Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2

Technical Product Specification

Intel order number D24635-001

Revision 1.0

April 29, 2005

Enterprise Platforms and Services Division - Marketing

intel

Revision History

Date	Revision Number	Modifications
2/01/2005	0.5	Initial release
4/29/2005	0.95	Added BIOS section information, updated HW information to include latest product developments.

Disclaimers

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2005. All rights reserved.

Table of Contents

1.	Introduc	ction	.11
1	.1	Server Board Use Disclaimer	. 11
2.	Intel® S	erver Board SE7320EP2 / SE7525RP2 Overview	.12
2	2.1	Intel® Server Boards SE7320EP2 and SE7525RP2 Feature Set	. 12
3.	Functio	nal Architecture	.14
3	8.1	Processor and Memory Subsystem	. 14
	3.1.1	Processor Support	. 14
	3.1.2	Memory Subsystem	. 17
3	8.2	Intel® E7320 / E7525 Chipset	. 20
	3.2.1	MCH Memory Architecture Overview	.21
	3.2.2	Memory Controller Hub (MCH)	. 22
	3.2.3	6300ESB ICH	. 22
3	8.3	Super I/O	. 25
	3.3.1	GPIOs	. 26
	3.3.2	Serial Ports	. 27
3	8.4	BIOS Flash	. 27
3	8.5	SM Bus Block Diagram	. 28
4.	Clock G	eneration and Distribution	. 29
5.	PCI I/O	Subsystem	. 31
5	5.1	PCI Subsystem	. 31
	5.1.1	P32-A: 32-bit/33-MHz PCI Subsystem	. 31
	5.1.2	P64-B 66-MHz PCI-X Subsystem	. 32
	5.1.3	PCI Express x8	. 33
	5.1.4	PCI Express x16 (E7525 MCH support only)	. 33
5	5.2	Video Controller	. 34
	5.2.1	Video Modes	. 34
	5.2.2	Video Memory Interface	. 35
	5.2.3	Host Bus Interface	. 35
5	5.3	Network Interface Controller (NIC)	. 36
	5.3.1	NIC Connector and Status LEDs	. 36
5	5.4	Interrupt Routing	. 36
	5.4.1	Legacy Interrupt Routing	. 36

:	5.4.2	APIC Interrupt Routing	37
:	5.4.3	Serialized IRQ Support	38
5.	5	PCI Error Handling	40
6.	BIOS		41
6.	1	BIOS Architecture	41
	6.1.1	BIOS Identification String	41
6.2	2	System Initialization	42
	6.2.1	Processors	42
	6.2.2	Memory Subsystem	45
	6.2.3	PCI	51
	6.2.4	PCI Express	52
	6.2.5	Keyboard/Mouse	53
	6.2.6	Universal Serial Bus (USB)	53
	6.2.7	IDE	53
	6.2.8	Removable Media Drives	53
	6.2.9	Flash ROM	54
6.3	3	BIOS POST	54
	6.3.1	User Interface	54
	6.3.2	System Diagnostic Screen	55
	6.3.3	Quiet Boot / OEM Splash Screen	55
	6.3.4	BIOS Boot Popup Menu	56
6.4	4	BIOS Setup Utility	56
	6.4.1	Localization	56
	6.4.2	Console Redirection	57
	6.4.3	Configuration Reset	57
	6.4.4	Keyboard Commands	57
	6.4.5	Entering BIOS Setup	58
6.	5	Security	75
	6.5.1	Operating Model	75
	6.5.2	Administrator/User Passwords and F2 Setup Usage Model	76
	6.5.3	Password Clear Jumper	77
6.0	6	Flash Architecture and Flash Update Utility	78
	6.6.1	Flash Update Utility	78
	6.6.2	Update OEM Logo	80

7.	Hardwa	re and System Management	82
7	.1	Hardware Management	.82
	7.1.1	Fan Speed Control Diagram	.82
	7.1.2	Chassis Intrusion	.83
7	.2	Intel® Server Management (ISM) Software Support	.83
7	.3	Additional System Management Components	.83
	7.3.1	Console Redirection	.83
	7.3.2	Wired For Management (WFM)	.84
	7.3.3	Vital Product Data (VPD)	. 84
	7.3.4	PXE BIOS Support	.84
	7.3.5	System Management BIOS (SMBIOS)	.84
8.	Sleep S	upport	85
8	.1	Advanced Configuration and Power Interface (ACPI)	.85
8	.2	Sleep and Wake Functionality	.86
	8.2.1	Power Switch Off to On	.86
	8.2.2	On to Off (operating system absent)	.86
	8.2.3	On to Off (operating system present)	.86
	8.2.4	On to Sleep (ACPI)	.87
	8.2.5	Sleep to On (ACPI)	. 87
	8.2.6	System Sleep States	. 87
9.	Error Lo	ogging	88
9	.1	Error Sources and Types	. 88
9	.2	SMI Handler	. 88
	9.2.1	PCI Bus Error	. 88
	9.2.2	Processor Bus Error	.89
	9.2.3	Memory Bus Error	.89
	9.2.4	Logging Format Conventions	.89
9	.3	Single-bit ECC Error Throttling Prevention	.89
9	.4	Error Messages and Error Codes	.89
	9.4.1	POST Progress Codes and Messages	.89
	9.4.2	BIOS Messages	.95
	9.4.3	POST Error Messages and Handling1	00
	9.4.4	Boot Block Error Beep Codes 1	02
	9.4.5	POST Error Beep Codes 1	103

9.4.6	"POST Error Pause" option	103
10. Server I	Board SE7320EP2 and SE7525RP2 Connectors	104
10.1	Main Power Connector	104
10.2	Memory Module Connector	105
10.3	Processor Socket	107
10.4	I ² C Header	110
10.5	PCI Slot Connector	111
10.6	Front Panel Connector	114
10.7	VGA Connector	115
10.8	NIC Connector	115
10.9	IDE Connector	116
10.10	SATA Connector	116
10.11	USB Connector	117
10.12	Floppy Connector	118
10.13	Serial Port Connector	118
10.14	Keyboard and Mouse Connector	119
10.15	Miscellaneous Headers	119
10.15.1	Fan Header	119
10.15.2	Intrusion Cable Connector	120
10.15.3	System Recovery and Update Jumpers	120
11. General	Specifications	122
11.1	Absolute Maximum Ratings	122
11.2	Mean Time Between Failure (MTBF)	122
11.3	Processor Power Support	123
11.4	Power Supply Specifications	123
11.4.1	Power Timing	123
11.4.2	Voltage Recovery Timing Specifications	126
12. Product	Regulatory Compliance	128
12.1	Product Safety Compliance	128
12.1.1	Product EMC Compliance	128
12.1.2	Mandatory/Standard: Certifications, Registration, Declarations	129
12.1.3	Product Regulatory Compliance Markings	129
12.2	Electromagnetic Compatibility Notices	129
12.2.1	Europe (CE Declaration of Conformity)	129
12.2.2	Australian Communications Authority (ACA) (C-Tick Declaration of Conform	nity) 129

••		
Appendix A	: Integration and Usage Tips	.131
12.3	Replacing the Back up Battery	. 130
12.2.4	BSMI (Taiwan)	130
12.2.3	Ministry of Economic Development (New Zealand) Declaration of Conformity	130

List of Figures

Figure 1. Block Diagram of Intel® Server Boards SE7320EP2 and SE7525RP2	13
Figure 2. CEK 'Passive' Component Stackup	16
Figure 3. Memory Sub-system Block Diagram	17
Figure 4. Memory Bank Label Definition	19
Figure 5. Intel® Server Boards SE7320EP2 and SE7525RP2 SMBUS Block Diagram	28
Figure 6. Intel® Server Boards SE7320EP2 and SE7525RP2 Clock Distribution Diagram	30
Figure 7. Video Controller PCI Bus Interface	35
Figure 8. Interrupt Routing Diagram	38
Figure 9. Interrupt Routing Diagram	39
Figure 10. BIOS Identification String	41
Figure 11. Fan Speed Control Block Diagram	82
Figure 12. System Recovery and Update Jumpers (J17)	120
Figure 13. Output Voltage Timing	124
Figure 14. Turn On / Turn Off Timing	126

List of Tables

Table 1. Processor Support Matrix	14
Table 2. Memory Bank Labels	18
Table 3. I ² C Addresses for Memory Module SMB	19
Table 4. Supported DDR2 Technology	21
Table 5. 6300ESB ICH GPIO Usage Table	24
Table 6. Super I/O GPIO Usage Table	26
Table 7. PCI Bus Segment Characteristics	31
Table 8. P32-A Configuration IDs	31
Table 9. P32-A Arbitration Connections	32
Table 10. P64-B Configuration IDs	32
Table 11. P64-B Arbitration Connections	33
Table 12. PCI Express x8 Connections	33
Table 13. PCI Express x16 (Port B) Connections	
Table 14. Video Modes	34
Table 15. PCI AND PCI-X Interrupt Routing/Sharing	37
Table 16. Interrupt Definitions	37
Table 17. Supported DIMM Module Capacities	45
Table 18. Supported DDR2-400 DIMM Populations	47
Table 19. Memory Error Handling in RAS Mode	47
Table 20. Memory Error Handling in non-RAS Mode	
Table 21. Sample BIOS Popup Menu	56
Table 22. BIOS Setup Keyboard Command Bar Options	57
Table 23. BIOS Setup, Main Menu Options	58
Table 24. BIOS Setup, Advanced Menu Options	59
Table 25. BIOS Setup, Processor Configuration Sub-menu Options	60
Table 26. BIOS Setup IDE Configuration Menu Options	61
Table 27. Mixed PATA-SATA Configuration with only Primary PATA	63
Table 28. BIOS Setup, IDE Device Configuration Sub-menu Selections	63
Table 29. BIOS Setup, Floppy Configuration Sub-menu Selections	64
Table 30. BIOS Setup, Super I/O Configuration Sub-menu	65
Table 31. BIOS Setup, USB Configuration Sub-menu Selections	65
Table 32. BIOS Setup, USB Mass Storage Device Configuration Sub-menu Selections	66

Table 33. BIOS Setup, PCI Configuration Sub-menu Selections	67
Table 34. BIOS Setup, Memory Configuration Sub-menu Selections	
Table 35. BIOS Setup, Boot Menu Selections	69
Table 36. BIOS Setup, Boot Settings Configuration Sub-menu Selections	69
Table 37. BIOS Setup, Boot Device Priority Sub-menu Selections	70
Table 38. BIOS Setup, Hard Disk Drive Sub-Menu Selections	70
Table 39. BIOS Setup, Removable Drives Sub-menu Selections	70
Table 40. BIOS Setup, CD/DVD Drives Sub-menu Selections	71
Table 41. BIOS Setup, Security Menu Options	71
Table 42. BIOS Setup, Server Menu Selections	72
Table 43. BIOS Setup, System Management Sub-menu Selections	72
Table 44. BIOS Setup, Serial Console Features Sub-menu Selections	73
Table 45. BIOS Setup, Event Log Configuration Sub-menu Selections	74
Table 46. BIOS Setup, Exit Menu Selections	74
Table 47. Security Features Operating Model	75
Table 48. Monitored Components	82
Table 49. Supported Wake Events	87
Table 50. POST Code Checkpoints	90
Table 51. Boot Block Initialization Code Checkpoints	92
Table 52. Boot Block Recovery Code Checkpoints	93
Table 53. DIM Code Checkpoints	94
Table 54. ACPI Runtime Checkpoints	95
Table 55. Memory BIOS Messages	95
Table 56. Boot BIOS Messages	95
Table 57. Storage Device BIOS Messages	96
Table 58. Virus Related BIOS Messages	98
Table 59. System Configuration BIOS Messages	98
Table 60. CMOS BIOS Messages	99
Table 61. Miscellaneous BIOS Messages	99
Table 62. USB BIOS Error Messages	. 100
Table 63. SMBIOS BIOS Error Messages	. 100
Table 64. POST Error Messages and Handling	. 101
Table 65. Boot Block Error Beep Codes	. 102
Table 66. POST Error Beep Codes	. 103
Table 67. Troubleshooting BIOS Beep Codes	. 103

Table 68. Power Connector Pin-out (J12)	104
Table 69. Auxiliary Signal Connector (J5)	
Table 70. Auxiliary CPU Power Connector Pin-out (J22)	
Table 71. DIMM Connectors (J16,J18,J20,J21)	
Table 72. Socket 604 Processor Socket Pin-out (J36, J37)	
Table 73. HSBP Header Pin-out (J30,J54)	
Table 74. OEM RMC Header Pin-out (J33)	110
Table 75. P32-A 5V 32-bit/33-MHz PCI Slot Pin-out (J10, J11)	111
Table 76. P64-B 3.3V 64-bit/66-MHz PCI-X Slot Pin-out (J8, J9)	
Table 77. PCI Express Slot Pin-out (J13 for x8, J14 for x16)	
Table 78. Front Panel 34-Pin Header Pin-out (J38)	
Table 79. VGA Connector Pin-out (J4)	115
Table 80. NIC1-82541PI(10/100/1000) Connector Pin-out (JA1, JA2)	115
Table 81. ATA 40-pin Connector Pin-out (J43)	
Table 82. SATA Connector Pin-out (J28, J32)	
Table 83. USB Connectors Pin-out (J55)	117
Table 84. Optional USB Connection Header Pin-out (J31)	117
Table 85. Legacy 34-pin Floppy Connector Pin-out (J47)	118
Table 86. 9-pin Header Serial B Port Pin-out (J15)	
Table 87. Keyboard and Mouse PS/2 Connectors Pin-out (J2)	119
Table 88. 3-pin Fan Headers Pin-out (J1, J48)	119
Table 89. 4-pin Fan Headers Pin-out (J7, J44, J45, J46)	119
Table 90. 6-pin Fan Headers Pin-out (J50)	
Table 91. IntruSuper IOn Cable Connector (J19)Pin-Out	
Table 92. System Recovery and Update Jumper Options	
Table 93. Absolute Maximum Ratings	
Table 94. MTBF Calculation	
Table 95. Intel® Xeon™ Processor DP TDP Guidelines	
Table 96. Power Supply Voltage Specification	
Table 97. Voltage Timing Parameters	
Table 98. Turn On / Off Timing	
Table 99. Transient Load Requirements	

1. Introduction

The Intel® Server Board SE7320EP2 / SE7525RP2 Technical Product Specification provides technical details for the server board's functional architecture and feature set. It also provides a high-level detail of some of the board's functional sub-systems.

This document is intended to be the technical reference for this board. Updates to this document will be made via the Specification Update that is published monthly following the date of the product launch.

1.1 Server Board Use Disclaimer

Intel Corporation server boards contain a number of high-density VLSI and power delivery components that need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation cannot be held responsible if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

2. Intel® Server Board SE7320EP2 / SE7525RP2 Overview

The Intel® Server Boards SE7320EP2 and SE7525RP2 are monolithic printed circuit boards with features that were designed to support the general purpose, pedestal server market. The Intel Server Board SE7525RP2 also meets the needs of a high-end workstation system. The architecture is based around the Intel® E7320/E7525 chipset and is capable of supporting one or two Intel® Xeon[™] processors with 1MB or 2MB L2 cache and up to 8GB of memory.

2.1 Intel® Server Boards SE7320EP2 and SE7525RP2 Feature Set

The Intel Server Boards SE7320EP2 and SE7525RP2 support the following feature set:

- Processor/FSB support
 - Dual Intel Xeon processors with 1MB or 2MB L2 cache using the 604-pin FCPGA processor package
 - 800 MHz FSB
 - 6.4 GB/sec bus bandwidth
 - One version 10.1 compliant VRD to supply each CPU core voltage
- Intel E7320/E7525 chipset components
 - MCH memory controller
 - 6300ESB ICH I/O controller
- Support for up to four DDR2-400 compliant ECC DDR2 DIMMs providing up to 8GB memory support.
- Three separate and independent PCI buses:
 - Segment A: Two PCI 32-bit/33-MHz, 5 V connectors supporting full-length PCI addin cards and two embedded devices:
 - 2D/3D graphics controller: ATI* Rage* XL video controller with 8 MB of SDRAM
 - One Intel 10/100/1000 82541PI Fast Ethernet Controller
 - Segment B: Two PCI-X* 64-bit/66-MHz, 3.3 V slots supporting full-length PCI / PCI-X add-in cards
 - Segment C:
 - One x4 PCI Express* slot supporting x1/x2/x4/x8 PCI Express add-in card (up to x 4 connection)
 - One x16 PCI Express (Server Board SE7525RP2 only) supporting x1/x2/x4/x8/x16 PCI Express add-in card.
 - One x1 PCI Express bus supporting the Marvell* Yukon* 88E8050 10/100/1000 gigabit Ethernet controller
- LPC (Low Pin Count) bus segment with one embedded devices:
 - Super I/O (Super I/O) controller chip, National Semiconductor* PC8374L, providing all PC-compatible I/O (floppy, serial, keyboard, mouse) and integrated hardware monitoring
- Two external Universal Serial Bus (USB) ports with an additional internal header providing two optional USB ports for front panel support

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Intel® Server Board SE7320EP2 / SE7525RP2 Overview

- One IDE connector, supporting up to two ATA-100 compatible devices
- Two SATA connectors, supporting up to two SATA devices and RAID 0/1
- Support for up to five system fans and two processor fans
- SSI-compliant connectors for SSI interface support: front panel and power connectors

The following figure below shows the functional blocks of the server boards and the plug-in modules that they support.

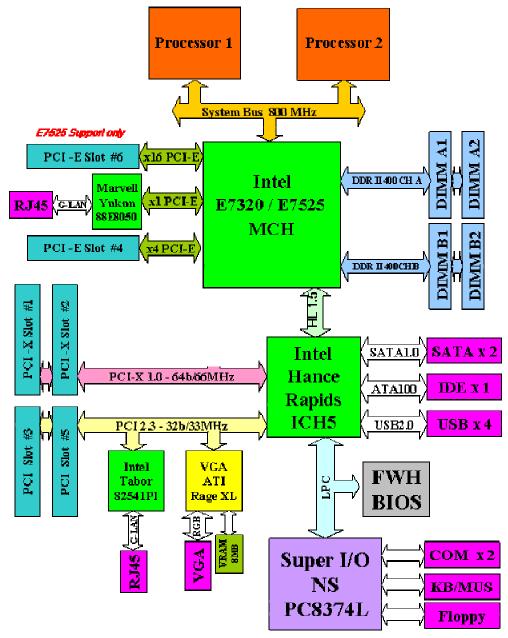


Figure 1. Block Diagram of Intel® Server Boards SE7320EP2 and SE7525RP2

3. Functional Architecture

This chapter provides a high-level description of the functionality distributed between the architectural blocks of the Intel® Server Boards SE7320EP2 and SE7525RP2.

3.1 Processor and Memory Subsystem

The Intel® chipset E7320 / E7525 provides a 36-bit address, 64-bit data processor host bus interface, operating at 800 MHz in the AGTL+ signaling environment. The MCH component of the chipset provides an integrated memory controller, an 8-bit hub interface, one x8 PCI Express interface (programmable into separate x 4 interface), and a x16 PCI Express interface (E7525 MCH only).

The x4 PCI Express interface provides

- The interface to x8 PCI Express slot (Lane 0-3)
- The interface to Marvell (Lane 4)

The x16 PCI Express interface provides

- The interface to x16 PCI Express slot
- The 32-bit/33-MHz PCI buses via the 6300ESB ICH

The board directly supports up to 8GB of ECC memory, using four DDR2-400 compliant ECC DIMMs. The ECC implementation in the MCH can detect and correct single-bit errors (SBE), detect multiple-bit errors (MBE), and supports Intel® x4 Single Data Device Correction (Intel® x4 SDDC) feature with x4 DIMMs.

3.1.1 Processor Support

The Intel Server Boards SE7320EP2 and SE7525RP2 support one or two processors in the 604-pin FCPGA package. When two processors are installed, both must be of identical revision, core voltage, and bus/core speed. When only one processor is installed, it must be in the socket labeled CPU0. The other socket must be empty. The support circuitry on the server boards consist of the following:

- Dual 604-pin processor sockets supporting 800MHz FSB Intel® Xeon™ processors.
- Processor host bus AGTL+ support circuitry.

Processor Family	Package Type	Frequency	Cache Size	Front Side Bus Speed
Intel® Xeon™	MPGA604	2.8~3.6GHz	1 MB	800MHz
Intel® Xeon™	MPGA604	3.0~3.6GHz	2 MB	800MHz

Table 1. Processor Support Matrix

Notes:

- Processors must be populated in sequential order. Processor socket 1 must be populated before processor socket 2.
- The board is designed to provide up to 105A of current per processor. Processors with higher current requirements are not supported.
- No terminator is required in the second processor socket when using a uni-processor configuration.

In addition to the circuitry described above, the processor subsystem contains the following:

- Reset configuration logic
- Processor module presence detection logic
- Server management registers and sensors

3.1.1.1 Processor VRD

The Intel Server Boards SE7320EP2 and SE7525RP2 have two Voltage Regulator Downs (VRDs) to support two processors. This is compliant with the VRM 10.1 specification and provides a maximum of 210 Amps, which is capable of supporting the requirements for two Intel® Xeon™ processors.

The board hardware must monitor the processor VTTEN (Output enable for VTT) pin for each processor before turning on the VRD. If the VTTEN pin of the two processors are not identical, then the Power on Logic will not turn on the VRD.

3.1.1.2 Reset Configuration Logic

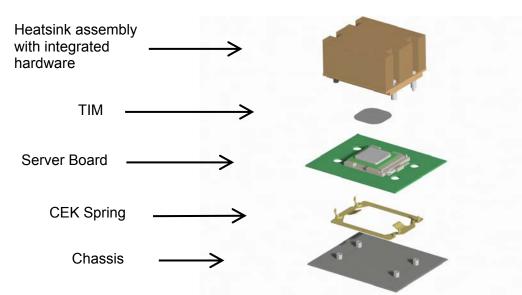
The BIOS determines the processor stepping, cache size, and other information through the CPUID instruction. The requirements are as follows:

- All processors in the system must operate at the same frequency, have the same cache sizes, and same VID. No mixing of product families is supported.
- Processors run at a fixed speed and cannot be programmed to operate at a lower or higher speed.

The processor information is read at every system power-on.

Note: The processor speed is the processor power on reset default value. No manual processor speed setting options exist either in the form of a BIOS setup option or jumpers.

3.1.1.3 Processor Module Presence Detection


Logic is provided on the server boards to detect the presence and identity of installed processors. The Power On logic checks the logic and will not turn on the system DC power unless the VTTENs of both the processors match in a DP configuration.

3.1.1.4 Interrupts and APIC

Interrupt generation and notification to the processors is done by the APICs in the 6300ESB ICH using messages on the front side bus.

3.1.1.5 Common Enabling Kit (CEK) Design Support

The server boards have been designed to comply with the Intel® Common Enabling Kit (CEK) processor mounting and thermal solution. The server boards ship from Intel's factory with a CEK spring snapped onto the underside of the board, beneath each processor socket. The CEK spring is removable to allow the use of non-Intel heat sink retention solutions.

Note: When installing either of these server boards into an Intel® Server Chassis SC5300, the passive heatsink solution (no fan) must be used.

Figure 2. CEK 'Passive' Component Stackup

3.1.2 Memory Subsystem

The server boards supports up to four DIMM slots for a maximum memory capacity of 8 GB. The DIMM organization is x72, which includes eight ECC check bits. The memory interface runs at 400MT/s. The memory controller supports memory scrubbing, single-bit error correction and multiple-bit error detection and Intel x4 SDDC support with x4 DIMMs. Memory can be implemented with either single-sided (one row) or double-sided (two row) DIMMs.

The figure below provides a block diagram of the memory sub-system implemented on the board.

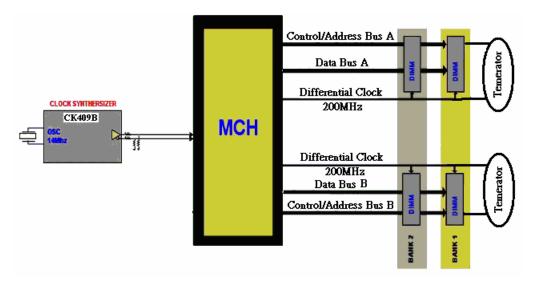


Figure 3. Memory Sub-system Block Diagram

3.1.2.1 Memory DIMM Support

The board supports DDR2-400 compliant ECC DIMMS operating at 400MT/s. Only DIMMs tested and qualified by Intel or a designated memory test vendor are supported on this board. All DIMMs are supported by design, but only fully qualified DIMMs will be supported on the board.

The minimum supported DIMM size is 256MB. Therefore, the minimum main memory configuration is 1 x 256MB or 256MB. The largest size DIMM supported is a 2GB registered DDR2-400 ECC DIMM based on 1Gb technology. Therefore, the maximum main memory configuration is 4 x 2GB or 8GB.

- Only registered DDR2-400 compliant, ECC, DDR2 memory DIMMs are supported
- ECC single-bit errors (SBE) are corrected and multiple-bit error (MBE) are detected.
- The server boards support Intel® x4 SDDC with x4 DIMMs.
- The maximum memory capacity is 8GB
- The minimum memory capacity is 256MB

3.1.2.2 Memory Configuration

The memory interface between the MCH and the DIMMs is 144 bits wide (72 bits for each bank).

There are two banks of DIMMs, Bank 1 and Bank 2. Bank 1 contains DIMM socket locations 1A and 1B. Bank 2 contains 2A and 2B. The sockets associated with each bank are located next to each other and the DIMM socket identifiers are marked on the server board silkscreen, near the DIMM socket.

For designs that require a lower price point, a single 256MB DIMM can be populated in the DIMM 1B socket. When a single DIMM is installed, interleaving and Intel x4 SDDC are not available. Bank 2 will only operate with two DIMMs installed.

The server boards' signal integrity and cooling are optimized when memory banks are populated in order. Before populating either DIMM socket in Bank 2, both DIMMs in Bank 1 must be populated. No empty DIMM sockets are allowed between populated DIMMs.

DIMM and memory configurations must adhere to the following:

- DDR2-400 ECC, registered DIMM modules
- DIMM organization: x72 with ECC
- Pin count: 240
- DIMM capacity: 256 MB, 512 MB, 1 GB, 2 GB DIMMs
- Serial PD: JEDEC Rev 2.0
- Voltage options: 1.8 V (VDD/VDDQ)
- Interface: SSTL-1.8

Table 2. Memory Bank Labels

Memory DIMM	Bank
J18 (DIMM 1A), J16 (DIMM 1B)	1
J21 (DIMM 2A), J20 (DIMM 2B)	2

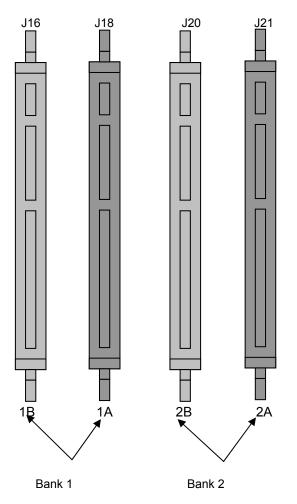


Figure 4. Memory Bank Label Definition

3.1.2.3 I²C Bus

The I^2C bus is used by the system BIOS to retrieve DIMM information needed to program the MCH memory registers, which are required to boot the system. The following table provides the I^2C addresses for each DIMM slot.

Device	Address
DIMM 1A	0xA6
DIMM 1B	0xAE
DIMM 2A	0xA4
DIMM 2B	0xAC

3.1.2.4 DRAM ECC

The ECC used for DRAM provides Intel® x4 SDDC technology for x4 SDRAMs. DRAMs that are x8 use the same algorithm but will not have Intel x4 SDDC technology, since at most only four bits can be corrected with this ECC.

The method provides more ECC bits so each ECC word can correct more than a single-bit failure. This is possible because different mathematical algorithms provide multiple-bit correction with the right number of data bits and ECC bits. For example, a 144-bit ECC word that consists of 128 data bits and 16 ECC bits can be used to correct up to 4-bit errors within certain bit fields of data. These four bits must be adjacent, not random. Even though the ratio of the ECC bits to data bits is the same as the previous example (16/128 vs. 8/64), the longer ECC word allows for a correction and detection algorithm that is more efficient.

3.2 Intel® E7320 / E7525 Chipset

The Intel Server Boards SE7320EP2 and SE7525RP2 are designed around the Intel E7320 / E7525 chipset. The chipset provides an integrated I/O bridge and memory controller, and a flexible I/O subsystem core (PCI Express). This is targeted for multiprocessor systems and standard high-volume servers. The chipset consists of two components:

- MCH: Memory Control Hub. The MCH accepts access requests from the host (processor) bus and directs those accesses to memory or to one of the PCI buses. The MCH monitors the host bus, examining addresses for each request. Accesses may be directed to a memory request queue for subsequent forwarding to the memory subsystem, or to an outbound request queue for subsequent forwarding to one of the PCI buses. The MCH also accepts inbound requests from the 6300ESB ICH. The MCH is responsible for generating the appropriate controls to control data transfer to and from memory.
- 6300ESB ICH: The 6300ESB ICH controller has several components. It provides the interface for a 32-bit/33-MHz PCI bus and the interface for a 64-bit/66MHz PCI-X bus. The 6300ESB ICH can be both a master and a target on that PCI bus. The 6300ESB ICH also includes a USB 2.0 controller and an IDE controller. The 6300ESB ICH is also responsible for much of the power management functions, with ACPI control registers built in. The 6300ESB ICH also provides a number of GPIO pins and has the LPC bus to support low speed legacy I/O.

