

Intel[®] Compute Module MFS5520VI

Technical Product Specification

Intel order number: E64311-004

Revision 1.2

March 2010

Enterprise Platforms and Services Division

Revision History

Date	Revision Number	Modifications						
February 2009	1.0	Initial release.						
June 2009	1.1	Updated the document.						
March 2010	1.2	Updated the document.						

Disclaimers

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Compute Module MFS5520VI may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel Corporation server baseboards support peripheral components and contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel's own chassis are designed and tested to meet the intended thermal requirements of these components when the fully integrated system is used together. It is the responsibility of the system integrator that chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation can not be held responsible if components fail or the compute module does not operate correctly when used outside any of their published operating or non-operating limits.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2010.

Table of Contents

1.	Introduc	ction	1
1	.1	Chapter Outline	1
1	.2	Intel® Compute Module Use Disclaimer	1
2.	Product	Overview	2
2	.1	Intel® Compute Module MFS5520VI Feature Set	2
2	.2	Compute Module Layout	3
	2.2.1	Connector and Component Locations	3
	2.2.2	External I/O Connector Locations	3
	2.2.3	Compute Module Mechanical Drawings	5
3.	Functio	nal Architecture	6
3	.1	Intel® Xeon® processor	7
	3.1.1	Processor Support	7
	3.1.2	Mixed Processor Configuration	7
	3.1.3	Turbo Mode	9
	3.1.4	Hyper-Threading	9
	3.1.5	Intel® QuickPath Interconnect	9
	3.1.6	Unified Retention System Support	10
3	.2	Memory Subsystem	11
	3.2.1	Intel® QuickPath Memory Controller	11
	3.2.2	Publishing Compute Module Memory	11
	3.2.3	Memory Map and Population Rules	12
	3.2.4	Memory RAS	13
	3.2.5	Memory Upgrade Rules	15
3	.3	Intel® 5520 Chipset IOH	17
3	.4	Intel® 82801JR I/O Controller Hub (ICH10R)	17
	3.4.1	PCI Subsystem	18
	3.4.2	USB 2.0 Support	18
3	.5	Integrated Baseboard Management Controller	19
	3.5.1	Floppy Disk Controller	21
	3.5.2	Keyboard and Mouse Support	21
	3.5.3	Wake-up Control	21
3	.6	Video Support	21
	3.6.1	Video Modes	21
3	.7	Network Interface Controller (NIC)	21
	3.7.1	Direct Cache Access (DCA)	22
3	.8	Intel® Virtualization Technology for Directed I/O (Intel® VT-d)	22
4.	Connec	tor / Header Locations and Pin-outs	
4	.1	Board Connector Information	23

Table of Contents

4.2	23	
4.3	I/O Connector Pin-out Definition	24
4.3.1	VGA Connector	24
4.3.2	I/O Mezzanine Card Connector	24
4.3.3	Midplane Signal Connector	28
4.3.4	Serial Port Connector	29
4.3.5	USB 2.0 Connectors	29
5. Jumpe	er Block Settings	31
5.1	Recovery Jumper Blocks	31
5.1.1	CMOS Clear and Password Clear Usage Procedure	32
5.1.2	Integrated BMC Force Update Procedure	32
5.1.3	Integrated BMC Initialization	33
6. Produ	ct Regulatory Requirements	
6.1	Product Regulatory Requirements	34
6.2	Product Regulatory Compliance and Safety Markings	34
6.3	Product Environmental/Ecology Requirements	34
6.4	Product Environmental/Ecology Markings	34
Appendix A	A: Integration and Usage Tips	35
Appendix B	8: Integrated BMC Sensor Tables	36
Appendix C	: POST Error Messages and Handling	42
Appendix D): Supported Intel* Modular Server System	46
_	Documents	

List of Figures

Figure 1. Component and Connector Location Diagram	3
Figure 2. Intel [®] Compute Module MFS5520VI Front Panel Layout	4
Figure 3. Intel [®] Compute Module MFS5520VI – Hole and Component Positions	5
Figure 4. Intel [®] Compute Module MFS5520VI Functional Block Diagram	6
Figure 5. Unified Retention System and Unified Backplate Assembly	10
Figure 6. DIMM Nomenclature	12
Figure 7. DIMM Slot Order	12
Figure 8. Integrated BMC Hardware	20
Figure 9. Recovery Jumper Blocks	31
Figure 10. Intel® Modular Server System MFSYS25	46

List of Tables

Table 1. Mixed Processor Configurations	8
Table 2. Mirroring DIMM Population Rules Variance across Nodes	15
Table 3. Intel [®] Compute Module MFS5520VI PCI Bus Segment Characteristics	18
Table 4. Video Modes	21
Table 5. Board Connector Matrix	23
Table 6. Power Connector Pin-out (J1A1)	23
Table 7. VGA Connector Pin-out (J6A1)	24
Table 8. 120-pin I/O Mezzanine Card Connector Pin-out	25
Table 9. 120-pin I/O Mezzanine Card Connector Signal Definitions	26
Table 10. 40-pin I/O Mezzanine Card Connector Pin-out	28
Table 11. 96-pin Midplane Signal Connector Pin-out	28
Table 12. Internal 9-pin Serial Header Pin-out (J9J1)	29
Table 13. External USB Connector Pin-out	30
Table 14. Pin-out of Internal USB Connector for low-profile Solid State Drive (J9B7)	30
Table 15. Recovery Jumpers	32
Table 16. MFS5520VI Sensors	37
Table 17. POST Error Messages and Handling	42

1. Introduction

This Technical Product Specification (TPS) provides board-specific information detailing the features, functionality, and high-level architecture of the Intel[®] Compute Module MFS5520VI.

1.1 Chapter Outline

This document is divided into the following chapters:

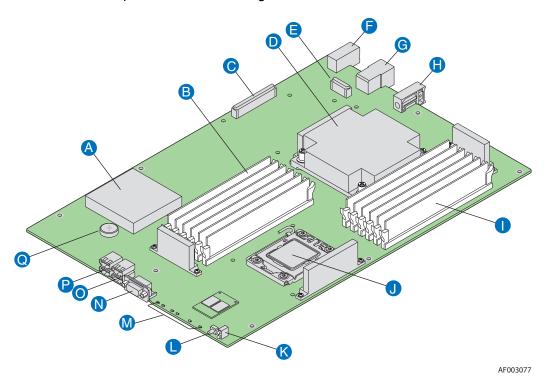
- Chapter 1 Introduction
- Chapter 2 Product Overview
- Chapter 3 Functional Architecture
- Chapter 4 Connector / Header Locations and Pin-outs
- Chapter 5 Jumper Block Settings
- Chapter 6 Product Regulatory Requirements
- Appendix A Integration and Usage Tips
- Appendix B BMC Sensor Tables
- Appendix C Post Error Messages and Handling
- Appendix D Supported Intel[®] Modular Server System

1.2 Intel® Compute Module Use Disclaimer

Intel® Modular Server components require adequate airflow to cool. Intel ensures through its own chassis development and testing that when these components are used together, the fully integrated system will meet the intended thermal requirements. It is the responsibility of the system integrator who chooses not to use Intel-developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of airflow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the system does not operate correctly when used outside any of their published operating or non-operating limits.

2. Product Overview

The Intel® Compute Module MFS5520VI is a monolithic printed circuit board with features that were designed to support the high-density compute module market.


2.1 Intel® Compute Module MFS5520VI Feature Set

Feature	Description						
Processors	Support for one or two Intel® Xeon® Processor 5500 series or two Intel® Xeon® Processor 5600 series in FC-LGA 1366 Socket B package with up to 95 W Thermal Design Power (TDP)						
	 4.8 GT/s, 5.86 GT/s, and 6.4 GT/s Intel[®] QuickPath Interconnect (Intel[®] QPI) 						
	 Enterprise Voltage Regulator-Down (EVRD) 11.1 						
Memory	Support for 1066/1333 MT/s ECC registered (RDIMM) or unbuffered (UDIMM) DDR3 memory.						
	12 DIMMs total across 6 memory channels (3 channels per processor).						
	NOTE: Mixed memory is not tested or supported. Non-ECC memory is not tested and is not supported in a server environment.						
Chipset	Intel [®] 5520 Chipset IOH						
	■ Intel [®] 82801JR I/O Controller Hub (ICH10R)						
On-board	External connections:						
Connectors/Headers	Four USB 2.0 ports						
	■ DB-15 Video connector						
	Internal connectors/headers:						
	 One low-profile USB 2x5 pin header to support low-profile USB solid state drives 						
	 Intel[®] I/O Mezzanine connectors supporting Dual Gigabit NIC Intel[®] I/O Expansion Module (Optional) 						
On-board Video	On-board ServerEngines* LLC Pilot II Controller						
	 Integrated 2D Video Controller 						
	■ 32 MB DDR2 Memory						
On-board Hard Drive Controller	LSI* 1064e SAS controller						
LAN	Two integrated 1000 Ethernet ports and two optional 1000 Ethernet ports, provided by the Dual Gigabit NIC mezzanine module						

2.2 Compute Module Layout

2.2.1 Connector and Component Locations

The following figure shows the board layout of the Intel[®] Compute Module MFS5520VI. Each connector and major component is identified by a number or letter. A description of each identified item is provided below the figure.

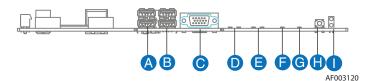

Α	Intel® 5520 Chipset I/O Hub	J	CPU 2 Socket
В	CPU2 DIMM Slots	K	Power/Fault LEDs
С	Mezzanine Card Connector 1	L	Power Switch
D	CPU 1 with Heatsink	М	Activity and ID LEDs
Е	Mezzanine Card Connector 2	N	Video Connector
F	Midplane Power Connector	0	USB Ports 2 and 3
G	Midplane Signal Connector	Р	USB1 Ports 0 and 1
Н	Midplane Guide Pin Receptacle	Q	CMOS Battery
I	CPU 1 DIMM Slots		

Figure 1. Component and Connector Location Diagram

2.2.2 External I/O Connector Locations

The following drawing shows the layout of the external I/O components for the Intel® Compute Module MFS5520VI.

Α	USB ports 0 and 1	F	Hard Drive Activity LED
В	USB ports 2 and 3	G	ID LED
С	Video	Н	Power button
D	I/O Mezzanine NIC ports 1 and 2 LEDs	I	Power and Fault LEDs
Е	NIC ports 1 and 2 LEDs		

Figure 2. Intel[®] Compute Module MFS5520VI Front Panel Layout

2.2.3 Compute Module Mechanical Drawings

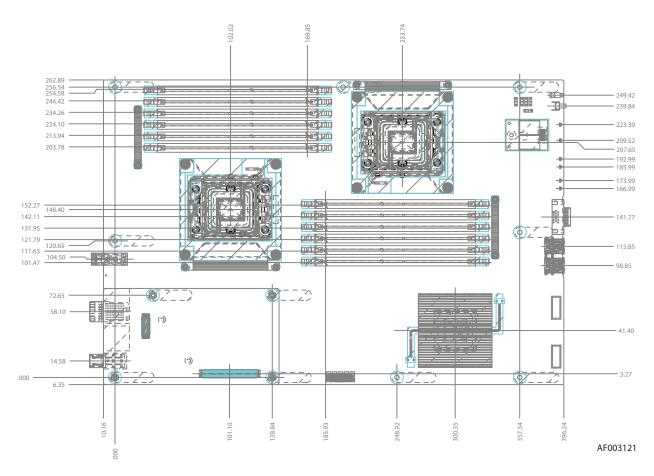


Figure 3. Intel[®] Compute Module MFS5520VI – Hole and Component Positions

3. Functional Architecture

The architecture and design of the Intel® Compute Module MFS5520VI is based on the Intel® 5520 Chipset I/O Hub (IOH) and the Intel® 82801JR ICH10 RAID. The chipset is designed for systems based on the Intel® Xeon® Processor in FC-LGA 1366 socket B package with Intel® QuickPath Interconnect (Intel® QPI). The chipset contains two main components:

- Intel[®] 5520 Chipset I/O Hub (IOH) that provides a connection point between various I/O components.
- Intel[®] 82801JR, which is the I/O controller hub (ICH10R) for the I/O subsystem.

