Module MFS5000SI design. |

### 3.2.1.1 PCI32: 32-bit, 33-MHz PCI Bus Segment

All 32-bit, 33-MHz PCI I/O is directed through the Intel<sup>®</sup> 6321ESB I/O Controller Hub. The 32-bit, 33-MHz PCI segment created by the Intel<sup>®</sup> 6321ESB I/O Controller Hub is known as the PCI32 segment. The PCI32 segment supports the following embedded device:

2D Graphics Accelerator: ATI\* ES1000 Video Controller

### 3.2.1.2 PXA: 64-bit, 133MHz PCI-X Bus Segment

One 64-bit PCI-X bus segment is directed through the Intel<sup>®</sup> 6321ESB I/O Controller Hub. PCI-X segment PXA is not used in the Intel<sup>®</sup> Compute Module MFS5000SI design.

### 3.2.1.3 PE1: One x4 PCI Express\* Bus Segment

One x4 PCI Express\* bus segment is directed through the Intel<sup>®</sup> 6321ESB I/O Controller Hub. PCI Express\* segment PE1 is not used in the Intel<sup>®</sup> Compute Module MFS5000SI design.

### 3.2.1.4 PE2: One x4 PCI Express\* Bus Segment

One x4 PCI Express\* bus segment is directed through the Intel<sup>®</sup> 6321ESB I/O Controller Hub. PCI Express\* segment PE2 supports the LSI\* 1064e SAS controller.

### 3.2.1.5 PE4, PE5: Two x4 PCI Express\* Bus Segments

Two x4 PCI Express\* bus segments are directed through the MCH. PCI Express\* segments PE4 and PE5 support the optional I/O mezzanine card.

#### 3.2.1.6 PE6, PE7: Two x4 PCI Express\* Bus Segments

Two x4 PCI Express\* bus segments are directed through the MCH. PCI Express\* segments PE6 and PE7 are not used in the Intel<sup>®</sup> Compute Module MFS5000SI design.

### 3.2.2 Serial ATA Support

The Intel<sup>®</sup> 6321ESB I/O Controller Hub has an integrated Serial ATA (SATA) controller that supports independent DMA operation on six ports and supports data transfer rates of up to 3.0 Gb/s. These ports are not used in the Intel<sup>®</sup> Compute Module MFS5000SI design.

## 3.2.3 Parallel ATA (PATA) Support

The integrated IDE controller of the Intel<sup>®</sup> 6321ESB I/O Controller Hub provides one IDE channel. The PATA interface is not used in the Intel<sup>®</sup> Compute Module MFS5000SI design.

## 3.2.4 USB 2.0 Support

The USB controller functionality integrated into the Intel<sup>®</sup> 6321ESB I/O Controller Hub provides the server board with the interface for up to eight USB 2.0 ports. Two external connectors are located on the front edge of the server board. These two ports are the only ports of the Intel<sup>®</sup> 6321ESB I/O Controller Hub that are used in the compute module design.

## 3.3 Video Support

The server board provides an ATI\* ES1000 PCI graphics accelerator, along with 16 MB of video DDR SDRAM and supports circuitry for an embedded SVGA video subsystem. The ATI\* ES1000 chip contains an SVGA video controller, clock generator, 2D engine, and RAMDAC in a 359-pin BGA. One 4Mx16x4 bank DDR SDRAM chip provides 16 MB of video memory.

The SVGA subsystem supports a variety of modes, up to 1024 x 768 resolution in 8 / 16 / 32 bpp modes under 2D. It also supports both CRT and LCD monitors up to a 100-Hz vertical refresh rate.

Video is accessed using a standard 15-pin VGA connector found on the front edge of the server board. Hot plugging the video while the system is still running is supported.

On-board video can be disabled using the BIOS Setup utility.

### 3.3.1.1 Video Modes

The ATI\* ES1000 chip supports all standard IBM\* VGA modes. The following table shows the 2D modes supported for both CRT and LCD.

| 2D Mode   | Refresh Rate (Hz)          | 2D Video Mode Support |           |           |  |  |
|-----------|----------------------------|-----------------------|-----------|-----------|--|--|
|           |                            | 8 bpp                 | 16 bpp    | 32 bpp    |  |  |
| 640x480   | 60, 72, 75, 85, 90,<br>100 | Supported             | Supported | Supported |  |  |
| 800x600   | 60, 70, 72, 75, 85,        | Supported             | Supported | Supported |  |  |
| 1024x768  | 60, 70, 72, 75,85          | Supported             | Supported | Supported |  |  |
| 1152x864  | 60,70,75,80,85             | Supported             | Supported | Supported |  |  |
| 1280x1024 | 60                         | Supported             | Supported | Supported |  |  |

#### Table 5. Video Modes

#### 3.3.1.2 Video Memory Interface

The memory controller subsystem of the ATI\* ES1000 arbitrates requests from the direct memory interface, the VGA graphics controller, the drawing co-processor, the display controller, the video scalar, and the hardware cursor. Requests are serviced in a manner that ensures display integrity and maximum CPU/co-processor drawing performance.

The server board supports a 16 MB (4Meg x 16-bit x 4 banks) DDR SDRAM device for video memory.

# 3.4 Network Interface Controller (NIC)

Network interface support is provided from the built-in Dual GbE MAC features of the Intel<sup>®</sup> 6321ESB I/O Controller Hub. These interfaces are routed over the midplane board to the Ethernet switch module in the rear of the system. These interfaces are used in SERDES mode and do not require a Physical Layer Transceiver (PHY). These ports provide the server board with support for dual LAN ports designed for 10/100/1000 Mbps operation.

Each Network Interface Controller (NIC) drives a single LED located on the front edge of the board. The link/activity LED indicates network connection when on, and Transmit/Receive activity when blinking.

## 3.4.1 Intel<sup>•</sup> I/O Acceleration Technology

Intel<sup>®</sup> I/O Acceleration Technology (I/OAT) moves network data more efficiently through Dual-Core and Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 sequence-based servers for improved application responsiveness across diverse operating systems and virtualized environments. Intel<sup>®</sup> I/OAT improves network application responsiveness by unleashing the power of Dual-Core and Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5000 sequence through more efficient network data movement and reduced system overhead. Intel multi-port network adapters with Intel<sup>®</sup> I/OAT provide high-performance I/O for server consolidation and virtualization through stateless network acceleration that seamlessly scales across multiple ports and virtual machines. Intel<sup>®</sup> I/OAT provides safe and flexible network acceleration through tight integration into popular operating systems and virtual machine monitors, avoiding the support risks of third-party network stacks and preserving existing network requirements, such as teaming and failover.

## 3.4.2 MAC Address Definition

Each Intel<sup>®</sup> Compute Module MFS5000SI has four MAC addresses assigned to it at the Intel factory. During the manufacturing process, each server board will have a white MAC address sticker placed on the board. The sticker will display the MAC address in both barcode and alpha numeric formats. The printed MAC address is assigned to NIC 1 on the server board. NIC 2 is assigned the NIC 1 MAC address + 1.

Two additional MAC addresses are assigned to the Integrated Baseboard Management Controller (BMC) embedded in the Intel<sup>®</sup> 6321ESB I/O Controller Hub. These MAC addresses are used by the Integrated BMC's embedded network stack to enable IPMI remote management over LAN. BMC LAN Channel 1 is assigned the NIC1 MAC address + 2, and BMC LAN Channel 2 is assigned the NIC1 MAC address + 3.