The MCH and 6300ESB ICH chips provide the pathway between processor and I/O systems. The MCH is responsible for accepting access requests from the host (processor) bus, and directing all I/O accesses to one of the PCI buses or legacy I/O locations. If the cycle is directed to one of the PCI Express segments, the MCH communicates with the PCI Express Devices (add-in card, on board devices) through the PCI Express interface. If the cycle is directed to the 6300ESB ICH, the cycle is output on the MCH's 8-bit HI 1.5 bus.

The E7320 MCH supports one x8 port configuration PCI Express interface. The E7525MCH supports one x8 port and one x16 port configuration PCI Express interface. The x8 interface is capable of logically dividing into separate x4 interface. Each with half the bandwidth of x8 interface and fully compliant to the specification. Maximum theoretical peak bandwidth on each x8 PCI Express interfaces of 2.5Gb/s in each direction simultaneously, for 5 Gb/s per port.

All I/O for the board, including PCI and PC-compatible I/O, is directed through the MCH and then through the 6300ESB ICH provided PCI buses.

- The 6300ESB ICH provides one 32-bit/33-MHz PCI bus, hereafter called P32-A.
- The 6300ESB ICH provides one 64-bit/66-MHz PCI-X bus, hereafter called P64-B.

This independent bus structure allows both PCI buses to operate independently and concurrently, providing additional bandwidth to the system.

3.2.1 MCH Memory Architecture Overview

The MCH supports a 144-bit wide memory sub-system that can support up to 16GB of DDR2-400 memory, using 4 GB DIMMs. This configuration needs external registers for buffering the memory address and control signals. The four chip selects are registered inside the MCH and need no external registers for chip selects.

The memory interface runs at 400MT/s. The memory interface supports a 72-bit or 144-bit wide memory array. It uses seventeen address lines (BA [2:0] and MA [13:0]) and supports 256 Mb, 512 Mb, 1 Gb DRAM densities. The DDR2 DIMM interface supports memory scrubbing, single-bit error correction, and multiple bit error detection and Intel x4 SDDC with x4 DIMMs.

3.2.1.1 DDR2 Configurations

The DDR2 interface supports up to 8GB of main memory and supports single- and doubledensity DIMMs. DDR2 can be any industry-standard DDR2. The following table shows the DDR2 DIMM technology supported.

Technology	Organization	DRAM Components / DIMM	Row / Column Address Bits
128Mb	4M X 8 X 4bks	8	12/10
	8M X 4 X 4bks	16	12/11
256Mb	8M X 8 X 4bks	8	13/10
	16M X 4 X 4bks	16	13/11
512Mb	16M X 8 X 4bks	8	14/10
	32M X 4 X 4bks	16	14/11
1Gb	32M X 8 X 8bks	8	14/10
	64M X 4 X 8bks	16	14/11

Table 4. Supported DDR2 Technology

3.2.2 Memory Controller Hub (MCH)

The MCH is a 1077-ball FC-BGA device and uses the proven components of previous generations like the Intel® Xeon™ processor bus interface unit, the hub interface unit, and the DDR2 memory interface unit. In addition, the MCH incorporates a PCI Express interface. The PCI Express interface allows the MCH to directly interface with the PXH/PXHD or PCI Express devices. The MCH also increases the main memory interface bandwidth and maximum memory configuration with a 144-bit wide memory interface.

The MCH integrates the following main functions:

- An integrated high performance main memory subsystem
- An PCI Express bus which provides an interface to the PXH/PXHD or PCI Express devices
- A HL 1.5 bus which provides an interface to the 6300ESB ICH

Other features provided by the MCH include the following:

- Full support of ECC on the processor bus
- Full support of Intel x4 SDDC on the memory interface with x4 DIMMs
- Twelve deep in-order queue, two deep defer queue
- Full support of registered DDR2-400 ECC DIMMs
- Support for 2GB DDR2 memory modules
- Memory scrubbing

3.2.3 6300ESB ICH

The 6300ESB ICH is a multi-function device, housed in a 689-pin BGA device, providing a HI 1.5 to PCI bridge, a PCI 32-bit/33MHz interface, a 64-bit/66MHz PCI-X interface, a PCI IDE interface, a PCI USB controller, and a power management controller. Each function within the 6300ESB ICH has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller sharing the same PCI bus interface.

The primary role of the 6300ESB ICH is to provide the gateway to all PC-compatible I/O devices and features. The board uses the following the 6300ESB ICH features:

- PCI, PCI-X bus interface
- LPC bus interface
- IDE interface, with Ultra DMA 100 capability
- Universal Serial Bus (USB) 2.0 interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- System RTC
- General purpose I/O (GPIO)

The following are the descriptions of how each supported feature is used on the board.

3.2.3.1 PCI Bus P32-A I/O Subsystem

The 6300ESB ICH provides a legacy 32-bit PCI subsystem and acts as the central resource on this PCI interface. P32-A supports the following embedded devices and connectors:

- An ATI Rage XL video controller with 3D/2D graphics accelerator
- One Intel[®] 82541PI network controller
- Two 5V expansion slots capable of supporting full-length PCI add-in cards operating at 33 MHz

3.2.3.2 PCI Bus P64-B I/O Subsystem

The 6300ESB ICH provides a legacy 64-bit PCI-X subsystem and acts as the central resource on this PCI interface. P64-B supports two 3.3V expansion slots. These support full-length PCI-X add-in cards operating at 66 MHz.

3.2.3.3 PCI Bus Master IDE Interface

The 6300ESB ICH acts as a PCI-based Ultra DMA 100 IDE controller that supports programmed I/O transfers and bus master IDE transfers. The 6300ESB ICH supports two IDE channels, supporting two drives each (drives 0 and 1). The Intel Server Boards SE7320EP2 and SE7525RP2 implement one 40-pin IDE connector to access the IDE functionality.

The IDE interface supports Ultra DMA 100 Synchronous DMA Mode transfers on the 40-pin connector.

3.2.3.4 USB Interface

The 6300ESB ICH contains one EHCI USB 2.0 controller and four USB ports. The USB controller moves data between the main memory and up to four USB connectors. All ports function identically and with the same bandwidth. The Server Boards SE7320EP2 and SE7525RP2 implement four ports on the board.

The server boards provide two external USB ports on the back. The dual-stack USB connector is located within the standard ATX I/O panel area next to the keyboard and mouse housing. The USB specification defines the external connectors.

The third and fourth USB ports are optional and can be accessed by cabling from an internal 9pin connector on the server boards to an external USB port either at the front or the rear of a chassis.

3.2.3.5 Two port SATA Interface

The 6300ESB ICH contains one SATA controller and two SATA ports. The data transfer rates up to 150Mbyte/s. Alternate Device ID and RAID Class Code options support Soft RAID.

3.2.3.6 Compatibility Interrupt Control

The 6300ESB ICH provides the functionality of two 82C59 PIC devices for ISA-compatible interrupt handling.

3.2.3.7 APIC

The 6300ESB ICH integrates an I/O APIC capability with 24 interrupts.

3.2.3.8 General Purpose Input and Output Pins

The 6300ESB ICH provides a number of general purpose input and output pins. Many of these pins have alternate functions, and thus all are not available. The following table lists the GPI and GPO pins used on the board and gives a brief description of their function.

Pin Name	(Powe Well)	GPI / GPO / Function	Signal Name	Function Description
GPIO0/PXREQ2#	Core	Input	HR_PAREQ2_N	PXREQ2#
GPIO1/PXREQ3#	Core	Input	HR_PAREQ3_N	PXREQ3#
GPIO2/PIRQE#	Core	Input	PCI_PIRQE_N	PIRQE#
GPIO3/PIRQF#	Core	Input	PCI_PIRQF_N	PIRQF#
GPIO4/PIRQG#	Core	Input	PERR_LOG	Parity Error Log
GPIO5/PIRQH#	Core	Input	PCI_PIRQH_N	PIRQH#
GPIO6	Core	Input	SKU_VER_ID1	SKU Version ID 1
GPIO7	Core	Input	MCHPME_N	MCH Power Management Event
GPIO8	Resume	Input	FP_NMI_BTN_N	Input: NMI Button
GPIO11/SMBALERT#	Resume	Input	PS_ALERT_N	SM Bus alert from power supply
GPIO12	Resume	Input	MANUF_DET_N	Manufacture Mode detect
GPIO13	Resume	Input	SIO_SMI_N	SMI# source from Super I/O
GPIO16/PXGNT2#	Core	Output	HR_PAGNT2_N	PXGNT2#
GPIO17/PXGNT3#	Core	Output	HR_PAGNT3_N	PXGNT3#
GPIO18	Core	Output	TP_GPIO_FAN_N	Unused
GPIO19	Core	Output	GPIO_RST_N	Generate a hardware reset
GPIO20	Core	Output	Reserved	Reserved
GPIO21	Core	Output	HR_FLASH_WP_N	Active Low to enable flash BOM Write protect
GPIO23	Core	Output	POST_STATUS_N	Active Low to report POST status
GPIO24	Resume	Input/Output	DIMM_FRULED-A1_N	Output: DIMM FRU LED for 1A
GPIO25	Resume	Input/Output	DIMM_FRULED-A2_N	Output: DIMM FRU LED for 2A
GPIO27	Resume	Input/Output	NC	Unused
GPIO28	Resume	Input/Output	NC	Unused
GPIO32/WDT_TOUT#	Core	Input/Output	SKU_VER_ID2	Input: SKU Version ID 1
GPIO33/PXIRQ0#	Core	Input/Output	HR_PAIRQA_N	PXIRQ0#
GPIO34/PXIRQ1#	Core	Input/Output	HR_PAIRQB_N	PXIRQ1#
GPIO35/PXIRQ2#	Core	Input/Output	HR_PAIRQC_N	PXIRQ2#
GPIO36/PXIRQ3#	Core	Input/Output	HR_PAIRQD_N	PXIRQ3#
GPIO37	Core	Input/Output	PASSWORD_CLEAR_N	Input: Password clear selection L: Clear Password; H: Normal
GPIO38	Core	Input/Output	BIOS_RCVR_N	Input: BIOS Recover boot selection L: Recovery; H: Normal

Table 5. 6300ESB ICH GPIO Usage Table

Pin Name	(Powe Well)	GPI / GPO / Function	Signal Name	Function Description
GPIO39	Core	Input/Output	DIS_VGA_N	Output: Active Low to disable on board VGA
GPIO40	Core	Input/Output	CMOS_CLEAR_N	Input: CMOS Clear selection L: Clear CMOS; H: Normal
GPIO41	Core	Input/Output	SKU_VER_ID0	Input: SKU Version ID 0
GPIO42	Core	Input/Output	IDE_PRI_CBLSNS	Input: Primary IDE cable type sense L: 80 conductor cable; H: 40 conductor cable
GPIO43	Core	Input/Output	MROMB_PRESENT_N	Input: ZCR card present
GPIO56	Resume	Output	KNI_DISABLE_N	Output: Active Low to disable on board 82541PI
GPIO57	Resume	Output	YKN_DIS_N_A	Output: Active Low to disable on board 88E8050

3.2.3.9 Power Management

One of the embedded functions of the 6300ESB ICH is a power management controller. This is used to implement ACPI-compliant power management features. The server boards support sleep states S0, S1, S4, and S5.

3.3 Super I/O

The National Semiconductor* 8374L Super I/O device contains all of the necessary circuitry to control two serial ports, one parallel port, floppy disk, PS/2-compatible keyboard and mouse and hardware monitor controller. The server boards implement the following features:

- GPIOs
- Two serial ports
- Floppy
- Keyboard and mouse
- Local hardware monitoring
- Wake up control
- System health support

3.3.1 GPIOs

The Super I/O provides a number of general-purpose input/output pins that the server boards utilize. The following table identifies the pin and the signal name used in the schematics:

Pin	Power	Pin Number	Signal Name	Function Description
GPIOE00/SWD	Standby	103	SIO_TEMP_SENSOR	I/O: LMPCIF
GPIOE01/FANTACH3	Standby	104	FAN_TACH_REAR1	Input: Rear fan tach 1
GPIOE02/FANTACH4	Standby	105	FAN_TACH_6PIN	Input: 6-pin fan tach
GPIOE03/FANPWM1	Standby	106	FANPWM_FRONT1	Output: Front fan PWM 1
GPIOE04/FANPWM2	Standby	108	FAN_PWM_REAR1	Output: Rear fan PWM 1
GPIOE05/FANPWM3	Standby	109	FAN_PWM_6PIN	Output: 6-pin fan PWM
GPIOE06/FANTACH1	Standby	111	FAN_TACH_FRONT1	Input: Front fan tach 1
GPIOE07/FANTACH2	Standby	112	FAN_TACH_FRONT2	Input: Front fan tach 2
GPIOE00/RI2_N/IRTX	VDD3	118	SIO_RI2_N	COM2
GPIOE01/SIN2/RI2*	VDD3	119	SIO_SIN2	COM2
GPIOE02/SOUT2/IRRX	VDD3	120	SIO_SOUT2	COM2
GPIOE03/DSR2_N_SIN2	VDD3	121	SIO_DSR2_N	COM2
GPIOE04/CTS2_N/DSR2*	VDD3	124	SIO_CTS2_N	COM2
GPIOE05/DCD2_N/CTS2*	VDD3	126	SIO_DCD2_N	COM2
GPIOE06/IRRX/DTR_BOUT2	VDD3	127	RISER_PRESENT2	Input: riser card present
GPIOE07/IRTX/DCD2*	VDD3	128	2U_RISER_DETECT	Input: 2U riser card detect
GPIOE10/5V_DDCSDA	Standby	116	HR_SMB_P5VSB_DAT	SMB
GPIOE11/5V_DDCSCL	Standby	114	HR_SMB_P5VSB_CLK	SMB
GPIOE12/CC_DDCSDA	Standby	115	HR_SMB_3V3SB_DAT	SMB
GPIOE13/CC_DDCSCL	Standby	113	HR_SMB_3V3SB_CLK	SMB
GPIOE12/PCIRST_OUT2_N	Standby	74	PCIRST_N_R	Output: PCIRST buffer
GPIOE13	Standby	75	PCIE_WAKE_N	Input: PCIE-Wake up signal
GPIOE14	Standby	101	PME_N	Input: PCI PME#
GPIOE16	Standby	100	DIMM_FRULED_B1_N	Output: DIMM FRU LED for 1B
GPIOE17	Standby	80	PME_PCIX_N	Input: PCI-X PME#
GPO11/VsbStrap1	Standby	117	SIO_VSBSTRAP1	SIO Strapping
GPO12/RTS2_N/SOUT2/VddStrap1	VDD3	122	SIO_RTS2_N	COM2
GPO13/DTR_BOUT2/RTS2_N/VddStrap2	VDD3	125	SIO_DTR2_N	COM2
GPIO15	Standby	91	DIMM_FRULED_B2_N	Output: DIMM FRU LED for 2B

Table 6. Super I/O* GPIO Usage Table

3.3.2 Serial Ports

The board provides two serial ports, an external serial port, and an internal serial header. The following sections provide details on the use of the serial ports.

3.3.2.1 Serial A

Serial A is a standard DB9 interface located at the rear I/O panel of the server boards, to the left of the video connector below the parallel port connector. Serial A is designated by as "Serial A" on the silkscreen. The reference designator is J4.

3.3.2.2 Serial B

Serial B is an optional port, accessed through a 9-pin internal header. A standard DH-10 to DB9 cable can be used to direct serial B to an external connector on any given chassis. The serial B interface follows the standard RS232 pinout. The server boards have a "Serial_B" silkscreen label next to the connector and is located beside the PCI-X slot 1 connector.

3.3.2.3 Floppy Disk Controller

The floppy disk controller (FDC) in the Super I/O is functionally compatible with floppy disk controllers in the DP8473 and N844077. All FDC functions are integrated into the Super I/O including analog data separator and 16-byte FIFO. The server boards provide a standard 34-pin interface for the floppy disk controller.

3.3.2.4 Keyboard and Mouse

Two external PS/2 ports, located on the back of the server boards, provide access to the keyboard and mouse functions.

3.3.2.5 Wake-up Control

The Super I/O contains functionality that allows various events to control the power-on and power-off the system.

3.4 BIOS Flash

The board incorporates an Intel® FWH flash memory component. The 82802AC is a highperformance 8-megabit memory component and non-volatile storage space. The flash device is connected through the LPC interface of 6300ESB.

3.5 SM Bus Block Diagram

See below for the SM Bus block diagram and device addresses.

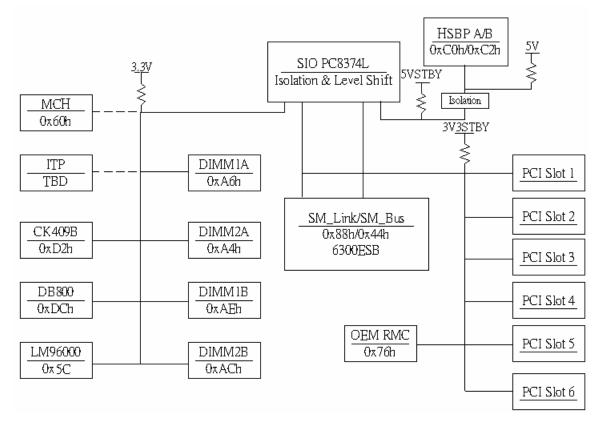


Figure 5. Intel® Server Boards SE7320EP2 and SE7525RP2 SMBUS Block Diagram

4. Clock Generation and Distribution

All buses on the Intel Server Boards SE7320EP2 / SE7525RP2 operate using synchronous clocks. Clock synthesizer/driver circuitry on the server board generates clock frequencies and voltage levels as required, including the following:

- 200 MHz at 0.7V current-mode: For processor 0, processor 1, debug port and MCH
- 66 MHz at 3.3 V logic levels: For MCH, 6300ESB ICH
- 48 MHz at 3.3V logic levels: For 6300ESB ICH
- 33 MHz at 3.3V logic levels: For 6300ESB ICH, PCI connector, Super I/O
- 14.318 MHz at 2.5 V logic levels: For 6300ESB ICH , Super I/O and video

The following figure illustrates clock generation and distribution on the board.

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Clock Generation and Distribution

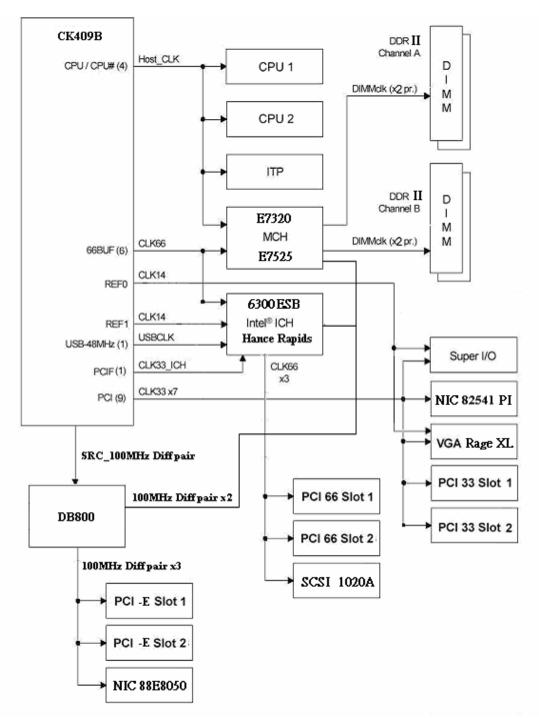


Figure 6. Intel® Server Boards SE7320EP2 and SE7525RP2 Clock Distribution Diagram

5. PCI I/O Subsystem

5.1 PCI Subsystem

The primary I/O buses for the server boards SE7320EP2 and SE7525RP2 are PCI, PCI Express, and PCI-X, with three independent PCI bus segments. The PCI buses comply with the *PCI Local Bus Specification*, Revision 2.3. The P32-A bus and the P64-B segment are directed through the 6300ESB ICH and the two PCI Express (x4 and x16) buses are directed through the MCH. The table below lists the characteristics of the three PCI bus segments.

PCI Bus Segment	Voltage	Width	Speed	Туре	PCI I/O Card Slots
PCI	5V	32 bits	33MHz		Slot 3 Slot 5
PCI-X	3.3V	64 bits	66MHz		Slot 1; Slot 2
PCI Express (x8)	3.3	4 lanes	100MHz		Slot 4
PCI Express (x16)	3.3	16 lanes	100MHz		Slot 6 (E7525 chipset only)

Table 7. PCI Bus Segment Characteristics

5.1.1 P32-A: 32-bit/33-MHz PCI Subsystem

All 32-bit/33-MHz PCI I/O for the board is directed through the 6300ESB ICH. The 32-bit/33-MHz PCI segment created by the 6300ESB ICH is known as the P32-A segment. The P32-A segment supports the following embedded devices and connectors:

- One 10/100/1000 Network Interface Controller: Intel[®] 82541PI Fast Ethernet Controller.
- 2D/3D Graphics Accelerator: ATI* Rage* XL Video Controller
- Two 5V, 32-bit PCI slots

The video controller and the NIC are each allocated a GPIO to disable the device.

5.1.1.1 Device IDs (IDSEL)

Each device under the PCI hub bridge has its IDSEL signal connected to one bit of AD[31:16], which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached for P32-A devices and the corresponding device description.

IDSEL Value	Device
18	Video
19	Intel 82541PI
20	PCI Slot 3 (32b/33M)
21	PCI Slot 5 (32b/33M)

5.1.1.2 P32-A Arbitration

P32-A supports four PCI devices: the 6300ESB ICH and four PCI bus masters (one NIC, two PCI slots, and one ATI* Rage* XL video controller). All PCI masters must arbitrate for PCI access, using resources supplied by the 6300ESB ICH. The host bridge PCI interface (6300ESB ICH) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. The following table defines the arbitration connections.

Baseboard Signals	Device
PCI REQ0_N/GNT0_N	Video ATI* Rage* XL
PCI REQ1_N/GNT1_N	NIC Intel 82541PI
PCI REQ2_N/GNT2_N	PCI Slot 3 (32b/33M)
PCI REQ3_N/GNT3_N	PCI Slot 5 (32b/33M)

Table 9. P32-A Arbitration Connections

5.1.2 P64-B 66-MHz PCI-X Subsystem

One 64-bit PCI-X bus segment is directed through the 6300ESB ICH. This PCI-X segment, P64-B, provides two 3.3V 64-bit PCI-X slots capable of 66MHz operation and supporting full-length PCI cards. The P64-B segment supports two 3.3V, 64-bit PCI slots.

5.1.2.1 Device IDs (IDSEL)

Each device under the PCI-X hub bridge has its IDSEL signal connected to one bit of AD[31:16], which acts as a chip select on the PCI bus segment in configuration cycles. This determines a unique PCI device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached for P64-B devices and corresponding device description.

IDSEL Value	Device
19	PCI-X Slot 2 (64b/66M, Riser, RADIOS)
18	PCI-X Slot 1 (64b/66M)

Table 10. P64-B Configuration IDs

5.1.2.2 P64-B Arbitration

P64-B supports two PCI masters, one on each PCI-X slot. All PCI masters must arbitrate for PCI access using resources supplied by the 6300ESB ICH. The host bridge PCI interface (6300ESB ICH) arbitration lines REQx* and GNTx* are a special case in that they are internal to the host bridge. The following table defines the arbitration connections.

Table 11. P64-B	Arbitration	Connections
-----------------	-------------	-------------

Server Board Signals	Device		
PCIX REQ1_N/GNT1_N	PCI Slot 2 (64b/66M)		
PCIX REQ0_N/GNT0_N	PCI Slot 1 (64b/66M)		

5.1.3 PCI Express x8

The PCI Express x8 interface can be configured as two independent x4 interfaces. On the Intel Server Boards SE7320EP2 and SE7525RP2, Lanes 0-3 are connected to a x8 PCI Express connector and Lane 4 is connected to Marvell 88E8050. Lanes 5-7 are terminated.

Table 12. PCI Express x8 Connections

Lane	Device	
Lane 0-3	Slot 4 (PCI Express)	
Lane 4	Marvell 88E8050	
Lane 5-7	NC	

5.1.4 PCI Express x16 (E7525 MCH support only)

The PCI Express x16 interface is connected to a x16 PCI Express connector. This connector is supported on the Intel Server Board SE7525RP2 board only.

Table 13. PCI Express x16 (Port B) Connections

Lane	Device	
Lane 8-23	Slot 6 (PCI Express)	

5.2 Video Controller

The server boards provide an ATI Rage XL PCI graphics accelerator, along with 8MB of video SDRAM and support circuitry for an embedded SVGA video subsystem. The ATI Rage XL chip contains a SVGA video controller, clock generator, 2D and 3D engine, and RAMDAC in a 272-pin PBGA. One 2Mx32-bit SDRAM chip provides 8MB of video memory.

The SVGA subsystem supports a variety of modes, up to 1600 x 1200 resolution in 8/16/24/32 bpp modes under 2D, and up to 1024 x 768 resolution in 8/16/24/32 bpp modes under 3D. It supports both CRT and LCD monitors with up to 100Hz vertical refresh rate.

The server boards provide a standard 15-pin VGA connector at the rear of the system in the standard ATX I/O opening area. The video controller is disabled by default in BIOS Setup when an add-in card video adapter is detected in either the AGP or PCI slots. As an option, the video controller can be set to support dual-monitor mode when an AGP adapter is detected. In this circumstance, the onboard controller acts as the primary video controller and the AGP adapter becomes the secondary adapter under an operating system that supports this functionality.

5.2.1 Video Modes

The ATI Rage XL chip supports all standard IBM VGA modes. The following table shows the 2D/3D modes supported for both CRT and LCD. The table specifies the minimum memory requirement for various display resolution, refresh rates, and color depths.

2D Mode Refresh Rate (Hz)	Refresh Rate (Hz)	2D Video Mode Support				
	8 bpp	16 bpp	24 bpp	32 bpp		
640x480	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported	
800x600	60, 70, 75, 90, 100	Supported	Supported	Supported	Supported	
1024x768	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported	
1280x1024	43, 60	Supported	Supported	Supported	Supported	
1280x1024	70, 72	Supported	-	Supported	Supported	
1600x1200	60, 66	Supported	Supported	Supported	Supported	
1600x1200	76, 85	Supported	Supported	Supported	-	
		·				
3D Mode	Refresh Rate (Hz)	3D Video Mode Support with Z Buffer Enabled				
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported	
1280x1024	43,60,70,72	Supported	Supported	-	-	
1600x1200	60,66,76,85	Supported	-	-	-	
		·				
3D Mode	Refresh Rate (Hz)	3D Video Mode Support with Z Buffer Disabled				
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported	
1280x1024	43,60,70,72	Supported	Supported	Supported	-	
1600x1200	60,66,76,85	Supported	Supported	-	-	

Table 14. Video Modes

5.2.2 Video Memory Interface

The memory controller subsystem of the ATI Rage XL arbitrates requests from direct memory interface, the VGA graphics controller, the drawing coprocessor, the display controller, the video scalar, and hardware cursor. Requests are serviced in a way that ensures display integrity and maximum CPU/coprocessor drawing performance.

The board supports an 8MB (512K x 32-bit x four banks) SDRAM device for video memory.

5.2.3 Host Bus Interface

The ATI Rage XL supports a PCI33 MHz bus. The following diagram shows the signals for the PCI interface:

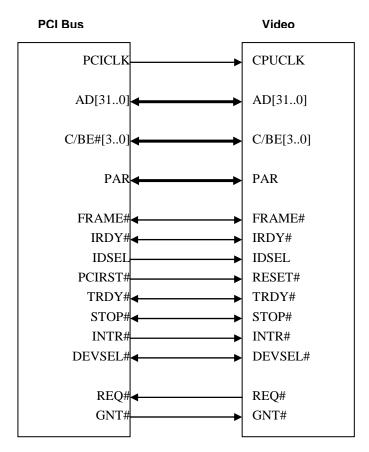


Figure 7. Video Controller PCI Bus Interface

5.3 Network Interface Controller (NIC)

The server boards SE7320EP2 and SE7525RP2 support one 10Base-T / 100Base / 1000Base-T network interface controller (NIC) based on the Intel® 82541PI controller (NIC 2) and one gigabit network interface controller based on the Marvell* 88E8050 controller (NIC 1).

The Intel 82541PI Gigabit Ethernet is a single, compact component with an integrated Gigabit Ethernet Media Access Control (MAC) and physical layer (PHY) functions. For desktop, workstation and mobile PC network designs with critical space constraints, the Intel 82541PI allows for a Gigabit Ethernet implementation in a very small area that is footprint compatible with current generation 10/100 Mbps Fast Ethernet designs. The Intel 82541PI integrates fourth generation gigabit MAC design with fully integrated, physical layer circuitry to provide a standard IEEE 802.3 Ethernet interface for 1000BASE-T, 100BASE_TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab). The controller is capable of transmitting and receiving data at rates of 1000 Mbps, 100 Mbps, or 10 Mbps. In addition to managing MAC and PHY layer functions, the controller provides a 32-bit wide direct Peripheral Component Interconnect (PCI) 2.3 compliant interface capable of operating at 33 or 66MHz.

The single-chip PCI Express based 88E8050 device integrates the Marvell Gigabit PHY with the Marvell Gigabit MAC and SERDES cores, delivering an ultra-small form factor and high performance. The 88E8050 device is compliant with the PCI Express 1.0a specification. Offered in a 9 x 9 mm, 64-pin QFN package, the 88E8050 reduces board space required for Gigabit LOM implementation.

5.3.1 NIC Connector and Status LEDs

The NICs drive two LEDs located on each network interface connector. For each NIC connector, the green LED indicates network connection when on, and Transmit/Receive activity when blinking. The yellow LED indicates 1000-Mbps operation when lit, the green LED indicates 100-Mbps operation when lit and 10-Mbps when off.