This chapter provides a high-level description of the functionality associated with each chipset component and the architectural blocks that make up the server board.

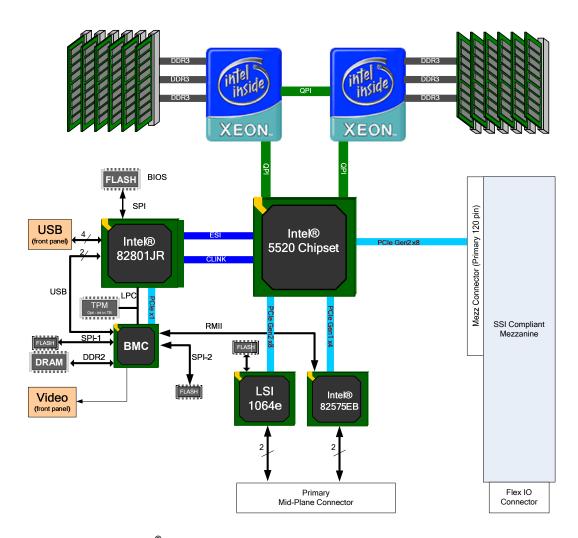


Figure 4. Intel[®] Compute Module MFS5520VI Functional Block Diagram

3.1 Intel[®] Xeon[®] processor

3.1.1 Processor Support

The Compute Module supports the following processors:

- One or two Intel[®] Xeon[®] Processor 5500 series with 4.8 GT/s, 5.86 GT/s or 6.4 GT/s Intel[®] QPI link interface and Thermal Design Power (TDP) up to 95 W.
- One or two Intel[®] Xeon[®] Processor 5600 series with a 6.4 GT/s Intel[®] QPI link interface and Thermal Design Power (TDP) up to 130 W.

Previous generations of the Intel® Xeon® processors are not supported on the compute module.

3.1.1.1 Processor Population Rules

Note: Although the Compute Module does support dual-processor configurations consisting of different processors that meet the defined criteria below, Intel does not perform validation testing of this configuration. For optimal performance in dual-processor configurations, Intel recommends that identical processors be installed.

When using a single processor configuration, the processor must be installed into the processor socket labeled CPU1. A terminator is not required in the second processor socket when using a single processor configuration.

When two processors are installed, the following population rules apply:

- Both processors must be of the same processor family.
- Both processors must have the same front-side bus speed.
- Both processors must have the same cache size.
- Processors with different speeds can be mixed in a system, given the prior rules are met.
 If this condition is detected, all processor speeds are set to the lowest common denominator (highest common speed) and an error is reported.
- Processor stepping within a common processor family can be mixed as long as it is listed in the processor specification updates published by Intel Corporation.

3.1.2 Mixed Processor Configuration

The following table describes mixed processor conditions and recommended actions for the Intel[®] Compute Module MFS5520VI. Errors fall into one of the following categories:

- Fatal: If the compute module can boot, it pauses at a blank screen with the text "Unrecoverable fatal error found. System will not boot until the error is resolved" and "Press <F2> to enter setup", regardless of whether the "Post Error Pause" setup option is enabled or disabled. When the operator presses the F2 key on the keyboard, the error message is displayed on the Error Manager screen, and an error is logged with the error code. The compute module cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system.
- Major: If the "Post Error Pause" setup option is enabled, the compute module goes
 directly to the Error Manager to display the error and log the error code. Otherwise, the
 compute module continues to boot and no prompt is given for the error, although the
 error code is logged to the Error Manager.

 Minor: The message is displayed on the screen or on the Error Manager screen. The system continues booting in a degraded state. The user may want to replace the erroneous unit. The POST Error Pause option setting in the BIOS setup does not have any effect on this error.

Table 1. Mixed Processor Configurations

Error	Severity	System Action
Processor family not	Fatal	The BIOS detects the error condition and responds as follows:
Identical		Logs the error.
		 Alerts the Integrated BMC about the configuration error.
		Does not disable the processor.
		 Displays "0194: Processor 0x family mismatch detected" message in the Error Manager.
		 Takes Fatal Error action (see above) and will not boot until the fault condition is remedied.
Processor cache not	Fatal	The BIOS detects the error condition and responds as follows:
identical		Logs the error.
		Alerts the Integrated BMC about the configuration error.
		Does not disable the processor.
		 Displays "0192: Processor 0x cache size mismatch detected" message in the Error Manager.
		Takes Fatal Error action (see above) and will not boot until the fault condition is remedied.
Processor frequency (speed)	Fatal	The BIOS detects the error condition and responds as follows:
not identical		Adjusts all processor frequencies to lowest common denominator.
		 No error is generated – this is not an error condition.
		Continues to boot the system successfully.
		If the frequencies for all processors cannot be adjusted to be the same, then the BIOS:
		Logs the error.
		■ Displays "0197: Processor 0x family is not supported" message in the Error Manager.
		Takes Fatal Error action (see above) and will not boot until the fault condition is remedied.
Processor Intel® QuickPath	Major	The BIOS detects the error condition and responds as follows:
Interconnect speeds not identical		Adjusts all processor interconnect frequencies to lowest common denominator.
		Logs the error.
		Alerts the Integrated BMC about the configuration error.
		Does not disable the processor.
		 Displays "0195: Processor 0x Intel(R) QPI speed mismatch" message in the Error Manager.
		If POST Error Pause is disabled in the Setup, continues to boot in a degraded state.
		If POST Error Pause is enabled in the Setup, pauses the system, but can continue to boot if operator directs.

Error	Severity	System Action
Processor microcode	Minor	The BIOS detects the error condition and responds as follows:
missing		Logs the error.
		Does not disable the processor.
		 Displays "8180: Processor 0x microcode update not found" message in the Error Manager or on the screen.
		The system continues to boot in a degraded state, regardless of the setting of POST Error Pause in the Setup.

3.1.3 Turbo Mode

The Turbo Mode feature allows processors to program thresholds for power/current which can increase platform performance by 10%.

If the processor supports this feature, the BIOS setup provides an option to enable or disable this feature. The default is disabled.

3.1.4 Hyper-Threading

Most Intel® Xeon® processors support Intel® Hyper-Threading Technology. The BIOS detects processors that support this feature and enables the feature during POST.

If the processor supports this feature, the BIOS Setup provides an option to enable or disable this feature. The default is enabled.

3.1.5 Intel[®] QuickPath Interconnect

Intel[®] QPI is a cache-coherent, link-based interconnect specification for processor, chipset, and I/O bridge components. Intel[®] QPI provides support for high-performance I/O transfer between I/O nodes. It allows connection to standard I/O buses such as PCI Express*, PCI-X, PCI (including peer-to-peer communication support), AGP, and so on, through appropriate bridges.

Each Intel® QPI link consists of 20 pairs of uni-directional differential lanes for the transmitter and receiver, plus a differential forwarded clock. A full-width Intel® QPI link pair consists of 84 signals (20 differential pairs in each direction plus a forwarded differential clock in each direction). Each Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series processors support two Intel® QPI links, one going to the other processor and the other to the Intel® 5520 IOH.

In the current implementation, Intel® QPI ports are capable of operating at transfer rates of up to 6.4 GT/s. Intel® QPI ports operate at multiple lane widths (full - 20 lanes, half - 10 lanes, quarter - 5 lanes) independently in each direction between a pair of devices communicating through Intel® QPI. The Compute Module supports full width communication only.

3.1.6 Unified Retention System Support

The Compute Module complies with Intel's Unified Retention System (URS) and the Unified Backplate Assembly. The Compute Module ships with a made-up assembly of Independent Loading Mechanism (ILM) and Unified Backplate at each processor socket.

The URS retention transfers load to the Compute Module through the unified backplate assembly. The URS spring, captive in the heatsink, provides the necessary compressive load for the thermal interface material. All components of the URS heatsink solution are captive to the heatsink and only require a Philips* screwdriver to attach to the unified backplate assembly. See the following figure for the stacking order of the URS components.

Heatsink

Server Board

Thermal Interface Material (TIM)

ILM Attach Studs

Heatsink

Heatsink

AF0026999

Figure 5. Unified Retention System and Unified Backplate Assembly

3.2 Memory Subsystem

3.2.1 Intel® QuickPath Memory Controller

The Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series have an integrated memory controller, the Intel® QuickPath Memory Controller, in its package. The memory controller supports DDR3 1333/1066/800 ECC registered DIMMs (RDIMMs) and ECC unbuffered DIMMs (UDIMMs).

3.2.1.1 Intel® Compute Module MFS5520VI Supported Memory

The Intel® Compute Module MFS5520VI has 12 DIMM sockets and supports the following memory features:

- Six DDR3 memory channels (three per processor socket) with two DIMMs per channel, thereby supporting up to 12 DIMMs with dual-processor sockets
- DDR3 1333 MHz and DDR3 1066 MHz memory modules
- Single–Rank (SR) and Dual–Rank (DR) ECC Registered (RDIMMs) or ECC Unbuffered (UDIMMs) DDR3 memory modules
- Quad–Rank (QR) ECC Registered (RDIMMs) DDR3 memory modules
- Maximum memory capacity of 192 GB with two processors installed
- Use of identical DIMMs in the compute module is recommended

The following configurations are not validated or supported with the Intel[®] Compute Module MFS5520VI:

- Mixing of RDIMMs and UDIMMs is not supported
- Mixing memory type, size, speed and/or rank on this server board is not validated and is not supported
- Mixing memory vendors is not validated and is not supported on this server board
- Non-ECC memory is not validated and is not supported in a server environment

For a complete list of supported memory for the Intel[®] Compute Module MFS5520VI, refer to the Tested Memory List published in the Intel[®] Server Configurator Tool.

3.2.2 Publishing Compute Module Memory

- The BIOS displays the "Total Memory" of the compute module during POST if Display Logo is disabled in the BIOS setup. This is the total size of memory discovered by the BIOS during POST, and is the sum of the individual sizes of installed DDR3 DIMMs in the system.
- The BIOS displays the "Effective Memory" of the compute module in the BIOS setup. The term *Effective Memory* refers to the total size of all DDR3 DIMMs that are active (not disabled) and not used as redundant units.
- The BIOS provides the total memory of the compute module in the main page of the BIOS setup. This total is the same as the amount described by the first bullet above.
- If Display Logo is disabled, the BIOS displays the total system memory on the diagnostic screen at the end of POST. This total is the same as the amount described by the first bullet above.