# 3.5 Super I/O

Legacy I/O support is provided by using a National Semiconductor\* PC87427 Super I/O device. This chip contains all of the necessary circuitry to support the following functions:

- GPIOs
- One serial port (internal and used for debug only)
- Wake-up control

### 3.5.1.1 Serial Ports

The server board provides one serial port through an internal DH-10 serial header (J1B1) to be used for debug purposes only. The serial interface follows the standard RS-232 pin-out as defined in the following table.

| Pin | Signal Name | Serial Port Header Pin-out |  |  |  |  |  |
|-----|-------------|----------------------------|--|--|--|--|--|
| 1   | DCD         |                            |  |  |  |  |  |
| 2   | DSR         |                            |  |  |  |  |  |
| 3   | RX          |                            |  |  |  |  |  |
| 4   | RTS         | 3 0 0 4                    |  |  |  |  |  |
| 5   | TX          | 5 0 0 6                    |  |  |  |  |  |
| 6   | CTS         | 7 0 0 8                    |  |  |  |  |  |
| 7   | DTR         | ا آ آ                      |  |  |  |  |  |
| 8   | RI          |                            |  |  |  |  |  |
| 9   | GND         |                            |  |  |  |  |  |

#### Table 6. Serial Header Pin-out

### 3.5.1.2 Floppy Disk Controller

The server board does not support a floppy disk controller (FDC) interface. However, the system BIOS does recognize USB floppy devices.

### 3.5.1.3 Keyboard and Mouse Support

Keyboard and mouse support is provided locally by the two USB ports located on the front panel of the board. The compute module also provides remote keyboard and mouse support.

### 3.5.1.4 Wake-up Control

The super I/O contains functionality that allows various events to power on and power off the system.

# 4. Connector / Header Locations and Pin-outs

## 4.1 Board Connector Information

The following section provides detailed information regarding all connectors, headers and jumpers on the server board. Table 7 lists all connector types available on the board and the corresponding reference designators printed on the silkscreen.

| Connector                          | Quantity | Reference Designators               |
|------------------------------------|----------|-------------------------------------|
| Power Connector                    | 1        | J1A1                                |
| Midplane Signal Connector          | 1        | J3A1                                |
| CPU                                | 2        | J7G1, J5G1                          |
| Main Memory                        | 8        | J7B1,J7B2,J7B3,J8B2,J8B3,J8B4,J9B2, |
|                                    |          | J9B3                                |
| I/O Mezzanine                      | 1        | J2B1                                |
| Battery                            | 1        | XBT1F1                              |
| USB                                | 2        | J4K1,J4K2                           |
| Serial Port A                      | 1        | J1B1                                |
| Video connector                    | 1        | J6K1                                |
| System Recovery Setting<br>Jumpers | 1        | J4A1, J7A1, J1F2                    |

#### Table 7. Board Connector Matrix

## 4.2 Power Connectors

The power connection is obtained using a 2x2 FCI Airmax\* power connector. The following table defines the power connector pin-out.

| Position | Signal |
|----------|--------|
| 1        | +12Vdc |
| 2        | GND    |
| 3        | GND    |
| 4        | +12Vdc |

#### Table 8. Power Connector Pin-out (J1A1)

# 4.3 I/O Connector Pin-out Definition

## 4.3.1 VGA Connector

The following table details the pin-out definition of the VGA connector (J6K1).

| Pin | Signal Name     | Description                   |
|-----|-----------------|-------------------------------|
| 1   | V_IO_R_CONN     | Red (analog color signal R)   |
| 2   | V_IO_G_CONN     | Green (analog color signal G) |
| 3   | V_IO_B_CONN     | Blue (analog color signal B)  |
| 4   | TP_VID_CONN_B4  | No connection                 |
| 5   | GND             | Ground                        |
| 6   | GND             | Ground                        |
| 7   | GND             | Ground                        |
| 8   | GND             | Ground                        |
| 9   | TP_VID_CONN_B9  | No connection                 |
| 10  | GND             | Ground                        |
| 11  | TP_VID_CONN_B11 | No connection                 |
| 12  | V_IO_DDCDAT     | DDCDAT                        |
| 13  | V_IO_HSYNC_CONN | HSYNC (horizontal sync)       |
| 14  | V_IO_VSYNC_CONN | VSYNC (vertical sync)         |
| 15  | V_IO_DDCCLK     | DDCCLK                        |

| Table 9. VGA | Connector | Pin-out | (J6A1) |
|--------------|-----------|---------|--------|
|--------------|-----------|---------|--------|

## 4.3.2 I/O Mezzanine Card Connector

The server board provides an internal 120-pin Airmax\* connector (J2B1) to accommodate high-speed I/O expansion modules, which expands the I/O capabilities of the server board. The currently available I/O mezzanine card for this server is the Intel<sup>®</sup> Modular Server Accessory AXXGBIOMEZ, a dual gigabit Ethernet card based on the Intel<sup>®</sup> 82571EB. The following table details the pin-out of the Intel<sup>®</sup> I/O expansion module connector.

| Pin | Signal Name     | Pin | Signal Name    | Pin | Signal Name  |
|-----|-----------------|-----|----------------|-----|--------------|
| A1  | PE4_MCH_RXP_C0  | E1  | PE5_MCH_RXN_C0 | 11  | GND          |
| A2  | GND             | E2  | PE5_MCH_TXP_C0 | 12  | Reset_N      |
| A3  | PE4_MCH_RXP_C1  | E3  | PE5_MCH_RXN_C1 | 13  | GND          |
| A4  | GND             | E4  | PE5_MCH_TXP_C1 | 14  | P1_ACT_LED_N |
| A5  | PE4_MCH_RXP_C2  | E5  | PE5_MCH_RXN_C2 | 15  | GND          |
| A6  | GND             | E6  | PE5_MCH_TXP_C2 | 16  | P3V3         |
| A7  | PE4_MCH_RXP_C3  | E7  | PE5_MCH_RXN_C3 | 17  | GND          |
| A8  | GND             | E8  | PE5_MCH_TXP_C3 | 18  | P3V3         |
| A9  | CLK_100M_PCIE_P | E9  | spare          | 19  | GND          |

| Table 10. | 120-pin I/   | O Mezzanine | e Card Con | nector Pin-out |
|-----------|--------------|-------------|------------|----------------|
| 10010     | · =• p···· " |             |            |                |