5.4 Interrupt Routing

The board interrupt architecture accommodates both PC-compatible PIC mode and APIC mode interrupts through use of the integrated I/O APICs in the 6300ESB ICH.

5.4.1 Legacy Interrupt Routing

For PC-compatible mode, the 6300ESB ICH provides two 82C59-compatible interrupt controllers. The two controllers are cascaded with interrupt levels 8-15 entering on level 2 of the primary interrupt controller (standard PC configuration). A single interrupt signal is presented to the processors, to which only one processor will respond for servicing. The 6300ESB ICH contains configuration registers that define which interrupt source logically maps to I/O APIC INTx pins.

The 6300ESB ICH handles both PCI and IRQ interrupts. The 6300ESB ICH translates these to the APIC bus. The numbers in the table below indicate the 6300ESB ICH PCI interrupt input pin to which the associated device interrupt (INTA, INTB, INTC, INTD, INTE, INTF, INTG, INTH for PCI bus and PXIRQ0, PXIRQ1, PXIRQ2, PXIRQ3 for PCI-X bus) is connected. The 6300ESB ICH I/O APIC exists on the I/O APIC bus with the processors.

Interrupt	INT A	INT B	INT C	INT D
Video	PIRQB			
82541P1	PIRQA			
PCI Slot 3 (PCI 32b/33M)	PIRQF	PIRQD	PIRQB	PIRQH
PCI Slot 5 (PCI 32b/33M)	PIRQE	PIRQB	PIRQH	PIRQD
LSI 1020A	PXIRQ3			
PCI Slot 2 (64b/66M)	PXIRQ1	PXIRQ2	PXIRQ3	PXIRQ0
PCI Slot 1 (64b/66M)	PXIRQ0	PXIRQ1	PXIRQ2	PXIRQ3

Table 15. PCI AND PCI-X Interrupt Routing/Sharing

5.4.2 APIC Interrupt Routing

For APIC mode, the interrupt architecture incorporates three Intel I/O APIC devices to manage and broadcast interrupts to local APICs in each processor. The Intel I/O APICs monitor each interrupt on each PCI device, including PCI slots, in addition to the ISA compatibility interrupts IRQ(0-15).

When an interrupt occurs, a message corresponding to the interrupt is sent across a three-wire serial interface to the local APICs. The APIC bus minimizes interrupt latency time for compatibility interrupt sources. The I/O APICs can also supply greater than 16 interrupt levels to the processor(s). This APIC bus consists of an APIC clock and two bidirectional data lines.

5.4.2.1 Legacy Interrupt Sources

The table below recommends the logical interrupt mapping of interrupt sources on the board. The actual interrupt map is defined using configuration registers in the 6300ESB ICH.

ISA Interrupt	Description
INTR	Processor interrupt.
NMI	NMI to processor.
IRQ0	System timer
IRQ1	Keyboard interrupt.
IRQ2	Slave PIC
IRQ3	Serial port 1 or 2 interrupt from Super I/O device, user-configurable.
IRQ4	Serial port 1 or 2 interrupt from Super I/O device, user-configurable.
IRQ5	Parallel Port / Generic
IRQ6	Floppy disk.
IRQ7	Parallel Port / Generic
IRQ8_L	Active low RTC interrupt.
IRQ9	SCI*
IRQ10	Generic
IRQ11	Generic
IRQ12	Mouse interrupt.
IRQ13	Floaty processor.
IRQ14	Compatibility IDE interrupt from primary channel IDE devices 0 and 1.
IRQ15	
SMI*	System Management Interrupt. General purpose indicator sourced by the 6300ESB ICH to the processors.

Table 16. Interrupt Definitions

5.4.3 Serialized IRQ Support

The Server Boards SE7320EP2 and SE7525RP2 supports a serialized interrupt delivery mechanism. Serialized Interrupt Requests (SERIRQ) consists of a start frame, a minimum of 17 IRQ / data channels, and a stop frame. Any slave device in the quiet mode may initiate the start frame. While in the continuous mode, the start frame is initiated by the host controller.

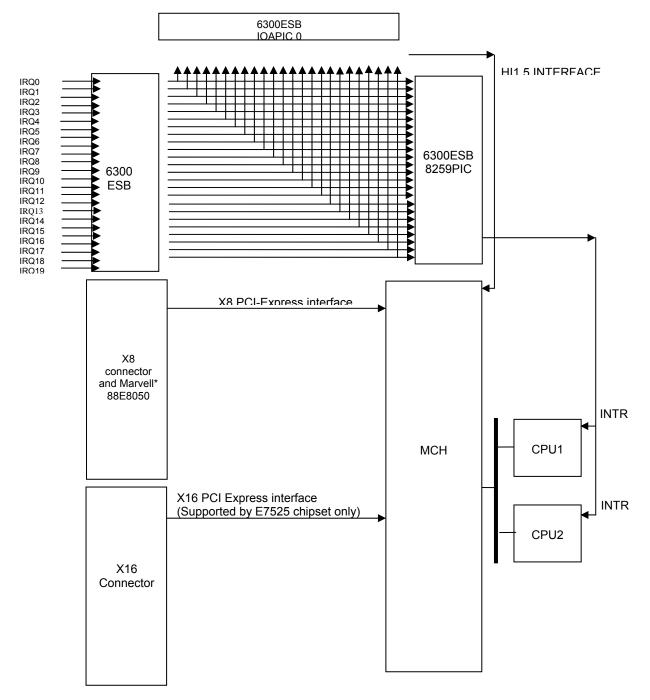


Figure 8. Interrupt Routing Diagram

5.5 PCI Error Handling

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively. In the case of PERR#, the PCI bus master has the option to retry the offending transaction, or to report it using SERR#. All other PCI-related errors are reported by SERR#. SERR# is routed to NMI if enabled by BIOS.

6. BIOS

6.1 **BIOS Architecture**

The Basic Input/Output System (BIOS) is implemented as firmware that resides in the Flash ROM. It provides hardware-specific initialization algorithms and standard PC-compatible basic input/output (I/O) services, and standard Intel® Server Board features. The Flash ROM also contains firmware for certain embedded devices. These images are supplied by the device manufacturers and are not specified in this document.

The system BIOS includes the following components:

- IA-32 Core: The IA-32 core contains standard services and components such as the PCI Resource manager, ACPI support, POST, and runtime functionality.
- Processor Microcode: BIOS includes microcode for the latest processors.
- Option ROMs: BIOS includes option ROMs to enable on-board devices during boot.

6.1.1 BIOS Identification String

The BIOS Identification string is used to uniquely identify the revision of the BIOS being used on the system. The string is formatted as illustrated in the following figure.

BoardId.OEMID.BuildType.Major.Minor.BuildID.BuildDateTime.Mod

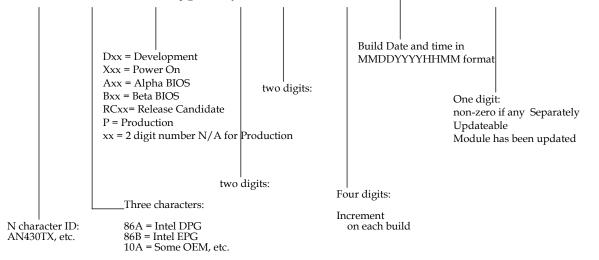


Figure 10. BIOS Identification String

6.2 System Initialization

6.2.1 Processors

6.2.1.1 Multiple Processor Initialization

IA-32 processors have a microcode-based bootstrap processor (BSP) arbitration protocol. On reset, all of the processors compete to become the BSP. If a serious error is detected during a Built-in Self-Test (BIST), that processor does not participate in the initialization protocol. A single processor that successfully passes BIST is automatically selected by the hardware as the BSP and starts executing from the reset vector. A processor that does not perform the role of BSP is referred to as an application processor (AP).

The BSP is responsible for executing the BIOS power-on self-test (POST) and preparing the machine to boot the operating system. At boot time, the system is in virtual wire mode and the BSP alone is programmed to accept local interrupts (INTR driven by programmable interrupt controller (PIC) and non-maskable interrupt (NMI)).

As a part of the boot process, the BSP wakes each AP. When awakened, an AP programs its Memory Type Range Registers (MTRRs) to be identical to those of the BSP. All APs execute a halt instruction with their local interrupts disabled. If the BSP determines that an AP exists that is a lower-featured processor or that has a lower value returned by the CPUID function, the BSP switches to the lowest-featured processor in the system.

6.2.1.2 Mixed Processor Steppings

For optimum system performance, only identical processors should be installed in a system. Processor steppings within a common processor family can be mixed in a system provided that there is no more than a one stepping difference between them. If the installed processors are more than one stepping apart, an error is reported. Acceptable mixed steppings are not reported as errors by the BIOS.

6.2.1.3 Mixed Processor Models

Processor models cannot be mixed in a system. If this condition is detected, an error is reported.

6.2.1.4 Mixed Processor Families

Processor families cannot be mixed in a system. If this condition is detected, an error is reported.

6.2.1.5 Mixed Processor Cache Sizes

If the installed processors have mixed cache sizes, an error will be reported. The size of all cache levels must match between all installed processors.

6.2.1.6 Jumperless Processor Speed Settings

The Intel® Xeon[™] processor does not use jumpers or switches to set the processor frequency. The BIOS reads the highest ratio register from all processors in the system. If all processors are the same speed, the Actual Ratio register is programmed with the value read from the High Ratio register. If all processors do not match, the highest common value between High and Low Ratio is determined and programmed to all processors. If no value works for all installed processors, all processors not capable of speeds supported by the BSP are disabled and an error is displayed.

6.2.1.7 Microcode

IA-32 processors have the capability of correcting specific errata through the loading of an Intelsupplied data block (i.e., microcode update). The BIOS is responsible for storing the update in non-volatile memory and loading it into each processor during POST. The BIOS allows a number of microcode updates to be stored in the flash, limited by the amount of free space available. The BIOS supports variable size microcode updates and verifies the signature prior to storing the update in the flash. The system BIOS supports the real mode INT15, D042h interface for updating the microcode updates in the flash.

6.2.1.8 Processor Cache

The BIOS enables all levels of processor cache as early as possible during. There are no user options to modify the cache configuration, size or policies. All detected cache sizes are reported in the SMBIOS Type 7 structures.

6.2.1.9 Hyper-Threading Technology

Intel® Xeon[™] processors support Hyper-Threading Technology. The BIOS detects processors that support this feature and enables the feature during POST. BIOS Setup provides an option to selectively enable or disable this feature. The default behavior is enabled.

If enabled, the BIOS creates additional entries in the ACPI MP tables to describe the virtual processors. The SMBIOS Type 4 structure shows only the physical processors installed. It does not describe the virtual processors.

Because some operating systems are not able to efficiently utilize the Hyper-Threading Technology, the BIOS does not create entries in the MP tables to describe the virtual processors.

6.2.1.10 Intel SpeedStep® Technology

Intel® Xeon[™] processors support the Geyserville3 (GV3) feature of the Intel SpeedStep® Technology. This feature changes the processor operating ratio and voltage similar to the Thermal Monitor 2 (TM2) feature. It must be used in conjunction with the TM1 or TM2 feature. The BIOS implements the GV3 feature in conjunction with the TM2 feature.

6.2.1.11 Intel® Extended Memory 64 Technology (Intel® EM64T)

6.2.1.11.1 BIOS Requirements

The system BIOS has a number of modified requirements:

- Detect whether the processor is Intel® EM64T capable
- Initialize the SMBASE for each processor
- Detect the appropriate SMRAM State Save Map used by the processor
- (Optional) Enable Intel® EM64T during memory initialization

6.2.1.11.2 Activating and Deactivating Intel® EM64T

The BIOS does not activate Intel® EM64T mode. The system will be in IA-32 compatibility mode when booting an operating system. If the operating system and/or applications are detected to be 64-bit capable, then the processor will automatically configure itself for 64-bit operation, otherwise it will remain in 32-bit execution mode.

6.2.1.12 Execute Disable Bit Feature

The Execute Disable Bit feature (XD bit) is an enhancement to the IA-32 Intel® Architecture. An IA-32 processor that supports the Execute Disable Bit feature can prevent data pages from being used by malicious software to execute code. An IA-32 processor with the "XD bit" feature can provide memory protection in either of the following modes:

- Legacy protected mode if Physical Address Extension (PAE) enabled.
- IA-32e mode when 64-bit extension technology is enabled (Entering IA-32e mode requires enabling PAE).

The XD bit does not introduce any new instructions, it requires operating systems to operate in a PAE-enabled environment and establish a page-granular protection policy for memory.

6.2.1.13 Enhanced Halt State (C1E)

All processors support the Halt State (C1) through the native processor instructions HLT and MWAIT. Some processors implement an optimization of the C1 state called the Enhanced Halt State (C1E) to further reduce the total power consumption while in C1. When C1E is enabled, and all logical processors in the physical processors have entered the C1 state, the processor will reduce the core clock frequency to system bus ratio and VID. The transition of the physical processor from C1 to C1E is accomplished similar to an Enhanced Intel SpeedStep® technology transition.

6.2.2 Memory Subsystem

6.2.2.1 Memory Sizing

The E7320/E7525 MCH provides an integrated memory controller for direct connection to two channels of registered DDR2-400. Peak theoretical memory data bandwidth using DDR2-400 technology is 6.4 GB/s.

The memory controller is capable of supporting up to four loads per channel for DDR2-400. Memory technologies are classified as being either single rank or dual rank depending on the number of DRAM devices that are used on any one DIMM. A single rank DIMM is a single load device. Single rank = one load. Dual rank DIMMs are dual load devices. Dual rank = two loads.

The Server Boards SE7320EP2 and SE7525RP2 provide the following maximum memory capacities based on the number of DIMM slots provided and maximum supported memory loads by the chipset:

8GB maximum capacity for DDR2-400

The minimum memory supported with the system running in single channel memory mode is:

• 256MB for DDR2-400

Supported DIMM capacities are as follows:

DDR2-400 memory DIMM sizes include: 256MB, 512MB, 1GB, and 2GB

Memory Interface		256 Mb		512 Mb	
Capacities (MBs)		Min	Max	Min	Max
DDR2-400	1 channel	256 MB	2048 MB	512 MB	4096 MB
DDINE 400	2 channels	512 MB	4096 MB	1024 MB	8192 MB

Table 17. Supported DIMM Module Capacities

DIMMs on channel 'A' are paired with DIMMs on channel 'B' to configure 2-way interleaving. Each DIMM pair is referred to as a bank. The bank can be further divided into two rows, based on single-sided or double-sided DIMMs. If both DIMMs in a bank are single-sided, only one row is said to be present. For double-sided DIMMs, both rows are said to be present.

The Server Boards SE7320EP2 and SE7525RP2 have four DIMM slots, or two DIMM banks. Both DIMMs in a bank should be identical (same manufacturer, CAS latency, number of rows, columns and devices, timing parameters etc.). Although DIMMs within a bank must be identical, the BIOS supports various DIMM sizes and configurations allowing the banks of memory to be different. Memory sizing and configuration is guaranteed only for qualified DIMMs approved by Intel.

The BIOS reads the Serial Presence Detect (SPD) SEEPROMs on each installed memory module to determine the size and timing of the installed memory modules. The memory-sizing algorithm determines the size of each bank of DIMMs. The BIOS programs the memory controller in the chipset accordingly. The total amount of configured memory can be found using BIOS Setup.

Note: Memory between 4GB and 4GB minus 512MB will not be accessible for use by the operating system and may be lost to the user, because this area is reserved for BIOS, APIC configuration space, PCI adapter interface, and virtual video memory space. This means that if 4GB of memory is installed, 3.5GB of this memory is usable. The chipset should allow the remapping of unused memory above the 4GB address, but this memory may not be accessible to an operating system that has a 4GB memory limit.

6.2.2.2 Disabling DIMMs

The BIOS provides a mechanism to disable a DIMM if it is detected to be faulty. A faulty DIMM is defined to have either multiple correctable errors or a single uncorrectable error on a single DIMM. Bad memory DIMM(s) are taken off-line during POST memory test. During runtime, uncorrectable memory errors are logged and single-bit ECC errors are counted. Runtime DIMM status is not carried across system reboots.

On system boot, memory-sizing code reads the recorded state of the DIMMs and skips sizing DIMM(s) which were previously marked as disabled. If all DIMMs in a system have been disabled, the BIOS will re-enable all DIMMs.

Disabled DIMMs/rows may be re-enabled through a BIOS Setup option. The DIMM slot will no longer be disabled if the system boots without memory in the DIMM slot.

6.2.2.3 ECC Memory Initialization

ECC memory must be initialized by the BIOS before it can be used. The BIOS must initialize all memory locations before using them. The BIOS uses the auto-initialize feature of the MCH to initialize ECC. ECC memory initialization cannot be aborted and may result in a noticeable delay in the boot process depending on the amount of memory installed in the system.

6.2.2.4 Memory Population

Using the following algorithm, BIOS configures the memory controller of the MCH to either run in dual channel mode or single channel mode:

- 1. If 1 or more fully populated DIMM banks are detected, the memory controller is set to dual channel mode. Otherwise, go to step 2.
- 2. If DIMM 1A is present, the memory controller is set to single channel mode A. Otherwise, go to step 3.
- 3. If Channel 1B DIMM is present, the memory controller is set to single channel mode B. Otherwise, generate a memory configuration error

DDR2-400 DIMM population rules are as follows:

- DIMMs banks must be populated in order starting with the slots furthest from MCH
- Dual rank DIMMs must be populated before single rank DIMMs
- A total of four DIMMs can be populated when all four DIMMs are dual rank DDR2-400 DIMMs

The following tables show the supported memory configurations.

- S/R = single rank
- D/R = dual rank
- E = Empty

Bank 2 – DIMMs 2A, 2B	Bank 1 – DIMMs 1A, 1B
E	S/R
S/R	S/R
E	D/R
D/R	D/R
S/R	D/R

Table 18. Supported DDR2-400 DIMM Populations

Note: Memory between 4GB, and 4GB minus 512MB is not accessible for use by the operating system and may be lost to the user. This area is reserved for the BIOS, APIC configuration space, PCI adapter interface, and virtual video memory space. This means that if 4GB of memory is installed, 3.5GB of this memory is usable. The chipset should allow the remapping of unused memory above the 4GB address, but this memory may not be accessible to an operating system that has a 4GB memory limit.

6.2.2.5 Memory Error Handling

The chipset detects and correct single-bit errors and detects double-bit memory errors. The chipset supports 4-bit single device data correction (SDDC) when in dual channel mode.

Memory Error Handling can be enabled or disabled in BIOS Setup.

6.2.2.5.1 Memory Error Handling in RAS Mode

The MCH supports memory RAS Sparing mode. BIOS Setup is used to configure memory RAS mode. The following table shows memory error handling.

Memory with RAS Mode	Server
Sparing mode	DIMMs that go offline during operating system runtime will be back online on the next system reboot without user intervention.
	Sparing states are not sticky across system reset.

Table 19. Memory Error Handling in RAS Mode

6.2.2.5.2 Memory Error Handling in non-RAS Mode

If memory RAS features are not enabled in BIOS Setup, BIOS will apply "10 SBE errors in one hour" implementation. Enabling of this implementation and RAS features are mutually-exclusive and automatically handled by system BIOS.

In non-RAS mode, BIOS maintains a counter for Single Bit ECC (SBE) errors. If ten SBE errors occur within an hour, BIOS will disable SBE detection in the chipset and the operating system from being halted.

Non-RAS mode	Server	
Single Bit ECC (SBE) errors	SBE error events will not be logged.	
	On the tenth SBE error, the BIOS will disable SBE detection in chipset	
Double Bit ECC (DBE) errors	If a fatal error occurred, the BIOS will:	
	- Log a MBE event record to SEL	
	- Generate NMI	

6.2.2.5.3 DIMM Enabling

Setting the "Memory Retest" option to "Enabled" in BIOS Setup brings all DIMM(s) back to a live state, regardless of current states.

After replacing faulty DIMM(s), "Memory Retest" option must be set to "Enabled".

Note: This step is not required if faulty DIMM(s) were not taken off-line.

6.2.2.6 Memory Test

System memory is classified as base and extended memory. Base memory is memory that is required for POST. Extended memory is the remaining memory in the system. Extended memory may be contiguous or may have one or more holes. The BIOS memory test accesses all memory except for memory holes.

The memory test consists of separate base and extended memory tests. The base memory test runs before video is initialized to verify memory required for POST. The BIOS enables video as early as possible during POST to provide a visual indication that the system is functional. At some time after video output has been enabled, the BIOS executes the extended memory test. The status of the extended memory test is displayed on the console.

The extended memory test may be configured through BIOS Setup options. The coverage of the test can be configured to one of the following:

- Test every location (Extensive)
- Test one interleave width per kilo-byte of memory (Sparse)
- Test one interleave width per mega-byte of memory (Quick)

The "interleave width" of a memory subsystem is dependent on the chipset configuration. By default, both the base and extended memory tests are configured to the Disabled setting. The extended memory test can be aborted by pressing the <Space> key during the test.

6.2.2.7 Memory RASUM Features

The Intel E7320/ E7525 MCH supports several memory RASUM (Reliability, Availability, Serviceability, Usability, and Manageability) features. These features include the Intel® x4 Single Device Data Correction (x4 SDDC) for memory error detection and correction, Memory Scrubbing, Retry on Correctable Errors, Integrated Memory Initialization, and DIMM Sparing. The following sections describe how each is supported.

Note: The system has limited memory monitoring and logging capabilities. It is possible for a RASUM feature to be initiated without notification that the action has occurred.

6.2.2.7.1 DRAM ECC – Intel® x4 Single Device Data Correction (x4 SDDC)

The DRAM interface uses two different ECC algorithms. The first is a standard SEC/DED ECC across a 64-bit data quantity. The second ECC method is a distributed, 144-bit S4EC-D4ED mechanism, which provides x4 SDDC protection for DIMMS that utilize x4 devices. Bits from x4 parts are presented in an interleaved fashion such that each bit from a particular part is represented in a different ECC word. DIMMs that use x8 devices, can use the same algorithm but will not have x4 SDDC protection, since at most only four bits can be corrected with this method. The algorithm does provide enhanced protection for the x8 parts over a standard SEC-DED implementation. With two memory channels, either ECC method can be utilized with equal performance, although single-channel mode only supports standard SEC/DED.

6.2.2.7.2 Integrated Memory Scrub Engine

The Intel E7320/ E7525 MCH includes an integrated engine to walk the populated memory space proactively seeking out soft errors in the memory subsystem. In the case of a single bit correctable error, this hardware detects and corrects the data except when an incoming write to the same memory address is detected. For any uncorrectable errors detected, the scrub engine logs the failure. Both types of errors may be reported via multiple alternate mechanisms under configuration control. The scrub hardware will also execute "demand scrub" writes when correctable errors are encountered during normal operation (on demand reads, rather than scrub-initiated reads). This functionality provides incremental protection against time-based deterioration of soft memory errors from correctable to uncorrectable.

Using this method, a 16GB system can be completely scrubbed in less than one day. The effect of these scrub-writes do not cause any noticeable degradation to memory bandwidth, although they will cause a greater latency for that one very infrequent read that is delayed due to the scrub write cycle.

An uncorrectable error encountered by the memory scrub engine is a "speculative error." This designation is applied because no system agent has specifically requested the use of the corrupt data, and no real error condition exists in the system until that occurs. It is possible that the error residing in an unmodified page of memory will be dropped on a swap-back to disk. If that happens, the speculative error would simply "vanish" from the system undetected and without adverse consequences.

6.2.2.7.3 Retry on Uncorrectable Error

The Intel E7320/ E7525 MCH includes specialized hardware to resubmit a memory read request upon detection of an uncorrectable error. When a demand fetch (as opposed to a scrub) of memory encounters an uncorrectable error as determined by the enabled ECC algorithm, the memory control hardware will cause a (single) full resubmission of the entire cache line request from memory to verify the existence of corrupt data. This feature is expected to reduce or eliminate the reporting of false or transient uncorrectable errors in the DRAM array.

Any given read request will only be retried once on behalf of this error detection mechanism. If the uncorrectable error is repeated, it will be logged and escalated as directed by the device configuration. This RASUM feature may be enabled and disabled.

6.2.2.7.4 Integrated Memory Initialization Engine

The Intel E7320 / E7525 MCH provides hardware managed ECC auto-initialization of all populated DRAM space under software control. Once internal configuration has been updated to reflect the types and sizes of populated DIMM devices, the MCH will traverse the populated address space initializing all locations with good ECC. This not only speeds up the mandatory memory initialization step, but also frees the processor to pursue other machine initialization and configuration tasks.

Additional features have been added to the initialization engine to support high speed population and verification of a programmable memory range with one of four known data patterns (0/F, A/5, 3/C, and 6/9). This function facilitates a limited, very high speed memory test, and provides a BIOS accessible memory zeroing capability for use by the operating system.

6.2.2.7.5 DIMM Sparing Function

To provide a more fault tolerant system, the Intel E7320/ E7525 MCH includes specialized hardware to support fail-over to a spare DIMM device in case a primary DIMM in use exceeds a specified threshold of runtime errors. One of the DIMMs installed per channel, greater than or equal in size than the largest primary DIMM, will not be used but is kept in reserve. If a significant failure occurs in a particular DIMM, that DIMM and its corresponding partner in the other channel (if applicable), will, over time, have its data copied to the spare DIMM(s). When all the data has been copied, the reserve DIMM(s) will be put into service and the failing DIMM will be removed from service. Only one sparing cycle is supported. If this feature is not enabled, then all DIMMs will be visible in normal address space.

Note: The Server Boards SE7320EP2 and SE7525RP2 do not support the memory sparing for dual-rank DDR2 RAM. DIMM Sparing feature requires that the spare DIMM be at least the size of the largest primary DIMM in use.

Hardware additions for this feature include the implementation of tracking register per DIMM to maintain a history of error occurrence, and a programmable register to hold the fail-over error threshold level. The operational model is straightforward: if the fail-over threshold register is set to a non-zero value, the feature is enabled, and if the count of errors on any DIMM exceeds that value, fail-over will commence. The tracking registers themselves are implemented as "leaky buckets," such that they do not contain an absolute cumulative count of all errors since power-on; rather, they contain an aggregate count of the number of errors received over a running time period. The "drip rate" of the bucket is selectable by software, so it is possible to set the threshold to a value that will never be reached by a "healthy" memory subsystem experiencing the rate of errors expected for the size and type of memory devices in use.

The fail-over mechanism is slightly more complex. Once fail-over has been initiated the MCH must execute every write twice; once to the primary DIMM, and once to the spare. The MCH will also begin tracking the progress of its built-in memory scrub engine. Once the scrub engine has covered every location in the primary DIMM, the duplicate write function will have copied every data location to the spare. At that point, the MCH can switch the spare into primary use, and take the failing DIMM off-line.

This mechanism requires no software support once it has been programmed and enabled, until the threshold detection has been triggered to request a data copy. Hardware will detect the threshold initiating fail-over, and escalate the occurrence of that event as directed (signal an SMI, generate an interrupt, or wait to be discovered via polling). The software routine responding to the threshold detection must select a victim DIMM if multiple DIMMs have crossed the threshold prior to sparing invocation, and initiate the memory copy. Hardware automatically isolates the failed DIMM once the copy has completed. The data copy is accomplished by address aliasing within the DDR control interface. Therefore it does not require reprogramming of the DRAM row boundary (DRB) registers, nor does it require notification to the operating system that anything has occurred in memory.

The selected feature must remain enabled until the next power-cycle. There is no provision to back out of an enabled feature without a full reboot.

6.2.2.8 High Memory Gap Reclaiming

The BIOS creates a region immediately below 4GB to accommodate memory-mapped I/O regions for the system BIOS Flash, APIC memory and 32-bit PCI devices. Any system memory in this region is remapped above 4GB.

6.2.3 PCI

6.2.3.1 Scan Order

The BIOS assigns PCI bus numbers in a depth-first hierarchy. When the BIOS locates a bridge device that is not part of the chipset, it increments the bus number. Scanning continues on the secondary side of the bridge until all subordinate buses are assigned numbers. PCI bus number assignments may vary from boot to boot with varying presence of PCI devices with PCI-PCI bridges. If a device with a bridge with a single bus behind it is inserted into a PCI bus, all subsequent PCI bus numbers below the current bus will be increased by one.

The bus assignments occur once, early in the BIOS boot process, and never change during the pre-boot phase.

6.2.3.2 Resource Assignment

The resource manager assigns the PIC-mode interrupt for the devices that will be accessed by the legacy code. The BIOS configures the PCI Base Address Registers (BAR) and the command register of each device. Software must not make assumptions about the scan order of devices or the order in which resources are allocated to them. The BIOS supports the INT 1Ah PCI BIOS interface calls.

6.2.3.3 Automatic IRQ Assignment

The BIOS automatically assigns IRQs to devices in the system for legacy compatibility. No method is provided to manually configure IRQs for devices.

6.2.3.4 Option ROMs

The BIOS dispatches the option ROMs to available memory space in the standard address range 0C0000h-0DFFFFh. Given the limited space for option ROMs, the BIOS allows for disabling of legacy ROM posting via the BIOS Setup. Onboard and per-slot option ROM disable options are also available in BIOS Setup. The option to disable the onboard video option ROM is not available.

The option ROM space is also used by the console redirection binary (if enabled) and the user binary (if present and configured for runtime usage).

The BIOS integrates option ROMs for all discreet embedded controllers.

6.2.3.5 PCI APIs

The system BIOS supports the INT 1Ah, AH = B1h functions as defined in the PCI BIOS Specification. The system BIOS supports the real mode interfaces and does not support the protected mode interfaces.