3.2.3 Memory Map and Population Rules

The nomenclature for DIMM sockets implemented on the Intel® Compute Module MFS5520VI is detailed in the following figures.

Processor Socket 1						Processor Socket 2					
Chann	Channel A Channel B Channel C			Channel D Channel E Channel F							
A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2

Figure 6. DIMM Nomenclature

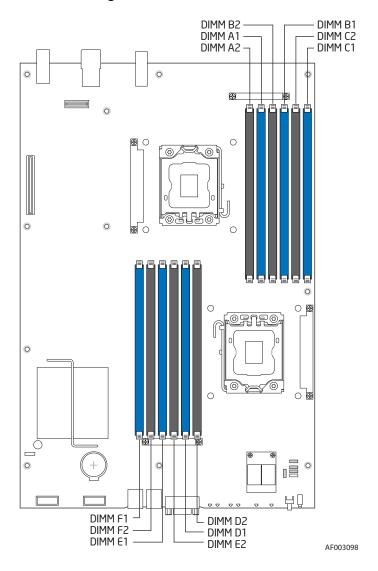


Figure 7. DIMM Slot Order

3.2.3.1 Memory Subsystem Nomenclature

- DIMMs are organized into physical slots on DDR3 memory channels that belong to processor sockets.
- The memory channels from processor socket 1 are identified as Channel A, B, and C.
 The memory channels from processor socket 2 are identified as Channel D, E, and F.

- The compute module Quick Reference Label DIMM slot identifiers provide information about the channel, and therefore the processor to which they belong. For example, DIMM_A1 is the first slot on Channel A on processor 1; DIMM_D1 is the first DIMM socket on Channel D on processor 2.
- The memory slots associated with a given processor are unavailable if the given processor socket is not populated.
- A processor may be installed without populating the associated memory slots provided a second processor is installed with associated memory. In this case, the memory is shared by the processors. However, the platform suffers performance degradation and latency due to the remote memory.
- Processor sockets are self-contained and autonomous. However, all memory subsystem support (that is, Memory RAS, Error Management, and so on) in the BIOS setup are applied commonly across processor sockets.

3.2.4 Memory RAS

3.2.4.1 RAS Features

The Compute Module supports the following memory RAS features:

- Channel Independent Mode
- Channel Mirroring Mode

The memory RAS offered by the Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series processors is done at channel level, that is, during mirroring, channel B mirrors channel A. All DIMM matching requirements are on a slot to slot basis on adjacent channels. For example, to enable mirroring, corresponding slots on channel A and channel B must have DIMMs of identical parameters.

If one socket fails the population requirements for RAS, the BIOS sets all six channels to the Channel Independent mode.

The memory slots of DDR3 channels from the Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series processors should be populated on a farthest first fashion. This holds true even in the Channel Independent mode. This means that A2 cannot be populated/used if A1 is empty.

3.2.4.2 Channel Independent Mode

In the Channel Independent mode, multiple channels can be populated in any order (for example, channels B and C can be populated while channel A is empty). Therefore, all DIMMs are enabled and utilized in the Channel Independent mode.

3.2.4.3 Channel Mirroring Mode

The Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series support channel mirroring to configure available channels of DDR3 DIMMs in the mirrored configuration. The mirrored configuration is a redundant image of the memory, and can continue to operate despite the presence of sporadic uncorrectable errors.

Channel mirroring is a RAS feature in which two identical images of memory data are maintained, thus providing maximum redundancy. On the Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series processors based Intel[®] server boards, mirroring is

Revision 1.2

achieved across channels. Active channels hold the primary image and the other channels hold the secondary image of the system memory. The integrated memory controller in the Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series processors, alternates between both channels for read transactions. Write transactions are issued to both channels under normal circumstances.

When the system is in the Channel Mirroring mode, channel C and channel F of socket 1 and socket 2 respectively are not used. Hence, the DIMMs populated on these channels are disabled and therefore do not contribute to the available physical memory. For example, if the system is operating in the Channel Mirroring mode and the total size of the DDR3 DIMMs is 1.5 GB (3 x 512 MB DIMMs), and then the active memory is only 1 GB.

Because the available system memory is divided into a primary image and a copy of the image, the effective system memory is reduced by at least one-half. For example, if the system is operating in the Channel Mirroring mode and the total size of the DDR3 DIMMs is 1 GB, then the effective size of the memory is 512 MB because half of the DDR3 DIMMs are the secondary images.

For channel mirroring to work, participant DDR3 DIMMs on the same DIMM slots on the adjacent channels must be identical in terms of technology, number of ranks, and size.

The BIOS setup provides an option to enable mirroring if the current DIMM population is valid for channel mirroring. When memory mirroring is enabled, the BIOS attempts to configure the memory system accordingly. If the BIOS finds that the DIMM population is not suitable for mirroring, it falls back to the default Channel Independent mode with maximum memory interleaving.

3.2.4.3.1 Minimum DDR3 DIMM Population for Channel Mirroring

Memory mirroring has the following minimum requirements:

- Channel configuration: Mirroring requires the first two adjacent channels to be active.
- Socket configuration: Mirroring requires that both socket 1 and socket 2 DIMM population meets the requirements for mirroring mode. The platform BIOS configures the system in mirroring mode only if both nodes qualify. The only exception to this rule is socket 2 with all empty DIMM slots.

As a direct consequence of these requirements, the minimal DIMM population is {A1, B1}. In this configuration, processor cores on socket 2 suffer memory latency due to usage of remote memory from socket 1. An optimal DIMM population for channel mirroring in a DP server platform is {A1, B1, D1, E1}. {A1, B1} must be identical and {D1, E1} must be identical.

In this configuration, DIMMs {A1, B1} and {D1, E1} operate as (primary copy, secondary copy) pairs independent from each other. Therefore, the optimal number of DDR3 DIMMs for channel mirroring is a multiple of four, arranged as mentioned above. The BIOS disables all non-identical DDR3 DIMMs or pairs of DDR3 DIMMs across the channels to achieve symmetry and balance between the channels.

3.2.4.3.2 Mirroring DIMM Population Rules Variance across Nodes

Memory mirroring in Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series processors based platforms is channel mirroring. Mirroring is not done across sockets, so each socket may have a different memory configuration. Channel mirroring in socket 1 and

socket 2 are mutually independent. As a result, if channel A and channel B have identical DIMM population and channel D and channel E have identical DIMM population, then mirroring is possible.

For example, if the system is populated with six DIMMS {A1, B1, A2, B2, D1, E1}, channel mirroring is possible. Both the populations shown in the following table are valid.

Table 2. Mirroring DIMM Population Rules Variance across Nodes

A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2	Mirroring Possible?
Р		Р				Р		Р				Yes
Р	Р	Р	Р			Р		Р				Yes

3.2.5 Memory Upgrade Rules

Upgrading the system memory requires careful positioning of the DDR3 DIMMs based on the following factors:

- Current RAS mode of operation
- Existing DDR3 DIMM population
- DDR3 DIMM characteristics
- Optimization techniques used by the Intel[®] Xeon[®] Processor 5500 series and Intel[®] Xeon[®] Processor 5600 series to maximize memory bandwidth

In the Channel Independent mode, all DDR3 channels operate independently. The Channel Independent mode can also be used to support a single DIMM configuration in channel A and in the single channel mode.

The following general rules must be observed when selecting and configuring memory to obtain the best performance from the system.

- Mixing RDIMMs and UDIMMs is not supported.
- Mixing memory type, size, speed, rank and/or vendors in the compute module is not supported.
- Non-ECC memory is not validated and is not supported in a server environment.
- Use of identical DIMMs in the compute module is recommended.
- If an installed DDR3 DIMM has faulty or incompatible SPD data, it is ignored during memory initialization and is (essentially) disabled by the BIOS. If a DDR3 DIMM has no or missing SPD information, the slot in which it is placed is treated as empty by the BIOS.
- When CPU Socket 1 is empty, any DIMM memory in Channel A through Channel C is unavailable.
- When CPU Socket 2 is empty, any DIMM memory in Channel D through Channel F is unavailable.
- If both processor sockets are populated but Channel A through Channel C is empty, the platform can still function with remote memory in Channel D through Channel F. However, platform performance suffers latency due to remote memory.

- The memory operational mode is configurable at the channel level. Two modes are supported: Independent Channel and Mirrored Channel.
- The memory slots of each DDR3 channel from the Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series are populated on a farthest first fashion. This holds true even for the Independent Channel mode. Therefore, if A1 is empty, A2 cannot be populated or used.
- The BIOS selects Independent Channel mode by default, which enables all installed memory on all channels simultaneously.
- Mirrored Channel mode is not available when only one processor is populated (CPU Socket 1).
- If both processor sockets are populated and the installed DIMMs are associated with both processor sockets, then a given RAS mode is selected only if both the processor sockets are populated to conform to that mode.
- The minimum memory population possible is one DIMM in slot A1. In this configuration, the system operates in the Independent Channel mode. RAS is not available.
- If both processor sockets are populated, the next upgrade from the Single Channel mode installs DIMM_D1. This configuration results in an optimal memory thermal spread, as well as Non-Uniform Memory Architecture (NUMA) aware interleaving. The BIOS selects the Independent Channel mode of operation.
- If only one processor socket is populated, the next upgrade from the Single Channel mode is installing DIMM_B1 to allow channel interleaving. The system operates in the Independent Channel mode.
- The DIMM parameter-matching requirements for memory RAS is local to a socket. For example, while Channels A/B/C can have one match of timing, technology, and size, Channels D/E/F can have a different set of parameters and RAS still functions.
- For the Mirrored Channel mode, the memory in Channels A and B of Socket 1 must be identical and Channel C should be empty. Similarly, the memory in Channels D and E of Socket 2 must be identical and Channel F should be empty.
 - a. The minimum population upgrade for the Mirrored Channel mode is DIMM_A1, DIMM_B1, DIMM_D1, and DIMM_E1 with both processor sockets populated. DIMM_A1 and DIMM_B1 as a pair must be identical, and so must DIMM_D1 and DIMM_E1. Failing to comply with these rules results in a switch back to the Independent Channel mode.
 - b. If Mirrored Channel mode is selected and the third channel of each processor socket is not empty, the BIOS disables the memory in the third channel of each processor socket.
- In the Mirrored Channel mode, both sockets must simultaneously satisfy the DIMM matching rules on their respective adjacent channels. If the DDR3 DIMMs on adjacent channels of a socket are not identical, the BIOS configures both of the processor sockets to default to the Independent Channel mode. If DIMM_D1 and DIMM_E1 are not identical, then the system switches to the Independent Channel Mode.

Note: Mixed memory size, type, speed, rank and/or vendor is not validated or supported with the Intel[®] Compute Module MFS5520VI. Refer to section 3.2.1.1 for supported and nonsupported memory features and configuration information.

3.3 Intel® 5520 Chipset IOH

The Intel® 5520 Chipset component is an I/O Hub (IOH.) The Intel® 5520 Chipset IOH provides a connection point between various I/O components and Intel processors through the Intel® QPI interface.

The Intel® 5520 Chipset IOH is capable of interfacing with up to 36 PCI Express* lanes, which can be configured in various combinations of x4, x8, x16, and limited x2 and x1 devices.