| A10 | GND             | E10 | SMB_SCL        | 110 | P12V        |
|-----|-----------------|-----|----------------|-----|-------------|
| B1  | PE4_MCH_RXN_C0  | F1  | GND            | J1  | XE_P2_D_RXN |
| B2  | PE4_MCH_TXP_C0  | F2  | PE5_MCH_TXN_C0 | J2  | GND         |
| B3  | PE4_MCH_RXN_C1  | F3  | GND            | J3  | XE_P2_C_RXN |
| B4  | PE4_MCH_TXP_C1  | F4  | PE5_MCH_TXN_C1 | J4  | GND         |
| B5  | PE4_MCH_RXN_C2  | F5  | GND            | J5  | XE_P2_B_RXN |
| B6  | PE4_MCH_TXP_C2  | F6  | PE5_MCH_TXN_C2 | J6  | GND         |
| B7  | PE4_MCH_RXN_C3  | F7  | GND            | J7  | XE_P2_A_RXN |
| B8  | PE4_MCH_TXP_C3  | F8  | PE5_MCH_TXN_C3 | J8  | GND         |
| B9  | CLK_100M_PCIE_N | F9  | GND            | J9  | P12V        |
| B10 | WAKE_N          | F10 | SMB_SDA        | J10 | GND         |
| C1  | GND             | G1  | Card_ID_0      | K1  | XE_P2_D_RXP |
| C2  | PE4_MCH_TXN_C0  | G2  | GND            | K2  | XE_P2_D_TXN |
| C3  | GND             | G3  | P5V            | K3  | XE_P2_C_RXP |
| C4  | PE4_MCH_TXN_C1  | G4  | GND            | K4  | XE_P2_C_TXN |
| C5  | GND             | G5  | P2_LINK_LED_N  | K5  | XE_P2_B_RXP |
| C6  | PE4_MCH_TXN_C2  | G6  | GND            | K6  | XE_P2_B_TXN |
| C7  | GND             | G7  | P3V3           | K7  | XE_P2_A_RXP |
| C8  | PE4_MCH_TXN_C3  | G8  | GND            | K8  | XE_P2_A_TXN |
| C9  | GND             | G9  | P3VAUX         | K9  | P12V        |
| C10 | spare           | G10 | GND            | K10 | P12V        |
| D1  | PE5_MCH_RXP_C0  | H1  | Card_ID_1      | L1  | GND         |
| D2  | GND             | H2  | Card_ID_2      | L2  | XE_P2_D_TXP |
| D3  | PE5_MCH_RXP_C1  | H3  | P5V            | L3  | GND         |
| D4  | GND             | H4  | P1_LINK_LED_N  | L4  | XE_P2_C_TXP |
| D5  | PE5_MCH_RXP_C2  | H5  | P2_ACT_LED_N   | L5  | GND         |
| D6  | GND             | H6  | P3V3           | L6  | XE_P2_B_TXP |
| D7  | PE5_MCH_RXP_C3  | H7  | P3V3           | L7  | GND         |
| D8  | GND             | H8  | P3V3           | L8  | XE_P2_A_TXP |
| D9  | spare           | H9  | P3VAUX         | L9  | GND         |
| D10 | GND             | H10 | P12V           | L10 | P12V        |

## 4.3.3 Midplane Signal Connector

The server board connects to the midplane through a 96-pin Airmax\* connector (J3A1) (power is J1A1) to connect the various I/O, management, and control signals of the system.

| Pin | Signal Name | Pin | Signal Name | Pin | Signal Name |
|-----|-------------|-----|-------------|-----|-------------|
| A1  | XE_P1_A_RXP | E1  | XE_P2_D_RXN | 11  | GND         |
| A2  | GND         | E2  | XE_P2_D_TXP | 12  | SAS_P1_TXN  |
| A3  | XE_P1_B_RXP | E3  | SMB_SDA_B   | 13  | GND         |
| A4  | GND         | E4  | FM_BL_X_SP  | 14  | XE_P2_C_TXN |
| A5  | XE_P1_C_RXP | E5  | XE_P2_B_RXN | 15  | GND         |

| Table 11. | 96-pin | Midplane | Signal  | <b>Connector Pin-out</b> |
|-----------|--------|----------|---------|--------------------------|
|           | 00 p   | mapiano  | o ginai |                          |

| A6 | GND         | E6 | XE_P2_B_TXP     | 16 | SAS_P2_TXN     |
|----|-------------|----|-----------------|----|----------------|
| A7 | XE_P1_D_RXP | E7 | XE_P2_A_RXN     | 17 | GND            |
| A8 | GND         | E8 | XE_P2_A_TXP     | 18 | Fm_bl_slot_id5 |
| B1 | XE_P1_A_RXN | F1 | GND             | J1 | SMB_SCL_A      |
| B2 | XE_P1_A_TXP | F2 | XE_P2_D_TXN     | J2 | GND            |
| B3 | XE_P1_B_RXN | F3 | GND             | J3 | FM_BL_SLOT_ID2 |
| B4 | XE_P1_B_TXP | F4 | 12V (BL_PWR_ON) | J4 | GND            |
| B5 | XE_P1_C_RXN | F5 | GND             | J5 | reserved       |
| B6 | XE_P1_C_TXP | F6 | XE_P2_B_TXN     | J6 | GND            |
| B7 | XE_P1_D_RXN | F7 | GND             | J7 | reserved       |
| B8 | XE_P1_D_TXP | F8 | XE_P2_A_TXN     | J8 | GND            |
| C1 | GND         | G1 | SAS_P1_RXP      | K1 | SMB_SDA_A      |
| C2 | XE_P1_A_TXN | G2 | GND             | K2 | FM_BL_SLOT_ID0 |
| C3 | GND         | G3 | XE_P2_C_RXP     | K3 | FM_BL_SLOT_ID3 |
| C4 | XE_P1_B_TXN | G4 | GND             | K4 | FM_BL_SLOT_ID4 |
| C5 | GND         | G5 | SAS_P2_RXP      | K5 | reserved       |
| C6 | XE_P1_C_TXN | G6 | GND             | K6 | reserved       |
| C7 | GND         | G7 | spare           | K7 | reserved       |
| C8 | XE_P1_D_TXN | G8 | GND             | K8 | reserved       |
| D1 | XE_P2_D_RXP | H1 | SAS_P1_RXN      | L1 | GND            |
| D2 | GND         | H2 | SAS_P1_TXP      | L2 | FM_BL_SLOT_ID1 |
| D3 | SMB_SCL_B   | H3 | XE_P2_C_RXN     | L3 | GND            |
| D4 | GND         | H4 | XE_P2_C_TXP     | L4 | FM_BL_PRES_N   |
| D5 | XE_P2_B_RXP | H5 | SAS_P2_RXN      | L5 | GND            |
| D6 | GND         | H6 | SAS_P2_TXP      | L6 | reserved       |
| D7 | XE_P2_A_RXP | H7 | spare           | L7 | GND            |
| D8 | GND         | H8 | spare           | L8 | reserved       |
|    |             |    |                 |    |                |

## 4.3.4 Serial Port Connector

The server board provides one internal 9-pin Serial 'A' port header (J1B1). The following table defines the pin-out. See

Table 6 for the pin-out of the serial header.

| Pin | Signal Name | Description               |
|-----|-------------|---------------------------|
| 1   | SPA_DCD     | DCD (carrier detect)      |
| 2   | SPA_DSR     | DSR (data set ready)      |
| 3   | SPA_SIN_L   | RXD (receive data)        |
| 4   | SPA_RTS     | RTS (request to send)     |
| 5   | SPA_SOUT_N  | TXD (transmit data)       |
| 6   | SPA_CTS     | CTS (clear to send)       |
| 7   | SPA_DTR     | DTR (data terminal ready) |
| 8   | SPA_RI      | RI (ring Indicate)        |
| 9   | GND         | Ground                    |

### Table 12. Internal 9-pin Serial 'A' Header Pin-out (J1B1)

## 4.3.5 USB 2.0 Connectors

The following table details the pin-out of the external USB connectors (J4K1, J4K2) found on the front edge of the server board.

| Pin | Signal Name  | Description                                        |
|-----|--------------|----------------------------------------------------|
| 1   | USB_OC#_FB_1 | USB_PWR                                            |
| 2   | USB_P#N_FB_2 | DATAL0 (Differential data line paired with DATAH0) |
| 3   | USB_P#P_FB_2 | DATAH0 (Differential data line paired with DATAL0) |
| 4   | GND          | Ground                                             |

# 5. Jumper Block Settings

The server board has several 3-pin jumper blocks that can be used to configure, protect, or recover specific features of the server board. Pin 1 on each jumper block is denoted by an "\*" or " $\mathbf{\nabla}$ ".