6.2.3.6 Dual Video

The BIOS supports single and dual video modes. Dual video mode is disabled by default. In single mode, the onboard video controller is disabled when an add-in video card is detected.

In dual mode, the onboard video controller is enabled and is the primary video device. The external video card is allocated resources and is considered the secondary video device.

6.2.4 PCI Express

6.2.4.1 PCI Express Initialization

The Intel® Server Board SE7525RP2 includes one X4 slot and one X16 slot. The Intel® Server Board SE7320EP2 includes one x4 slot.

The BIOS trains the link during boot and checks the corresponding status to disable any port not connected to PCI Express devices.

6.2.4.2 PCI Express Enhanced Configuration Mechanisms

PCI Express extends the configuration space to 4096 bytes per device/function as compared to the 256 bytes allowed by the PCI 2.3 configuration space. The PCI Express configuration space is divided into a PCI 2.3 compatible region and an extended PCI Express region.

6.2.5 Keyboard/Mouse

6.2.5.1 Keyboard and Mouse Support

The BIOS supports both PS/2 and USB keyboards and mice.

6.2.5.2 Boot Without Keyboard

The system can boot without a keyboard. If present, the BIOS detects the keyboard during POST and displays the message "Keyboard Detected" on the POST Screen.

6.2.6 Universal Serial Bus (USB)

6.2.6.1 Legacy USB

The BIOS supports PS/2 emulation of USB 1.1 keyboards and mice. During POST, the BIOS initializes and configures the root hub ports and then searches for a keyboard and mouse. If detected, the USB hub enables them.

6.2.7 IDE

The BIOS supports the ATA/ATAPI Specification, version 6 or later. It initializes the embedded IDE controller in the chipset south-bridge and the IDE devices that are connected to these devices. The BIOS scans the IDE devices and programs the controller and the devices with their optimum timings. The IDE disk read/write services that are provided by the BIOS use PIO mode, but the BIOS will program the necessary Ultra DMA registers in the IDE controller so that the operating system can use the Ultra DMA Modes.

The BIOS initializes and supports ATAPI devices such as LS-120/240, CDROM, CD-RW and DVD.

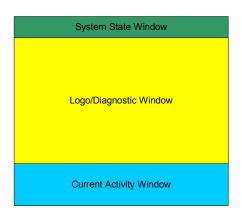
The BIOS initializes and supports SATA devices just like PATA devices. It initializes the embedded the IDE controllers in the chipset and any SATA devices that are connected to these controllers. From a software standpoint, SATA controllers present the same register interface as the PATA controllers. Hot plugging of SATA drives during the boot process is not supported by the BIOS and may result in undefined behavior.

6.2.8 Removable Media Drives

The BIOS supports removable media devices, including 1.44MB floppy removable media devices and optical devices such as a CD-ROM drive or DVD drive (read only). The BIOS supports booting from USB mass storage devices connected to the chassis USB port, such as a USB key device.

The BIOS supports USB 2.0 media storage devices that are backward compatible to the USB 1.1 specification.

6.2.9 Flash ROM


The BIOS supports a 1MB flash part. The flash ROM contains system initialization routines, setup utility, and runtime support routines. A 64KB block is available for storing OEM code (user binary) and custom logos.

6.3 BIOS POST

6.3.1 User Interface

During the system boot-up POST process, there are two types of consoles used for displaying the user interface: graphical or text based. Graphics consoles are in 640x480 mode; text consoles use 80x25 mode.

The console output is partitioned into three areas: the System Activity/State, Logo/Diagnostic, and Current Activity windows. The System Activity Window displays information about the current state of the system. The Logo/Diagnostic Window displays the OEM splash screen logo or a diagnostic boot screen. The Current Activity Window displays information about the currently executing portion of POST. This window provides an area for user prompts and status messages.

6.3.1.1 System Activity Window

The top row of the screen is reserved for the system state window. On a graphics console, the window is 640x48. On a text console, the window is 80x2.

The system state window may be in one of three forms, either an activity bar that scrolls while the system is busy, a progress bar that measures percent complete for the current task, or an attention required bar. The attention bar is useful for tasks that require user attention to continue.

6.3.1.2 Logo/Diagnostic Window

The middle portion of the screen is reserved for the Logo/Diagnostic Window. On a graphics console, the window is 640x384. On a text console, the window is 80x20.

The Logo/Diagnostic Window may be in one of two forms depending on whether Quiet Boot Mode is selected in the BIOS Setup. If selected, the BIOS displays a logo splash screen. If not, the BIOS displays a system summary and diagnostic screen in verbose mode. The default is to display the logo in Quiet Boot mode. If no logo is present in the flash ROM, or Quiet Boot mode is disabled in the system configuration, the summary and diagnostic screen is displayed. If the user presses the <Esc> key, the system transfers from the logo screen to the diagnostic screen.

6.3.1.3 Current Activity Window

The bottom portion of the screen is reserved for the Current Activity Window. On a graphics console, the window is 640x48. On a text console, the window is 80x2.

The Current Activity Window is used to display prompts for hot keys, and provide information on system status.

6.3.2 System Diagnostic Screen

The diagnostic screen is the console where boot information, options and detected hardware information are displayed.

6.3.2.1 Static Information Display

The Static Information Display area presents the following information:

- Copyright message
- BIOS ID
- Current processor configuration
- Installed physical memory size

6.3.3 Quiet Boot / OEM Splash Screen

The BIOS implements Quiet Boot to fulfill the Microsoft* *Hardware Design Guide 3.0* requirement that the BIOS provide minimal startup display during BIOS POST. System start-up must only draw the end user's attention in the event of errors or when there is a need for user action. By default, the system must be configured so that the local screen does not display memory counts, device status, etc. It must present a "clean" BIOS start-up. The only screen display allowed is the OEM splash screen and copyright notices.

The Quiet Boot process is controlled by a Setup Quiet-Boot option. If this option is set, the BIOS displays an activity indicator at the top of the screen and a logo splash screen in the middle section of the screen on the local console. The activity indicator measures POST progress and continues until the operating system gains control of the system. The splash screen covers up any diagnostic messages in the middle section of the screen. While the logo is being displayed on the local console, diagnostic messages are being displayed on the remote text consoles.

Quiet Boot may be disabled by clearing the Setup Quiet-Boot option or by the user pressing the <Esc> key while in Quiet Boot mode. If Quiet Boot is disabled, the BIOS displays diagnostic messages in place of the activity indicator and the splash screen.

With the use of an Intel supplied utility, the BIOS allows OEMs to override the standard Intel logo with one of their own design.

6.3.4 BIOS Boot Popup Menu

The BIOS Boot Specification (BBS) provides for a Boot popup menu. This popup menu is invoked by pressing the <Esc> key during POST. The BBS popup menu displays all available boot devices. The list order in the popup menu is not the same as the boot order in BIOS setup; its purpose is to list all the bootable devices from which the system can be booted.

Please select boot device:
1 st Floppy
Hard Drives
ATAPI CDROM
LAN PXE
EFI Boot Manager
Land↑ to move selection
Enter to select boot device
ESC to boot using defaults

Table 21. Sample BIOS Popup Menu

6.4 BIOS Setup Utility

The BIOS Setup utility is provided to perform system configuration changes and to display current settings and environment information.

The BIOS Setup utility stores configuration settings in system non-volatile storage. Changes affected by BIOS Setup will not take effect until the system is rebooted. The BIOS Setup Utility can be accessed during POST by using the F2 key.

6.4.1 Localization

The BIOS Setup utility uses the Unicode standard and is capable of displaying setup forms in English, French, Italian, German, and Spanish. The BIOS supports these languages for console strings as well.

6.4.2 Console Redirection

The BIOS Setup utility is functional via console redirection over various terminal standards emulation. This may limit some functionality for compatibility, e.g., usage of colors or some keys or key sequences or support of pointing devices.

6.4.3 Configuration Reset

Setting the Clear CMOS jumper produces a "reset system configuration" request. When a request is detected, the BIOS loads the default system configuration values during the next POST.

As an alternative to using the jumper to clear the CMOS, the user can clear CMOS without opening the chassis. Using the front panel, the user can hold the reset button for 4 seconds and then press the power button while continuing to hold in the reset button.

6.4.4 Keyboard Commands

While in the BIOS Setup utility, the Keyboard Command Bar supports the keys specified in the following table.

Key	Option	Description
Enter	Execute Command	The <enter> key is used to activate sub-menus, pick lists, or to select a sub-field. If a pick list is displayed, the Enter key will select the pick list highlighted item, and pass that selection in the parent menu.</enter>
ESC	Exit	The <esc> key provides a mechanism for backing out of any field. This key will undo the pressing of the <enter> key. When the <esc> key is pressed while editing any field or selecting features of a menu, the parent menu is re-entered.</esc></enter></esc>
		When the <esc> key is pressed in any sub-menu, the parent menu is re-entered. When the <esc> key is pressed in any major menu, the exit confirmation window is displayed and the user is asked whether changes can be discarded. If "No" is selected and the <enter> key is pressed, or if the <esc> key is pressed, the user is returned to where they were before <esc> was pressed without affecting any existing any settings. If "Yes" is selected and the <enter> key is pressed, setup is exited and the BIOS continues with POST.</enter></esc></esc></enter></esc></esc>
	Select Item	The up arrow is used to select the previous value in a pick list, or the previous options in a menu item's option list. The selected item must then be activated by pressing the <enter> key.</enter>
	Select Item	The down arrow is used to select the next value in a menu item's option list, or a value field's pick list. The selected item must then be activated by pressing the <enter> key.</enter>
	Select Menu	The left and right arrow keys are used to move between the major menu pages. The keys have no affect if a sub-menu or pick list is displayed.
Tab	Select Field	The <tab> key is used to move between fields. For example, <tab> can be used to move from hours to minutes in the time item in the main menu.</tab></tab>
-	Change Value	The minus key on the keypad is used to change the value of the current item to the previous value. This key scrolls through the values in the associated pick list without displaying the full list.
+	Change Value	The plus key on the keypad is used to change the value of the current menu item to the next value. This key scrolls through the values in the associated pick list without displaying the full list. On 106-key Japanese keyboards, the plus key has a different scan code than the plus key on the other keyboard, but will have the same effect.

 Table 22. BIOS Setup Keyboard Command Bar Options

Key	Option	Description		
F9	Setup Defaults	Pressing <f9> causes the following to appear:</f9>		
		Load Setup Defaults? [<u>OK]</u> [Cancel]		
		If "OK" is selected and the <enter> key is pressed, all setup fields are set to their default values. If "Cancel" is selected and the <enter> key is pressed, or if the <esc> key is pressed, the user is returned to where they were before <f9> was pressed, without affecting any existing field values.</f9></esc></enter></enter>		
F7	Discard Changes	Pressing <f7> causes the following message to appear:</f7>		
		Discard Changes? [<u>OK]</u> [Cancel]		
		If "OK" is selected and the <enter> key is pressed, all changes are not saved and setup is exited. If "Cancel" is selected and the <enter> key is pressed, or the <esc> key is pressed, the user is returned to where they were before <f7> was pressed, without affecting any existing values.</f7></esc></enter></enter>		
F10	Save Changes and Exit	Pressing <f10> causes the following message to appear:</f10>		
		Save configuration changes and exit setup? [OK] [Cancel]		
		If "OK" is selected and the <enter> key is pressed, all changes are saved and setup is exited. If "Cancel" is selected and the <enter> key is pressed, or the <esc> key is pressed, the user is returned to where they were before <f10> was pressed, without affecting any existing values.</f10></esc></enter></enter>		

6.4.5 Entering BIOS Setup

The BIOS Setup utility is accessed by pressing the <F2> key during POST.

6.4.5.1 Main Menu

The first screen displayed when entering the BIOS Setup Utility is the Main Menu selection screen. This screen displays the major menu selections available. The following tables describe the available options on the top level and lower level menus. Default values are in **bold** text.

Feature	Options	Help Text	Description
System Overview			
AMI BIOS			
Version	N/A	N/A	BIOS ID string (excluding the build time and date)
Build Date	N/A	N/A	BIOS build date
Processor		•	
Туре	N/A	N/A	Processor brand ID string
Speed	N/A	N/A	Calculated processor speed
Count	N/A	N/A	Detected number of physical processors

Table 23. BIOS Setup, Main Menu Options

Feature	Options	Help Text	Description		
System Memory	System Memory				
Size	N/A	N/A	Amount of physical memory detected		
Server Board MCH	Stepping	•			
Stepping	N/A	N/A	Display stepping revision of the Memory Controller.		
System Time	HH:MM:SS	Use [ENTER], [TAB] or [SHIFT- TAB] to select a field. Use [+] or [-] to configure system Time.	Configures the system time on a 24 hour clock. Default is 00:00:00		
System Date	DAY MM/DD/YYYY	Use [ENTER], [TAB] or [SHIFT- TAB] to select a field. Use [+] or [-] to configure system Date.	Configures the system date. Default is [Build Date]. Day of the week is automatically calculated.		
Language	French German Spanish Italian English	Select the current default language used by the BIOS.	Select the current default language used by BIOS.		

6.4.5.2 Advanced Menu

Table 24. BIOS Setup, Advanced Menu Options

Feature	Options	Help Text	Description
Advanced Settings			· · ·
WARNING: Setting wrong	g values in b	pelow sections may cause system to malfun	ction.
Processor Configuration	N/A	Configure processors.	Selects submenu.
IDE Configuration	N/A	Configure the IDE device(s).	Selects submenu.
Floppy Configuration	N/A	Configure the Floppy drive(s).	Selects submenu.
Super I/O Configuration	N/A	Configure the Super I/O Chipset.	Selects submenu.
USB Configuration	N/A	Configure the USB support.	Selects submenu.
PCI Configuration	N/A	Configure PCI devices.	Selects submenu.
Memory Configuration	N/A	Configure memory devices.	Selects submenu.
Preproduction Debug	N/A	This option provides engineering access to internal settings. It does not exist on production releases.	Selects submenu.

6.4.5.2.1 Processor Configuration Sub-menu

Feature	Options	Help Text	Description
Configure Advanced Proc	essor Settings		·
Manufacturer	Intel	N/A	Displays processor manufacturer string
Brand String	N/A	N/A	Displays processor brand ID string
Frequency	N/A	N/A	Displays the calculated processor speed
FSB Speed	N/A	N/A	Displays the processor front- side bus speed.
CPU 1			•
CPUID	N/A	N/A	Displays the CPUID of the processor.
Cache L1	N/A	N/A	Displays cache L1 size.
Cache L2	N/A	N/A	Displays cache L2 size.
Cache L3	N/A	N/A	Displays cache L3 size. Visible only if the processor contains an L3 cache.
CPU 2			
CPUID	N/A	N/A	Displays the CPUID of the processor.
Cache L1	N/A	N/A	Displays cache L1 size.
Cache L2	N/A	N/A	Displays cache L2 size.
Cache L3	N/A	N/A	Displays cache L3 size. Visible only if the processor contains an L3 cache.
	1		1
Max CPUID Value Limit	Disabled Enabled	This should be enabled for legacy operating systems that cannot support processors with extended CPUID functions.	
Execute Disable Bit	Enabled Disabled	When disabled, forces the XD feature flag to always return 0.	Note: This feature is hidden if the processor does not support it.
C1E Support	Enabled Disabled	This should be enabled in order to enable or disable the "Enhanced Halt State".	Note: This feature is hidden if the processor does not support it.
Hardware Prefetcher	Disabled Enabled	This option enables / disables the processor Hardware Prefetch Feature. Changing the default may affect performance depending on the application being used.	

Table 25. BIOS Setup, Processor Configuration Sub-menu Options

Feature	Options	Help Text	Description
Adjacent Cache Line Prefetch	Disabled Enabled	This option enables / disables the processor Adjacent Cache Line Prefetch Feature. Changing the default may affect performance depending on the application being used.	
Hyper-Threading Technology	Disabled Enabled	Enable Hyper-Threading Technology only if operating system supports it.	Controls Hyper-Threading state. Primarily used to support older Operating Systems that do not support Hyper Threading.
HT Technology in MPS	Disabled Enabled	Enabling adds secondary processor threads to the MPS Table for pre-ACPI OSes. Only enable this feature if the pre-ACPI operating system supports Hyper-Threading Technology.	
Intel SpeedStep® Technology	Auto Disabled	Select disabled for maximum CPU speed. Select Auto to allow the operating system to reduce power consumption.	Note: This feature is hidden if the processor does not support it.

6.4.5.2.2 IDE Configuration Sub-menu

Table 26, BIOS Setu	p IDE Configuration Menu Options

Feature	Options	Help Text	Description
IDE Configuration			
Onboard PATA Channels	Disabled Primary	Disabled: disables the integrated PATA Controller.	Controls state of integrated PATA controller.
	Secondary Both	Primary : enables only the Primary PATA Controller.	
	both	Secondary: enables only the Secondary PATA Controller.	
		Both : enables both PATA Controllers.	
Onboard SATA Channels	Disabled Enabled	Disabled : disables the integrated SATA Controller.	Controls state of integrated SATA controller.
		Enabled: enables the integrated SATA Controller.	
Configure SATA as RAID	Disabled Enabled	When enabled the SATA channels are reserved to be used as RAID.	
SATA Ports Definition	A1-3rd M/A2-4th M A1-4 th M/A2-3 rd M	Defines priority between SATA channels.	Default set the SATA Port0 to third IDE Master channel and Port1 to fourth IDE Master channel.
			Otherwise set SATA Port0 to fourth IDE Master channel and Port1 to third IDE Master channel.

Feature	Options	Help Text	Description
Mixed PATA / SATA	N/A	Lets you remove a PATA and replace it by SATA in a given channel. Only 1 channel can be SATA.	Selects submenu for configuring mixed PATA and SATA.
Primary IDE Master	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Primary IDE Slave	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Secondary IDE Master	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Secondary IDE Slave	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Third IDE Master	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Fourth IDE Master	N/A	While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of IDE devices.	Selects submenu with additional device details.
Hard Disk Write Protect	Disabled Enabled	Disable/Enable device write protection. This will be effective only if device is accessed through BIOS.	Primarily used to prevent unauthorized writes to hard drives.
IDE Detect Time Out (Sec)	0 5 10 15 20 25 30 35	Select the time out value for detecting ATA/ATAPI device(s).	Primarily used with older IDE devices with longer spin up times.
ATA(PI) 80-pin Cable Detection	Host & Device Host Device	Select the mechanism for detecting 80Pin ATA(PI) Cable.	The 80-pin cable is required for UDMA-66 and above. BIOS detects the cable by querying the host and/or device.

Feature	Options	Help Text	Description
Mixed PATA / SA	ATA		
First ATA Channel	PATA M-S SATA M-S	Configure this channel to PATA or SATA.	Defines the SATA device for this channel. If the Second
		PATA: Parallel ATA Primary channel.	ATA is assigned SATA, this
		SATA: Serial ATA.	option reverts to PATA.
Second ATA	PATA M-S	Configure this channel to PATA or	Defines the SATA device for
Channel	SATA M-S	SATA.	this channel. If the First ATA is
		PATA: Parallel ATA Primary channel.	assigned SATA, this option reverts to PATA.
		SATA: Serial ATA.	levens to PATA.
3rd & 4th ATA	A1-3 rd M/A2-4 th M	Configure this channel to PATA or	Display only. If the First ATA
Channels	A1-4 th M/A2-3 rd M	SATA.	or Second ATA is assigned
	None	PATA: Parallel ATA Primary channel.	SATA, this option reverts to None.
		SATA: Serial ATA.	None.

Table 27. Mixed PATA-SATA Configuration with only Primary PATA

Table 28. BIOS Setup, IDE Device Configuration Sub-menu Selections

Feature	Options	Help Text	Description		
Primary/Secondary/	Primary/Secondary/Third/Fourth IDE Master/Slave				
Device	N/A	N/A	Display detected device info		
Vendor	N/A	N/A.	Display IDE device vendor.		
Size	N/A	N/A	Display IDE DISK size.		
LBA Mode	N/A	N/A	Display LBA Mode		
Block Mode	N/A	N/A	Display Block Mode		
PIO Mode	N/A	N/A	Display PIO Mode		
Async DMA	N/A	N/A	Display Async DMA mode		
Ultra DMA	N/A	N/A	Display Ultra DMA mode.		
S.M.A.R.T.	N/A	N/A	Display S.M.A.R.T. support.		
Туре	Not Installed Auto CDROM	Select the type of device connected to the system.	The Auto setting is correct in most cases.		
	ARMD				
LBA/Large Mode	Disabled Auto	Disabled : Disables LBA Mode. Auto : Enabled LBA Mode if the device supports it and the device is not already formatted with LBA Mode disabled.	The Auto setting is correct in most cases.		
Block (Multi-Sector Transfer) Mode	Disabled Auto	 Disabled: The Data transfer from and to the device occurs one sector at a time. Auto: The data transfer from and to the device occurs multiple sectors at a time if the device supports it. 	The Auto setting is correct in most cases.		

Feature	Options	Help Text	Description
PIO Mode	Auto	Select PIO Mode.	The Auto setting is correct in most
	0		cases.
	1		
	2		
	3		
	4		
DMA Mode	Auto	Select DMA Mode.	The Auto setting is correct in most
	SWDMA0	Auto :Auto detected	cases.
	SWDMA1	SWDMA :SinglewordDMAn	
	SWDMA2	MWDMA :MultiwordDMAn	
	MWDMA0	UWDMA :UltraDMAn	
	MWDMA1		
	MWDMA2		
	UWDMA0		
	UWDMA1		
	UWDMA2		
	UWDMA3		
	UWDMA4		
	UWDMA5		
S.M.A.R.T.	Auto	Self-Monitoring, Analysis and	The Auto setting is correct in most
	Disabled	Reporting Technology.	cases.
	Enabled		
32Bit Data Transfer	Disabled	Enable/Disable 32-bit Data Transfer	
	Enabled		

6.4.5.2.3 Floppy Configuration Sub-menu

Table 29. BIOS Setup, Floppy Configuration Sub-menu Selections

Feature	Options	Help Text	Description
Floppy Configuration			
Floppy A	Disabled 720 KB 3 1/2" 1.44 MB 3 1/2" 2.88 MB 3 1/2"	Select the type of floppy drive connected to the system.	Intel no longer validates 720Kb and 2.88Mb drives.
Onboard Floppy Controller	Disabled Enabled	Allows BIOS to Enable or Disable Floppy Controller.	

6.4.5.2.4 Super I/O Configuration Sub-menu

Feature	Options	Help Text	Description		
Configure National Se	Configure National Semiconductor* 42x Super I/O Chipset				
Serial Port A Address	Disabled 3F8/IRQ4 2F8/IRQ3 3E8/IRQ4 2E8/IRQ3	Allows BIOS to Select Serial Port A Base Addresses.	Option that is used by other serial port is hidden to prevent conflicting settings.		
Serial Port B Address	Disabled 3F8/IRQ4 2F8/IRQ3 3E8/IRQ4 2E8/IRQ3	Allows BIOS to Select Serial Port B Base Addresses.	Option that is used by other serial port is hidden to prevent conflicting settings.		

Table 30. BIOS Setup, Super I/O Configuration Sub-menu

6.4.5.2.5 USB Configuration Sub-menu

Table 31. BIOS Setup, USB Configuration Sub-menu Selections

Feature	Options	Help Text	Description
USB Configuration	·	•	
USB Devices Enabled	N/A	N/A	List of USB devices detected by BIOS.
USB Function	Disabled Enabled	Enables USB HOST controllers.	When set to disabled, other USB options are grayed out.
Legacy USB Support	Disabled Keyboard only Auto Keyboard and Mouse	Enables support for legacy USB. AUTO option disables legacy support if no USB devices are connected. If disabled, USB Legacy Support will not be disabled until booting an operating system.	
Port 60/64 Emulation	Disabled Enabled	Enables I/O port 60/64h emulation support. This should be enabled for the complete USB keyboard legacy support for non-USB aware OSes.	
USB 2.0 Controller	Disabled Enabled	N/A	
USB 2.0 Controller mode	FullSpeed HiSpeed	Configures the USB 2.0 controller in HiSpeed (480Mbps) or FullSpeed (12Mbps).	

Feature	Options	Help Text	Description
USB Configuration			
USB Devices Enabled	N/A	N/A	List of USB devices detected by BIOS.
USB Function	Disabled Enabled	Enables USB HOST controllers.	When set to disabled, other USB options are grayed out.
Legacy USB Support	Disabled Keyboard only Auto Keyboard and Mouse	Enables support for legacy USB. AUTO option disables legacy support if no USB devices are connected. If disabled, USB Legacy Support will not be disabled until booting an operating system.	
Port 60/64 Emulation	Disabled Enabled	Enables I/O port 60/64h emulation support. This should be enabled for the complete USB keyboard legacy support for non-USB aware OSes.	
USB 2.0 Controller	Disabled Enabled	N/A	
USB 2.0 Controller mode	FullSpeed HiSpeed	Configures the USB 2.0 controller in HiSpeed (480Mbps) or FullSpeed (12Mbps).	
USB Mass Storage Device Configuration	N/A	Configure the USB Mass Storage Class Devices.	Selects submenu with USB Device enable. Hidden if there is no any USB Mass Storage.

6.4.5.2.5.1 USB Mass Storage Device Configuration Sub-menu

Table 32. BIOS Setup, USB Mass Storage Device Configuration Sub-menu Selections

Feature	Options	Help Text	Description
USB Mass Storage D	evice Configur	ation	
USB Mass Storage	10 Sec	Number of seconds POST waits for the USB	
Reset Delay	20 Sec	mass storage device after start unit command.	
	30 Sec		
	40 Sec		
Device #1	N/A	N/A	Only displayed if a device is detected, includes a DeviceID string returned by the USB device.
Emulation Type	Auto	If Auto, USB devices less than 530MB will be	
	Floppy	emulated as floppy and remaining as hard drive. Forced FDD option can be used to force a HDD	
	Forced FDD	formatted drive to boot as FDD (Ex. ZIP* drive).	
	Hard Disk		
	CDROM		

Feature	Options	Help Text	Description
Device #n	N/A	N/A	Only displayed if a device is detected, includes a DeviceID string returned by the USB device.
Emulation Type	Auto Floppy Forced FDD Hard Disk CDROM	If Auto, USB devices less than 530MB will be emulated as floppy and remaining as hard drive. Forced FDD option can be used to force a HDD formatted drive to boot as FDD (Ex. ZIP drive).	

6.4.5.2.6 PCI Configuration Sub-menu

This sub-menu provides control over PCI devices and their option ROMs. If the BIOS is reporting POST error 146, use this menu to disable option ROMs that are not required to boot the system.

Table 33. BIOS Setup, PCI Configuration Sub-menu Selections

Feature	Options	Help Text	Description
PCI Configuration			
Onboard Video	Disabled	Enable/Disable on board VGA	
	Enabled	Controller	
Dual Monitor Video	Disabled	Select which graphics controller to use	Grayed out if Onboard
	Enabled	as the primary boot device. Enabled selects the on board device.	Video is set to "Disabled."
Onboard NIC 1 (Left)	Disabled	Enable/Disable on-board NIC 1.	
	Enabled		
Onboard NIC 1 ROM	Disabled	Enable/Disable on-board NIC 1 ROM.	Grayed out if device is
	Enabled		disabled.
Onboard NIC 2 (Right)	Disabled	Enable/Disable on-board NIC 2.	
	Enabled		
Onboard NIC 2 ROM	Disabled	Enable/Disable on-board NIC 2 ROM.	Grayed out if device is
	Enabled		disabled.
Slot 1 Option ROM	Disabled	High Profile PCI-X 64/66	
	Enabled		
Slot 2 Option ROM	Disabled	High Profile PCI-X 64/66	
	Enabled		
Slot 3 Option ROM	Disabled	High Profile PCI 32/33	
	Enabled		
Slot 4 Option ROM	Disabled	High Profile PCI Express X4	
	Enabled		
Slot 5 Option ROM	Disabled	High Profile PCI 32/33	
	Enabled		
Slot 6 Option ROM	Disabled	High profile PCI Express X16	Not visible on the EP SKU
	Enabled		

6.4.5.2.7 *Memory Configuration Sub-menu*

This sub-menu provides information about the DIMMs detected by the BIOS. The DIMM number is printed on the server boards next to each device.

Feature	Options	Help Text	Description
System Memory Settings			
DIMM 1A	Installed		Informational display.
	Not Installed		
	Disabled		
	Spare		
DIMM 1B	Installed		Informational display.
	Not Installed		
	Disabled		
	Spare		
DIMM 2A	Installed		Informational display.
	Not Installed		
	Disabled		
	Spare		
DIMM 2B	Installed		Informational display.
	Not Installed		
	Disabled		
	Spare		
Extended Memory Test	1 MB	Settings for extended memory test	
	1 KB		
	Every Location		
	Disabled		
Memory Retest	Disabled	If "Enabled", BIOS will activate and	
	Enabled	retest all DIMMs on the next system boot.	
		This option will automactically	
		reset to "Disabled" on the next	
		system boot.	
Memory Remap Feature	Disabled	Enable: Allow remapping of	
	Enabled	overlapped PCI memory above the total physical memory.	
		Disable: Do not allow remapping of	
		memory.	
Memory Sparing	Disabled	Disabled provides the most	Grayed out if the installed
	Spare	memory space. Sparing reserves	DIMM configuration does
		memory to replace failures.	not support it.