The Intel® 5520 Chipset IOH is responsible for providing a path to the legacy bridge. In addition, the Intel® 5520 Chipset supports a x4 DMI (Direct Media Interface) link interface for the legacy bridge, and interfaces with other devices through SMBus, Controller Link, and RMII manageability interfaces. The Intel® 5520 Chipset supports the following features and technologies:

- Intel[®] QuickPath Interconnect (Intel[®] QPI)
- PCI Express* Gen2
- Intel[®] I/O Acceleration Technology 2 (Intel[®] I/OAT2)
- Intel[®] Virtualization Technology (Intel[®] VT) for Directed I/O 2 (Intel[®] VT-d2)

3.4 Intel® 82801 | R I/O Controller Hub (ICH10R)

The Intel® 82801JR I/O Controller Hub (ICH10R) provides extensive I/O support and provides the following functions and capabilities:

- PCI Express* Base Specification, Revision 1.1 support
- PCI Local Bus Specification, Revision 2.3 support for 33-MHz PCI operations (supports up to four REQ#/GNT# pairs)
- ACPI Power Management Logic Support, Revision 3.0a
- Enhanced DMA controller, interrupt controller, and timer functions
- Integrated Serial ATA host controllers with independent DMA operation on up to six ports and AHCI support
- USB host interface with support for up to 12 USB ports; six UHCI host controllers; two EHCI high-speed USB 2.0 host controllers
- Integrated 10/100/1000 Gigabit Ethernet MAC with System Defense
- System Management Bus (SMBus) Specification, Version 2.0 with additional support for I²C devices
- Low Pin Count (LPC) interface support
- Firmware Hub (FWH) interface support
- Serial Peripheral Interface (SPI) support

3.4.1 PCI Subsystem

The primary I/O buses for the Intel[®] Compute Module MFS5520VI are PCI Express* Gen1 and PCI Express* Gen2 with six independent PCI bus segments.

PCI Express* Gen1 and Gen2 are dual-simplex point-to point serial differential low-voltage interconnects. A PCI Express* topology can contain a host bridge and several endpoints (I/O devices). The signaling bit rate is 2.5 Gbit/s one direction per lane for Gen1 and 5.0 Gbit/s one direction per lane for Gen2. Each port consists of a transmitter and receiver pair. A link between the ports of two devices is a collection of lanes (x1, x2, x4, x8, x16, and so on.). All lanes within a port must transmit data using the same frequency.

The following table lists the characteristics of the PCI bus segments. Details about each bus segment are provided in the following table.

Table 3. Intel® Compute Module MFS5520VI PCI Bus Segment Characteristics

PCI Bus Segment	Voltage	Width	Speed	Туре	PCI I/O Card Slots
ESI or DMI Port 0 ICH10R	3.3 V	x4	10 Gb/s	PCI Express* Gen1	x4 PCI Express* Gen1 throughput to the Intel* 5520 Chipset IOH
Port 5 ICH10R	3.3 V	x1	2.5 Gb/s	PCI Express* Gen1	X1 PCI Express* Gen1 throughput to an on-board Integrated BMC
PE1, PE2 Intel [®] 5520 Chipset IOH PCI Express*	3.3 V	х4	10 Gb/s	PCI Express* Gen1	x4 PCI Express* Gen1 throughput to the on-board NIC.
PE3, PE4 Intel [®] 5520 Chipset IOH PCI Express*	3.3 V	x8	40 Gb/S	PCI Express* Gen2	x8 PCI Express* Gen2 throughput – Not used.
PE5, PE6 Intel [®] 5520 Chipset IOH PCI Express*	3.3 V	x8	40 Gb/S	PCI Express* Gen2	Two x4 PCI Express* Gen2 throughput - Not used.
PE7, PE8 Intel [®] 5520 Chipset IOH PCI Express*	3.3 V	x8	40 Gb/S	PCI Express* Gen2	x8 PCI Express* Gen2 throughput to the on-board LSI 1064E.
PE9, PE10 Intel [®] 5520 Chipset IOH PCI Express*	3.3 V	x8	40 Gb/S	PCI Express* Gen2	Two x4 PCI Express* Gen2 throughput to the IO Module Mezzanine connectors.

3.4.2 USB 2.0 Support

The USB controller functionality integrated into ICH10R provides the Compute Module with an interface for up to ten USB 2.0 ports. All ports are high-speed, full-speed, and low-speed capable.

- Four external connectors are located on the front of the compute module.
- One internal 2x5 header is provided, capable of supporting a low-profile USB solid state drive.
- Two ports are routed to the Integrated BMC to support rKVM.

3.5 Integrated Baseboard Management Controller

The ServerEngines* LLC Pilot II Integrated BMC has an embedded ARM9 controller and associated peripheral functionality that is required for IPMI-based server management. Firmware usage of these hardware features is platform dependant.

The following is a summary of the integrated BMC management hardware features found in the ServerEngines* LLC Pilot II Integrated BMC:

- IPMI 2.0 Compliant
- Integrated 250 Mhz 32-bit ARM9 processor
- Six I²C SMBus modules with Master-Slave support
- Two independent 10/100 Ethernet Controllers with RMII support
- Memory Management Unit (MMU)
- DDR2 16-bit up to 667 MHz memory interface
- Dedicated real-time clock for Integrated BMC
- Up to 16 direct and 64 Serial GPIO ports
- Twelve 10-bit Analog to Digital Converters
- Eight Fan Tachometers Inputs
- Four Pulse Width Modulators (PWM)
- JTAG Master interface
- Watchdog timer

Additionally, the ServerEngines* Pilot II component integrates a super I/O module with the following features:

- Keyboard Style/BT Interface
- 16C550 compatible serial ports
- Serial IRQ support
- 16 GPIO ports (shared with Integrated BMC)
- LPC to SPI Bridge for system BIOS support
- SMI and PME support
- ACPI compliant
- Wake-up control

The Pilot II contains an integrated KVMS subsystem and graphics controller with the following features:

- USB 2.0 for keyboard, mouse, and storage devices
- Hardware Video Compression for text and graphics
- Hardware encryption

- 2D Graphics Acceleration
- DDR2 graphics memory interface
- Up to 1600x1200 pixel resolution

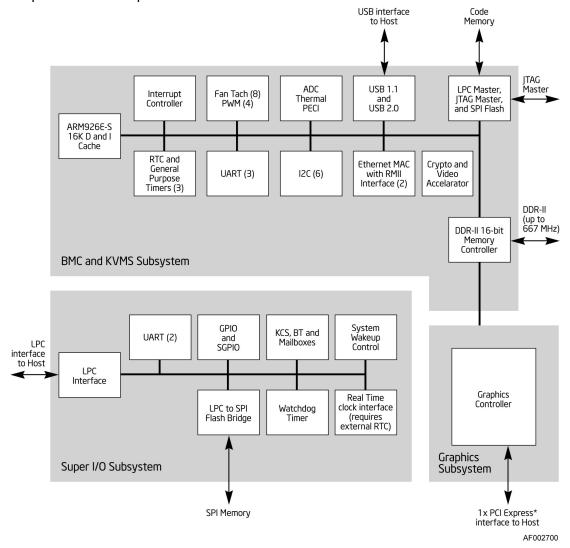


Figure 8. Integrated BMC Hardware

3.5.1 Floppy Disk Controller

The Compute Module does not support a floppy disk controller interface. However, the compute module BIOS recognizes USB floppy devices.

3.5.2 Keyboard and Mouse Support

The Compute Module does not support PS/2 interface keyboards and mice. However, the compute module BIOS recognizes USB specification-compliant keyboard and mice.

3.5.3 Wake-up Control

The super I/O contains functionality that allows various events to power on and power off the system.

3.6 Video Support

The Compute Module includes a video controller in the on-board Server Engines* Integrated Baseboard Management Controller along with 32 MB of video DDR2 SDRAM. The SVGA subsystem supports a variety of modes, up to 1600 x 1200 resolution in 8 / 16 / 32 bpp modes under 2D. It also supports both CRT and LCD monitors up to a 100 Hz vertical refresh rate.

The video is accessed using a standard 15-pin VGA connector found on the front panel of the compute module.

3.6.1 Video Modes

The integrated video controller supports all standard IBM VGA modes. The following table shows the 2D modes supported for both CRT and LCD.

2D Mode	Refresh Rate (Hz)		2D Video Mode Supp	ort
		8 Брр	16 bpp	32 bpp
640x480	60, 72, 75, 85, 90, 100, 120, 160, 200	Supported	Supported	Supported
800x600	60, 70, 72, 75, 85, 90, 100, 120,160	Supported	Supported	Supported
1024x768	60, 70, 72, 75,85,90,100	Supported	Supported	Supported
1152x864	43,47,60,70,75,80,85	Supported	Supported	Supported
1280x1024	60,70,74,75	Supported	Supported	Supported
1600x1200	52	Supported	Supported	Supported

Table 4. Video Modes

3.7 Network Interface Controller (NIC)

Network interface support is provided from the on-board Intel[®] 82575EB NIC, which is a single, compact component with two fully integrated GbE Media Access Control (MAC) and Physical Layer (PHY) ports. The on-board Intel[®] 82575EB NIC provides the Compute Module with support for dual LAN ports designed for 1000 Mbps operation.

Revision 1.2 21

The Intel® 82575EB device provides two standard IEEE 802.3 Ethernet interface through its SERDES interfaces. Each network interface controller (NIC) drives two LEDs located on the front panel. The LED indicates transmit / receive activity when blinking.

3.7.1 Direct Cache Access (DCA)

Direct Cache Access (DCA) is a component of Intel® I/O Acceleration Technology 2 (Intel® I/OAT2). The DCA mechanism is a system-level protocol in a multi-processor system to improve I/O network performance thereby providing higher system performance. The basic idea is to minimize cache misses when a demand read is executed. This is accomplished by placing the data from the I/O devices directly into the CPU cache through hints to the processor to perform a data pre-fetch and install it in its local caches. The Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series processors support Direct Cache Access (DCA). DCA can be enabled or disabled in the BIOS processor setup menu.

3.8 Intel® Virtualization Technology for Directed I/O (Intel® VT-d)

The Intel® Virtualization Technology is designed to support multiple software environments sharing same hardware resources. Each software environment may consist of an OS and applications. The Intel® Virtualization Technology can be enabled or disabled in the BIOS setup. The default behavior is disabled.

Note: If the setup options are changed to enable or disable the Virtualization Technology setting in the processor, the user must perform an AC power cycle for the changes to take effect.

The Intel® 5520 Chipset IOH supports DMA remapping from inbound PCI Express* memory Guest Physical Address (GPA) to Host Physical Address (HPA). PCI devices are directly assigned to a virtual machine leading to a robust and efficient virtualization.

4. Connector / Header Locations and Pin-outs

4.1 Board Connector Information

The following section provides detailed information regarding all connectors, headers, and jumpers on the compute module. The following table lists all connector types available on the board and the corresponding reference designators printed on the silkscreen.

Reference Designators Connector Quantity Power Connector J1K1 Midplane Signal Connector J1H1 1 CPU 2 CPU1(U2D2), CPU2(U7C1) Main Memory 12 J4A1,JFA2,J4B1,J4B2,J4B3,J4C1, J5E1,J5E2,J5E3,J5F2,J5F3,J5F4 2 I/O Mezzanine J3K1,J1J1 Battery 1 BT9H1 USB 2 J9F1, J9G1 Serial Port A 1 J9J1 Video connector 1 J9E1 Mini USB connector J9B7

Table 5. Board Connector Matrix

4.2 Power Connectors

The power connection is obtained using a 2x2 FCI Airmax* power connector. The following table defines the power connector pin-out.