# 5.1 Recovery Jumper Blocks





| Jumper Name               | Pins | What happens at system reset                                                                                                                             |
|---------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| J7A1: BMC Force           | 1-2  | BMC Firmware Force Update Mode – Enabled                                                                                                                 |
| Update                    | 2-3  | BMC Firmware Force Update Mode – Disabled (Default)                                                                                                      |
| J4A1: Password            | 1-2  | These pins should have a jumper in place for normal system operation. (Default)                                                                          |
| Clear                     | 2-3  | If these pins are jumpered, the administrator and user passwords are cleared immediately. These pins should <b>not</b> be jumpered for normal operation. |
| J1F2: CMOS Clear          | 1-2  | These pins should have a jumper in place for normal system operation. (Default)                                                                          |
|                           | 2-3  | If these pins are jumpered, the CMOS settings are cleared immediately. These pins should <b>not</b> be jumpered for normal operation                     |
| J3A3: BIOS Bank<br>Select | 1-2  | If these pins are jumpered, the BIOS is forced to boot from the lower bank. These pins should <b>not</b> be jumpered for normal operation.               |
|                           | 2-3  | These pins should have a jumper in place for normal system operation. (Default)                                                                          |

### Table 14. Recovery Jumpers

## 5.1.1 CMOS Clear and Password Reset Usage Procedure

The CMOS Clear (J1F2) and Password Reset (J4A1) recovery features are designed such that the desired operation can be achieved with minimal system down time. The usage procedure for these two features has changed from previous generation Intel<sup>®</sup> server boards. The following procedure outlines the new usage model.

- 1. Power down compute module (do not remove AC power).
- 2. Remove compute module from modular server chassis.
- 3. Open compute module.
- 4. Move jumper from Default operating position (pins 1-2) to Reset/Clear position (pins 2-3).
- 5. Wait 5 seconds.
- 6. Move jumper back to default position (pins 1-2).
- 7. Close the compute module.
- 8. Reinstall compute module in modular server chassis.
- 9. Power up the compute module.

Password and/or CMOS is now cleared and can be reset by going into the BIOS setup.

**Note:** Removing AC power before performing the CMOS Clear operation will cause the system to automatically power up and immediately power down after the reset procedure has been completed and AC power is re-applied. Should this occur, remove the AC power cord again, wait 30 seconds, and re-install the AC power cord. Power up the system and proceed to the <F2> BIOS Setup utility to reset desired settings.

## 5.1.2 BMC Force Update Procedure

When performing a standard BMC firmware update procedure, the update utility places the BMC into an update mode, allowing the firmware to load safely onto the flash device. In the unlikely event that the BMC firmware update process fails due to the BMC not being in the proper update state, the server board provides a BMC Force Update jumper (J7A1) which will force the BMC into the proper update state. The following procedure should be followed in the event the standard BMC firmware update process fails.

- 1. Power down and remove AC power
- 2. Remove compute module from modular server chassis
- 3. Open compute module

- 4. Move jumper from Default operating position (pins 2-3) to "Enabled" position (pins 1-2)
- 5. Close the compute module
- 6. Reconnect AC power and power up the compute module
- 7. Perform standard BMC firmware update procedure through the Intel® Modular Server Control software
- 8. Power down and remove AC power
- 9. Remove compute module from the server system
- 10. Move jumper from "Enabled" position (pins 1-2) to "Disabled" position (pins 2-3)
- 11. Close the server system
- 12. Reinstall the compute module into the modular server chassis
- 13. Reconnect AC power and power up the compute module

**Note:** Normal BMC functionality (for example, KVM, monitoring, and remote media) is disabled with the force BMC update jumper set to the "Enabled" position. The server should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default – disabled position when the server is running normally.

## 5.1.3 System Status LED – BMC Initialization

When the AC power is first applied to the system and 5V-STBY is present, the Integrated BMC controller on the server board requires 15-20 seconds to initialize. During this time, the system status LED blinks, alternating between amber and green, and the power button functionality of the control panel is disabled, preventing the server from powering up. Once BMC initialization has completed, the status LED stops blinking and power button functionality is restored. The power button can then be used to turn on the server.

# 6. Product Regulatory Requirements

## 6.1 Product Regulatory Requirements

The Intel<sup>®</sup> Compute Module MFS5000SI is evaluated as part of the Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35, which requires meeting all applicable system component regulatory requirements. Refer to the *Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35 Technical Product Specification* for a complete listing of all system and component regulatory requirements.

## 6.2 Product Regulatory Compliance and Safety Markings

No markings are required on the Intel<sup>®</sup> Compute Module MFS5000SI server board itself as it is evaluated as part of the Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35.

## 6.3 Product Environmental/Ecology Requirements

The Intel<sup>®</sup> Compute Module MFS5000SI is evaluated as part of the Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35, which requires meeting all applicable system component environmental and ecology requirements. For a complete listing of all system and component environment and ecology requirements and markings, refer to the *Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35 Technical Product Specification*.

# 6.4 Product Environmental/Ecology Markings

The following Product Ecology markings are required on the Intel<sup>®</sup> Compute Module MFS5000SI server board:

| Requirement                                                                        | Country | Marking |
|------------------------------------------------------------------------------------|---------|---------|
| China Restriction of Hazardous Substance<br>Environmental Friendly Use Period Mark | China   | 20      |

# Appendix A: Integration and Usage Tips

- When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. Mixed processor steppings is supported. However, the stepping of one processor cannot be greater than one stepping back of the other.
- Processors must be installed in order. CPU 1 is located near the edge of the server board and must be populated to operate the board.
- Only Fully Buffered DIMMs (FBD) are supported on this server board.
- Mixing memory type, size, speed, rank and/or memory vendors is not validated and is not supported on this server board.
- Non-ECC memory is not validated and is not supported in a server environment
- For a list of supported memory for this server board, see the Intel<sup>®</sup> Compute Module MFS5000SI Tested Memory List in the Intel<sup>®</sup> Server Configurator Tool.
- For a list of Intel supported operating systems, add-in cards, and peripherals for this server board, see the Intel<sup>®</sup> Compute Module MFS5000SI Tested Hardware and Operating System List.
- Only Dual-Core processors 5100 sequence or Quad-Core Intel<sup>®</sup> Xeon<sup>®</sup> processors 5300 or 5400 sequence, with system bus speeds of 1066/1333 MHz are supported on this server board. Previous generation Intel<sup>®</sup> Xeon<sup>®</sup> processors are not supported.
- For best performance, the number of DIMMs installed should be balanced across both memory branches. For example, a four-DIMM configuration will perform better than a two-DIMM configuration and should be installed in DIMM Slots A1, B1, C1, and D1. An eight-DIMM configuration will perform better than a six-DIMM configuration.
- Normal Integrated BMC functionality (for example, KVM, monitoring, and remote media) is disabled with the force BMC update jumper set to the "enabled" position (pins 1-2). The server should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default (disabled) position (pins 2-3) when the compute module is running normally.
- When performing the BIOS update procedure, the BIOS select jumper must be set to its default position (pins 2-3).

# Appendix B: BMC Sensor Tables

Table 15 lists the sensor identification numbers and information regarding the sensor type, name, supported thresholds, and a brief description of the sensor purpose. See the *Intelligent Platform Management Interface Specification, Version 2.0*, for sensor and event / reading-type table information.

#### Sensor Type

The Sensor Type references the values enumerated in the *Sensor Type Codes* table in the *IPMI Specification*. It provides the context in which to interpret the sensor, for example, the physical entity or characteristic that is represented by this sensor.

#### Event / Reading Type

The Event / Reading Type references values from the *Event / Reading Type Code Ranges* and *Generic Event / Reading Type Codes* tables in the *IPMI Specification*. Note that digital sensors are specific type of discrete sensors, which have only two states.

#### Event Offset Triggers

This column defines what event offsets the sensor generates.