Table 34, BIOS Setup	Memory Configuration	N Sub-menu Selections
	, memory conniguration	

6.4.5.3 Boot Menu

Table 35. BIOS Setup, Boot Menu Selections

Feature	Options	Help Text	Description
Boot Settings		•	
Boot Settings Configuration	N/A	Configure settings during system boot.	Selects submenu.
Boot Device Priority	N/A	Specifies the boot device priority sequence.	Selects submenu.
Hard Disk Drives	N/A	Specifies the boot device priority sequence from available hard drives.	Selects submenu.
Removable Drives	N/A	Specifies the boot device priority sequence from available removable drives.	Selects submenu.
CD/DVD Drives	N/A	Specifies the boot device priority sequence from available CD/DVD drives.	Selects submenu.

6.4.5.3.1 Boot Settings Configuration Sub-menu Selections

Table 36. BIOS Setup, Boot Settings Configuration Sub-menu Selections

Feature	Options	Help Text	Description
Boot Settings Configuration			
Quick Boot	Disabled	Allows BIOS to skip certain tests while booting. This	
	Enabled	will decrease the time needed to boot the system.	
Quiet Boot	Disabled	Disabled: Displays normal POST messages.	
	Enabled	Enabled: Displays OEM Logo instead of POST messages.	
Bootup Num-Lock	Off	Select power-on state for Numlock.	
	On		
PS/2 Mouse Support	Disabled	Select support for PS/2 mouse.	
	Enabled		
	Auto		
POST Error Pause	Disabled	If enabled, the system will wait for user intervention	
	Enabled	on critical POST errors. If disabled, the system will boot with no intervention, if possible.	
Hit 'F2' Message Display	Disabled	Displays "Press 'F2' to run Setup" in POST.	
	Enabled		
Scan User Flash Area	Disabled	Allows BIOS to scan the Flash ROM for user	
	Enabled	binaries.	

6.4.5.3.2 Boot Device Priority Sub-menu Selections

Feature	Options	Help Text	Description	
Boot Device Priority				
1st Boot Device	Varies	Specifies the boot sequence from the available devices.	Number of entries will vary based on system configuration.	
		A device enclosed in parenthesis has been disabled in the corresponding type menu.		
nth Boot Device	Varies	Specifies the boot sequence from the available devices.		
		A device enclosed in parenthesis has been disabled in the corresponding type menu.		

Table 37. BIOS Setup, Boot Device Priority Sub-menu Selections

6.4.5.3.2.1 Hard Disk Drive Sub-menu Selections

Table 38. BIOS Setup, Hard Disk Drive Sub-Menu Selections

Feature	Options	Help Text	Description
Hard Disk I	Drives		
1st Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.
nth Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.

6.4.5.3.2.2 Removable Drive Sub-menu Selections

Table 39. BIOS Setup, Removable Drives Sub-menu Selections

Feature	Options	Help Text	Description
Removable	Drives		
1st Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.
nth Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.

6.4.5.3.2.3 ATAPI CDROM drives sub-menu selections

Feature	Options	Help Text	Description	
CD/DVD Drives				
1st Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.	
nth Drive	Varies	Specifies the boot sequence from the available devices.	Varies based on system configuration.	

Table 40. BIOS Setup, CD/DVD Drives Sub-menu Selections

6.4.5.4 Security Menu

Feature	Options	Help Text	Description	
Security Settings		· · · ·	·	
Administrator Password is	N/A	Install / Not installed	Informational display.	
User Password is	N/A	Install / Not installed	Informational display.	
Set Admin Password	N/A	Set or clear Admin password	Pressing enter twice will clear the password. This option is grayed out when entering setup with a user password.	
Set User Password	N/A	Set or clear User password	Pressing enter twice will clear the password.	
User Access Level	No Access View Only	No Access : prevents User access to the Setup Utility.	This node is grayed out and becomes active only when Admin	
	Limited	View Only: allows access to the	password is set.	
	Full Access	Setup Utility but the fields can not be changed.		
		Limited : allows only limited fields to be changed such as Date and Time.		
		Full Access: allows any field to be changed.		
Clear User Password	N/A	Immediately clears the user password.	Admin uses this option to clear User password (Admin password is used to enter setup is required).	
			This option is not available to change if the Administrator password is not configured.	
Fixed disk boot sector protection	Disabled	Enable/Disable Boot Sector Virus		
	Enabled	Protection.		
Password On Boot	Disabled Enabled	If enabled, requires password entry before boot.	This option is not available to change if the User password is not configured.	
NMI Control	Disabled	Enable / disable NMI control for		
	Enabled	the front panel NMI button.		

6.4.5.5 Server Menu

Feature	Options	Help Text	Description
System management	N/A	N/A	Selects submenu.
Serial Console Features	N/A	N/A	Selects submenu.
Event Log configuration	N/A	Configures event logging.	Selects submenu.
Assert NMI on SERR	Disabled	If enabled, NMI is generated on	
	Enabled	SERR and logged.	
Assert NMI on PERR	Disabled	If enabled, NMI is generated.	Grayed out if "NMI on SERR" is disabled.
	Enabled	SERR option needs to be enabled to activate this option.	
Resume on AC Power Loss	Stays Off	Determines the mode of	
	Power On	operation if a power loss occurs.	
		Stays Off: The system will remain off once power is restored.	
		Power On : Boots the system after power is restored.	
Chassis Type	Intel® Entry Server Chassis SC5275-E	Select the chassis to control the speed of system fans.	
	Intel® Entry Server Chassis SC5295-E		
	Intel® Server Chassis SC5300		
	Other		

Table 42. BIOS Setup, Server Menu Selections

6.4.5.5.1 System Management Sub-menu Selections

Table 43. BIOS Setup, System Management Sub-menu Selections

Feature	Options	Help Text	Description
System Management			
Server Board Part Number	N/A	N/A	Field content varies
Server Board Serial Number	N/A	N/A	Field content varies
NIC 1 MAC Address	N/A	N/A	Field content varies
NIC 2 MAC Address	N/A	N/A	Field content varies (Hidden if NIC2 is not available on the server board)
System Part Number	N/A	N/A	Field content varies
System Serial Number	N/A	N/A	Field content varies
Chassis Part Number	N/A	N/A	Field content varies
Chassis Serial Number	N/A	N/A	Field content varies
BIOS Version	N/A	N/A	BIOS ID string (excluding the build time and date).

6.4.5.5.2 Serial Console Features Sub-menu Selections

Feature	Options	Help Text	Description		
Serial Console Feature	Serial Console Features				
BIOS Redirection Port	Disabled Serial A Serial B	If enabled, BIOS uses the specified serial port to redirect the console to a remote ANSI terminal. Enabling this option disables Quiet Boot.			
		Key used in console:			
		ESC+'0':F10			
		ESC+'1''9':F1F9			
		ESC+'{':Refresh Screen			
Baud Rate	9600	N/A			
	19.2K				
	38.4K				
	57.6K				
	115.2K				
Flow Control	No Flow Control CTS/RTS	If enabled, it will use the Flow control selected.			
	XON/XOFF	CTS/RTS: Hardware			
	CTS/RTS + CD	XON/XOFF: Software			
		CTS/RTS + CD : Hardware + Carrier Detect for modem use.			
Terminal Type	PC-ANSI VT100+	VT100+ selection only works if English is the selected language.			
	VT-UTF8	VT-UTF8 uses Unicode.			
		PC-ANSI is the standard PC-type terminal.			
ACPI Redirection port	Disabled	Enable / Disable the ACPI OS Headless			
	Serial A	Console Redirection.			
	Serial B				

Table 44. BIOS Setup, Serial Console Features Sub-menu Selections

6.4.5.5.3 Event Log Configuration Sub-menu Selections

Feature	Options	Help Text	Description		
Event Log Configuratio	Event Log Configuration				
View Event Log		View all unread events on the Event Log.			
Clear Event Log		Discard all events in the Event Log.			
BIOS Event Logging	Disabled Enabled	Select enabled to allow logging of BIOS events.	Enables BIOS to log events to the SEL. This option controls BIOS events only.		
Critical Event Logging	Disabled Enabled	If enabled, BIOS will detect and log events for system critical errors. Critical errors are fatal to system operation. These errors include PERR, SERR, ECC.	Enable SMM handlers to detect and log events to SEL.		
ECC Event Logging	Disabled Enabled	Enables or Disables ECC Event Logging.	Grayed out if "Critical Event Logging" option is disabled.		
PCI Error Logging	Disabled Enabled	Enables or Disables PCI Error Logging.	Grayed out if "Critical Event Logging" option is disabled.		
FSB Error Logging	Disabled Enabled	Enables or Disables Front-Side Bus Error Logging.	Grayed out if "Critical Event Logging" option is disabled.		
Hublink Error Logging	Disabled Enabled	Enables or Disables Hublink Error Logging.	Grayed out if "Critical Event Logging" option is disabled.		

Table 45. BIOS Setup, Event Log Configuration Sub-menu Selections

6.4.5.6 Exit Menu

Table 46. BIOS Setup, I	Exit Menu Selections
-------------------------	----------------------

Feature	Options	Help Text
Exit Options		
Save Changes	N/A	Exit system setup after saving the changes.
and Exit		The <f10> key can be used for this operation.</f10>
Discard	N/A	Exit system setup without saving any changes.
Changes and Exit		The <esc> key can be used for this operation.</esc>
Discard	N/A	Discards changes done so far to any of the setup questions.
Changes		The <f7> key can be used for this operation.</f7>
Load Setup	N/A	Load Setup Default values for all the setup questions.
Defaults		The <f9> key can be used for this operation.</f9>
Load Custom Defaults	N/A	Load custom defaults
Save Custom Defaults	N/A	Save custom defaults

6.5 Security

The BIOS provides a number of security features. This section describes the security features and operating model.

The BIOS uses passwords to prevent unauthorized tampering with the server. Once secure mode is entered, access to the server is allowed only after the correct password(s) has been entered. Both user and administrator passwords are supported by the BIOS. To set a user password, an administrator password must be entered in BIOS setup. The maximum length of the password is seven alphanumeric characters (a-z, A-Z, 0-9). Only alphanumeric characters are valid.

Once set, a password can be cleared by entering the password change mode and pressing the <Enter> key twice without inputting a string. All setup fields can be modified when entering the Administrator password. The "user access level" setting in the BIOS setup Security menu controls the user access level. The administrator can choose "No Access" to block the user from accessing any setup features. "Limited Access" will allow only the date/time fields and the user password to be changed. "View Only" allows the user to enter BIOS setup, but not change any settings.

The Administrator has control over all fields in the setup, including the ability to clear the user password.

If the user enters three wrong passwords in a row during the boot sequence, the system will be placed into a halt state. This feature makes it difficult to break the password by "trial and error."

6.5.1 Operating Model

The following table summarizes the operation of security features supported by the BIOS.

Mode	Entry Method/ Event	Entry Criteria	Behavior	Exit Criteria	After Exit
Password on boot	Power On/Reset	User Password set and password on boot enabled and Secure Boot Disabled in setup	System halts for user Password before scanning option ROMs. The system is not in secure mode. No mouse or keyboard input is accepted except the password.	User Password Admin Password	PS/2 keyboard and PS/2 mouse inputs are accepted. The system boots normally. Boot sequence is determined by setup options.
Fixed disk boot sector	Power On/Reset	Set feature to Write Protect in Setup	Will write protect the master boot record of the IDE hard drives only if the system boots from a floppy. The BIOS will also write protect the boot sector of the drive C: if it is an IDE drive.	Set feature to Normal in Setup	Hard drive will behave normally.

 Table 47. Security Features Operating Model

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS BIOS

6.5.2 Administrator/User Passwords and F2 Setup Usage Model

Notes:

- Visible = option string is active and changeable
- Hidden = option string is inactive and not visible
- Shaded = option string is gray-out and view-only

There are four possible password scenarios:

Scenario #1

Administrator Password Is	Not Installed	
User Password Is	Not Installed	
Login Type: N/A		
Set Admin Password (visible	e)	
Set User Password (visible)		
User Access Level [Full]** (s	shaded)	
Clear User Password (shade	ed)	

** User Access Level option will be Full and Shaded as long as the administrator password is not installed.

Scenario #2

Administrator Password Is	Installed
User Password Is	Installed
Login Type: Admin	
Set Admin Password (visible	e)
Set User Password (visible)	
User Access Level [(show c	urrent status of user access level)] (visible)
Clear User Password (visible	e)
Login Type: User	
Set Admin Password (shade	ed)
Set User Password (visible)	
User Access Level [(show c	urrent status of user access level)] (shaded)
Clear User Password (shade	ed)

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS BIOS

Scenario #3

r		
Administrator Password Is	Installed	
User Password Is	Not Installed	
Login Type: Supervisor		
Set Admin Password (visible	9)	
Set User Password (visible)		
User Access Level [(show c	urrent status of user access level)] (visible)	
Clear User Password (shade	ed)	
Login Type: <enter></enter>		
Set Admin Password (shade	ed)	
Set User Password (visible)		
User Access Level [(show current status of user access level)] (shaded)		
Clear User Password (shade	ed)	

Scenario #4

Administrator Password Is	Not Installed
User Password Is	Installed
Login Type: Admin	
Note: The user cannot ente	r setup via the <enter> key (Not allowed in neither admin or user mode).</enter>
Login Type: User	
Set Admin Password (shade	ed)
Set User Password (visible)	
User Access Level [(show c	surrent status of user access level)] (shaded)
Clear User Password (shad	ed)

6.5.3 Password Clear Jumper

If the user or administrator password(s) is lost or forgotten, moving the password clear jumper to the clear position will clear both passwords. The BIOS determines if the password clear jumper is in the clear position during BIOS POST and clears any passwords if present. The password clear jumper must be restored to its original position before a new password(s) can be set.

6.6 Flash Architecture and Flash Update Utility

The flash ROM contains system initialization routines, the BIOS Setup Utility, and runtime support routines. The exact layout is subject to change, as determined by Intel. A 64KB user block is available for user ROM code or custom logos. The flash ROM also contains initialization code in compressed form for onboard peripherals, such as NIC and video controllers. It also contains support for the rolling single-boot BIOS update feature.

The complete ROM is visible, starting at physical address 4 GB minus the size of the flash ROM device.

A 16KB parameter block in the flash ROM is dedicated to storing configuration data that controls the system configuration (ESCD). Application software must use standard APIs to access these areas; application software cannot access the data directly.

6.6.1 Flash Update Utility

Server platforms support a DOS-based firmware update utility. This utility loads a fresh copy of the BIOS into the flash ROM.

The BIOS update may affect the following items:

- The system BIOS, including the recovery code, setup utility and strings
- Embedded device option ROMs
- OEM binary area
- Microcode updates

6.6.1.1 Flash BIOS

The BIOS flash utility is compatible with EFI, DOS, Microsoft* Windows* 2000 / 2003 / XP, and Linux operating environments.

An afuXXX AMI Firmware Update utility (such as afudos, afuwin, afulnx, or afuefi) is required for a BIOS update.

The format and usage of the afuXXX utility is as follows:

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS BIOS

6.6.1.1.1 Updating the BIOS from DOS

- 1. Make sure that the flash bootable disk contains both the ROM image and the afudos update utility.
- 2. Boot to DOS.
- 3. Run the afudos utility as follows:

```
AFUDOS /i<ROM filename> [/n][/p[b][c]]
```

6.6.1.1.2 Updating the BIOS from Microsoft* Windows* 2000/2003/XP

- 1. Make sure that the flash disk contains the ROM image, AMIFLDRV.SYS and AFUWIN.EXE.
- 2. Boot to Microsoft Windows 2000 / 2003 / XP.
- 3. Run the AFUWIN utility as follows:

```
AFUWIN /i<ROM filename> [/n][/p[b][c]]
```

6.6.1.1.3 Updating the BIOS from Linux

- 1. Make sure that the flash disk contains the ROM image and the AFULNX utility.
- 2. Boot to Linux and set up a floppy device.
- 3. Run the AFULNX utility as follows:

```
./afulnx /i<ROM filename> [/n][/p[b][c]]
```

6.6.1.2 Recovery Mode

Three conditions can cause the system to enter recovery mode:

- Pressing a hot key: (<Ctrl>+<Home>)
- Setting the recovery jumper (J17, labeled RECVR BOOT) to pins 1-2
- Damaging the ROM image, which will cause the system to enter recovery and update the system ROM without the boot block.

6.6.1.2.1 BIOS Recovery

The BIOS has a ROM image size of 1MB.

The BIOS is made up of a boot block recovery section, a main BIOS section, an OEM logo/user binary section, and an NVRAM section. The NVRAM section and boot block will be preserved during invocation of the recovery. All the other sections of the BIOS will be updated during the recovery process. If an OEM wishes to preserve the OEM section across an update, it is recommended that the OEM modify the provided AMIBOOT.ROM file with the user binary or OEM logo tools before performing the recovery.

A BIOS recovery can be accomplished from one of the following devices: a standard 1.44 or 2.88 MB floppy drive, a USB Disk-On-Key, an ATAPI CD-ROM/DVD, an ATAPI ZIP drive, or a LS-120/LS-240 removable drive.

The recovery mode procedure is as follows:

- 1. Insert or plug-in the recovery medium that includes the file AMIBOOT. ROM BIOS image file.
- 2. Power on the server. When progress code E9 is displayed on port 80h, the system will detect the recovery media. If the AMIBOOT.ROM image file is missing, the system will cycle through progress codes F1 to EF.
- 3. When F3 is displayed on port 80h, the system will read the BIOS image file.
- 4. When recovery mode is complete, the system will halt and can be powered off.

Note: To perform a recovery with the CMOS destroyed and the NVRAM preserved, the <Ctrl>+<Home> hot-key can be used.

6.6.2 Update OEM Logo

The OEM logo can be changed in the BIOS for DOS and Microsoft* Windows* 2000 / 2003 / XP.

A utility tool is used to change the OEM logo in ROM. The OEM logo can then be updated by flashing the ROM.

6.6.2.1 Changing the OEM Logo for DOS

- 1. Boot to DOS.
- 2. Download OEMLOGOD.exe, Rombuild.exe, RomFile, and NewOEMlogoImage to the hard drive.
- 3. Run the following command:

```
OEMLogoD <RomFileName> <NewOEMImageFileName> [/F or /FN or /N]
```

6.6.2.2 Changing the OEM Logo for Microsoft* Windows* 2000 / 2003 / XP

- 1. Boot to Microsoft Windows 2000 / 2003 / XP.
- 2. Download OEMLOGO.exe, Rombuild.exe, RomFile, and NewOEMlogoImage to the hard drive.
- 3. Run the command:

```
OEMLogo <RomFileName> <NewOEMImageFileName> [/F or /FN or /N]
Or
```

```
OEMLogo <RomFileName> [/D]
```

Where

- /F forces replacement of the OEM logo even if the logo formats do not match.
- /N inserts the 16-color BMP without converting it to the default AMI format.
- /FN forces replacement of the OEM logo without converting a 16-color BMP to the default AMI format.
- /D deletes the logo module from the ROM file.

The system supports the bitmap format 256-color BMP, 640x480

Note: The Rombuild.exe file is NOT the same for DOS and Microsoft Windows 2000 / 2003 / XP. The user must use the correct Rombuild.exe file for the operating system.

7. Hardware and System Management

7.1 Hardware Management

The Intel Server Boards SE7320EP2 and SE7525RP2 have an integrated National Semiconductor* Heceta 6 (LM96000) controller that is responsible for hardware monitoring. The Heceta 6 controller provides basic server hardware monitoring which alerts a system administrator if a hardware problem occurs on the board. The National Semiconductor PC8374L Super I/O has implemented some fan speed control/monitor pins. Below is a table of monitored headers and sensors on the board.

Item		Description		
Voltage	CPU1_VCCP	Monitors processor 1 voltage	Heceta 6	
	MEM_CORE	Monitors +1.8V for DDR2 power voltage	Heceta 6	
	12V	Monitors +12Vin for system +12V supply	Heceta 6	
	P3V3	Monitors +3.3V	Heceta 6	
	P5V	Monitors +5V	Heceta 6	
Temperature	CPU1	Monitors processor 1 temperature	Heceta 6	
	CPU2	Monitors processor 2 temperature	Heceta 6	
	System	Monitors system ambient temperature	LM41	

Table 48. Monitored Components

7.1.1 Fan Speed Control Diagram

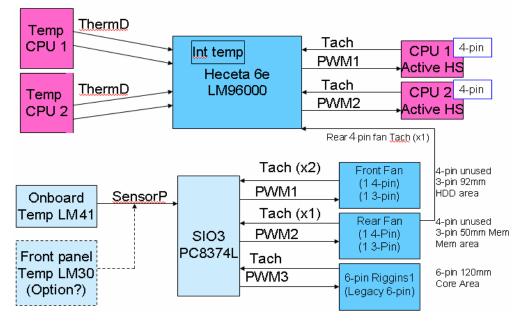


Figure 11. Fan Speed Control Block Diagram

7.1.2 Chassis Intrusion

The Server Boards SE7320EP2 and SE7525RP2 support a chassis security feature that detects if the chassis cover is removed. For the chassis intrusion circuit to function, the chassis' power supply must be connected to AC power. The security feature uses a mechanical switch on the chassis that attaches to the chassis intrusion connector. When the chassis cover is removed the mechanical switch is in the closed position.

7.2 Intel® Server Management (ISM) Software Support

The Server Boards SE7320EP2 and SE7525RP2 have been designed to work with the Intel® Server Management (ISM) software version 8.x. For additional information on this software and its interaction with the server boards, see the *Intel Server Management 8.x Technical Product Specification*.

7.3 Additional System Management Components

7.3.1 Console Redirection

The BIOS supports console redirection, redirection of both video and keyboard input via a serial link (Serial A or Serial B). When console redirection is enabled, the local (host server) keyboard input and video output are passed to both the local keyboard and video connections, and through the serial link to the remote console. Keyboard input from both sources is valid and video is displayed to both outputs. As an option, the system can be operated without a keyboard or monitor attached to the host system and can run entirely from the remote console. Setup and any other text-based utilities can be accessed through console redirection.

The BIOS maps the setup values for serial console redirection to the ACPI SPCR tables.

BIOS console redirection terminates before giving control to an operating system. The operating system is responsible for continuing console redirection. BIOS console redirection is a text-based console. Therefore graphical data, such as a logo, is not redirected.

BIOS Console Redirection accomplishes the implementation of VT-UTF8 console redirection support in Intel server BIOS products. This implementation meets the functional requirements set forth in the Microsoft Whistler WHQL requirements for headless operation of servers. It maintains a necessary degree of backward compatibility with existing Intel server BIOS products, and it meets the architectural requirements of Intel server products in development.

The server BIOS has a "console" that interacts with a display and keyboard combination. The BIOS instantiates sources and sinks of input/output data in the form of BIOS Setup screens, Boot Manager screens, Power On Self Test (POST) informational messages and hotkey/escape sequence action requests.

7.3.2 Wired For Management (WFM)

Wired for Management (WMF) is an industry-wide initiative that increases the overall manageability and reduces the total cost of ownership. WFM allows a server to be managed over a network. The system BIOS supports the SMBIOS to help higher-level instrumentation software meet the WFM requirements. Higher-level software can use the information provided by the SMBIOS to instrument the desktop management interface (DMI) that are specified in the WFM specification.

7.3.3 Vital Product Data (VPD)

Vital Product Data (VDP) is product-specific data used for product and product component identification. It is stored in non-volatile memory and is preserved through power cycles. The VPD contains information such as the product serial number, model number, and manufacturer identification.

The VPD is programmed during manufacturing. A user can update certain user-specific VPD information by using the Flash Update utility. The BIOS uses this data and displays it in SMBIOS structures and in BIOS Setup.

Utilities are available to read/write VPD data.

7.3.4 PXE BIOS Support

The BIOS supports PXE-compliant implementations that:

- Locate and configure all PXE-capable boot devices (UNDI Option ROMs) in the system, both built-in and add-ins.
- Supply a PXE according to the specification if the system includes a built-in network device.
- Meet the following specifications: System Management BIOS (SMBIOS) Reference Specification v2.2 or later. The requirements defined in Sections 3 and 4 of the BIOS Boot Specification (BBS) v1.01or later, to support network adapters as boot devices. Also, supply a valid UUID and Wake-up Source value for the system via the SMBIOS structure table.

7.3.5 System Management BIOS (SMBIOS)

The BIOS provides support for the SMBIOS specification to create a standardized interface for manageable attributes that are expected to be supported by DMI-enabled computer systems. The BIOS provides this interface via data structures through which the system attributes are reported. Using SMBIOS, a system administrator can obtain the types, capabilities, operational status, installation date and other information about the system components.

8. Sleep Support

The BIOS supports forced boots from: PXE, HDD, FDD, and CD.

On each boot, the BIOS determines what changes to boot options have been set by invoking the Get System Boot Options command, takes appropriate action, and clears these settings.

8.1 Advanced Configuration and Power Interface (ACPI)

Both server boards are ACPI 2.0c compliant. The primary role of the BIOS is to provide ACPI tables. During POST, the BIOS creates the ACPI tables and locates them in extended memory (above 1MB). The location of these tables is conveyed to the ACPI-aware operating system through a series of tables located throughout memory. The format and location of these tables is documented in the publicly available ACPI specification.

To prevent conflicts with a non-ACPI-aware operating system, the memory used for the ACPI tables is marked as "reserved" in the INT 15h, function E820h.

As described in the ACPI specification, an ACPI-aware operating system generates an SMI to request that the system be switched into ACPI mode. The BIOS responds by setting up all system (chipset) specific configuration required to support ACPI, and sets the SCI_EN bit as defined by the ACPI specification. The system automatically returns to legacy mode on hard reset or power-on reset.

There are three runtime components to ACPI:

- ACPI Tables: These tables describe the interfaces to the hardware. ACPI tables can make use of a p-code type of language, the interpretation of which is performed by the operating system. The operating system contains and uses an ACPI Machine Language (AML) interpreter that executes procedures encoded in AML and stored in the ACPI tables. AML is a compact, tokenized, abstract machine language. The tables contain information about power management capabilities of the system, APICs, and bus structure. The tables also describe control methods that operating systems can use to change PCI interrupt routing, control legacy devices in Super I/O, find out the cause of wake events, and handle PCI hot plugging, if applicable.
- ACPI Registers: The constrained part of the hardware interface, described (at least in location) by the ACPI tables.
- ACPI BIOS: This is the code that boots the machine and implements interfaces for sleep, wake, and some restart operations. The ACPI Description Tables are also provided by the ACPI BIOS.

The BIOS supports S0, S1, S4, and S5 states. S1 and S4 are considered sleep states. The ACPI specification defines the sleep states and requires the system to support at least one of them.

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Sleep Support

While entering the S4 state, the operating system saves the context to the disk and most of the system is powered off. The system can wake on a power button press, or a signal received from a wake-on-LAN compliant LAN card (or onboard LAN), modem ring, PCI power management interrupt, or RTC alarm. The BIOS performs complete POST upon wake up from S4, and initializes the platform.

The system can wake from the S1 state using a PS/2 keyboard, mouse, or USB device, in addition to the sources described above.

The wake-up sources are enabled by the ACPI operating systems with cooperation from the drivers; the BIOS has no direct control over the wakeup sources when an ACPI operating system is loaded. The role of the BIOS is limited to describing the wakeup sources to the operating system and controlling secondary control/status bits via the DSDT table.

The S5 state is equivalent to operating system shutdown. No system context is saved.

For information about supporting Hot-Plug PCI via ACPI methods, refer to the Section on Hot Plug PCI BIOS support.

8.2 Sleep and Wake Functionality

The BIOS supports a front panel power button. It does not directly control power on the power supply.

The platform supports a front panel reset button. The BIOS does not affect the behavior of the reset button.

The BIOS supports a front panel NMI button. The NMI button may not be provided on all front panel designs. The NMI is captured by the BIOS during Boot Services time or the operating system during Runtime. The BIOS will halt the system upon detection of the NMI.

8.2.1 Power Switch Off to On

The chipset may be configured to generate wakeup events for several different system events: Wake on LAN, PCI Power Management Interrupt (PMI), and Real Time Clock Alarm are examples of these events. The operating system will program the wake sources before shutdown. Since the processors are not executing, the BIOS does not participate in this sequence.

8.2.2 On to Off (operating system absent)

The SCI interrupt is masked. The firmware polls the power button status bit in the ACPI hardware registers and sets the state of the machine in the chipset to the OFF state.

8.2.3 On to Off (operating system present)

If an operating system is loaded, the power button switch generates a request (via SCI) to the operating system to shutdown the system. The operating system retains control of the system and operating system policy determines into which sleep state the system transitions.

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Sleep Support

8.2.4 On to Sleep (ACPI)

If an operating system is loaded, the operating system retains control of the system and operating system policy determines into which sleep state the system transitions.

8.2.5 Sleep to On (ACPI)

If an operating system is loaded, a detected wake event will transition the system to the "On" state. The operating system retains control of the system and operating system policy determines from which sleep state and sleep sources the system can wake.

8.2.6 System Sleep States

The platform supports the following ACPI System Sleep States:

- ACPI S0 (working) state
- ACPI S1 (sleep) state
- ACPI S4 (suspend to disk) state
- ACPI S5 (soft-off) state

The platform supports the following wake sources in an ACPI environment. As noted above, the operating system controls the enabling and disabling of these wake sources.

- Devices that are connected to all USB ports, such as USB mice and keyboards can wake the system up from the S1 sleep state.
- PS/2 keyboards and mice can wake up the system from the S1 sleep state.
- Both serial ports can be configured to wake up the system from the S1 sleep state.
- PCI cards, such as LAN cards, can wake up the system from the S1 or S4 sleep state. Note that the PCI card must have the necessary hardware for this to work.
- As required by the ACPI Specification, the power button can always wake up the system from the S1 or S4 state.
- If an ACPI operating system is loaded, the following can cause the system to wake: the PME, RTC, or Wake-On-LAN.