Table 6. Power Connector Pin-out (J1A1)

Position	Signal
1	+12 Vdc
2	GND
3	GND
4	+12 Vdc

4.3 I/O Connector Pin-out Definition

4.3.1 VGA Connector

The following table details the pin-out definition of the VGA connector (J6K1).

Table 7. VGA Connector Pin-out (J6A1)

Pin	Signal Name	Description
1	V_IO_R_CONN	Red (analog color signal R)
2	V_IO_G_CONN	Green (analog color signal G)
3	V_IO_B_CONN	Blue (analog color signal B)
4	TP_VID_CONN_B4	No connection
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	P5V_VID_CONN_9	P5V
10	GND	Ground
11	TP_VID_CONN_B11	No connection
12	V_IO_DDCDAT	DDCDAT
13	V_IO_HSYNC_CONN	HSYNC (horizontal sync)
14	V_IO_VSYNC_CONN	VSYNC (vertical sync)
15	V_IO_DDCCLK	DDCCLK

4.3.2 I/O Mezzanine Card Connector

The compute module provides an internal 120-pin Tyco dual-row receptacle (J3K1) and a Tyco 40-pin dual-row receptacle (J1J1) to accommodate high-speed I/O expansion modules, which expands the I/O capabilities of the compute module. The following table details the pin-out of the Intel[®] I/O expansion module connector.

Table 8. 120-pin I/O Mezzanine Card Connector Pin-out

Signal Name	Pin	Signal Name	Pin
P5V	1	P5V	2
GND	3	GND	4
P3V3	5	P3V3	6
P3V3	7	P3V3	8
P3V3	9	P3V3	10
GND	11	GND	12
P3V3AUX	13	P3V3AUX	14
P3V3AUX	15	P3V3AUX	16
SMB_SDA	17	SMB_SCL	18
HSC0_LNK_LED	19	HSC0_ACT_LED	20
HSC1_LNK_LED	21	HSC1_ACT_LED	22
HSC2_LNK_LED	23	HSC2_ACT_LED	24
HSC3_LNK_LED	25	HSC3_ACT_LED	26
GND	27	WAKE_N	28
Rsvd	29	GND	30
Rsvd	31	GND	32
GND	33	PCle_0_A_TXP	34
GND	35	PCIe_0_A_TXN	36
PCIe_0_A_RXP	37	GND	38
PCIe_0_A_RXN	39	GND	40
GND	41	PCle_0_B_TXP	42
GND	43	PCle_0_B_TXN	44
PCIe_0_B_RXP	45	GND	46
PCIe_0_B_RXN	47	GND	48
GND	49	PCle_0_C_TXP	50
GND	51	PCle_0_C_TXN	52
PCIe_0_C_RXP	53	GND	54
PCIe_0_C_RXN	55	GND	56
GND	57	PCle_0_D_TXP	58
GND	59	PCle_0_D_TXN	60
PCle_0_D_RXP	61	GND	62
PCIe_0_D_RXN	63	GND	64
GND	65	PCle_1_A_TXP	66
GND	67	PCIe_1_A_TXN	68
PCIe_1_A_RXP	69	GND	70
PCIe_1_A_RXN	71	GND	72
GND	73	PCle_1_B_TXP	74
GND	75	PCle_1_B_TXN	76
PCIe_1_B_RXP	77	GND	78
PCIe_1_B_RXN	79	GND	80
GND	81	PCle_1_C_TXP	82
GND	83	PCle_1_C_TXN	84
PCle_1_C_RXP	85	GND	86
PCIe_1_C_RXN	87	GND	88

Signal Name	Pin	Signal Name	Pin
GND	89	PCle_1_D_TXP	90
GND	91	PCle_1_D_TXN	92
PCle_1_D_RXP	93	GND	94
PCIe_1_D_RXN	95	GND	96
GND	97	Mezz_Present	98
GND	99	Reset_N	100
Clk0_100M_PCIE_P	101	GND	102
Clk0_100M_PCIE_N	103	GND	104
GND	105	Rsvd	106
GND	107	Rsvd	108
Rsvd	109	GND	110
Rsvd	111	Rsvd	112
Rsvd	113	Rsvd	114
P12V	115	P12V	116
P12V	117	P12V	118
P12V	119	P12V	120

Table 9. 120-pin I/O Mezzanine Card Connector Signal Definitions

Signal Name	Signal Description	Purpose	Connector Location
PCIe_0_A_TXP	PCle TX+ of Lane A Link 0	Host connect	34
PCIe_0_A_TXN	PCIe TX- of Lane A Link 0	Host connect	36
PCle_0_A_RXP	PCIe RX+ of Lane A Link 0	Host connect	37
PCIe_0_A_RXN	PCIe RX- of Lane A Link 0	Host connect	39
PCIe_0_B_TXP	PCle TX+ of Lane B Link 0	Host connect	42
PCIe_0_B_TXN	PCIe TX- of Lane B Link 0	Host connect	44
PCIe_0_B_RXP	PCIe RX+ of Lane B Link 0	Host connect	45
PCIe_0_B_RXN	PCle RX- of Lane B Link 0	Host connect	47
PCIe_0_C_TXP	PCle TX+ of Lane C Link 0	Host connect	50
PCIe_0_C_TXN	PCle TX- of Lane C Link 0	Host connect	52
PCIe_0_C_RXP	PCIe RX+ of Lane C Link 0	Host connect	53
PCIe_0_C_RXN	PCle RX- of Lane C Link 0	Host connect	55
PCIe_0_D_TXP	PCIe TX+ of Lane D Link 0	Host connect	58
PCIe_0_D_TXN	PCIe TX- of Lane D Link 0	Host connect	60
PCIe_0_D_RXP	PCIe RX+ of Lane D Link 0	Host connect	61
PCIe_0_D_RXN	PCle RX- of Lane D Link 0	Host connect	63
PCIe_1_A_TXP	PCle TX+ of Lane A Link 1	Host connect	66
PCIe_1_A_TXN	PCIe TX- of Lane A Link 1	Host connect	68
PCIe_1_A_RXP	PCle RX+ of Lane A Link 1	Host connect	69
PCIe_1_A_RXN	PCle RX- of Lane A Link 1	Host connect	71
PCIe_1_B_TXP	PCle TX+ of Lane B Link 1	Host connect	74
PCle_1_B_TXN	PCIe TX- of Lane B Link 1	Host connect	76
PCle_1_B_RXP	PCIe RX+ of Lane B Link 1	Host connect	78
PCle_1_B_RXN	PCIe RX- of Lane B Link 1	Host connect	79
PCIe_1_C_TXP	PCle TX+ of Lane C Link 1	Host connect	82

Signal Name	Signal Description	Purpose	Connector Location
PCIe_1_C_TXN	PCle TX- of Lane C Link 1	Host connect	84
PCIe_1_C_RXP	PCle RX+ of Lane C Link 1	Host connect	85
PCIe_1_C_RXN	PCIe RX- of Lane C Link 1	Host connect	87
PCIe_1_D_TXP	PCIe TX+ of Lane D Link 1	Host connect	90
PCIe_1_D_TXN	PCIe TX- of Lane D Link 1	Host connect	92
PCIe_1_D_RXP	PCIe RX+ of Lane D Link 1	Host connect	93
PCIe_1_D_RXN	PCle RX- of Lane D Link 1	Host connect	95
Clk0_100M_PCle_P	100MHz clk +	PCIe CIk	101
Clk0_100M_PCle_N	100MHz clk -	PCIe CIk	103
SMB_SCL	SMBus Clock	Mngt connect	18
SMB_SDA	SMBus Data	Mngt connect	17
HSC_0_LNK_LED	HSC 0 Link LED driver	LED control	19
HSC_1_LNK_LED	HSC 1 Link LED driver	LED control	21
HSC_2_LNK_LED	HSC 2 Link LED driver	LED control	23
HSC_3_LNK_LED	HSC 3 Link LED driver	LED control	25
HSC_0_ACT_LED	HSC 0 Activity LED driver	LED control	20
HSC_1_ACT_LED	HSC 1 Activity LED driver	LED control	22
HSC_2_ACT_LED	HSC 2 Activity LED driver	LED control	24
HSC_3_ACT_LED	HSC 3 Activity LED driver	LED control	26
WAKE_N	PCIe WAKE_N signal	Wake on LAN	28
Reset_N	Reset signal (Active Low)	Mezz Reset	100
Mezz_PRES_N	Mezzanine Present signal (active Low)	Present indication	98
P12V	12V power	Power	
			115, 116, 117, 118, 119, 120
P3V3	3.3V Power	power	5, 6, 7, 8, 9, 10
P5V	5V power	power	1, 2
P3V3AUX	Auxiliary power	Aux power	13, 14, 15, 16
Rsvd	Reserved pins	Future use	
			29, 31, 106, 108, 109, 111, 112, 113, 114
GND	Ground		3, 4, 11, 12, 27, 30, 32, 33, 35, 38, 40, 41, 43, 46, 48, 49, 51, 54, 56, 57,59, 62, 64, 65, 67, 70, 72, 73, 75, 78, 80, 81, 83, 86, 88, 89, 91, 94, 96, 97, 99, 102, 104, 105, 107, 110

Revision 1.2 27

XE_D1_RXP
XE D1 RXN

XE_D2_RXP

XE D2 RXN

RMII IBMC IOMEZZ

RMII IBMC IOMEZZ

GND

GND

GND

RXD1

RXD0

Signal Name Connector Location Signal Name Connector Location **GND** 2 RMII IBMC IOMEZZ XE B1 TXP 3 4 _CRS_DV GND 5 XE B1 TXN 6 GND 8 XE_B1_RXP 7 9 GND 10 XE B1 RXN 12 GND 11 XE B2 TXP GND 13 XE B2 TXN 14 XE_B2_RXP 15 GND 16 GND XE B2 RXN 17 18 GND 19 XE D2 TXP 20 **GND** 21 XE D2 TXN 22

GND

GND

GND

XE D1 TXP

XE D1 TXN

ZZ TX EN

ZZ_TXD1

ZZ TXD0

RMII_IBMC_IOME

RMII IBMC IOME

RMII IBMC_IOME

CLK IOMEZZ RMI

24

26

28

30

32

34

36

38

40

Table 10. 40-pin I/O Mezzanine Card Connector Pin-out

4.3.3 Midplane Signal Connector

23

25

27

29

31

33

35

37

39

The compute module connects to the midplane through a 96-pin Airmax* connector (J1H1) (power is J1K1) to connect the various I/O, management, and control signals of the system.