For Threshold (analog reading) type sensors, the BMC can generate events for the following thresholds:

- Upper Critical
- Upper Non-critical
- Lower Non-critical
- Lower Critical

The abbreviation [U, L] is used to indicate that both Upper and Lower thresholds are supported. A few sensors support only a subset of the standard four threshold triggers. Note that even if a sensor does support all thresholds, the SDRs may not contain values for some thresholds. Consult Table 16 for information on the thresholds that are defined in the SDRs.

For Digital and Discrete type sensor event triggers, the supported event generating offsets are listed. The offsets can be found in the *Generic Event / Reading Type Codes* or *Sensor Type Codes* tables in the *IPMI Specification*, depending on whether the sensor event / reading type is a generic or sensor-specific response.

All sensors generate both assertions and deassertions of the defined event triggers. The assertions and deassertions may or may not generate events into the System Event Log (SEL), depending on the sensor SDR settings.

#### Fault LED

This column indicates whether an assertion of an event lights the front panel fault LED. The Integrated BMC aggregates all fault sources (including outside sources such as the BIOS) such that the LED will be lit as long as any source indicates that a fault state exists. The Integrated BMC extinguishes the fault LED when all sources indicate no faults are present.

#### Sensor Rearm

The rearm is a request for the event status for a sensor to be rechecked and updated upon a transition between good and bad states. Rearming the sensors can be done manually or automatically. The following abbreviations are used in the column:

- 'A': Auto rearm
- 'M': Manual rearm

#### Readable

Some sensors are used simply to generate events into the System Event Log. The Watchdog timer sensor is one example. These sensors operate by asserting and then immediately de-asserting an event. Typically the SDRs for such sensors are defined such that only the assertion causes an event message to be deposited in the SEL. Reading such a sensor produces no useful information and is marked as 'No' in this column. Note that some sensors <u>may</u> actually be unreadable in that they return an error code in response to the IPMI *Get Sensor Reading* command. These sensors are represented by type 3 SDR records.

#### Standby

Some sensors operate on standby power. These sensors may be accessed and / or generate events when the compute module payload power is off, but standby power is present.

| Name                 | #   | Sensor<br>Type | Event /<br>Reading<br>Type | Event Offset Triggers                                     | Status<br>LED | Read? | Rearm | Standby |
|----------------------|-----|----------------|----------------------------|-----------------------------------------------------------|---------------|-------|-------|---------|
|                      |     |                |                            | 0: Power down                                             | None          |       |       |         |
|                      |     |                |                            | 1: Power cycle                                            | None          |       |       |         |
| Power Unit           | 01h | Power Unit     | Sensor<br>Specific         | 4: A/C lost (DC input lost)                               | None          | Yes   | А     | Yes     |
| Status               |     | 09h            | 6Fh                        | 5: Soft power control failure<br>(did not turn on or off) | Fault         |       |       |         |
|                      |     |                |                            | 6: Power unit failure (power good dropout)                | Fault         |       |       |         |
|                      |     |                |                            | 0: Timer expired                                          | None          |       |       |         |
|                      |     | Watchdog       | Sensor                     | 1: Hard reset                                             | None          |       |       |         |
| Watchdog             | 03h | 2<br>23h       | Specific<br>6Fh            | 2: Power down                                             | None          | No    | А     | Yes     |
|                      |     |                |                            | 3: Power cycle                                            | None          |       |       |         |
|                      |     |                |                            | 8: Timer interrupt                                        | None          |       |       |         |
| System<br>ACPI Power | 0Ch | System<br>ACPI | Sensor<br>Specific         | 0: S0 / G0                                                | None          | Yes   | А     | Yes     |
| Sidle                |     | Power          | סרוו                       | 1: S1                                                     | None          |       |       |         |

#### Table 15. BMC Sensors

| Name             | #   | Sensor<br>Type | Event /<br>Reading<br>Type | Event Offset Triggers                | Status<br>LED  | Read? | Rearm | Standby |
|------------------|-----|----------------|----------------------------|--------------------------------------|----------------|-------|-------|---------|
|                  |     | State<br>22h   |                            | 3: S3                                | None           |       |       |         |
|                  |     |                |                            | 4: S4                                | None           |       |       |         |
|                  |     |                |                            | 5: S5 / G2                           | None           |       |       |         |
|                  |     |                |                            | 7: G3 mechanical off                 | None           |       |       |         |
|                  |     |                |                            | B: Legacy ON state                   | None           |       |       |         |
|                  |     |                |                            | C: Legacy OFF state                  | None           |       |       |         |
| BB Vtt           | 10h | Voltage        | Thresh.<br>01h             | [U,L] Non-critical<br>[U,L] Critical | Fault<br>Fault | Yes   | A     | No      |
| BB +1.5V<br>AUX  | 11h | Voltage        | Thresh.<br>01h             | [U,L] Non-critical                   | Fault          | Yes   | A     | No      |
|                  |     |                |                            | [U,L] Critical                       | Fault          |       |       |         |
| BB +1.5V         | 12h | Voltage        | Thresh.                    | [U,L] Non-critical                   | Fault          | Yes   | А     | No      |
|                  |     |                | 0 m                        | [U,L] Critical                       | Fault          |       |       |         |
| BB +1.8V         | 13h | Voltage        | Thresh.                    | [U,L] Non-critical                   | Fault          | Yes   | А     | No      |
|                  |     |                | 0111                       | [U,L] Critical                       | Fault          | 100   |       |         |
| BB +3.3V         | 14h | Voltage        | Thresh.                    | [U,L] Non-critical                   | Fault          | Yes   | A     | No      |
|                  |     |                | UIII                       | [U,L] Critical                       | Fault          |       |       |         |
| BB +3.3V<br>STB  | 15h | Voltage        | Thresh.<br>01h             | [U,L] Non-critical                   | Fault          | Yes   | А     | Yes     |
|                  |     |                | •                          | [U,L] Critical                       | Fault          |       |       |         |
| BB +1.5V<br>ESB  | 16h | Voltage        | Thresh.<br>01h             | [U,L] Non-critical                   | Fault          | Yes   | А     | Yes     |
|                  |     |                |                            |                                      | Fault          |       |       |         |
| BB +5V           | 17h | Voltage        | Thresh.<br>01h             |                                      |                | Yes   | А     | No      |
|                  |     |                |                            |                                      | Fault          |       |       |         |
| BB +12V<br>AUX   | 18h | Voltage        | Thresh.<br>01h             |                                      | Fault          | Yes   | А     | No      |
|                  |     |                |                            | [U,L] Onical                         | Fault          |       |       |         |
| BB 0.9V          | 19h | Voltage        | Thresh.<br>01h             |                                      | Fault          | Yes   | A     | No      |
|                  |     |                | Digital                    |                                      |                |       |       |         |
| BB Vbat<br>(SIO) | 1Ah | Voltage        | Discrete<br>05h            | 1: Limit exceeded                    | Fault          | Yes   | A     | Yes     |