Wake Event	Supported via ACPI (by sleep state)	Supported Via Legacy Wake
Power Button	Always wakes system.	Always wakes system
Ring indicate from Serial A	Wakes from S1 and S4.	No
Ring indicate from Serial B	Wakes from S1 and S4. If Serial-B (COM2) is used for Emergency Management Port, Serial-B wakeup is disabled.	No
PME from PCI cards	Wakes from S1 and S4.	No
RTC Alarm	Wakes from S1. Always wakes the system up from S4.	No
Mouse	Wakes from S1.	No
Keyboard	Wakes from S1.	No
USB	Wakes from S1.	No

Table 49. Supported Wake Events

9. Error Logging

The BIOS indicates the current testing phase during POST by writing a hex code to I/O location 80h. If errors are encountered, error messages or codes are either displayed to the video screen, or if an error has occurred prior to video initialization, errors are reported through a series of audio beep codes.

The error codes are defined by Intel and whenever possible are backward compatible with error codes used on earlier platforms.

This chapter defines how errors are handled by the system BIOS. Also discussed is the role of the BIOS in error handling and the interaction between the BIOS, platform hardware, and server management firmware with regard to error handling. In addition, error-logging techniques are described and beep codes for errors are defined.

9.1 Error Sources and Types

One of the major requirements of server management is to correctly and consistently handle system errors. System errors can be categorized as follows:

- PCI bus
- Memory multi-bit errors (single-bit errors are not logged)
- Processor internal errors, bus/address errors, thermal trip errors
- Errors detected during POST, logged as POST errors

9.2 SMI Handler

The SMI handler handles and logs system-level events. If error logging is disabled in the BIOS Setup utility, no SMI signals are generated on system errors. If error logging is enabled, the SMI handler preprocesses all system errors, even those that are normally considered to generate an NMI.

For example, The BIOS programs the hardware to generate an SMI on a single-bit memory error and logs the location of the failed DIMM in the event log.

9.2.1 PCI Bus Error

The PCI bus defines two error pins, PERR# and SERR#, for reporting PCI parity errors and system errors, respectively. The BIOS can be instructed to enable or disable reporting the PERR# and SERR# through NMI. Disabling NMI for PERR# and/or SERR# also disables logging of the corresponding event. In the case of PERR#, the PCI bus master has the option to retry the offending transaction, or to report it using SERR#. All other PCI-related errors are reported by SERR#. All the PCI-to-PCI bridges are configured so that they generate a SERR# on the primary interface whenever there is a SERR# on the secondary side, if SERR# has been enabled through Setup. The same is true for PERR#.

9.2.2 Processor Bus Error

If the chipset supports ECC on the processor bus, the BIOS enables the error correction and detection capabilities of the processors by setting appropriate bits in the processor model specific register (MSR) and appropriate bits inside the chipset.

In the case of irrecoverable errors on the host processor bus, proper execution of the asynchronous error handler (usually SMI) cannot be guaranteed and the handler cannot be relied upon to log such conditions. The handler will record the error to the SMBIOS log only if the system has not experienced a catastrophic failure that compromises the integrity of the handler.

9.2.3 Memory Bus Error

The hardware is programmed to generate an SMI on single-bit data errors in the memory array if ECC memory is installed. The SMI handler records the error and the DIMM location to the SMBIOS event log. Double-bit errors in the memory array are mapped to the SMI. The double-bit errors may have corrupted the contents of SMRAM. The ability to isolate the failure down to a single DIMM may not be available on certain platforms, and/or during early POST.

9.2.4 Logging Format Conventions

The BIOS uses SMBIOS Event log format to log event. It follows the SMBIOS specification.

9.3 Single-bit ECC Error Throttling Prevention

The system detects and corrects correctable errors. As long as these errors occur infrequently, the system should continue to operate without a problem.

Occasionally, correctable errors are caused by a persistent failure of a single component. For example, a broken data line on a DIMM would exhibit repeated errors until replaced. Although these errors are correctable, continual calls to the error logger can throttle the system, preventing any further useful work.

9.4 Error Messages and Error Codes

The system BIOS displays error messages on the video screen. Prior to video initialization, beep codes inform the user of errors. POST error codes are logged in SMBIOS event log. The BIOS displays POST error messages on the video monitor. For some errors, the BIOS may display POST error codes as well.

9.4.1 POST Progress Codes and Messages

9.4.1.1 System ROM BIOS POST Task Test Point (Port 80h Code)

The BIOS sends a 1-byte hex code to port 80 before each task. The port 80 codes provide a troubleshooting method in the event of a system hang during POST.

9.4.1.2 POST Code Checkpoints

The following table describes the type of checkpoints that may occur during the POST portion of the BIOS.

Checkpoint	Description
03	Disable NMI, Parity, video for EGA, and DMA controllers. Initialize BIOS, POST, Runtime data area. Also initialize BIOS modules on POST entry and GPNV area. Initialized CMOS as mentioned in the Kernel Variable "wCMOSFlags."
04	Check CMOS diagnostic byte to determine if battery power is OK and CMOS checksum is OK. Verify CMOS checksum manually by reading storage area. If the CMOS checksum is bad, update CMOS with power-on default values and clear passwords. Initialize status register A.
	Initializes data variables that are based on CMOS setup questions. Initializes both the 8259 compatible PICs in the system
05	Initializes the interrupt controlling hardware (generally PIC) and interrupt vector table.
06	Do a read/write test to CH-2 count reg. Initialize CH-0 as system timer. Install the POSTINT1Ch handler. Enable IRQ-0 in PIC for system timer interrupt. Traps INT1Ch vector to "POSTINT1ChHandlerBlock."
08	Initializes the CPU. The BAT test is being done on KBC. Program the keyboard controller command
00	byte is being done after Auto detection of KB/MS using AMI KB-5.
C0	Early CPU Init Start Disable Cache - Init Local APIC
C1	Set up boot strap processor Information
C2	Set up boot strap processor for POST
C5	Enumerate and set up application processors
C6	Re-enable cache for boot strap processor
C7	Early CPU Init Exit
0A	Initializes the 8042 compatible Key Board Controller.
0B	Detects the presence of PS/2 mouse.
0C	Detects the presence of Keyboard in KBC port.
0E	Testing and initialization of different Input Devices. Update the Kernel Variables.
	Traps the INT09h vector, so that the POST INT09h handler gets control for IRQ1. Uncompress all available language, BIOS logo, and silent logo modules.
13	Early POST initialization of chipset registers.
24	Uncompress and initialize any platform specific BIOS modules.
30	Initialize System Management Interrupt.
2A	Initializes different devices through DIM. See Section 9.4.1.5 for information.
2C	Initializes different devices. Detects and initializes the video adapter installed in the system that have optional ROMs.
2E	Initializes all the output devices.
31	Allocate memory for ADM module and uncompress it. Give control to ADM module for initialization. Initialize language and font modules for ADM. Activate ADM module.
33	Initializes the silent boot module. Set the window for displaying text information.
37	Displaying sign-on message, CPU information, setup key message, and any OEM specific information.
38	Initializes different devices through DIM. See DIM Code Checkpoints section of document for more information.
39	Initializes DMAC-1 and DMAC-2.
3A	Initialize RTC date/time.

Table 50. POST Code Checkpoints

Checkpoint	Description
3B	Test for total memory installed in the system. Also, Check for DEL or <esc> keys to limit memory test. Display total memory in the system.</esc>
3C	Mid POST initialization of chipset registers.
40	Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.) successfully installed in the system and update the BDA, EBDAetc.
50	Programming the memory hole or any kind of implementation that needs an adjustment in system RAM size if needed.
52	Updates CMOS memory size from memory found in memory test. Allocates memory for Extended BIOS Data Area from base memory.
60	Initializes NUM-LOCK status and programs the KBD typematic rate.
75	Initialize Int-13 and prepare for IPL detection.
78	Initializes IPL devices controlled by BIOS and option ROMs.
7A	Initializes remaining option ROMs.
7C	Generate and write contents of ESCD in NVRam.
84	Log errors encountered during POST.
85	Display errors to the user and gets the user response for error.
87	Execute BIOS setup if needed / requested.
8C	Late POST initialization of chipset registers.
8D	Build ACPI tables (if ACPI is supported)
8E	Program the peripheral parameters. Enable/Disable NMI as selected
90	Late POST initialization of system management interrupt.
A0	Check boot password if installed.
A1	Clean-up work needed before booting to operating system.
A2	Takes care of runtime image preparation for different BIOS modules. Fill the free area in F000h segment with 0FFh. Initializes the Microsoft IRQ Routing Table. Prepares the runtime language module. Disables the system configuration display if needed.
A4	Initialize runtime language module.
A7	Displays the system configuration screen if enabled. Initialize the CPU's before boot, which includes the programming of the MTRR's.
A8	Prepare CPU for operating system boot including final MTRR values.
A9	Wait for user input at config display if needed.
AA	Uninstall POST INT1Ch vector and INT09h vector. De-initializes the ADM module.
AB	Prepare BBS for Int 19 boot.
AC	End of POST initialization of chipset registers.
B1	Save system context for ACPI.
00	Passes control to OS Loader (typically INT19h).
61-70	OEM POST Error. This range is reserved for chipset vendors and system manufacturers. The error associated with this value may be different from one platform to the next.

9.4.1.3 Boot Block Initialization Code Checkpoints

The boot block initialization code sets up the chipset, memory and other components before system memory is available. The following table describes the type of checkpoints that may occur during the boot block initialization.

Checkpoint	Description
Before D1h	Early chipset initialization is done. Early super I/O initialization is done including RTC and keyboard controller. NMI is disabled.
D1	Perform keyboard controller BAT test. Check if waking up from power management suspend state. Save power-on CPUID value in scratch CMOS.
D0	Go to flat mode with 4GB limit and GA20 enabled. Verify the boot block checksum.
D2	Disable CACHE before memory detection. Execute full memory sizing module. Verify that flat mode is enabled.
D3	If memory sizing module not executed, start memory refresh and do memory sizing in Boot block code. Do additional chipset initialization. Re-enable CACHE. Verify that flat mode is enabled.
D4	Test base 512KB memory. Adjust policies and cache first 8MB. Set stack.
D5	Boot block code is copied from ROM to lower system memory and control is given to it. BIOS now executes out of RAM.
D6	Both key sequence and OEM specific method is checked to determine if BIOS recovery is forced. Main BIOS checksum is tested. If BIOS recovery is necessary, control flows to checkpoint E0. See Bootblock Recovery Code Checkpoints section of document for more information.
D7	Restore CPUID value back into register. The Boot block-Runtime interface module is moved to system memory and control is given to it. Determine whether to execute serial flash.
D8	The Runtime module is uncompressed into memory. CPUID information is stored in memory.
D9	Store the Uncompressed pointer for future use in PMM. Copying Main BIOS into memory. Leaves all RAM below 1MB Read-Write including E000 and F000 shadow areas but closing SMRAM.
DA	Restore CPUID value back into register. Give control to BIOS POST (ExecutePOSTKernel). See POST Code Checkpoints section of document for more information.
E1-E8 EC-EE	OEM memory detection/configuration error. This range is reserved for chipset vendors and system manufacturers. The error associated with this value may be different from one platform to the next.

Table 51. Boot Block Initialization Code Checkpoints

9.4.1.4 Boot Block Recovery Code Checkpoints

The boot block recovery code gets control when the BIOS determines that a BIOS recovery needs to occur because the user has forced the update or the BIOS checksum is corrupt. The following table describes the type of checkpoints that may occur during the boot block recovery portion of the BIOS.

Checkpoint	Description
E0	Initialize the floppy controller in the super I/O. Some interrupt vectors are initialized. DMA controller is initialized. L1 cache is enabled.
E9	Set up floppy controller and data. Attempt to read from floppy.
EA	Enable ATAPI hardware. Attempt to read from ARMD and ATAPI CDROM.
EB	Disable ATAPI hardware. Jump back to checkpoint E9.
EF	Read error occurred on media. Jump back to checkpoint EB.
F0	Search for pre-defined recovery file name in root directory.
F1	Recovery file not found.
F2	Start reading FAT table and analyze FAT to find the clusters occupied by the recovery file.
F3	Start reading the recovery file cluster by cluster.
F5	Disable L1 cache.
FA	Check the validity of the recovery file configuration to the current configuration of the flash part.
FB	Make flash write enabled through chipset and OEM specific method. Detect proper flash part. Verify that the found flash part size equals the recovery file size.
F4	The recovery file size does not equal the found flash part size.
FC	Erase the flash part.
FD	Program the flash part.
FF	The flash has been updated successfully. Make flash write disabled. Disable ATAPI hardware. Restore CPUID value back into register. Give control to F000 ROM at F000:FFF0h.

Table 52. Boot Block Recovery Code Checkpoints

9.4.1.5 DIM Code Checkpoints

The Device Initialization Manager (DIM) gets control at various times during BIOS POST to initialize different system buses. The following table describes the main checkpoints where the DIM module is accessed.

Checkpoint	Description
2A	Initialize different buses and perform the following functions:
	 Reset, Detect, and Disable (function 0): Function 0 disables all device nodes, PCI devices, and PnP ISA cards. It also assigns PCI bus numbers.
	 Static Device Initialization (function 1): Function 1 initializes all static devices that include manual configured onboard peripherals, memory and I/O decode windows in PCI-PCI bridges, and noncompliant PCI devices. Static resources are also reserved.
	 Boot Output Device Initialization (function 2): Function 2 searches for and initializes any PnP, PCI, or AGP video devices.
38	Initialize different buses and perform the following functions:
	 Boot Input Device Initialization (function 3): Function 3 searches for and configures PCI input devices and detects if the system has a standard keyboard controller.
	 IPL Device Initialization (function 4): Function 4 searches for and configures all PnP and PCI boot devices.
	 General Device Initialization (function 5): Function 5 configures all onboard peripherals that are set to an automatic configuration and configures all remaining PnP and PCI devices.

Table 53. DIM Code Checkpoints

While control is in the different functions, additional checkpoints are output to port 80h as a word value to identify the routines under execution. The low byte value indicates the main POST Code Checkpoint. The high byte is divided into two nibbles and contains two fields. The details of the high byte of these checkpoints are as follows:

HIGH BYTE XY

The upper nibble 'X' indicates the function number that is being executed. 'X' can be from 0 to 8:

- 0 = func#0, disable all devices on the bus concerned.
- 1 = func#1, static device initialization on the bus concerned.
- 2 = func#2, output device initialization on the bus concerned.
- 3 = func#3, input device initialization on the bus concerned.
- 4 = func#4, IPL device initialization on the bus concerned.
- 5 = func#5, general device initialization on the bus concerned.
- 6 = func#6, error reporting for the bus concerned.
- 7 = func#7, add-on ROM initialization for all buses.
- 8 = func#8, BBS ROM initialization for all buses.

The lower nibble 'Y' indicates the bus on which the different routines are being executed. 'Y' can be from 0 to 5.

- 0 = Generic DIM (Device Initialization Manager).
- 1 = On-board System devices.
- 2 = ISA devices.
- 3 = EISA devices.
- 4 = ISA PnP devices.
- 5 = PCI devices.

9.4.1.6 ACPI Runtime Checkpoints

ACPI checkpoints are displayed when an ACPI capable operating system either enters or leaves a sleep state. The following table describes the type of checkpoints that may occur during ACPI sleep or wake events.

Table 54. ACPI Runtime Checkpoints

Checkpoint	Description
AC	First ASL check point. Indicates the system is running in ACPI mode.
AA	System is running in APIC mode.

9.4.2 BIOS Messages

Table 55. Memory BIOS Messages

Message Displayed	Description
Gate20 Error	The BIOS is unable to properly control the motherboard's Gate A20 function, which controls access of memory over 1 MB. This may indicate a problem with the motherboard.
Multi-Bit ECC Error	This message will only occur on systems using ECC enabled memory modules. ECC memory has the ability to correct single-bit errors that may occur from faulty memory modules. A multiple bit corruption of memory has occurred, and the ECC memory algorithm cannot correct it. This may indicate a defective memory module.
Parity Error	Fatal Memory Parity Error. System halts after displaying this message.

Table 56. Boot BIOS Messages

Message Displayed	Description
Boot Failure	This is a generic message indicating the BIOS could not boot from a particular device. This message is usually followed by other information concerning the device.
Invalid Boot Diskette	A diskette was found in the drive, but it is not configured as a bootable diskette.

Message Displayed	Description
Drive Not Ready	The BIOS was unable to access the drive because it indicated it was not ready for data transfer. This is often reported by drives when no media is present.
A: Drive Error	The BIOS attempted to configure the A: drive during POST, but was unable to properly configure the device. This may be due to a bad cable or faulty diskette drive.
B: Drive Error	The BIOS attempted to configure the B: drive during POST, but was unable to properly configure the device. This may be due to a bad cable or faulty diskette drive.
Insert BOOT diskette in A:	The BIOS attempted to boot from the A: drive, but could not find a proper boot diskette.
Reboot and Select proper Boot device or Insert Boot Media in selected Boot device	BIOS could not find a bootable device in the system and/or removable media drive does not contain media.
NO ROM BASIC	This message occurs on some systems when no bootable device can be detected.

Table 57. Storage Device BIOS Messages

Message Displayed	Description
Primary Master Hard Disk Error	The IDE/ATAPI device configured as Primary Master could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Primary Slave Hard Disk Error	The IDE/ATAPI device configured as Primary Slave could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Secondary Master Hard Disk Error	The IDE/ATAPI device configured as Secondary Master could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Secondary Slave Hard Disk Error	The IDE/ATAPI device configured as Secondary Slave could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
3rd Master Hard Disk Error	The IDE/ATAPI device configured as Master in the 3rd IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
3rd Slave Hard Disk Error	The IDE/ATAPI device configured as Slave in the 3rd IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
4th Master Hard Disk Error	The IDE/ATAPI device configured as Master in the 4th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
4th Slave Hard Disk Error	The IDE/ATAPI device configured as Slave in the 4th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
5th Master Hard Disk Error	The IDE/ATAPI device configured as Master in the 5th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.

Message Displayed	Description
5th Slave Hard Disk Error	The IDE/ATAPI device configured as Slave in the 5th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
6th Master Hard Disk Error	The IDE/ATAPI device configured as Master in the 6th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
6th Slave Hard Disk Error	The IDE/ATAPI device configured as Slave in the 6th IDE controller could not be properly initialized by the BIOS. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Primary Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Primary Master failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Primary Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Primary Slave failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Secondary Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Secondary Master failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
Secondary Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Secondary Slave failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
3rd Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Master in the 3rd IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
3rd Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Slave in the 3rd IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
4th Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Master in the 4th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
4th Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Slave in the 4th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
5th Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Master in the 5th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
5th Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Slave in the 5th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
6th Master Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Master in the 6th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
6th Slave Drive - ATAPI Incompatible	The IDE/ATAPI device configured as Slave in the 6th IDE controller failed an ATAPI compatibility test. This message is typically displayed when the BIOS is trying to detect and configure IDE/ATAPI devices in POST.
S.M.A.R.T. Capable but Command Failed	The BIOS tried to send a S.M.A.R.T. message to a hard disk, but the command transaction failed.
	This message can be reported by an ATAPI device using the S.M.A.R.T. error reporting standard. S.M.A.R.T. failure messages may indicate the need to replace the hard disk.

Message Displayed	Description
S.M.A.R.T. Command Failed	The BIOS tried to send a S.M.A.R.T. message to a hard disk, but the command transaction failed.
	This message can be reported by an ATAPI device using the S.M.A.R.T. error reporting standard. S.M.A.R.T. failure messages may indicate the need to replace the hard disk.
S.M.A.R.T. Status BAD, Backup and Replace	A S.M.A.R.T. capable hard disk sends this message when it detects an imminent failure.
	This message can be reported by an ATAPI device using the S.M.A.R.T. error reporting standard. S.M.A.R.T. failure messages may indicate the need to replace the hard disk.
S.M.A.R.T. Capable and Status BAD	A S.M.A.R.T. capable hard disk sends this message when it detects an imminent failure.
	This message can be reported by an ATAPI device using the S.M.A.R.T. error reporting standard. S.M.A.R.T. failure messages may indicate the need to replace the hard disk.

Table 58. Virus Related BIOS Messages

Message Displayed	Description
BootSector Write !!	The BIOS has detected software attempting to write to a drive's boot sector. This is flagged as possible virus activity. This message will only be displayed if Virus Detection is enabled in AMIBIOS setup.
VIRUS: Continue (Y/N)?	If the BIOS detects possible virus activity, it will prompt the user. This message will only be displayed if Virus Detection is enabled in AMIBIOS setup.

Table 59. System Configuration BIOS Messages

Message Displayed	Description
DMA-2 Error	Error initializing secondary DMA controller. This is a fatal error, often indication a problem with system hardware.
DMA Controller Error	POST error while trying to initialize the DMA controller. This is a fatal error, often indication a problem with system hardware.
Checking NVRAMUpdate Failed	BIOS could not write to the NVRAM block. This message appears when the FLASH part is write-protected or if there is no FLASH part (System uses a PROM or EPROM).
Microcode Error	BIOS could not find or load the CPU Microcode Update to the CPU. This message only applies to INTEL CPUs. The message is most likely to appear when a brand new CPU is installed in a motherboard with an outdated BIOS. In this case, the BIOS must be updated to include the Microcode Update for the new CPU.
NVRAM Checksum Bad, NVRAM Cleared	There was an error in while validating the NVRAM data. This causes POST to clear the NVRAM data.
Resource Conflict	More than one system device is trying to use the same non-shareable resources (Memory or I/O).
NVRAM Ignored	The NVRAM data used to store Plug'n'Play (PnP) data was not used for system configuration in POST.
NVRAM Bad	The NVRAM data used to store Plug'n'Play (PnP) data was not used for system configuration in POST due to a data error.

Message Displayed	Description
Static Resource Conflict	Two or more Static Devices are trying to use the same resource space (usually Memory or I/O).
PCI I/O conflict	A PCI adapter generated an I/O resource conflict when configured by BIOS POST.
PCI ROM conflict	A PCI adapter generated an I/O resource conflict when configured by BIOS POST.
PCI IRQ conflict	A PCI adapter generated an I/O resource conflict when configured by BIOS POST.
PCI IRQ routing table error	BIOS POST (DIM code) found a PCI device in the system but was unable to figure out how to route an IRQ to the device. Usually this error is causing by an incomplete description of the PCI Interrupt Routing of the system.
Timer Error	Indicates an error while programming the count register of channel 2 of the 8254 timer. This may indicate a problem with system hardware.
Interrupt Controller-1 error	BIOS POST could not initialize the Master Interrupt Controller. This may indicate a problem with system hardware.
Interrupt Controller-2 error	BIOS POST could not initialize the Slave Interrupt Controller. This may indicate a problem with system hardware.

Table 60. CMOS BIOS Messages

Message Displayed	Description
CMOS Date/Time Not Set	The CMOS Date and/or Time are invalid. This error can be resolved by readjusting the system time in AMIBIOS Setup.
CMOS Battery Low	CMOS Battery is low. This message usually indicates that the CMOS battery needs to be replaced. It could also appear when the user intentionally discharges the CMOS battery.
CMOS Settings Wrong	CMOS settings are invalid. This error can be resolved by using AMIBIOS Setup.
CMOS Checksum Bad	CMOS contents failed the Checksum check. Indicates that the CMOS data has been changed by a program other than the BIOS or that the CMOS is not retaining its data due to malfunction. This error can typically be resolved by using AMIBIOS Setup.

Table 61. Miscellaneous BIOS Messages

Message Displayed	Description
Keyboard Error	Keyboard is not present or the hardware is not responding when the keyboard controller is initialized.
PS2 Keyboard not found	PS2 Keyboard support is enabled in the BIOS setup but the device is not detected.
PS2 Mouse not found	PS2 Mouse support is enabled in the BIOS setup but the device is not detected.
Keyboard/Interface Error	Keyboard Controller failure. This may indicate a problem with system hardware.
Unlock Keyboard	PS2 keyboard is locked. User needs to unlock the keyboard to continue the BIOS POST.
System Halted	The system has been halted. A reset or power cycle is required to reboot the machine. This message appears after a fatal error has been detected.

Message Displayed	Description
Warning! Unsupported USB device found and disabled!	This message is displayed when a non-bootable USB device is enumerated and disabled by the BIOS.
Warning! Port 60h/64h emulation is not supported by this USB Host Controller!	This message is displayed to indicate that port 60h/64h emulation mode cannot be enabled for this USB host controller. This condition occurs if USB KBC emulation option is set for non-SMI mode.
Warning! EHCI controller disabled. It requires 64bit data support in the BIOS.	This message is displayed to indicate that EHCI controller is disabled because of incorrect data structure. This condition occur if the USB host controller needs 64-bit data structure while the USB is ported with 32-bit data structure.

Table 63	. SMBIOS	BIOS Error	Messages
----------	----------	-------------------	----------

Message Displayed	Description
Not enough space in Runtime area!!. SMBIOS data will not be available.	This message is displayed when the size of the SMBIOS data exceeds the available SMBIOS runtime storage size.

9.4.3 POST Error Messages and Handling

Whenever possible, the BIOS will output the current boot progress codes on the video screen. Progress codes are 32-bit quantities plus optional data. The 32-bit numbers include class, subclass and operation information. The class and subclass fields point to the type of hardware that is being initialized, whereas the operation field represents the specific initialization activity. Based upon the data bit availability to display progress codes, a progress code can be customized to fit the data width. The higher the data bit, the higher the granularity of information that can be sent on the progress port. The progress codes may be reported by system BIOS or option ROMs.

The Response section in the following table is divided into three types:

- Warning or Not an error The message is displayed on the screen. The system will continue booting with a degraded state. The user may want to replace the erroneous unit.
- Pause The message is displayed on the screen, an error is logged to the SMBIOS log, and user input is required to continue. The user can take immediate corrective action or choose to continue booting.
- Halt The message is displayed on the screen, an error is logged to the SMBIOS log, and the system cannot boot unless the error is resolved. The user needs to replace the faulty part and restart the system.

Error Code	Error Message	Response
0000	Timer Error	Pause
0003	CMOS Battery Low	Pause
0004	CMOS Settings Wrong	Pause
0005	CMOS Checksum Bad	Pause
0008	Unlock Keyboard	Halt
0009	PS2 Keyboard not found	Not an error
000A	KBC BAT Test failed	Halt
000B	CMOS memory size different	Pause
000C	RAM R/W test failed	Pause
000E	A: Drive Error	Pause
000F	B: Drive Error	Pause
0010	Floppy Controller Failure	Pause
0012	CMOS Date/Time Not Set.	Pause
0014	PS2 Mouse not found	Not an error
0040	Refresh timer test failed	Halt
0041	Display memory test failed	Pause
0042	CMOS Display Type Wrong	Pause
0043	~ <ins> Pressed</ins>	Pause
0044	DMA Controller Error	Halt
0045	DMA-1 Error	Halt
0046	DMA-2 Error	Halt
0047	Unknown BIOS error. Error code = 147 (this is really a PMM_MEM_ALLOC_ERR)	Halt
0048	Password check failed	Halt
0049	Unknown BIOS error. Error code = 149 (this is really SEGMENT_REG_ERR)	Halt
004A	Unknown BIOS error. Error code = 14A (this is really ADM_MODULE_ERR)	Pause
004B	Unknown BIOS error. Error code = 14B (this is really LANGUAGE_MODULE_ERR)	Pause
004C	Keyboard/Interface Error	Pause
004D	Primary Master Hard Disk Error	Pause
004E	Primary Slave Hard Disk Error	Pause
004F	Secondary Master Hard Disk Error	Pause
0050	Secondary Slave Hard Disk Error	Pause
0055	Primary Master Drive - ATAPI Incompatible	Pause
0056	Primary Slave Drive - ATAPI Incompatible	Pause
0057	Secondary Master Drive - ATAPI Incompatible	Pause
0058	Secondary Slave Drive - ATAPI Incompatible	Pause
0059	Third Master Device Error	Pause
005B	Fourth Master Device Error	Pause
005D	S.M.A.R.T. Status BAD, Backup and Replace	Pause
005E	Password check failed	Pause
0120	Thermal Failure due to PROCHOT#	Pause
0146	Insufficient Memory to Shadow PCI ROM	Pause
0150	BSP Processor failed BIST	Pause
0160	Processor missing microcode – P0	Pause
0161	Processor missing microcode – P1	Pause

Table 64. POST Error Messages and Handling

Error Code	Error Message	Response
0180	BIOS does not support current stepping – P0	Pause
0181	BIOS does not support current stepping – P1	Pause
0192	L2 cache size mismatch	Pause
0193	CPUID, Processor stepping are different	Pause
0194	CPUID, Processor family are different	Pause
0195	Front side bus mismatch.	Pause
0196	CPUID, Processor Model are different	Pause
0197	Processor speeds mismatched	Pause
5120	CMOS Cleared By Jumper	Pause
5121	Password cleared by jumper	Pause
51A2	System Cover has probably been opened.	Pause
51A3	System has probably been shut down with the CPUTHRMTRIP# event.	Pause
8104	Warning! Port 60h/64h emulation is not supported by this USB Host Controller !!!	Warning
8105	Warning! EHCI controller disabled. It requires 64bit data support in the BIOS.	Warning
84FF	System Event Log Full	Warning
8500	Bad or missing memory in slot 3A	Pause
8501	Bad or missing memory in slot 2A	Pause
8502	Bad or missing memory in slot 1A	Pause
8504	Bad or missing memory in slot 3B	Pause
8505	Bad or missing memory in slot 2B	Pause
8506	Bad or missing memory in slot 1B	Pause
8508	All memory marked as failed. Force all memory back online.	Pause

9.4.4 Boot Block Error Beep Codes

The messages in the following table do not appear on the video, nor are they logged in the SMBIOS log.