Pin Pin Signal Name Pin Signal Name Signal Name XE P1 A RXP E1 XE P2 D RXN **GND** Α1 11 XE_P2_D_TXP A2 GND E2 12 SAS_P1_TXN XE P1 B RXP E3 GND A3 SMB SDA B 13 GND E4 FM BL X SP 14 XE_P2_C_TXN A4 XE P2 B RXN A5 XE P1 C RXP E5 15 **GND** A6 GND E6 XE P2 B TXP 16 SAS_P2_TXN GND Α7 XE P1 D RXP E7 XE P2 A RXN 17 GND XE_P2_A_TXP A8 E8 18 Fm bl slot id5 B1 XE P1 A RXN F1 GND J1 SMB SCL A XE_P2_D_TXN B2 XE_P1_A_TXP F2 J2 GND В3 XE P1 B RXN F3 GND J3 FM BL SLOT ID2

Table 11. 96-pin Midplane Signal Connector Pin-out

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
B4	XE_P1_B_TXP	F4	12V (BL_PWR_ON)	J4	GND
B5	XE_P1_C_RXN	F5	GND	J5	reserved
B6	XE_P1_C_TXP	F6	XE_P2_B_TXN	J6	GND
B7	XE_P1_D_RXN	F7	GND	J7	reserved
B8	XE_P1_D_TXP	F8	XE_P2_A_TXN	J8	GND
C1	GND	G1	SAS_P1_RXP	K1	SMB_SDA_A
C2	XE_P1_A_TXN	G2	GND	K2	FM_BL_SLOT_ID0
C3	GND	G3	XE_P2_C_RXP	K3	FM_BL_SLOT_ID3
C4	XE_P1_B_TXN	G4	GND	K4	FM_BL_SLOT_ID4
C5	GND	G5	SAS_P2_RXP	K5	reserved
C6	XE_P1_C_TXN	G6	GND	K6	reserved
C7	GND	G7	spare	K7	reserved
C8	XE_P1_D_TXN	G8	GND	K8	reserved
D1	XE_P2_D_RXP	H1	SAS_P1_RXN	L1	GND
D2	GND	H2	SAS_P1_TXP	L2	FM_BL_SLOT_ID1
D3	SMB_SCL_B	Н3	XE_P2_C_RXN	L3	GND
D4	GND	H4	XE_P2_C_TXP	L4	FM_BL_PRES_N
D5	XE_P2_B_RXP	H5	SAS_P2_RXN	L5	GND
D6	GND	H6	SAS_P2_TXP	L6	reserved
D7	XE_P2_A_RXP	H7	spare	L7	GND
D8	GND	Н8	spare	L8	reserved

4.3.4 Serial Port Connector

The compute module provides one internal 9-pin Serial port header (J9J1). The following table defines the pin-out.

Table 12. Internal 9-pin Serial Header Pin-out (J9J1)

Pin	Signal Name	Description
1	SPA_DCD	DCD (carrier detect)
2	SPA_DSR	DSR (data set ready)
3	SPA_SIN_L	RXD (receive data)
4	SPA_RTS	RTS (request to send)
5	SPA_SOUT_N	TXD (transmit data)
6	SPA_CTS	CTS (clear to send)
7	SPA_DTR	DTR (data terminal ready)
8	SPA_RI	RI (ring Indicate)
9	GND	Ground

4.3.5 USB 2.0 Connectors

The following table details the pin-out of the external USB connectors (J4K1, J4K2) found on the front edge of the compute module.

Table 13. External USB Connector Pin-out

Pin	Signal Name	Description
1	+5V	USB_PWR
2	USB_N	Differential data line paired with DATAH0
3	USB_P	(Differential data line paired with DATAL0
4	GND	Ground

One low-profile 2x5 connector (J9B7) on the compute module provides an option to support low-profile Intel® Z-U130 Value Solid State Drive. The pin-out of the connector is detailed in the following table.

Table 14. Pin-out of Internal USB Connector for low-profile Solid State Drive (J9B7)

Pin	Signal Name	Pin	Signal Name
1	+5V	2	NC
3	USB_N	4	NC
5	USB_P	6	NC
7	GND	8	NC
9	Key Pin	10	LED#

Intel order number: E64311-004

5. Jumper Block Settings

The server board has several 3-pin jumper blocks that can be used to configure, protect, or recover specific features of the server board. Pin 1 on each jumper block is denoted by an "*" or "▼"

5.1 Recovery Jumper Blocks

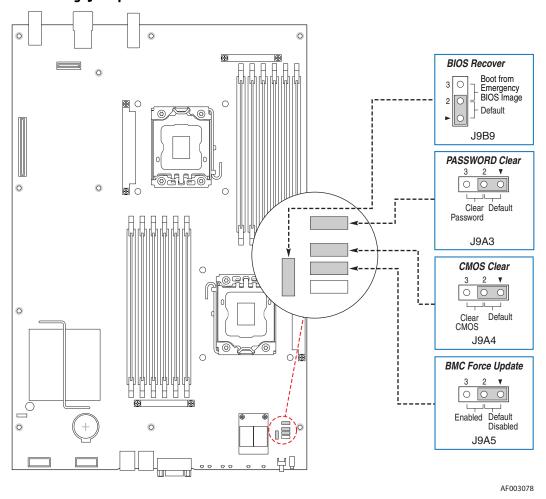


Figure 9. Recovery Jumper Blocks

Table 15. Recovery Jumpers

Jumper Name	Pins	What happens at system reset		
J9A5: BMC Force	1-2	BMC Firmware Force Update Mode – Disabled (Default)		
Update	2-3	BMC Firmware Force Update Mode – Enabled		
J9A3: Password	1-2	These pins should have a jumper in place for normal operation. (Default)		
Clear	2-3	If these pins are jumpered, the administrator and user passwords are cleared immediately. These pins should not be jumpered for normal operation.		
J9A4: CMOS Clear 1-2 These		hese pins should have a jumper in place for normal operation. (Default)		
	2-3	If these pins are jumpered, the CMOS settings are cleared on the next boot. These pins should not be jumpered for normal operation		
J9B9: BIOS	1-2	These pins should have a jumper in place for normal operation. (Default)		
Recover	2-3	If these pins are jumpered, the compute module boots from the emergency BIOS image. These pins should not be jumpered for normal operation.		

5.1.1 CMOS Clear and Password Clear Usage Procedure

The CMOS Clear (J9A4) and Password Clear (J9A3) recovery features are designed such that the desired operation can be achieved with minimal system downtime. The usage procedure for these two features has changed from previous generation Intel® server boards. The following procedure outlines the new usage model.

- 1. Power down the compute module.
- 2. Remove the compute module from the modular server chassis.
- 3. Open the compute module.
- 4. Move jumper from the default operating position (pins 1-2) to the Clear position (pins 2-3).
- 5. Wait 5 seconds.
- 6. Move jumper back to the default position (pins 1-2).
- 7. Close the compute module.
- 8. Reinstall the compute module in the modular server chassis.
- 9. Power up the compute module.

Password and/or CMOS are now cleared and can be reset by going into the BIOS setup.

5.1.2 Integrated BMC Force Update Procedure

When performing a standard Integrated BMC firmware update procedure, the update utility places the Integrated BMC into an update mode, allowing the firmware to load safely onto the flash device. In the unlikely event that the Integrated BMC firmware update process fails due to the Integrated BMC not being in the proper update state, the server board provides a BMC Force Update jumper (J9A5), which will force the Integrated BMC into the proper update state. The following procedure should be followed in the event the standard Integrated BMC firmware update process fails.

- 1. Power down the compute module.
- 2. Remove the compute module from the modular server chassis.
- 3. Open the compute module.

- 4. Move jumper from the default operating position (pins 1-2) to the "Enabled" position (pins 2-3)
- 5. Close the compute module.
- 6. Reinstall and power up the compute module.
- 7. Perform Integrated BMC firmware update procedure.
- 8. Power down the compute module.
- 9. Remove the compute module from the server system.
- 10. Move jumper from the "Enabled" position (pins 2-3) to the "Disabled" position (pins 1-2).
- 11. Close the compute module.
- 12. Reinstall the compute module into the modular server chassis.
- 13. Power up the compute module.

Note: Normal Integrated BMC functionality (for example, KVM, monitoring, and remote media) is disabled with the force BMC update jumper set to the "Enabled" position. The server should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default – disabled position when the server is running normally.

5.1.3 Integrated BMC Initialization

When the DC power is first applied to the compute module by installing it into a chassis, 5V-STBY is present, the Integrated BMC on the compute module requires 15-30 seconds to initialize. During this time, the power button functionality of the control panel is disabled, preventing the compute module from powering up.

Revision 1.2 33

6. Product Regulatory Requirements

6.1 Product Regulatory Requirements

The Intel® Compute Module MFS5520VI is evaluated as part of the Intel® Modular Server System MFSYS25/MFSYS35, which requires meeting all applicable system component regulatory requirements. Refer to the *Intel® Modular Server System MFSYS25/MFSYS35 Technical Product Specification* for a complete listing of all system and component regulatory requirements.

6.2 Product Regulatory Compliance and Safety Markings

No markings are required on the Intel® Compute Module MFS5520VI itself as it is evaluated as part of the Intel® Modular Server System MFSYS25/MFSYS35.

6.3 Product Environmental/Ecology Requirements

The Intel® Compute Module MFS5520VI is evaluated as part of the Intel® Modular Server System MFSYS25/MFSYS35, which requires meeting all applicable system component environmental and ecology requirements. For a complete listing of all system and component environment and ecology requirements and markings, refer to the *Intel® Modular Server System MFSYS25/MFSYS35 Technical Product Specification*.

6.4 Product Environmental/Ecology Markings

The following Product Ecology markings are required on the Intel® Compute Module MFS5200VI:

Requirement	Country	Marking
China Restriction of Hazardous Substance Environmental Friendly Use Period Mark	China	(3)

Appendix A: Integration and Usage Tips

- When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. Mixed processor steppings are supported as long as they are listed in the processor specification updates published by Intel Corporation. However, the stepping of one processor cannot be greater than one stepping back of the other.
- Only Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series with 95 W and less Thermal Design Power (TDP) are supported on this compute module. Previous generations of the Intel® Xeon® processors are not supported. Intel® Xeon® Processor 5500 series and Intel® Xeon® Processor 5600 series with TDP higher than 95 W are also not supported.
- Processors must be installed in order. CPU 1 is located near the edge of the compute module and must be populated to operate the board.
- Only registered DDR3 DIMMs (RDIMMs) and unbuffered DDR3 DIMMs (UDIMMs) are supported on this compute module. Mixing of RDIMMs and UDIMMs is not supported.
- Mixing memory type, size, speed, rank and/or memory vendors is not validated and is not supported on this server board.
- Non-ECC memory is not validated and is not supported in a server environment
- For the best performance, the number of DDR3 DIMMs installed should be balanced across both processor sockets and memory channels. For example, a two-DIMM configuration performs better than a one-DIMM configuration. In a two-DIMM configuration, DIMMs should be installed in DIMM sockets A1 and D1. A six-DIMM configuration (DIMM sockets A1, B1, C1, D1, E1, and F1) performs better than a three-DIMM configuration (DIMM sockets A1, B1, and C1).
- For a list of Intel supported operating systems, add-in cards, and peripherals for this server board, see the Intel® Modular Server System MFSYS25/MFSYS35 and Intel® Compute Module MFS5000SI/MFS5520VI Tested Hardware and Operating System List.
- Normal Integrated BMC functionality (for example, KVM, monitoring, and remote media) is disabled with the force BMC update jumper set to the "enabled" position (pins 2-3). The compute module should never be run with the BMC force update jumper set in this position and should only be used when the standard firmware update process fails. This jumper should remain in the default (disabled) position (pins 1-2) when the compute module is running normally.
- When performing the BIOS update procedure, the BIOS select jumper must be set to its default position (pins 1-2).

Revision 1.2 35

Appendix B: Integrated BMC Sensor Tables

This appendix lists the sensor identification numbers and information regarding the sensor type, name, supported thresholds, and a brief description of the sensor purpose. See the *Intelligent Platform Management Interface Specification, Version 2.0*, for sensor and event / reading-type table information.