| Name                                                       | #            | Sensor<br>Type               | Event /<br>Reading<br>Type | Event Offset Triggers                                                                                                                                                                        | Status<br>LED                                | Read? | Rearm | Standby |
|------------------------------------------------------------|--------------|------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|-------|---------|
| Hot Swap                                                   | 20h          | Hot Swap<br>2Ch              | Sensor<br>Specific<br>6Fh  | <ol> <li>1: Inactive</li> <li>2: Activation Required</li> <li>3: Activation In Progress</li> <li>4: Active</li> <li>5: Deactivation Required</li> <li>6: Deactivation in Progress</li> </ol> | None<br>None<br>None<br>None<br>None         | Yes   | A     | Yes     |
| KVM<br>Session                                             | 21h          | OEM<br>C0h                   | OEM<br>70h                 | 0: Pending<br>1: Established<br>2: Ended Normally<br>3: Ticket Expiration<br>4: Lost Heartbeat<br>5: Forcibly Terminated<br>6: Unknown Ticket                                                | None<br>None<br>None<br>None<br>None<br>None | Yes   | A     | Yes     |
| SOL<br>Session                                             | 22h          | OEM<br>C0h                   | OEM<br>73h                 | 0: SOL Session Inactive<br>1: SOL Session Active                                                                                                                                             | None<br>None                                 | Yes   | A     | Yes     |
| SMI<br>Timeout                                             | 40h          | SMI<br>Timeout<br>F3h        | Digital<br>Discrete<br>03h | 1: State asserted                                                                                                                                                                            | Fault                                        | No    | A     | No      |
| Memory<br>Error                                            | 41h          | Memory<br>0Ch                | Sensor<br>Specific<br>6Fh  | 1: Uncorrectable ECC                                                                                                                                                                         | Fault                                        | No    | A     | No      |
| Critical Int.                                              | 42h          | Critical<br>Interrupt<br>13h | Sensor<br>Specific<br>6Fh  | 8: Bus uncorrectable Error                                                                                                                                                                   | Fault                                        | No    | A     | No      |
| DIMM 1-8<br>Temp                                           | 50h-<br>57h  | Temp<br>01h                  | Thresh.<br>01h             | None                                                                                                                                                                                         | None                                         | Yes   | A     | No      |
| DIMM Max<br>Temp                                           | 5Fh          | Temp.<br>01h                 | Thresh.<br>01h             | None                                                                                                                                                                                         | None                                         | Yes   | А     | No      |
| Processor<br>1,2 Status                                    | 90h,<br>91h  | Processor<br>07h             | Sensor<br>Specific<br>6Fh  | 0: IERR<br>1: Thermal trip<br>7: Presence                                                                                                                                                    | Fault<br>Fault<br>None                       | Yes   | М     | Yes     |
| Processor 1<br>Core 1,2,3,4<br>Thermal<br>Margin<br>(PECI) | 92h –<br>95h | Temp.<br>01h                 | Thresh.<br>01h             | Upper Non-critical                                                                                                                                                                           | Fault<br>Fault                               | Yes   | A     | No      |
| Processor 2<br>Core 1,2,3,4<br>Thermal<br>Margin<br>(PECI) | 96h –<br>99h | Temp.<br>01h                 | Thresh.<br>01h             | Upper Non-critical                                                                                                                                                                           | Fault<br>Fault                               | Yes   | A     | No      |

| Name                                     | #           | Sensor<br>Type            | Event /<br>Reading<br>Type | Event Offset Triggers                     | Status<br>LED | Read? | Rearm | Standby |
|------------------------------------------|-------------|---------------------------|----------------------------|-------------------------------------------|---------------|-------|-------|---------|
| Processor<br>1,2 Thermal<br>Ctrl %       | 9Ah,<br>9Bh | Temp.<br>01h              | Thresh.<br>01h             | Upper Critical                            | Fault         | Yes   | A     | No      |
| Processor<br>1,2 VRD<br>Hot              | 9Ch,<br>9Dh | Temp.<br>01h              | Digital<br>Discrete<br>05h | 1: Limit exceeded                         | Fault         | Yes   | М     | No      |
| Proc Max<br>Thermal<br>Margin            | 9Fh         | Temp<br>01h               | Thresh.<br>01h             | None                                      | None          | Yes   | A     | No      |
| Processor<br>1,2 Vcc<br>Out-of-<br>Range | A0h,<br>A1h | Voltage                   | Digital<br>Discrete<br>05h | 1: Limit exceeded                         | Fault         | Yes   | A     | No      |
| CPU<br>Population<br>Error               | B0h         | Processor<br>07h          | Digital<br>Discrete<br>03h | 0: State De-asserted<br>1: State Asserted | None<br>Fault | Yes   | A     | Yes     |
| Mezzanine<br>Card<br>Present             | C0h         | Slot/Conne<br>ctor<br>21h | Sensor<br>Specific<br>6Fh  | 2: Device installed                       | None          | Yes   | A     | No      |
| Attention<br>State                       | C1h         | OEM<br>D0h                | OEM<br>D0h                 | 0: ID LED Lit                             | None          | Yes   | A     | Yes     |
|                                          |             |                           |                            | 1: Fault State Active                     | None          |       |       |         |
| Drive<br>Backplane                       | C2h         | Drive Slot                | Digital<br>Discrete        | 0: Device Absent                          | None          | Yes   | А     | No      |
| Present                                  |             |                           | 08h                        | 1: Device Present                         | None          |       |       |         |
| Drive 1,2 <sup>1</sup>                   | C3h,<br>C4h | Drive Slot<br>0Dh         | Sensor<br>Specific<br>6Fh  | 0: Present                                | None          | Yes   | A     | No      |
| Slot ID                                  | C5h         | OEM<br>D1h                | Thresh.<br>01h             | None                                      | None          | Yes   | А     | Yes     |
| Process                                  | FEh         |                           |                            | 7: Process Started                        | None          |       |       |         |
| Progress                                 |             | OEM<br>D2h                | OEM<br>D2h                 | 8: Process Finished OK                    | None          | Yes   | А     | Yes     |
|                                          |             |                           |                            | 9: Process Finished Fail                  | None          |       |       |         |

**Note 1**: SDRs for these sensors are loaded only into the compute module SKU that supports these drives. Reading these sensors in a SKU that does not support drives will return unknown data.

#### Sensor SDR Information

This section describes the information that is entered into the SDRs.

The SDRs for all sensors will be set to generate events for both assertions and de-assertions of all supported sensor offsets as listed in Table 15.

#### Analog Sensor Thresholds

Table 16 shows the thresholds set into the SDR records for the BMC's analog sensors.

These values are preliminary at the time of this writing.

| Name                                                    | #            | Sensor Type | Lower Critical | Lower Non-<br>Critical | Upper Non-<br>Critical | Upper Critical |
|---------------------------------------------------------|--------------|-------------|----------------|------------------------|------------------------|----------------|
| BB Vtt                                                  | 10h          | Voltage     | 1.90V          | N/A                    | N/A                    | 1.5V           |
| BB +1.5V AUX                                            | 11h          | Voltage     | 1.33V          | N/A                    | N/A                    | 1.65V          |
| BB +1.5V                                                | 12h          | Voltage     | 1.33V          | N/A                    | N/A                    | 1.65V          |
| BB +1.8V                                                | 13h          | Voltage     | 1.67V          | N/A                    | N/A                    | 1.94V          |
| BB +3.3V                                                | 14h          | Voltage     | 2.97V          | N/A                    | N/A                    | 3.62V          |
| BB +3.3V STB                                            | 15h          | Voltage     | 2.97V          | N/A                    | N/A                    | 3.62V          |
| BB +1.5V ESB                                            | 16h          | Voltage     | 1.33V          | N/A                    | N/A                    | 1.65V          |
| BB +5V                                                  | 17h          | Voltage     | 4.5V           | N/A                    | N/A                    | 5.5V           |
| BB +12V AUX                                             | 18h          | Voltage     | 10.66V         | N/A                    | N/A                    | 13.26V         |
| BB 0.9V                                                 | 19h          | Voltage     | 0.78V          | N/A                    | N/A                    | 1.02V          |
| DIMM 1-8<br>Temperature                                 | 50h –<br>57h | Temperature | N/A            | N/A                    | 100°C                  | 105°C          |
| Processor 1<br>Core 1,2,3,4<br>Thermal Margin<br>(PECI) | 92h –<br>93h | Temperature | N/A            | N/A                    | N/A                    | N/A            |
| Processor 2<br>Core 1,2,3,4<br>Thermal Margin<br>(PECI) | 94h —<br>95h | Temperature | N/A            | N/A                    | N/A                    | N/A            |
| Processor 1,2<br>Thermal Ctrl %                         | 9Ah,<br>9Bh  | Temperature | N/A            | N/A                    | N/A                    | 50%            |

## Table 16. Analog Sensor Thresholds

# Appendix C: POST Error Messages and Handling

Whenever possible, the BIOS will output the current boot progress codes on the video screen. Progress codes are 32-bit quantities plus optional data. The 32-bit numbers include class, subclass, and operation information. The class and subclass fields point to the type of hardware that is being initialized. The operation field represents the specific initialization activity. Based on the data bit availability to display progress codes, a progress code can be customized to fit the data width. The higher the data bit, the higher the granularity of information that can be sent on the progress port. The progress codes may be reported by the system BIOS or option ROMs.