Number of Beeps	Description
1	Insert diskette in floppy drive A:
2	'AMIBOOT.ROM' file not found in root directory of diskette in A:
3	Base Memory error
4	Flash Programming successful
5	Floppy read error
6	Keyboard controller BAT command failed
7	No Flash EPROM detected
8	Floppy controller failure
9	Boot Block BIOS checksum error
10	Flash Erase error
11	Flash Program error
12	'AMIBOOT.ROM' file size error
13	BIOS ROM image mismatch (file layout does not match image present in flash device)
1 long beep	Insert diskette with AMIBOOT.001 File for Multi-Disk Recovery

Table 65. Boot Block Error Beep Codes

9.4.5 POST Error Beep Codes

The following table lists the POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform users of error conditions.

Number of Beeps	Description
1	Memory refresh timer error
2	Parity error in base memory (first 64KB block)
3	Base memory read / write test error
4	Motherboard timer not operational
5	Processor error
6	8042 Gate A20 test error (cannot switch to protected mode)
7	General exception error (processor exception error)
8	Display memory error (system video adapter)
9	ROM checksum error
10	CMOS shutdown register read/write error
11	Cache memory test failed

Table 66. POST Error Beep Codes

9.4.5.1 Troubleshooting BIOS Beep Codes

Table 67. Troubleshooting BIOS Beep Codes

Number of Beeps	Troubleshooting Action Reseat the memory, or replace with known good modules.						
1, 2 or 3							
4-7, 9-11	Fatal error indicating a serious problem with the system. Consult your system manufacturer.						
	Before declaring the motherboard beyond all hope, eliminate the possibility of interference by a malfunctioning add-in card. Remove all expansion cards cards except the video adapter.						
	- If beep codes are generated even when all other expansion cards are absent, consult your system manufacturer's technical support.						
	- If beep codes are not generated when all other expansion cards are absent, one of the add-in cards is causing the malfunction. Insert the cards back into the system one at a time until the problem happens again. This will reveal the malfunctioning add-in card.						
8	If the system video adapter is an add-in card, replace or reseat the video adapter. If the video adapter is an integrated part of the system board, the board may be faulty.						

9.4.6 "POST Error Pause" option

In case of POST error(s) that occur during system boot-up, the BIOS will stop and wait for the user to press an appropriate key before booting the operating system or entering BIOS setup.

The user can override this option by setting "POST Error Pause" to "disabled" in the BIOS setup Advanced menu page. If the "POST Error Pause" option is set to "disabled", the system will boot the operating system without user intervention. The default value setting for this option is "enabled".

10. Server Board SE7320EP2 and SE7525RP2 Connectors

10.1 Main Power Connector

The main power supply connection is obtained using the 24-pin connector. The following table defines the pin-outs of the connector.

Pin	Signal	18 AWG Color	Pin	Signal	18 AWG Color
1*	+3.3VDC	Orange	13	+3.3VDC	Orange
	3.3V RS	Orange (24AWG)	14	-12VDC	Blue
2	+3.3VDC	Orange	15	COM	Black
3*	COM	Black	16	PSON#	Green
	COM RS	Black (24AWG)	17	COM	Black
4*	+5VDC	Red	18	COM	Black
	5V RS	Red (24AWG)	19	COM	Black
5	COM	Black	20	Reserved	N.C.
6	+5VDC	Red	21	+5VDC	Red
7	COM	Black	22	+5VDC	Red
8	PWR OK	Gray	23	+5VDC	Red
9	5 VSB	Purple	24	COM	Black
10	+12V3	Yellow			
11	+12V3	Yellow			
12	+3.3VDC	Orange			

Table 68. Power Connector Pin-out (J12)

Table 69. Auxiliary Signal Connector (J5)

Pin	Signal	24 AWG Color
1	I2C Clock	White
2	I2C Data	Yellow
3	PS Alert	
4	СОМ	Black
5	3.3RS	Orange

Pin	Signal	18 AWG color	Pin	Signal	18 AWG Color
1	COM	Black	5*	+12V1	White
2	COM	Black		12V1 RS	Yellow (24AWG)
3	COM	Black	6	+12V1	White
4	COM	Black	7	+12V2	Brown
		•	8*	+12V2	Brown
				12V2 RS	Yellow (24AWG)

Table 70. Auxiliary CPU Power Connector Pin-out (J22)

10.2 Memory Module Connector

The board has four DDR2-400 DIMM connectors and supports registered ECC DDR2 modules (Rev 1.0).

Fror	Front Side (left 1 - 60) Back Sid			Side (right 121-180)			Front Side (left 61 - 120)			Back Side (right 181-240)		
Pin #	x64 Non- Parity	x72 ECC	Pin #	x64 Non-Parity	x72 ECC	Pin #	x64 Non- Parity	x72 ECC	Pin #	x64 Non-Parity	x72 ECC	
1	VREF	VREF	121	VSS	VSS	61	A4	A4	181	VDDQ	VDDQ	
2	VSS	VSS	122	DQ4	DQ4	62	VDDQ	VDDQ	182	A3	A3	
3	DQ0	DQ0	123	DQ5	DQ5	63	A2	A2	183	A1	A1	
4	DQ1	DQ1	124	VSS	VSS	64	VDD	VDD	184	VDD	VDD	
5	VSS	VSS	125	DM0,DQS9	DM0,DQS9	KEY		•	KEY	•	•	
6	DQS0	DQS0	126	NC,DQS9	NC,DQS9	65	VSS	VSS	185	CK0	CK0	
7	DQS0	DQS0	127	VSS	VSS	66	VSS	VSS	186	CK0	CK0	
8	VSS	VSS	128	DQ6	DQ6	67	VDD	VDD	187	VDD	VDD	
9	DQ2	DQ2	129	DQ7	DQ7	68	NC	NC	188	A0	A0	
10	DQ3	DQ3	130	VSS	VSS	69	VDD	VDD	189	VDD	VDD	
11	VSS	VSS	131	DQ12	DQ12	70	A10/AP	A10/AP	190	BA1	BA1	
12	DQ8	DQ8	132	DQ13	DQ13	71	BA0	BA0	191	VDDQ	VDDQ	
13	DQ9	DQ9	133	VSS	VSS	72	VDDQ	VDDQ	192	RAS	RAS	
14	VSS	VSS	134	DM1,DQS10	DM1,DQS10	73	WE	WE	193	S0	S0	
15	DQS1	DQS1	135	NC,DQS10	NC,DQS10	74	CAS	CAS	194	VDDQ	VDDQ	
16	DQS1	DQS1	136	VSS	VSS	75	VDDQ	VDDQ	195	ODT0	ODT0	
17	VSS	VSS	137	CK1,RFU1	CK1,RFU1	76	S1	S1	196	A13	A13	
18	RC12	RC12	138	CK1,RFU1	CK1,RFU1	77	ODT1	ODT1	197	VDD	VDD	
19	NC	NC	139	VSS	VSS	78	VDDQ	VDDQ	198	VSS	VSS	
20	VSS	VSS	140	DQ14	DQ14	79	VSS	VSS	199	DQ36	DQ36	
21	DQ10	DQ10	141	DQ15	DQ15	80	DQ32	DQ32	200	DQ37	DQ37	
22	DQ11	DQ11	142	VSS	VSS	81	DQ33	DQ33	201	VSS	VSS	
23	VSS	VSS	143	DQ20	DQ20	82	VSS	VSS	202	DM4,DQS13	DM4,DQS13	
24	DQ16	DQ16	144	DQ21	DQ21	83	DQS4	DQS4	203	NC,DQS13	NC,DQS13	

Table 71. DIMM Connectors (J16, J18, J20, J21)

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

Fror	Front Side (left 1 - 60) Back Side (right 121-180)			21-180)	Fror	nt Side (left	61 - 120)	Back Side (right 181-240)			
Pin #	x64 Non- Parity	x72 ECC	Pin #	x64 Non-Parity	x72 ECC	Pin #	x64 Non- Parity	x72 ECC	Pin #	x64 Non-Parity	x72 ECC
25	DQ17	DQ17	145	VSS	VSS	84	DQS4	DQS4	204	VSS	VSS
26	VSS	VSS	146	DM2,DQS11	DM2,DQS11	85	VSS	VSS	205	DQ38	DQ38
27	DQS2	DQS2	147	NC,DQS11	NC,DQS11	86	DQ34	DQ34	206	DQ39	DQ39
28	DQS2	DQS2	148	VSS	VSS	87	DQ35	DQ35	207	VSS	VSS
29	VSS	VSS	149	DQ22	DQ22	88	VSS	VSS	208	DQ44	DQ44
30	DQ18	DQ18	150	DQ23	DQ23	89	DQ40	DQ40	209	DQ45	DQ45
31	DQ19	DQ19	151	VSS	VSS	90	DQ41	DQ41	210	VSS	VSS
32	VSS	VSS	152	DQ28	DQ28	91	VSS	VSS	211	DM5,DQS14	DM5,DQS14
33	DQ24	DQ24	153	DQ29	DQ29	92	DQS5	DQS5	212	NC,DQS14	NC,DQS14
34	DQ25	DQ25	154	VSS	VSS	93	DQS5	DQS5	213	VSS	VSS
35	VSS	VSS	155	DM3,DQS12	DM3,DQS12	94	VSS	VSS	214	DQ46	DQ46
36	DQS3	DQS3	156	NC,DQS12	NC,DQS12	95	DQ42	DQ42	215	DQ47	DQ47
37	DQS3	DQS3	157	VSS	VSS	96	DQ43	DQ43	216	VSS	VSS
38	VSS	VSS	158	DQ30	DQ30	97	VSS	VSS	217	DQ52	DQ52
39	DQ26	DQ26	159	DQ31	DQ31	98	DQ48	DQ48	218	DQ53	DQ53
40	DQ27	DQ27	160	VSS	VSS	99	DQ49	DQ49	219	VSS	VSS
41	VSS	VSS	161	NC	CB4	100	VSS	VSS	220	CK2,RFU1	CK2,RFU1
42	NC	CB0	162	NC	CB5	101	SA2	SA2	221	CK2,RFU1	CK2,RFU1
43	NC	CB1	163	VSS	VSS	102	NC,TEST 3	NC,TEST 3	222	VSS	VSS
44	VSS	VSS	164	NC	DM8,DQS17	103	VSS	VSS	223	DM6,DQS15	DM6,DQS15
45	NC	DQS8	165	NC	NC,DQS17	104	DQS6	DQS6	224	NC,DQS15	NC,DQS15
46	NC	DQS8	166	VSS	VSS	105	DQS6	DQS6	225	VSS	VSS
47	VSS	VSS	167	NC	CB6	106	VSS	VSS	226	DQ54	DQ54
48	NC	CB2	168	NC	CB7	107	DQ50	DQ50	227	DQ55	DQ55
49	NC	CB3	169	VSS	VSS	108	DQ51	DQ51	228	VSS	VSS
50	VSS	VSS	170	VDDQ	VDDQ	109	VSS	VSS	229	DQ60	DQ60
51	VDDQ	VDDQ	171	CKE1	CKE1	110	DQ56	DQ56	230	DQ61	DQ61
52	CKE0	CKE0	172	VDD	VDD	111	DQ57	DQ57	231	VSS	VSS
53	VDD	VDD	173	A15	A15	112	VSS	VSS	232	DM7,DQS16	DM7,DQS16
54	A16,BA2	A16,BA2	174	A14	A14	113	DQS7	DQS7	233	NC,DQS16	NC,DQS16
55	RC02	RC02	175	VDDQ	VDDQ	114	DQS7	DQS7	234	VSS	VSS
56	VDDQ	VDDQ	176	A12	A12	115	VSS	VSS	235	DQ62	DQ62
57	A11	A11	177	A9	A9	116	DQ58	DQ58	236	DQ63	DQ63
58	A7	A7	178	VDD	VDD	117	DQ59	DQ59	237	VSS	VSS
59	VDD	VDD	179	A8	A8	118	VSS	VSS	238	VDDSPD	VDDSPD
60	A5	A5	180	A6	A6	119	SDA	SDA	239	SA0	SA0
120	SCL			SA1	SA1				t		
Note		I	1	I	I	1	1	L	1	1	1

Note:

NC = No Connect; NU = Not Useable, RFU = Reserved Future Use 1. CK1, CK1 ,CK2 ,CK2 (pins 137, 138, 220, 221) are for Unbuffered DIMM clocks. These pins are reserved for future use on registered DIMMs.

2. RC0 and RC1 are intended for registered control functions which will be defined at a later date.

3. The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules (DIMMs).

10.3 Processor Socket

The board has two Socket 604 processor sockets. The following table provides the processor socket pin numbers and pin names:

Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
A1	VID5	D29	VCC	K3	VCC	T29		AB3 2	BSEL1
A2	VCC	D30	VSS	K4	VSS	T30	VCC	AB4	VCCA
A3	SKTOCC#	D31	VCC	K5	VCC	T31	VSS	AB5	VSS
A4	VTT	E1	VTTEN	K6	VSS	U1	VCC	AB6	D63#
A5	VSS	E2	VCC	K7	VCC	U2	VSS	AB7	PWRGOOD
A6	A32#	E3	VID1	K8	VSS	U3	VCC	AB8	VCC
A7	A33#	E4	BPM5#	K9	VCC	U4	VSS	AB9	DBI3#
A8	VCC	E5	IERR#	K23	VCC	U5	VCC	AB10	D55#
A9	A26#	E6	VCC	K24	VSS	U6	VSS	AB11	VSS
A10	A20#	E7	BPM2#	K25	VCC	U7	VCC	AB12	D51#
A11	VSS	E8	BPM4#	K26	VSS	U8	VSS	AB13	D52#
A12	A14#	E9	VSS	K27	VCC	U9	VCC	AB14	VCC
A13	A10#	E10	AP0#	K28	VSS	U23	VCC	AB15	D37#
A14	VCC	E11	BR2# ¹	K29	VCC	U24	VSS	AB16	D32#
A15	FORCEPR#	E12	VTT	K30	VSS	U25	VCC	AB17	D31#
A16	TEST_BUS	E13	A28#	K31	VCC	U26	VSS	AB18	VCC
A17	LOCK#	E14	A24#	L1	VSS	U27	VCC	AB19	D14#
A18	VCC	E15	VSS	L2	VCC	U28	VSS	AB20	D12#
A19	A7#	E16	COMP1	L3	VSS	U29	VCC	AB21	VSS
A20	A4#	E17	VSS	L4	VCC	U30	VSS	AB22	D13#
A21	VSS	E18	DRDY#	L5	VSS	U31	VCC	AB23	D9#
A22	A3#	E19	TRDY#	L6	VCC	V1	VSS	AB24	VCC
A23	HITM#	E20	VCC	L7	VSS	V2	VCC	AB25	D8#
A24	VCC	E21	RS0#	L8	VCC	V3	VSS	AB26	D7#
A25	TMS	E22	HIT#	L9	VSS	V4	VCC	AB27	VSS
A26	TESTHI7	E23	VSS	L23	VSS	V5	VSS	AB28	RSVD_9
A27	VSS	E24	ТСК	L24	VCC	V6	VCC	AB29	RSVD_10
A28	VCC	E25	TDO	L25	VSS	V7	VSS	AB30	VCC
A29	VSS	E26	VCC	L26	VCC	V8	VCC	AB31	VSS
A30	VCC	E27	FERR#/PBE#	L27	VSS	V9	VSS	AC1	RSVD_2
A31	VSS	E28	VCC	L28	VCC	V23	VSS	AC2	VSS
B1	VIDPWRGD	E29	VSS	L29	VSS	V24	VCC	AC3	VCC
B2	VSS	E30	VCC	L30	VCC	V25	VSS	AC4	VCC
B3	VID4	E31	VSS	L31	VSS	V26	VCC	AC5	D60#
B4	VTT	F1	VCC	M1	VCC	V27	VSS	AC6	D59#
B5	OTDEN	F2	VSS	M2	VSS	V28	VCC	AC7	VSS
B6	VCC	F3	VID0	M3	VCC	V29	VSS	AC8	D56#
B7	A31#	F4	VCC	M4	VSS	V30	VCC	AC9	D47#
B8	A27#	F5	BPM3#	M5	VCC	V31	VSS	AC10	VTT

Table 72. Socket 604 Processor Socket Pin-out (J36, J37)

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
B9	VSS	F6	BPM0#	M6	VSS	W1	VCC	AC11	D43#
B10	A21#	F7	VSS	M7	VCC	W2	VSS	AC12	D41#
B11	A22#	F8	BPM1#	M8	VSS	W3	RSVD	AC13	VSS
B12	VTT	F9	GTLREF3	M9	VCC	W4	VSS	AC14	D50#
B13	A13#	F10	VTT	M23	VCC	W5	BCLK1	AC15	DP2#
B14	A12#	F11	BINIT#	M24	VSS	W6	TESTHI0	AC16	VCC
B15	VSS	F12	BR1#	M25	VCC	W7	TESTHI1	AC17	D34#
B16	A11#	F13	VSS	M26	VSS	W8	TESTHI2	AC18	DP0#
B17	VSS	F14	ADSTB1#	M27	VCC	W9	GTLREF1	AC19	VSS
B18	A5#	F15	A19#	M28	VSS	W23	GTLREF0	AC20	D25#
B19	REQ0#	F16	VCC	M29	VCC	W24	VSS	AC21	D26#
B20	VCC	F17	ADSTB0#	M30	VSS	W25	VCC	AC22	VCC
B21	REQ1#	F18	DBSY#	M31	VCC	W26	VSS	AC23	D23#
B22	REQ4#	F19	VSS	N1	VCC	W27	VCC	AC24	D20#
B23	VSS	F20	BNR#	N2	VSS	W28	VSS	AC25	VSS
B24	LINT0	F21	RS2#	N3	VCC	W29	VCC	AC26	D17#
B25	PROCHOT#	F22	VCC	N4	VSS	W30	VSS	AC27	DBI0#
B26	VCC	F23	GTLREF2	N5	VCC	W31	VCC	AC28	COMP2
B27	VCCSENSE	F24	TRST#	N6	VSS	Y1	VSS	AC29	RSVD_12
B28	VSS	F25	VSS	N7	VCC	Y2	RSVD_15	AC30	SLEW_CTRL
B29	VCC	F26	THERMTRIP#	N8	VSS	Y3	Reserved	AC31	VCC
B30	VSS	F27	A20M#	N9	VCC	Y4	BCLK0	AD1	VCCPLL
B31	VCC	F28	VSS	N23	VCC	Y5	VSS	AD2	VCC
C1	OPTIMIZED / COMPAT#	F29	VCC	N24	VSS	Y6	TESTHI3	AD3	VSS
C2	VCC	F30	VSS	N25	VCC	Y7	VSS	AD4	VCCIOPLL
C3	VID3	F31	VCC	N26	VSS	Y8	RESET#	AD5	TESTHI5
C4	VCC	G1	VSS	N27	VCC	Y9	D62#	AD6	VCC
C5	VTT	G2	VCC	N28	VSS	Y10	VTT	AD7	D57#
C6	RSP#	G3	VSS	N29	VCC	Y11	DSTBP3#	AD8	D46#
C7	VSS	G4	VCC	N30	VSS	Y12	DSTBN3#	AD9	VSS
C8	A35#	G5	VSS	N31	VCC	Y13	VSS	AD10	D45#
C9	A34#	G6	VCC	P1	VSS	Y14	DSTBP2#	AD11	D40#
C10	VTT	G7	BOOT_SELEC T	P2	VCC	Y15	DSTBN2#	AD12	VTT
C11	A30#	G8	VCC	P3	VSS	Y16	VCC	AD13	D38#
C12	A23#	G9	VSS	P4	VCC	Y17	DSTBP1#	AD14	D39#
C13	VSS	G23	LINT1	P5	VSS	Y18	DSTBN1#	AD15	VSS
C14	A16#	G24	VCC	P6	VCC	Y19	VSS	AD16	COMP0
C15	A15#	G25	VSS	P7	VSS	Y20	DSTBP0#	AD17	VSS
C16	VCC	G26	VCC	P8	VCC	Y21		AD18	D36#
C17	A8#	G27	VSS	P9	VSS	Y22	VCC	AD19	D30#
C18	A6#	G28	VCC	P23	VSS	Y23	D5#	AD20	VCC
C19	VSS	G29	VSS	P24	VCC	Y24	D2#	AD21	D29#
C20	REQ3#	G30	VCC	P25	VSS	Y25	VSS	AD22	DBI1#
1	REQ2#	G31	VSS	P26	VCC	Y26		AD23	VSS

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

C22	1/00			Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
	VCC	H1	VCC	P27	VSS	Y27	THERMDA	AD24	D21#
C23	DEFER#	H2	VSS	P28	VCC	Y28	THERMDC	AD25	D18#
C24	TDI	H3	VCC	P29	VSS	Y29	TESTHI8	AD26	VCC
C25	VSS	H4	VSS	P30	VCC	Y30	VCC	AD27	D4#
C26	IGNNE#	H5	VCC	P31	VSS	Y31	VSS	AD28	RSVD_13
C27	SMI#	H6	VSS	R1	VCC	AA1	VCC	AD29	RSVD_14
C28	VCC	H7	VCC	R2	VSS	AA2	VSS	AD30	VCC
C29	VSS	H8	VSS	R3	VCC	AA3	BSEL0 2	AD31	VSS
C30	VCC	H9	VCC	R4	VSS	AA4	VCC	AE2	VSS
C31	VSS	H23	VCC	R5	VCC	AA5	VSSA	AE3	VCC
D1	VCC	H24	VSS	R6	VSS	AA6	VCC	AE4	SMB_PRT
D2	VSS	H25	VCC	R7	VCC	AA7	TESTHI4	AE5	TESTHI6
D3	VID2	H26	VSS	R8	VSS	AA8	D61#	AE6	SLP#
D4	STPCLK#	H27	VCC	R9	VCC	AA9	VSS	AE7	D58#
D5	VSS	H28	VSS	R23	VCC	AA10	D54#	AE8	VCC
D6	INIT#	H29	VCC	R24	VSS	AA11	D53#	AE9	D44#
D7	MCERR#	H30	VSS	R25	VCC	AA12	VTT	AE10	D42#
D8	VCC	H31	VCC	R26	VSS	AA13	D48#	AE11	VSS
D9	AP1#	J1	VSS	R27	VCC	AA14	D49#	AE12	DBI2#
D10	BR3# 1	J2	VCC	R28	VSS	AA15	VSS	AE13	D35#
D11	VSS	J3	VSS	R29	VCC	AA16	D33#	AE14	VCC
D12	A29#	J4	VCC	R30	VSS	AA17	VSS	AE15	RSVD_3
D13	A25#	J5	VSS	R31	VCC	AA18	D24#	AE16	RSVD_1
D14	VCC	J6	VCC	T1	VSS	AA19	D15#	AE17	DP3#
D15	A18#	J7	VSS	T2	VCC	AA20	VCC	AE18	VCC
D16	A17#	J8	VCC	Т3	VSS	AA21	D11#	AE19	DP1#
D17	A9#	J9	VSS	T4	VCC	AA22	D10#	AE20	D28#
D18	VCC	J23	VSS	T5	VSS	AA23	VSS	AE21	VSS
D19	ADS#	J24	VCC	T6	VCC	AA24	D6#	AE22	D27#
D20	BR0#	J25	VSS	T7	VSS	AA25	D3#	AE23	D22#
D21	VSS	J26	VCC	Т8	VCC	AA26	VCC	AE24	VCC
D22	RS1#	J27	VSS	Т9	VSS	AA27	D1#	AE25	D19#
D23	BPRI#	J28	VCC	T23	VSS	AA28	RSVD_7	AE26	D16#
D24	VCC	J29	VSS	T24	VCC	AA29	RSVD_8	AE27	VSS
D25	COMP3	J30	VCC	T25	VSS	AA30	VSS	AE28	Reserved
D26	VSSSENSE	J31	VSS	T26	VCC	AA31	VCC	AE29	Reserved
D27	VSS	K1	VCC	T27	VSS	AB1	VSS	AE30	NC
D28	VSS	K2	VSS	T28	VCC	AB2	VCC		

Notes:

1. These are "Reserved " pins on the Intel[®] Xeon™ processor. In systems utilizing the Intel[®] Xeon™ processor, the system designer must terminate these signals to the processor VTT.

2. Baseboards treating AA3 and AB3 as Reserved will operate correctly with a bus clock of 200 MHz.

3. The FC-mPGA2P package contains an extra pin (located at location AE30) compared to the INT-mPGA package. This additional pin serves as a keying mechanism to prevent the FC-mPGA2P package from being installed in the 603-pin socket. Since the additional contact for pin AE30 is electrically inert, the 604-pin socket will not have a solder ball at this location.

10.4 I²C Header

Table 73. HSBP Header Pin-out (J30, J54)

Pin	Signal Name	Description
1	HR_SMB_P5V_DAT	Data Line
2	GND	GROUND
3	HR_SMB_P5V_CLK	Clock Line
4	Pull-up for J30	
	Pull-down for J54	

Table 74. OEM RMC Header Pin-out (J33)

Pin	Signal Name	Description
1	MBMC_SMB_PHL_DAT	Data Line
2	GND	GROUND
3	MBMC_SMB_PHL_CLK	Clock Line
4	P5V_STBY	POWER
5	POST_STATUS_N	
6	PCI_RST_OEM_N	
7	P5V	
8	POWER_DOWN_N	

10.5 PCI Slot Connector

There are three PCI buses implemented on the server boards. PCI segment A supports 5V 32-bit/33MHz PCI, segment B supports 3.3V 64-bit/66MHz PCI-X, and segment C supports 3.3V PCI Express operation. All segments support full-length PCI add-in cards. The pin-out for each segment is below.