Sensor Type

The Sensor Type references the values enumerated in the *Sensor Type Codes* table in the *IPMI Specification*. It provides the context in which to interpret the sensor, such as the physical entity or characteristic that is represented by this sensor.

Event / Reading Type

The Event / Reading Type references values from the Event / Reading Type Code Ranges and Generic Event / Reading Type Codes tables in the IPMI Specification. Note that digital sensors are specific type of discrete sensors, which have only two states.

Event Offset Triggers

This column defines what event offsets the sensor generates.

For Threshold (analog reading) type sensors, the Integrated BMC can generate events for the following thresholds:

- Upper Critical
- Upper Non-critical
- Lower Non-critical
- Lower Critical

The abbreviation [U,L] is used to indicate that both Upper and Lower thresholds are supported. A few sensors support only a subset of the standard four threshold triggers. Note that even if a sensor does support all thresholds, the SDRs may not contain values for some thresholds.

For Digital and Discrete type sensor event triggers, the supported event generating offsets are listed. The offsets can be found in the *Generic Event / Reading Type Codes* or *Sensor Type Codes* tables in the *IPMI Specification*, depending on whether the sensor event / reading type is a generic or sensor-specific response.

All sensors generate both assertions and deassertions of the defined event triggers. The assertions and deassertions may or may not generate events into the System Event Log (SEL), depending on the sensor SDR settings.

Fault LED

This column indicates whether an assertion of an event lights the front panel fault LED. The Integrated BMC aggregates all fault sources (including outside sources such as the BIOS) such that the LED will be lit as long as any source indicates that a fault state exists. The Integrated BMC extinguishes the fault LED when all sources indicate no faults are present.

Sensor Rearm

The rearm is a request for the event status for a sensor to be rechecked and updated upon a transition between good and bad states. Rearming the sensors can be done manually or automatically. The following abbreviations are used in the column:

'A': Auto rearm'M': Manual rearm

Readable

Some sensors are used simply to generate events into the System Event Log. The Watchdog timer sensor is one example. These sensors operate by asserting and then immediately deasserting an event. Typically the SDRs for such sensors are defined such that only the assertion causes an event message to be deposited in the SEL. Reading such a sensor produces no useful information and is marked as 'No' in this column. Note that some sensors <u>may</u> actually be unreadable in that they return an error code in response to the IPMI *Get Sensor Reading* command. These sensors are represented by type 3 SDR records.

Standby

Some sensors operate on standby power. These sensors may be accessed and / or generate events when the compute module payload power is off, but standby power is present.

Contrib. To Sensor Name Sensor# Sensor Type Event / **Event Offset** Rearm Stand-Reading Type Triggers System by Status 00 - Power down 04 - A/C lost Sensor Power Unit 05 - Soft power Specific **Power Unit Status** 01h OK Α Х 09h control failure 6Fh 06 - Power unit failure 00 - Timer Sensor Watchdog 2 Watchdog 03h OK Specific expired, status Α Х 23h only 6Fh 01 - Hard reset 02 - Power down

Table 16. MFS5520VI Sensors

Sensor Name	Sensor #	Sensor Type	Event / Reading Type	Event Offset Triggers	Contrib. To System Status	Rearm	Stand- by
				03 - Power cycle			
				08 - Timer interrupt			
Physical Security	04h	Physical Security 05h	Sensor Specific 6Fh	04 - LAN leash lost	Degraded	А	Х
SMI Timeout	06h	SMI Timeout	Digital Discrete	00 – State deasserted	OK	Α	_
OWI TIMEOUT	OON	F3h	03h	01 – State asserted	Fatal	, , ,	
System Event Log	07h	Event Logging Disabled 10h	Sensor Specific 6Fh	02 - Log area reset / cleared	ОК	А	х
System Event	08h	System Event 12h	Sensor Specific 6Fh	01 - OEM System Boot Event	ОК	А	_
BB +1.1V IOH	10h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	A	_
BB +1.1V P1 Vccp	11h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	_
BB +1.1V P2 Vccp	12h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	_
BB +1.5V P1 DDR3	13h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	_
BB +1.5V P2 DDR3	14h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	-
BB +1.8V AUX	15h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	Х
BB +3.3V	16h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	_
BB +3.3V STBY	17h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	Х
BB Vbat	18h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	_

Sensor Name	Sensor #	Sensor Type	Event / Reading Type	Event Offset Triggers	Contrib. To System Status	Rearm	Stand- by
BB +5.0V	19h	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	Α	_
BB +5.0V STBY	1Ah	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	Х
BB +12.0V	1Bh	Voltage 02h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	-
Baseboard Temp	20h	Temperature 01h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	Х
IOH Thermal Margin	22h	Temperature 01h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	Х
MEM P1 Thermal Margin	23h	Temperature 01h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	
MEM P2 Thermal Margin	24h	Temperature 01h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	А	
DIMM Max temp	2Fh	Temperature 01h	Threshold 01h	[u,l] [c,nc]	nc = Degraded c = Non-fatal	Α	-
P1 Status	60h	Processor 07h	Sensor Specific 6Fh	01 - Thermal trip 07 - Presence	- Fatal	М	Х
P2 Status	61h	Processor 07h	Sensor Specific 6Fh	01 - Thermal trip 07 - Presence	- Fatal	М	Х
P1 Thermal Margin	62h	Temperature 01h	Threshold 01h	_	_	_	_
P2 Thermal Margin	63h	Temperature 01h	Threshold 01h	_	_	_	_
P1 Therm Ctrl %	64h	Temperature 01h	Threshold 01h	[u] [c]	Non-fatal	Α	-
P2 Therm Ctrl %	65h	Temperature 01h	Threshold 01h	[u] [c]	Non-fatal	Α	-
P1 VRD Temp	66h	Temperature 01h	Digital Discrete 05h	01 - Limit exceeded	Fatal	M	_
P2 VRD Temp	67h	Temperature 01h	Digital Discrete 05h	01 - Limit exceeded	Fatal	М	_

Sensor Name	Sensor #	Sensor Type	Event / Reading Type	Event Offset Triggers	Contrib. To System Status	Rearm	Stand- by
CATERR	68h	Processor 07h	Digital Discrete 03h	01 – State Asserted	Non-fatal	М	-
CPU Missing	69h	Processor 07h	Digital Discrete 03h	01 – State Asserted	Non-fatal	М	-
IOH Thermal Trip	6Ah	Temperature 01h	Digital Discrete 03h	01 – State Asserted	Fatal	М	-
				1: Inactive	None		
				2: Activation Required	None		
Hot Swap	70h	FRU State	Sensor Specific	3: Activation In Progress	None	A	X
пот Swap	7011	2Ch	6Fh	4: Active	None	A	^
			0111	5: Deactivation Required	None		
				6: Deactivation In Progress	None		
				0: Pending	None		
				1: Established	None		
				2: Ended Normally	None		
KVM Session	71h	OEM C0h	OEM 70h	3: Ticket Expiration	None	A	x
				4: Lost heartbeat	None		
				5: Forcibly Terminated	None		
				6: Unknown Ticket	None		
SOL Session	72h	OEM	OEM	0: SOL Session Inactive	None	A	
332 3333.511		C0h	73h	1: SOL Session Active	None		
Proc Max Therm	9Fh	Temperature 01h	Threshold 01h	None	Ok	Α	_
Mezz Card Present	C0h	Slot/Conn. 21h	Sensor Specific 6Fh	2: Device installed	None	А	_
Attention State	C1h	OEM	OEM	0: ID LED Lit	None	Α	Х
	1	I	l	l	1	1	l

Sensor Name	Sensor #	Sensor Type	Event / Reading Type	Event Offset Triggers	Contrib. To System Status	Rearm	Stand- by
		D0h	71h	1: Status LED Active (fault)			
HDD BP Present	C2h	Drive Slot	Digital Discrete	0: Device Absent	None	A	?
TIDD DI TICSCII	OZII	0Dh	08h	1: Device Present	None		:
Drive 1,2	C3h, C4h	Drive Slot 0Dh	Sensor Specific 6Fh		None	А	?
Slot ID	C5h	OEM D1h	Threshold 01h	None	None	А	х
BMC Reset	E1h	OEM ??	OEM ??				
[MDR]	E2h	OEM ??	OEM ??				
				7: Process Started			
Progress	FEh	OEM D2h	OEM 72h	8: Process Finished OK	None	А	Х
				9: Process Finished Fail			

Appendix C: POST Error Messages and Handling

Whenever possible, the BIOS outputs the current boot progress codes on the video screen. Progress codes are 32-bit quantities plus optional data. The 32-bit numbers include class, subclass, and operation information. The class and subclass fields point to the type of hardware that is being initialized. The operation field represents the specific initialization activity. Based on the data bit availability to display progress codes, a progress code can be customized to fit the data width. The higher the data bit, the higher the granularity of information that can be sent on the progress port. The progress codes may be reported by the system BIOS or option ROMs.

The Response section in the following table is divided into two types:

- **Minor:** The message is displayed on the screen or in the Error Manager screen. The system will continue booting with a degraded state. The user may want to replace the erroneous unit. The setup POST error Pause setting does not have any effect with this error.
- Major: The message is displayed on the Error Manager screen and an error is logged to the SEL. The setup POST error Pause setting determines whether the system pauses to the Error Manager for this type of error, where the user can take immediate corrective action or choose to continue booting.
- Fatal: The message is displayed on the Error Manager screen, an error is logged to the SEL, and the system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system. The setup POST error Pause setting does not have any effect with this error.

Table 17. POST Error Messages and Handling Ceros Codo Error Moccogo

Error Code	Error Message	Response
0012	CMOS date / time not set	Major
0048	Password check failed	Major
0108	Keyboard component encountered a locked error.	Minor
0109	Keyboard component encountered a stuck key error.	Minor
0113	Fixed Media. The SAS RAID firmware cannot run properly. The user should attempt to reflash the firmware.	Major
0140	PCI component encountered a PERR error.	Major
0141	PCI resource conflict	Major
0146	PCI out of resources error	Major
0192	Processor 0x cache size mismatch detected.	Fatal
0193	Processor 0x stepping mismatch.	Minor
0194	Processor 0x family mismatch detected.	Fatal
0195	Processor 0x Intel(R) QPI speed mismatch.	Major
0196	Processor 0x model mismatch.	Fatal
0197	Processor 0x speeds mismatched.	Fatal
0198	Processor 0x family is not supported.	Fatal
019F	Processor and chipset stepping configuration is unsupported.	Major
5220	CMOS/NVRAM Configuration Cleared	Major
5221	Passwords cleared by jumper	Major
5224	Password clear Jumper is Set.	Major