The Response section in the following table is divided into two types:

- Minor: The message is displayed on the screen or in the Error Manager screen. The system will
  continue booting with a degraded state. The user may want to replace the erroneous unit. The
  setup POST error Pause setting does not have any effect with this error.
- Major: The message is displayed in the Error Manager screen, and an error is logged to the SEL. The setup POST error Pause setting determines whether the system pauses to the Error Manager for this type of error, where the user can take immediate corrective action or choose to continue booting.
- Fatal: The message is displayed in the Error Manager screen, an error is logged to the SEL, and the system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system. The setup POST error Pause setting does not have any effect with this error.

| Error Code | Error Message                                             | Response |
|------------|-----------------------------------------------------------|----------|
| 004C       | Keyboard / interface error                                | Major    |
| 0012       | CMOS date / time not set                                  | Major    |
| 0048       | Password check failed                                     | Fatal    |
| 0141       | PCI resource conflict                                     | Major    |
| 0146       | Insufficient memory to shadow PCI ROM                     | Major    |
| 0192       | L3 cache size mismatch                                    | Fatal    |
| 0194       | CPUID, processor family are different                     | Fatal    |
| 0195       | Front side bus mismatch                                   | Major    |
| 0197       | Processor speeds mismatched                               | Major    |
| 5220       | Configuration cleared by jumper                           | Minor    |
| 5221       | Passwords cleared by jumper                               | Major    |
| 8110       | Processor 01 internal error (IERR) on last boot           | Major    |
| 8111       | Processor 02 internal error (IERR) on last boot           | Major    |
| 8120       | Processor 01 thermal trip error on last boot              | Major    |
| 8121       | Processor 02 thermal trip error on last boot              | Major    |
| 8130       | Processor 01 disabled                                     | Major    |
| 8131       | Processor 02 disabled                                     | Major    |
| 8160       | Processor 01 unable to apply BIOS update                  | Major    |
| 8161       | Processor 02 unable to apply BIOS update                  | Major    |
| 8190       | Watchdog timer failed on last boot                        | Major    |
| 8198       | Operating system boot watchdog timer expired on last boot | Major    |
| 8300       | Baseboard management controller failed self-test          | Major    |

#### Table 17. POST Error Messages and Handling

| Error Code | Error Message                                                                                                              | Response                    |
|------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8305       | Hot swap controller failed                                                                                                 | Major                       |
| 84F2       | Baseboard management controller failed to respond                                                                          | Major                       |
| 84F3       | Baseboard management controller in update mode                                                                             | Major                       |
| 84F4       | Sensor data record empty                                                                                                   | Major                       |
| 84FF       | System event log full                                                                                                      | Minor                       |
| 8500       | Memory Component could not be configured in the selected RAS mode.                                                         | Major                       |
| 8510       | System supports a maximum of 16 GB of main memory. Additional memory will not be counted. (This error is S5000V specific.) | Major                       |
| 8520       | DIMM_A1 failed Self Test (BIST).                                                                                           | Major                       |
| 8521       | DIMM_A2 failed Self Test (BIST).                                                                                           | Major                       |
| 8522       | DIMM_A3 failed Self Test (BIST).                                                                                           | Major                       |
| 8523       | DIMM_A4 failed Self Test (BIST).                                                                                           | Major                       |
| 8524       | DIMM_B1 failed Self Test (BIST).                                                                                           | Major                       |
| 8525       | DIMM_B2 failed Self Test (BIST).                                                                                           | Major                       |
| 8526       | DIMM_B3 failed Self Test (BIST).                                                                                           | Major                       |
| 8527       | DIMM_B4 failed Self Test (BIST).                                                                                           | Major                       |
| 8528       | DIMM_C1 failed Self Test (BIST).                                                                                           | Major                       |
| 8529       | DIMM_C2 failed Self Test (BIST).                                                                                           | Major                       |
| 852A       | DIMM_C3 failed Self Test (BIST).                                                                                           | Major                       |
| 852B       | DIMM_C4 failed Self Test (BIST).                                                                                           | Major                       |
| 852C       | DIMM_D1 failed Self Test (BIST).                                                                                           | Major                       |
| 852D       | DIMM_D2 failed Self Test (BIST).                                                                                           | Major                       |
| 852E       | DIMM_D3 failed Self Test (BIST).                                                                                           | Major                       |
| 852F       | DIMM_D4 failed Self Test (BIST).                                                                                           | Major                       |
| 8580       | DIMM_A1 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8581       | DIMM_A2 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8582       | DIMM_A3 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8583       | DIMM_A4 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8584       | DIMM_B1 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8585       | DIMM_B2 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8586       | DIMM_B3 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8587       | DIMM_B4 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8588       | DIMM_C1 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8589       | DIMM_C2 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858A       | DIMM_C3 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858B       | DIMM_C4 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858C       | DIMM_D1 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858D       | DIMM_D2 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858E       | DIMM_D3 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 858F       | DIMM_D4 Correctable ECC error encountered.                                                                                 | Minor/Major after 10 events |
| 8601       | Override jumper is set to force boot from lower alternate BIOS bank of flash ROM.                                          | Minor                       |
| 8602       | WatchDog timer expired (secondary BIOS may be bad!).                                                                       | Minor                       |
| 8603       | Secondary BIOS checksum fail.                                                                                              | Minor                       |

| Error Code | Error Message                                                | Response |
|------------|--------------------------------------------------------------|----------|
| 92A3       | Serial port component was not detected.                      | Major    |
| 92A9       | Serial port component encountered a resource conflict error. | Major    |
| 0xA000     | TPM device not detected.                                     | Minor    |
| 0xA001     | TPM device missing or not responding.                        | Minor    |
| 0xA002     | TPM device failure                                           | Minor    |
| 0xA003     | TPM device failed self test.                                 | Minor    |

## **POST Error Pause Option**

In case of POST error(s) that are listed as "Major", the BIOS enters the Error Manager and waits for the user to press an appropriate key before booting the operating system or entering the BIOS Setup.

The user can override this option by setting "POST Error Pause" to "disabled" in the BIOS Setup Main menu page. If the "POST Error Pause" option is set to "disabled", the system boots the operating system without user-intervention. The default value is set to "disabled".