Pin	Side B	Side A	Pin	Side B	Side A
1	-12V	TRST#	32	AD[17]	AD[16]
2	ТСК	+12V	33	C/BE[2]#	+3.3V
3	Ground	TMS	34	Ground	FRAME#
4	TDO	TDI	35	IRDY#	Ground
5	+5V	+5V	36	+3.3V	TRDY#
6	+5V	INTA#	37	DEVSEL#	Ground
7	INTB#	INTC#	38	Ground	STOP#
8	INTD#	+5V	39	LOCK#	+3.3V
9	PRSNT1#	Reserved	40	PERR#	SDONE
10	Reserved	+5V (I/O)	41	+3.3V	SBO#
11	PRSNT2#	Reserved	42	SERR#	Ground
12	Ground	Ground	43	+3.3V	PAR
13	Ground	Ground	44	C/BE[1]#	AD[15]
14	Reserved	Reserved	45	AD[14]	+3.3V
15	Ground	RST#	46	Ground	AD[13]
16	CLK	+5V (I/O)	47	AD[12]	AD[11]
17	Ground	GNT#	48	AD[10]	Ground
18	REQ#	Ground	49	Ground	AD[09]
19	+5V (I/O)	Reserved	50	CONNECTOR K	EY
20	AD[31]	AD[30]	51	CONNECTOR K	EY
21	AD[29]	+3.3V	52	AD[08]	C/BE[0]#
22	Ground	AD[28]	53	AD[07]	+3.3V
23	AD[27]	AD[26]	54	+3.3V	AD[06]
24	AD[25]	Ground	55	AD[05]	AD[04]
25	+3.3V	AD[24]	56	AD[03]	Ground
26	C/BE[3]#	IDSEL	57	Ground	AD[02]
27	AD[23]	+3.3V	58	AD[01]	AD[00]
28	Ground	AD[22]	59	+5V (I/O)	+5V (I/O)
29	AD[21]	AD[20]	60	ACK64#	REQ64#
30	AD[19]	Ground	61	+5V	+5V
31	+3.3V	AD[18]	62	+5V	+5V

Table 75. P32-A 5V 32-bit/33-MHz PCI Slot Pin-out (J10, J11)

Pin	Side B	Side A	Pin	Side B	Side A
1	-12V	TRST#	49	M66EN	AD[09]
2	тск	+12V	50	MODE2	Ground
3	Ground	TMS	51	Ground	Ground
4	TDO	TDI	52	AD[08]	C/BE[0]#
5	+5V	+5V	53	AD[07]	+3.3V
6	+5V	INTA#	54	+3.3V	AD[06]
7	INTB#	INTC#	55	AD[05]	AD[04]
8	INTD#	+5V	56	AD[03]	Ground
9	PRSNT1#	ECC5	57	Ground	AD[02]
10	ECC4	+3.3V (I/O)	58	AD[01]	AD[00]
11	PRSNT2#	ECC3	59	+3.3V (I/O)	+3.3V (I/O)
12	CONNECTOR	RKEY	60	ACK64#	REQ64#
13	CONNECTOR	R KEY	61	+5V	+5V
14	ECC2	3.3Vaux	62	+5V	+5V
15	Ground	RST#		CONNECTOR I	KEY
16	CLK	+3.3V (I/O)		CONNECTOR I	KEY
17	Ground	GNT#	63	Reserved	Ground
18	REQ#	Ground	64	Ground	C/BE[7]#
19	+3.3V (I/O)	PME#	65	C/BE[6]#	C/BE[5]#
20	AD[31]	AD[30] A	66	C/BE[4]#	+3.3V (I/O)
21	AD[29]	+3.3V	67	Ground	PAR64
22	Ground	AD[28]	68	AD[63]	AD[62]
23	AD[27]	AD[26]	69	AD[61]	Ground
24	AD[25]	Ground	70	+3.3V (I/O)	AD[60]
25	+3.3V	AD[24]	71	AD[59]	AD[58]
26	C/BE[3]#	IDSEL	72	AD[57]	Ground
27	AD[23]	+3.3V	73	Ground	AD[56]
28	Ground	AD[22]	74	AD[55]	AD[54]
29	AD[21]	AD[20]	75	AD[53]	+3.3V (I/O)
30	AD[19]	Ground	76	Ground	AD[52]
31	+3.3V	AD[18]	77	AD[51]	AD[50]
32	AD[17]	AD[16]	78	AD[49]	Ground
33	C/BE[2]#	+3.3V	79	+3.3V (I/O)	AD[48]
34	Ground	FRAME#	80	AD[47]	AD[46]
35	IRDY#	Ground	81	AD[45]	Ground
36	+3.3V	TRDY#	82	Ground	AD[44]
37	DEVSEL#	Ground	83	AD[43]	AD[42]
38	PCIXCAP	STOP#	84	AD[41]	+3.3V (I/O)
39	LOCK#	+3.3V	85	Ground	AD[40]
40	PERR#	SMBCLK	86	AD[39]	AD[38]
41	+3.3V	SMBDAT	87	AD[37]	Ground
42	SERR#	Ground	88	+3.3V (I/O)	AD[36]
43	+3.3V	PAR	89	AD[35]	AD[34]

Table 76. P64-B 3.3V 64-bit/66-MHz PCI-X Slot Pin-out (J8, J9)

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

Pin	Side B	Side A	Pin	Side B	Side A
44	C/BE[1]#	AD[15]	90	AD[33]	Ground
45	AD[14]	+3.3V	91	Ground	AD[32]
46	Ground	AD[13]	92	Reserved	Reserved
47	AD[12]	AD[11]	93	Reserved	Ground
48	AD[10]	Ground	94	Ground	Reserved

Table 77. PCI Express Slot Pin-out (J13 for x8, J14 for x16)

Pin	Side B	Side A	Pin	Side B	Side A
1	+12V	PRSNT1#	42	HSION6	GND
2	+12V	+12V	43	GND	HSIP6
3	RSVD	+12V	44	GND	HSIN6
4	GND	GND	45	HSOP7	GND
5	SMCLK	JTAG2	46	HSON7	GND
6	SMDAT	JTAG3	47	GND	HSIP7
7	GND	JTAG4	48	PRSNT2#	HSIN7
8	+3.3V	JTAG5	49	GND	GND
		•	End o	of the x8 connected	or
9	JTAG1	+3.3V	50	HSOP8	RSVD
10	+3.3AUX	+3.3V	51	HSON8	GND
11	WAKE#	PWRGD	52	GND	HSIP8
Mec	hanical key	•		•	•
12	RSVD	GND	53	GND	HSIN8
13	GND	REFCLK+	54	HSOP9	GND
14	HSOP0	REFCLK-	55	HSON9	GND
15	HSON0	GND	56	GND	HSIP9
16	GND	HSIP0	57	GND	HSIN9
17	PRSNT2#	HSIN0	58	HSOP10	GND
18	GND	GND	59	HSON10	GND
End	of the x! connec	tor		•	•
19	HSOP1	RSVD	60	GND	HSIP10
20	HSON1	GND	61	GND	HSIN10
21	GND	HSIP1	62	HSOP11	GND
22	GND	HSIN1	63	HSON11	GND
23	HSOP2	GND	64	GND	HSIP11
24	HSON2	GND	65	GND	HSIN11
25	GND	HSIP2	66	HSOP12	GND
26	GND	HSIN2	67	HSON12	GND
27	HSOP3	GND	68	GND	HSIP12
28	HSON3	GND	69	GND	HSIN12
29	GND	HSIP3	70	HSOP13	GND
30	RSVD	HSIN3	71	HSON13	GND
31	PRSNT#2	GND	72	GND	HSIP13
32	GND	RSVD	73	GND	HSIN13

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

Pin	Side B	Side A	Pin	Side B	Side A
End	of the x4 connecto	r		·	·
33	HSOP4	RSVD	74	HSOP14	GND
34	HSON4	GND	75	HSON14	GND
35	GND	HSIP4	76	GND	HSIP14
36	GND	HSIN4	77	GND	HSIN14
37	HSOP5	GND	78	HSOP15	GND
38	HSON5	GND	79	HSON15	GND
39	GND	HSIP5	80	GND	HSIP15
40	GND	HSIN5	81	RSVD	HSIN15
41	HSOP6	GND	82	RSVD	GND

10.6 Front Panel Connector

A standard SSI 34-pin header is provided to support a system front panel. The header contains reset, NMI, power control buttons, and LED indicators. The following table details the pin-out of this header.

Pin	Signal Name	Pin	Signal Name
1	ACPI_LEDgrn	2	SB5V
3	KEY	4	*FAN_FAULT LED (NO SUPPORT)
5	ACPI_LED amber	6	*FAN_FAULT LED# (NO SUPPORT)
7	HDD_LED	8	*SYS_FAULT LED
9	HDD_LED#	10	*SYS_FAULT LED#
11	ACPI switch	12	NIC1 ACT_LED
13	ACPI switch (GND)	14	NIC1 ACT_LED#
15	RESET switch	16	SMB SDA
17	RESET switch (GND)	18	SMB SCL
19	*Sleep switch (NO SUPPORT)	20	*INDRUDER
21	*Sleep switch (GND)	22	NIC2 ACT_LED
23	NMI switch#	24	NIC2 ACT_LED#
25	Кеу	26	Кеу
27	NC	28	NC
29	NC	30	NC
31	NC	32	NC
33	NC	34	NC

Table 78. Front Panel 34-Pin Header Pin-out (J38)

Note:

* => NC (No Connect)

10.7 VGA Connector

The following table details the pin-out of the VGA connector. This connector is combined with COM1 connector.

Pin	Signal Name	Pin	Signal Name
B1	RED	B9	Fused VCC (+5V) (NO SUPPORT)
B2	GREEN	B10	GND
B3	BLUE	B11	NC
B4	NC	B12	DDCDAT
B5	GND	B13	HSY
B6	GND	B14	VSY
B7	GND	B15	DDCCLK
B8	GND	B16	NC
		B17	NC

Table 79. VGA Connector Pin-out (J4)

Note:

NC (No Connect)

10.8 NIC Connector

The Server Boards SE7320EP2 and SE7525RP2 supports two NIC RJ45 connectors. The following table details the pin-out of the connector.

Pin	Signal Name	Pin	Signal Name
1	Power	10	MDI_0N
2	MDI_2N	11	MDI_0P
3	MDI_2P	12	Power
4	MDI_1P	13	LINK100_L
5	MDI_1N	14	LINK1000_L
6	Power	15	LINK_L
7	Power	16	ACT_L
8	MDI_3P		
9	MDI_3N		

Table 80. NIC1-82541PI(10/100/1000) Connector Pin-out (JA1,JA2)

10.9 IDE Connector

The board provides one 40-pin ATA-100 IDE connectors

Pin	Signal Name	Pin	Signal Name
1	RESET#	2	GND
3	IDE_DD7	4	IDE_DD8
5	IDE_DD6	6	IDE_DD9
7	IDE_DD5	8	IDE_DD10
9	IDE_DD4	10	IDE_DD11
11	IDE_DD3	12	IDE_DD12
13	IDE_DD2	14	IDE_DD13
15	IDE_DD1	16	IDE_DD14
17	IDE_DD0	18	IDE_DD15
19	GND	20	KEY
21	IDE_DMAREQ	22	GND
23	IDE_IOW#	24	GND
25	IDE_IOR#	26	GND
27	IDE_IORDY	28	GND
29	IDE_DMAACK#	30	GND
31	IRQ_IDE	32	Test Point
33	IDE_A1	34	Cable Sense
35	IDE_A0	36	IDE_A2
37	IDE_DCS0#	38	IDE_DCS1#
39	IDE_HD_ACT#	40	GND

Table 81. ATA 40-pin Connector Pin-out (J43)

10.10 SATA Connector

The 6300ESB integrates a SATA controller with two SATA port outputs. The pin-out for these two connectors is listed below.

Pin	Signal Name
1	GND
2	S_TX_P
3	S_TX_N
4	GND
5	S_RX_N
6	S_RX_P
7	GND

10.11 USB Connector

The following table provides the pin-out for the dual external USB connectors. This connector is at the rear I/O area.

Pin	Signal Name
1	Fused VCC (+5V /w over current monitor of both port 3)
2	DATAN3 (Differential data line paired with DATAH3)
3	DATAP3 (Differential data line paired with DATAL3)
4	GND
5	Fused VCC (+5V /w over current monitor of both port 2)
6	DATAN2 (Differential data line paired with DATAH2)
7	DATAP2 (Differential data line paired with DATAL2)
8	GND
9	GND
10	GND
11	GND
12	GND

Table 83. USB Connectors Pin-out (J55)

A header on the server boards provides an option to support two additional USB connectors. The pin-out of the header is detailed in the following table.

Table 84	Optional	USB	Connection	Header	Pin-out (J31)
----------	----------	-----	------------	--------	---------------

Pin	Signal Name	Pin	Signal Name
1	Fused VCC (+5V /w over current monitor of both port 1)	2	Fused VCC (+5V /w over current monitor of both port 0)
3	DATAN1	4	DATAN0
5	DATAP1	6	DATAP0
7	GND	8	GND
9	Кеу	10	NC

10.12 Floppy Connector

The board provides a standard 34-pin interface to the floppy drive controller. The following tables detail the pin-out of the 34-pin floppy connector.

Pin	Signal Name	Pin	Signal Name
1	GND	2	FDDENSITY0
3	GND	4	Unused
5	KEY	6	FDDENSITY1
7	GND	8	FDINDEX#
9	GND	10	FDMOTOR#
11	GND	12	FD_PV12
13	GND	14	FDSELECT#
15	GND	16	Unused
17	Unused	18	FDDIR
19	GND	20	FDSTEP#
21	GND	22	FDWDATA#
23	GND	24	FDWGATE#
25	GND	26	FDTRK0#
27	Unused	28	FLWP#
29	GND	30	FRDATA#
31	GND	32	FHDSEL#
33	GND	34	FDSKCHG#

Table 85. Legacy 34-pin Floppy Connector Pin-out (J47)

10.13 Serial Port Connector

Two serial ports are provided on the Server Boards SE7320EP2 and SE7525RP2.

- A standard, external DB9 serial connector is located on the back edge of the server boards to supply a Serial A interface. And this connector is combined with VGA connector (J4)
- A Serial B port is provided through a 9-pin header (J15) on the server boards.

The following tables detail the pin-outs of these two ports.

Signal Name	Pin	Pin	Signal Name
DCD_N	1	2	DSR_N
SIN	3	4	RTS_N
SOUT	5	6	CTS_N
DTR_N	7	8	RI_N
GND	9	10	Key

 Table 86. 9-pin Header Serial B Port Pin-out (J15)

10.14 Keyboard and Mouse Connector

Two PS/2 ports are provided for use by a keyboard and a mouse. The following table details the pin-out of the PS/2 connectors.

PS/2 Connectors	Pin	Signal Name
Keyboard	1	KBDATA
	2	NC
	3	GND
	4	KMPWR
	5	KBCLK
	6	NC
Mouse	7	MSEDATA
	8	NC
	9	GND
	10	KMPWR
	11	MSECLK
	12	
	13,14,15,16,17	GND

Table 87. Keyboard and Mouse PS/2 Connectors Pin-out (J2)

10.15 Miscellaneous Headers

10.15.1 Fan Header

There are two 3-pin (labeled as SYS FAN_2, SYS FAN_3), four 4-pin (CPU_1 FAN and CPU_2 FAN SYS FAN_1, SYS FAN_4) and one 6-pin fan (SYS FAN_5) headers. All system fans provide speed monitoring on the board. All fan headers have the same pin-out and are detailed below.

Pin	Signal Name	Туре	Description
1	Ground	Power	GROUND is the power supply ground
2	Fan Power	Power	Fan power
3	Fan Tach	Out	Tach output

Table 88. 3	3-pin Fa	n Headers	Pin-out	(J1. J48)
	, p u		I III Out	(0 , 0 , 0 , 0)

Pin	Signal Name	Туре	Description
4	Ground	Power	GROUND is the power supply ground
3	Fan Power	Power	P12V
2	Fan Tach	Out	Tach output
1	PWM	IN	PWM Input

Table 89. 4-pin Fan Headers Pin-out (J7, J44, J45, J46)

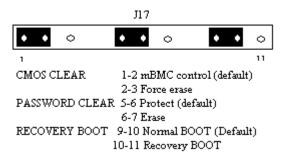
Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

Table 90. 6-pin Fan Headers Pin-out (J50)

Pin	Signal Name	Туре	Description
1	NC		
2	NC		
3	PWM	IN	PWM Input
4	Ground	Power	GROUND is the power supply ground
5	Fan Power	Power	P12V
6	Fan Tach	Out	Tach output

10.15.2 Intrusion Cable Connector

Table 91. IntruSuper IOn Cable Connector (J19)Pin-Out


Pin	Signal Name
1	INTRUDER_N
2	GND

10.15.3 System Recovery and Update Jumpers

This section describes configuration jumper options on the Server Boards SE7320EP2 and SE7525RP2.

An 11-pin (key in pin 4, 8) Header (J17), located just beside the PCI Slot 1 connectors, provides a total of three 3-pin jumper blocks that are used to configure several system recovery and update options. The figure below shows the jumper pins and their functions. The factory defaults are set to a protected mode for each function.

Three jumpers are stored on six pins during normal operation. See the figure below.

Figure 12. System Recovery and Update Jumpers (J17)

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Server Board SE7320EP2 and SE7525RP2 Connectors

The following table describes each jumper option.

Function	Pin – Pin	Function	Description
CMOS CLEAR	1-2	Normal Boot	These three pins are connected to GPIs of Super I/O.
	2-3	Force erase	The system BIOS reads these GPIs status and decides whether or not to execute related task. The
PASSWORD CLEAR	5-6	Protect	clear CMOS status is reflected to 6300ESB ICH.
	6-7	Erase	Defaults are in bold.
RECOVERY BOOT	9-10	Normal Boot	
	10-11	Recovery BOOT	

Table 92. System Recovery and Update Jumper Options

11. General Specifications

11.1 Absolute Maximum Ratings

Operating the Intel Server Board SE7320EP2 or SE7525RP2 at conditions beyond those shown in the following table may cause permanent damage to the system. The table is provided for stress testing purposes only. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Operating Temperature	0 degrees C to 55 degrees C
Non-operating Temperature	-40 degrees C to +70 degrees C
Voltage on any signal with respect to ground	-0.3 V to Vdd + 0.3V
3.3 V Supply Voltage with respect to ground	-0.3 V to 3.63 V
5 V Supply Voltage with respect to ground	-0.3 V to 5.5 V

Table 93. Absolute Maximum Ratings

Notes:

- 1. Chassis design must provide proper airflow to avoid exceeding Intel Xeon processor maximum case temperature.
- 2. VDD means supply voltage for the device

Note: Intel Corporation server boards contain a number of high-density VLSI and power delivery components which need adequate airflow to cool. Intel ensures through its own chassis development and testing that when Intel server building blocks are used together, the fully integrated system will meet the intended thermal requirements of these components. It is the responsibility of the system integrator who chooses not to use Intel developed server building blocks to consult vendor datasheets and operating parameters to determine the amount of air flow required for their specific application and environmental conditions. Intel Corporation can not be held responsible, if components fail or the server board does not operate correctly when used outside any of their published operating or non-operating limits.

11.2 Mean Time Between Failure (MTBF)

Intel has calculated the MTBF for the Server Boards SE7320EP2 and SE7525RP2 as follows:

Ambient Temperature	MTBF Calculation
55° C	TBD
40° C	TBD

Table 94. MTBF Calculation

11.3 Processor Power Support

The Intel Server Boards SE7320EP2 and SE7525RP2 are designed to support the Thermal Design Point (TDP) guideline for Intel® Xeon[™] processors. In addition, the Flexible Motherboard Guidelines (FMB) have been followed to help determine the suggested thermal and current design values for anticipating future processor needs. Table 95 provides maximum values for Icc, TDP power and T_{CASE} for the Intel Xeon processor family.

Table 95.	Intel® Xeon™	Processor DP	TDP	Guidelines
-----------	--------------	---------------------	-----	------------

TDP Power	Max TCASE	Icc MAX
103 W	72º C	92 A

Note: These values are for reference only. The processor EMTS contains the actual specifications for the processor. If the values found in the EMTS are different then those published here, the EMTS values will supersede these, and should be used.

11.4 Power Supply Specifications

This section provides power supply design guidelines for a system using either the Intel Server Boards SE7320EP2 or SE7525RP2, including voltage and current specifications, and power supply on/off sequencing characteristics.

Output	Min	Max	Tolerance
+3.3 V	3.14 V	3.46 V	+5 / -5 %
+5 V	4.75 V	5.25 V	+5 / -5 %
+12 V	11.40 V	12.60 V	+5 / -5%
-12 V	-11.40 V	-13.08 V	+5 / -9 %
+5 V SB	4.75 V	5.25 V	+5/ -5%

Table 96. Power Supply Voltage Specification

11.4.1 Power Timing

This section discusses the timing requirements for operation with a single power supply. The output voltages must rise from 10% to within regulation limits (T_{vout_rise}) within 5 ms to 70 ms. The +3.3 V, +5 V and +12 V output voltages start to rise approximately at the same time. All outputs must rise monotonically. The +5 V output must be greater than the +3.3 V output during any point of the voltage rise, however, never by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (T_{vout_on}) of each other and begin to turn off within 400 ms (T_{vout_off}) of each other.

Figure 13 shows the output voltage timing parameters.

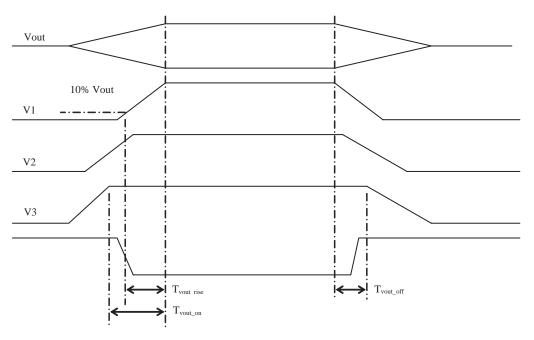


Figure 13. Output Voltage Timing

The following tables show the timing requirements for a single power supply being turned on and off via the AC input, with PSON held low and the PSON signal, with the AC input applied. The ACOK# signal is not being used to enable the turn on timing of the power supply.

ltem	Description	Min	Max	Units
T _{vout_rise}	Output voltage rise time from each main output.	5	70	msec
T _{vout_on}	All main outputs must be within regulation of each other within this time.		50	msec
T vout_off	All main outputs must leave regulation within this time.		400	msec

Table 97. Voltage Timing Parameters

Item	Description	Min	Max	Units
Tsb_on_delay	Delay from AC being applied to 5VSB being within regulation.		1500	msec
T ac_on_delay	Delay from AC being applied to all output voltages being within regulation.		2500	msec
Tvout_holdup	Time all output voltages stay within regulation after loss of AC.	21		msec
Tpwok_holdup	Delay from loss of AC to de-assertion of PWOK	20		msec
Tpson_on_delay	Delay from PSON# active to output voltages within regulation limits.	5	400	msec
T pson_pwok	Delay from PSON# deactive to PWOK being de-asserted.		50	msec
Tpwok_on	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	1000	msec
T pwok_off	Delay from PWOK de-asserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits.	1	200	msec
Tpwok_low	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.	100		msec
Tsb_vout	Delay from 5 V SB being in regulation to O/Ps being in regulation at AC turn on.	50	1000	msec
T5vsb_holdup	Time the 5 VSB output voltage stays within regulation after AC lost.	70		msec

Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS General Specifications

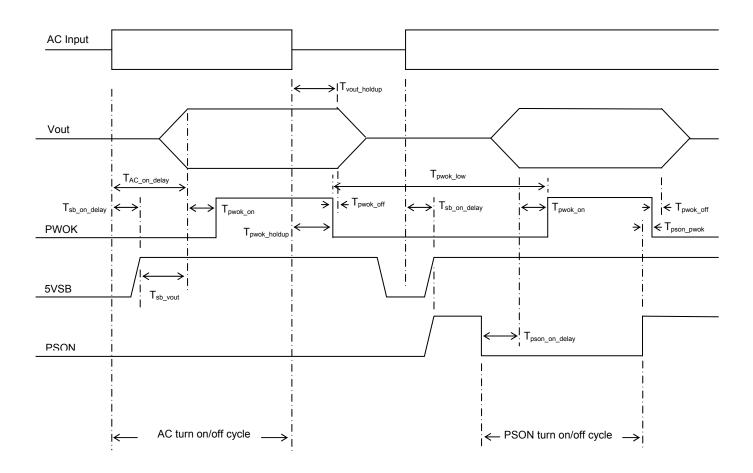


Figure 14. Turn On / Turn Off Timing

11.4.2 Voltage Recovery Timing Specifications

The power supply must conform to the following specifications for voltage recovery timing under load changes:

Voltage shall remain within +/- 5% of the nominal set voltage on the +5 V, +12 V, 3.3 V, -5 V and -12 V output, during instantaneous changes in load shown in the following table.

Voltage regulation limits shall be maintained over the entire AC input range and any steady state temperature and operating conditions specified.

Voltages shall be stable as determined by bode plot and transient response. The combined error of peak overshoot, set point, regulation, and undershoot voltage shall be less than or equal to \pm -5% of the output voltage setting. The transient response measurements shall be made with a load changing repetition rate of 50 Hz to 5 kHz. The load slew rate shall not be greater than 0.2 A/ s.

Output	Step Load Size	Load Slew Rate	Capacity Load
+3.3 V	7.0 A	0.25 A/ s	4700 F
+5 V	7.0 A	0.25 A/ s	1000 F
+12 V	6.25 A	0.25 A/ s	675 F
+5 VSB	500 mA	0.25 A/ s	20 F

Table 99. Transient Load Requirements

12. Product Regulatory Compliance

12.1 Product Safety Compliance

The Intel Server Board SE7320EP2 and SE7525RP2 comply with the following safety requirements:

- UL60950 CSA60950 (US/Canada) Recognition
- EN 60950 (CENELEC Europe)
- IEC60950 (International)
- CE Low Voltage Directive 73/23/EEE (CENELEC Europe)
- CB Certificate and Report, IEC60950 (report to include all country notional deviations)
- GOST R 50377-92 License (Russia) See note
- Belarus License (Belarus) See note

Note: Certifications for boards in Russia and Belarus are not legal requirements, however, for ease of importing, boards into these countries the boards must be list on system level GOST license. Alternatively you can obtain voluntary GOST certification for the board.

12.1.1 Product EMC Compliance

The Intel Server Board SE7320EP2 and SE7525RP2 has been tested and verified to comply with the following electromagnetic compatibility (EMC) regulations when installed in a compatible Intel host system. For information on compatible host system(s), contact your local Intel representative.

- FCC/ICES-003 Verification to Class A Emissions (USA/Canada)
- CISPR 22 Class A Emissions (International)
- EN55022 Class A Emissions (CENELEC Europe)
- EN55024 Immunity (CENELEC Europe)
- CE EMC Directive 89/336/EEC) (CENELEC Europe)
- VCCI Class A Emissions (Japan) Verify Compliance Only
- AS/NZS 3548 Class A Emissions (Australia / New Zealand)
- BSMI CNS13438 Class A Emissions (Taiwan) DOC
- GOST R 29216-91 Class A Emissions (Russia) See note
- GOST R 50628-95 Immunity (Russia) See note
- RRL MIC Notice No. 1997-41 (EMC) and 1997-42 (EMI) (Korea)

Note: Certifications for boards in Russia and Belarus are not legal requirements, however, for ease of importing, boards into these countries the boards must be list on system level GOST license. Alternatively you can obtain voluntary GOST certification for the board.

12.1.2 Mandatory/Standard: Certifications, Registration, Declarations

- UL Recognition (US/Canada)
- CE Declaration of Conformity (CENELEC Europe)
- FCC/ICES-003 Class A Verification (USA/Canada)
- VCCI Certification (Japan) Verification Only
- C-Tick Declaration of Conformity (Australia)
- MOC Declaration of Conformity (New Zealand)
- BSMI Certification (Taiwan)
- GOST R Certification/License (Russia) See note
- Belarus Certification/License (Russia) See note
- RRL Certification (Korea)
- ECMA TR/70 Declaration (International)

Note: Certifications for boards in Russia and Belarus are not legal requirements, however, for ease of importing, boards into these countries the boards must be list on system level GOST license. Alternatively you can obtain voluntary GOST certification for the board.

12.1.3 Product Regulatory Compliance Markings

This product is provided with the following Product Certification Markings.

- cURus Recognition Mark
- CE Mark
- Russian GOST Mark
- Australian C-Tick Mark
- Korean RRL MIC Mark
- Taiwan BSMI Certification Number R33025 and BSMI EMC Warning

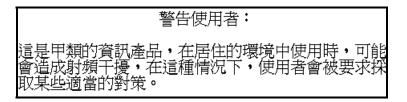
12.2 Electromagnetic Compatibility Notices

12.2.1 Europe (CE Declaration of Conformity)

This product has been tested in accordance too, and complies with the Low Voltage Directive (73/23/EEC) and EMC Directive (89/336/EEC). The product has been marked with the CE Mark to illustrate its compliance.

12.2.2 Australian Communications Authority (ACA) (C-Tick Declaration of Conformity)

This product has been tested to AS/NZS 3548, and complies with ACA emission requirements. The product has been marked with the C-Tick Mark to illustrate its compliance.


Intel® Server Board SE7320EP2 / Intel® Server Board SE7525RP2 TPS Product Regulatory Compliance

12.2.3 Ministry of Economic Development (New Zealand) Declaration of Conformity

This product has been tested to AS/NZS 3548, and complies with New Zealand's Ministry of Economic Development emission requirements.

12.2.4 BSMI (Taiwan)

The BSMI Certification number R33025 is silk screened on the component side of the server board; and the following BSMI EMC warning is located on solder side of the server board.

12.3 Replacing the Back up Battery

The lithium battery on the server board powers the real time clock (RTC) for up to 10 years in the absence of power. When the battery starts to weaken, it loses voltage, and the server settings stored in CMOS RAM in the RTC (for example, the date and time) may be wrong. Contact your customer service representative or dealer for a list of approved devices.

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

A ADVARSEL!

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandøren.

A ADVARSEL

Lithiumbatteri - Eksplosjonsfare. Ved utskifting benyttes kun batteri som anbefalt av apparatfabrikanten. Brukt batteri returneres apparatleverandøren.

Explosionsfara vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.

Appendix A: Integration and Usage Tips

This section provides a bullet list of useful information that is unique to the Intel® Server Board SE7320EP2 and Intel Server Board SE7525RP2 and should be kept in mind while assembling and configuring a system based on either of these boards.

Only Intel® Xeon[™] processors designed to operate on the 800MHz system bus are supported.

Processors must be populated in the sequential order; socket CPU1 must be populated before socket CPU 2.

You do not need to populate a terminator in an unused processor socket.

Only DDR2-400MHz SDRAM memory is supported. Memory installation occurs in pairs of contiguous sockets (e.g. DIMM 1A and DIMM 1B). Within each pair, the DIMMs need to be the same size and vendor. DIMM pair 1 is located furthest from the MCH.

When integrating the Intel® Server Board SE7320EP2 or Intel® Server Board SE7525RP2 into the Intel® Server Chassis SC5300 or into the Intel® Entry Server Chassis SC5275-E, users will be required to install additional standoffs in the chassis base plate. See the *Quick Start User's Guide* for further details.

The server boards SE7320EP2 and SE7525RP2 enable five system fan headers: Sys Fan 1 through Sys Fan 5. Sys Fan 5 is used when integrating the server board in the SC5300 Base Chassis. Other system fans are available for the Intel Server Chassis SC5275-E or reference chassis.

When integrating the Server Board SE7320EP2 or the Server Board SE7525RP2 into the Intel® Server Chassis SC5300, the system utilizes the 2U passive (no fan) heatsink solution of the Intel® Xeon™ processor. If you are integrating either of these server boards into the Intel Entry Server Chassis SC5275-E, the system will utilize the 2U active (with fan) heatsink.

When integrating the Server Board SE7320EP2 or the Server Board SE7525RP2 into the Server Chassis SC5300, ensure the rubber "L" gasket is installed under the server board prior to mounting the server board to the base plate. Thermals will be adversely affected without this gasket in place. Refer to the *Quick Start User's Guide* for details on where the gasket is affixed.

When setting up the boot order sequence in the BIOS setup, keep in mind that any time one of the devices in the boot menu is modified or removed, the BIOS will reset the boot sequence. The user will need to ensure they enter the BIOS setup and restore the boot order they desire any time a change is made to a controller (i.e. enter the option ROM and make a configuration change) or a controller is removed from the system.

Glossary

This appendix contains important terms used in the preceding chapters. For ease of use, numeric entries are listed first (e.g., "82460GX") with alpha entries following (e.g., "AGP 4x"). Acronyms are then entered in their respective place, with non-acronyms following.

Word / Acronym	Definition
ACPI	Advanced Configuration and Power Interface
BMC	Baseboard Management Controller
CEK	Common Enabling Kit
DVI	Digital Video Interface
FML	Fast Management Link
FMM	Flexible Management Module
FSB	Front Side Bus
KCS	Keyboard Controller Style
LPC	Low Pin Count
mBMC	Mini Baseboard Management Controller
МСН	Memory Controller Hub
NMI	Non-maskable Interrupt
PATA	Parallel ATA
PCB	Printed Circuit Board
PWM	Pulse Width Modulation
RTC	Real-time Clock
SATA	Serial ATA
SIO	Super Input/Output (I/O)
SM	System Management
SMC	System Management Controller
USB	Universal Serial Bus
VRD	Voltage Regulator Down