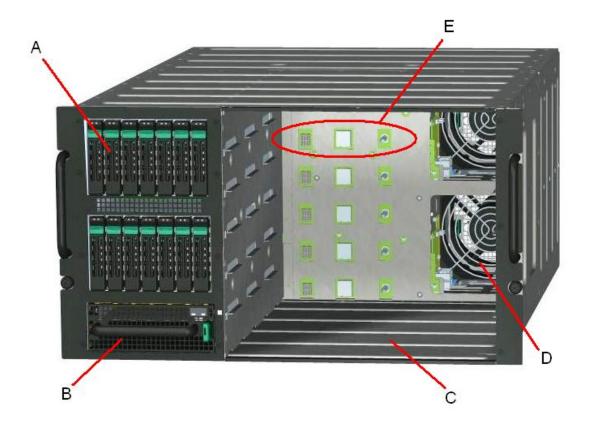
Error Code	Error Message	Response
8160	Processor 01 unable to apply microcode update	Major
8161	Processor 02 unable to apply microcode update	Major
8180	Processor 0x microcode update not found.	Minor
8190	Watchdog timer failed on last boot	Major
8198	OS boot watchdog timer failure.	Major
8300	Baseboard management controller failed self-test	Major
84F2	Baseboard management controller failed to respond	Major
84F3	Baseboard management controller in update mode	Major
84F4	Sensor data record empty	Major
84FF	System event log full	Minor
8500	Memory component could not be configured in the selected RAS mode.	Major
8520	DIMM_A1 failed Self Test (BIST).	Major
8521	DIMM_A2 failed Self Test (BIST).	Major
8522	DIMM_B1 failed Self Test (BIST).	Major
8523	DIMM_B2 failed Self Test (BIST).	Major
8524	DIMM_C1 failed Self Test (BIST).	Major
8525	DIMM_C2 failed Self Test (BIST).	Major
8526	DIMM_D1 failed Self Test (BIST).	Major
8527	DIMM_D2 failed Self Test (BIST).	Major
8528	DIMM E1 failed Self Test (BIST).	Major
8529	DIMM_E2 failed Self Test (BIST).	Major
852A	DIMM_F1 failed Self Test (BIST).	Major
852B	DIMM_F2 failed Self Test (BIST).	Major
8540	DIMM A1 Disabled.	Major
8541	DIMM A2 Disabled.	Major
8542	DIMM_B1 Disabled.	Major
8543	DIMM B2 Disabled.	Major
8544	DIMM_C1 Disabled.	Major
8545	DIMM C2 Disabled.	Major
8546	DIMM_D1 Disabled.	Major
8547	DIMM_D2 Disabled.	Major
8548	DIMM E1 Disabled.	Major
8549	DIMM E2 Disabled.	Major
854A	DIMM_F1 Disabled.	Major
854B	DIMM F2 Disabled.	Major
8560	DIMM_A1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8561	DIMM_A2 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8562	DIMM B1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8563	DIMM_B2 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8564	DIMM_C1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8565	DIMM_C2 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8566	DIMM_D1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8567	DIMM_D2 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8568	DIMM_E1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
8569	DIMM_E2 Component encountered a Serial Presence Detection (SPD) fail error.	Major

Error Code	Error Message	Response
856A	DIMM_F1 Component encountered a Serial Presence Detection (SPD) fail error.	Major
856B	DIMM_F2 Component encountered a Serial Presence Detection (SPD) fail error.	Major
85A0	DIMM_A1 Uncorrectable ECC error encountered.	Major
85A1	DIMM_A2 Uncorrectable ECC error encountered.	Major
85A2	DIMM_B1 Uncorrectable ECC error encountered.	Major
85A3	DIMM_B2 Uncorrectable ECC error encountered.	Major
85A4	DIMM_C1 Uncorrectable ECC error encountered.	Major
85A5	DIMM_C2 Uncorrectable ECC error encountered.	Major
85A6	DIMM_D1 Uncorrectable ECC error encountered.	Major
85A7	DIMM_D2 Uncorrectable ECC error encountered.	Major
85A8	DIMM_E1 Uncorrectable ECC error encountered.	Major
85A9	DIMM_E2 Uncorrectable ECC error encountered.	Major
85AA	DIMM_F1 Uncorrectable ECC error encountered.	Major
85AB	DIMM_F2 Uncorrectable ECC error encountered.	Major
8604	Chipset Reclaim of non critical variables complete.	Minor
9000	Unspecified processor component has encountered a non specific error.	Major
9223	Keyboard component was not detected.	Minor
9226	Keyboard component encountered a controller error.	Minor
9243	Mouse component was not detected.	Minor
9246	Mouse component encountered a controller error.	Minor
9266	Local Console component encountered a controller error.	Minor
9268	Local Console component encountered an output error.	Minor
9269	Local Console component encountered a resource conflict error.	Minor
9286	Remote Console component encountered a controller error.	Minor
9287	Remote Console component encountered an input error.	Minor
9288	Remote Console component encountered an output error.	Minor
92A3	Serial port component was not detected	Major
92A9	Serial port component encountered a resource conflict error	Major
92C6	Serial Port controller error	Minor
92C7	Serial Port component encountered an input error.	Minor
92C8	Serial Port component encountered an output error.	Minor
94C6	LPC component encountered a controller error.	Minor
94C9	LPC component encountered a resource conflict error.	Major
9506	ATA/ATPI component encountered a controller error.	Minor
95A6	PCI component encountered a controller error.	Minor
95A7	PCI component encountered a read error.	Minor
95A8	PCI component encountered a write error.	Minor
9609	Unspecified software component encountered a start error.	Minor
9641	PEI Core component encountered a load error.	Minor
9667	PEI module component encountered an illegal software state error.	Fatal
9687	DXE core component encountered an illegal software state error.	Fatal
96A7	DXE boot services driver component encountered an illegal software state error.	Fatal
96AB	DXE boot services driver component encountered invalid configuration.	Minor
96E7	SMM driver component encountered an illegal software state error.	Fatal
0xA000	TPM device not detected.	Minor

Error Code	Error Message	Response
0xA001	TPM device missing or not responding.	Minor
0xA002	TPM device failure.	Minor
0xA003	TPM device failed self test.	Minor
0xA022	Processor component encountered a mismatch error.	Major
0xA027	Processor component encountered a low voltage error.	Minor
0xA028	Processor component encountered a high voltage error.	Minor
0xA421	PCI component encountered a SERR error.	Fatal
0xA500	ATA/ATPI ATA bus SMART not supported.	Minor
0xA501	ATA/ATPI ATA SMART is disabled.	Minor
0xA5A0	PCI Express component encountered a PERR error.	Minor
0xA5A1	PCI Express component encountered a SERR error.	Fatal
0xA5A4	PCI Express IBIST error.	Major
0xA6A0	DXE boot services driver Not enough memory available to shadow a legacy option ROM.	Minor
0xB6A3	DXE boot services driver Unrecognized.	Major

POST Error Pause Option

In case of POST error(s) that are listed as "Major", the BIOS enters the Error Manager and waits for the user to press an appropriate key before booting the operating system or entering the BIOS Setup.


The user can override this option by setting "POST Error Pause" to "disabled" in the BIOS Setup main menu page. If the "POST Error Pause" option is set to "disabled", the compute module boots the operating system without user intervention. The default value is set to "disabled".

Appendix D: Supported Intel® Modular Server System

The Intel® Compute Module MFS5520VI is supported in the following chassis:

- Intel[®] Modular Server System MFSYS25
- Intel[®] Modular Server System MFSYS35

This section provides a high-level pictorial overview of the *Intel*[®] *Modular Server System* MFSYS25. For more details, refer to the *Intel*[®] *Modular Server System MFSYS25/MFSYS35 Technical Product Specification (TPS)*.

Α	Shared hard drive storage bay
В	I/O cooling fans
С	Empty compute module bay
D	Compute module cooling fans
Е	Compute module midplane connectors

Figure 10. Intel® Modular Server System MFSYS25

Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (for example, "82460GX") followed by alpha entries (for example, "AGP 4x"). Acronyms are followed by non-acronyms.

Term	Definition
ACPI	Advanced Configuration and Power Interface
AP	Application Processor
APIC	Advanced Programmable Interrupt Control
ASIC	Application Specific Integrated Circuit
ASMI	Advanced Server Management Interface
BIOS	Basic Input/Output System
BIST	Built-In Self Test
BMC	Baseboard Management Controller
Bridge	Circuitry connecting one computer bus to another, allowing an agent on one to access the other
BSP	Bootstrap Processor
byte	8-bit quantity.
CBC	Chassis Bridge Controller (A microcontroller connected to one or more other CBCs, together they bridge the IPMB buses of multiple chassis.
CEK	Common Enabling Kit
CHAP	Challenge Handshake Authentication Protocol
CMOS	In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board.
DPC	Direct Platform Control
EEPROM	Electrically Erasable Programmable Read-Only Memory
EHCI	Enhanced Host Controller Interface
EMP	Emergency Management Port
EPS	External Product Specification
ESB2	Enterprise South Bridge 2
FBD	Fully Buffered DIMM
FMB	Flexible Mother Board
FRB	Fault Resilient Booting
FRU	Field Replaceable Unit
FSB	Front-Side Bus
GB	1024MB
GPIO	General Purpose I/O
GTL	Gunning Transceiver Logic
HSC	Hot-Swap Controller
Hz	Hertz (1 cycle/second)
I2C	Inter-Integrated Circuit Bus
IA	Intel® Architecture
IBF	Input Buffer
ICH	I/O Controller Hub
ICMB	Intelligent Chassis Management Bus
IERR	Internal Error

Term	Definition
IFB	I/O and Firmware Bridge
INTR	Interrupt
IP	Internet Protocol
IPMB	Intelligent Platform Management Bus
IPMI	Intelligent Platform Management Interface
IR	Infrared
ITP	In-Target Probe
KB	1024 bytes
KCS	Keyboard Controller Style
LAN	Local Area Network
LCD	Liquid Crystal Display
LED	Light Emitting Diode
LPC	Low Pin Count
LUN	Logical Unit Number
MAC	Media Access Control
MB	1024KB
MCH	Memory Controller Hub
MD2	Message Digest 2 – Hashing Algorithm
MD5	Message Digest 5 – Hashing Algorithm – Higher Security
ms	milliseconds
MTTR	Memory Type Range Register
Mux	Multiplexor
NIC	Network Interface Controller
NMI	Non-maskable Interrupt
OBF	Output Buffer
OEM	Original Equipment Manufacturer
Ohm	Unit of electrical resistance
PEF	Platform Event Filtering
PEP	Platform Event Paging
PIA	Platform Information Area (This feature configures the firmware for the platform hardware)
PLD	Programmable Logic Device
PMI	Platform Management Interrupt
POST	Power-On Self Test
PSMI	Power Supply Management Interface
PWM	Pulse-Width Modulation
RAM	Random Access Memory
RASUM	Reliability, Availability, Serviceability, Usability, and Manageability
RISC	Reduced Instruction Set Computing
ROM	Read Only Memory
RTC	Real-Time Clock (Component of ICH peripheral chip on the server board)
SDR	Sensor Data Record
SECC	Single Edge Connector Cartridge
SEEPROM	Serial Electrically Erasable Programmable Read-Only Memory
SEL	System Event Log
SIO	Server Input/Output

Term	Definition
SMBus	System Management Bus
SMI	Server Management Interrupt (SMI is the highest priority non-maskable interrupt)
SMM	Server Management Mode
SMS	Server Management Software
SNMP	Simple Network Management Protocol
TBD	To Be Determined
TIM	Thermal Interface Material
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UHCI	Universal Host Controller Interface
UTC	Universal time coordinate
VID	Voltage Identification
VRD	Voltage Regulator Down
Word	16-bit quantity
ZIF	Zero Insertion Force

Reference Documents

For additional information, refer to the *Intel® Modular Server System MFSYS25/MFSYS35 Technical Product Specification*.