## **POST Error Beep Codes**

The following table lists the POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform users of error conditions. The beep code is followed by a user visible code on POST Progress LEDs.

| Beeps | Error Message | POST Progress Code<br>(PPC) | Description                                                                                       |
|-------|---------------|-----------------------------|---------------------------------------------------------------------------------------------------|
| 3     | Memory error  | No PPC                      | System halted because a fatal error related to the memory was detected.                           |
| 6     | BIOS recovery | No PPC                      | The system has detected a corrupted BIOS in the flash part, and is recovering the last good BIOS. |

#### Table 18. POST Error Beep Codes

# Appendix D: Supported Intel<sup>®</sup> Modular Server System

The Intel<sup>®</sup> Compute Module MFS5000SI is supported in the following chassis:

- Intel<sup>®</sup> Modular Server System MFSYS25
- Intel<sup>®</sup> Modular Server System MFSYS35

This section provides a high-level descriptive overview of each chassis. For more details, refer to the *Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35 Technical Product Specification* (TPS).



| А | Shared hard drive storage bay      |
|---|------------------------------------|
| В | I/O cooling fans                   |
| С | Empty compute module bay           |
| D | Compute module cooling fans        |
| Е | Compute module midplane connectors |

Figure 11. Intel<sup>®</sup> Modular Server System MFSYS25

# Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (for example, "82460GX") followed by alpha entries (for example, "AGP 4x"). Acronyms are followed by non-acronyms.

| Term   | Definition                                                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACPI   | Advanced Configuration and Power Interface                                                                                                                    |
| AP     | Application Processor                                                                                                                                         |
| APIC   | Advanced Programmable Interrupt Control                                                                                                                       |
| ASIC   | Application Specific Integrated Circuit                                                                                                                       |
| ASMI   | Advanced Server Management Interface                                                                                                                          |
| BIOS   | Basic Input/Output System                                                                                                                                     |
| BIST   | Built-In Self Test                                                                                                                                            |
| BMC    | Baseboard Management Controller                                                                                                                               |
| Bridge | Circuitry connecting one computer bus to another, allowing an agent on one to access the other                                                                |
| BSP    | Bootstrap Processor                                                                                                                                           |
| byte   | 8-bit quantity.                                                                                                                                               |
| CBC    | Chassis Bridge Controller (A microcontroller connected to one or more other CBCs, together they bridge the IPMB buses of multiple chassis.                    |
| CEK    | Common Enabling Kit                                                                                                                                           |
| CHAP   | Challenge Handshake Authentication Protocol                                                                                                                   |
| CMOS   | In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board. |
| DPC    | Direct Platform Control                                                                                                                                       |
| EEPROM | Electrically Erasable Programmable Read-Only Memory                                                                                                           |
| EHCI   | Enhanced Host Controller Interface                                                                                                                            |
| EMP    | Emergency Management Port                                                                                                                                     |
| EPS    | External Product Specification                                                                                                                                |
| ESB2   | Enterprise South Bridge 2                                                                                                                                     |
| FBD    | Fully Buffered DIMM                                                                                                                                           |
| FMB    | Flexible Mother Board                                                                                                                                         |
| FRB    | Fault Resilient Booting                                                                                                                                       |
| FRU    | Field Replaceable Unit                                                                                                                                        |
| FSB    | Front-Side Bus                                                                                                                                                |
| GB     | 1024MB                                                                                                                                                        |
| GPIO   | General Purpose I/O                                                                                                                                           |
| GTL    | Gunning Transceiver Logic                                                                                                                                     |
| HSC    | Hot-Swap Controller                                                                                                                                           |
| Hz     | Hertz (1 cycle/second)                                                                                                                                        |
| I2C    | Inter-Integrated Circuit Bus                                                                                                                                  |
| IA     | Intel <sup>®</sup> Architecture                                                                                                                               |
| IBF    | Input Buffer                                                                                                                                                  |
| ICH    | I/O Controller Hub                                                                                                                                            |
| ICMB   | Intelligent Chassis Management Bus                                                                                                                            |
| IERR   | Internal Error                                                                                                                                                |

| Term    | Definition                                                                                 |
|---------|--------------------------------------------------------------------------------------------|
| IFB     | I/O and Firmware Bridge                                                                    |
| INTR    | Interrupt                                                                                  |
| IP      | Internet Protocol                                                                          |
| IPMB    | Intelligent Platform Management Bus                                                        |
| IPMI    | Intelligent Platform Management Interface                                                  |
| IR      | Infrared                                                                                   |
| ITP     | In-Target Probe                                                                            |
| KB      | 1024 bytes                                                                                 |
| KCS     | Keyboard Controller Style                                                                  |
| LAN     | Local Area Network                                                                         |
| LCD     | Liquid Crystal Display                                                                     |
| LED     | Light Emitting Diode                                                                       |
| LPC     | Low Pin Count                                                                              |
| LUN     | Logical Unit Number                                                                        |
| MAC     | Media Access Control                                                                       |
| MB      | 1024КВ                                                                                     |
| MCH     | Memory Controller Hub                                                                      |
| MD2     | Message Digest 2 – Hashing Algorithm                                                       |
| MD5     | Message Digest 5 – Hashing Algorithm – Higher Security                                     |
| ms      | milliseconds                                                                               |
| MTTR    | Memory Type Range Register                                                                 |
| Mux     | Multiplexor                                                                                |
| NIC     | Network Interface Controller                                                               |
| NMI     | Nonmaskable Interrupt                                                                      |
| OBF     | Output Buffer                                                                              |
| OEM     | Original Equipment Manufacturer                                                            |
| Ohm     | Unit of electrical resistance                                                              |
| PEF     | Platform Event Filtering                                                                   |
| PEP     | Platform Event Paging                                                                      |
| PIA     | Platform Information Area (This feature configures the firmware for the platform hardware) |
| PLD     | Programmable Logic Device                                                                  |
| PMI     | Platform Management Interrupt                                                              |
| POST    | Power-On Self Test                                                                         |
| PSMI    | Power Supply Management Interface                                                          |
| PWM     | Pulse-Width Modulation                                                                     |
| RAM     | Random Access Memory                                                                       |
| RASUM   | Reliability, Availability, Serviceability, Usability, and Manageability                    |
| RISC    | Reduced Instruction Set Computing                                                          |
| ROM     | Read Only Memory                                                                           |
| RTC     | Real-Time Clock (Component of ICH peripheral chip on the server board)                     |
| SDR     | Sensor Data Record                                                                         |
| SECC    | Single Edge Connector Cartridge                                                            |
| SEEPROM | Serial Electrically Erasable Programmable Read-Only Memory                                 |
| SEL     | System Event Log                                                                           |

| Term  | Definition                                                                       |
|-------|----------------------------------------------------------------------------------|
| SIO   | Server Input/Output                                                              |
| SMBus | System Management Bus                                                            |
| SMI   | Server Management Interrupt (SMI is the highest priority non-maskable interrupt) |
| SMM   | Server Management Mode                                                           |
| SMS   | Server Management Software                                                       |
| SNMP  | Simple Network Management Protocol                                               |
| TBD   | To Be Determined                                                                 |
| TIM   | Thermal Interface Material                                                       |
| UART  | Universal Asynchronous Receiver/Transmitter                                      |
| UDP   | User Datagram Protocol                                                           |
| UHCI  | Universal Host Controller Interface                                              |
| UTC   | Universal time coordinate                                                        |
| VID   | Voltage Identification                                                           |
| VRD   | Voltage Regulator Down                                                           |
| Word  | 16-bit quantity                                                                  |
| ZIF   | Zero Insertion Force                                                             |

# **Reference Documents**

See the following documents for additional information:

- Intel<sup>®</sup> 5000 Series Chipsets Server Board Family Datasheet
- Intel<sup>®</sup> 5000P Memory Controller Hub External Design Specification
- Intel<sup>®</sup> Enterprise South Bridge 2 (ESB2) External Design Specification
- Intel<sup>®</sup> Modular Server System MFSYS25/MFSYS35 Technical Product Specification