intel

Intel[®] Server Board SE7501CW2

Technical Product Specification

Intel order number C33371-002

Revision 1.1

July 16th , 2003

Enterprise Platforms and Services Marketing

Revision History

Date	Revision Number	Modifications	
1/15/03	.95	Initial release.	
3/20/03	1.0	Added fan headers, updated Winbond information, updated header locations.	
7/16/03	1.10	Added MTBF estimation, and errata data.	

Disclaimers

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Server Board SE7501CW2 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel, Pentium, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation.

*Other brands and names may be claimed as the property of others.

Copyright © Intel Corporation 2003.

Table of Contents

1.	Introduo	ction	1
1	.1	Audience	1
2.	Intel [®] S	erver Board SE7501CW2 Overview	2
2	.1	SE7501CW2 Feature Set	2
3.	Functio	nal Architecture	4
3	.1	Processor and Memory Subsystem	4
	3.1.1	Processor Support	4
	3.1.2	Memory Subsystem	6
3	.2	Intel E7501 Chipset	.10
	3.2.1	MCH Memory Architecture Overview	.11
	3.2.2	MCH North Bridge	.12
	3.2.3	P64H2	.12
	3.2.4	ICH3-S	.13
3	.3	Super I/O	.15
	3.3.1	Serial Ports	.15
	3.3.2	BIOS Flash	.16
4.	Include	d PCI Devices	.17
4	.1	Video Controller	.17
4	.2	Network Interface Controller (NIC)	.18
4	.3	Interrupt Routing	.19
	4.3.1	Legacy Interrupt Routing	.19
	4.3.2	APIC Interrupt Routing	.19
	4.3.3	Legacy Interrupt Sources	.20
	4.3.4	Serialized IRQ Support	.20
	4.3.5	IRQ Scan for PCIIRQ	.20
5.	Hardwa	re Monitoring	.24
5	.1	LANDesk* Client Manager	.25
6.	System	BIOS	.26
	6.1.1	System Flash ROM Layout	.26
6	.2	System Configuration and Initialization	.27
	6.2.1	Memory	.27

	6.2.2	Processors	30
	6.2.3	Extended System Configuration Data (ESCD), Plug and Play (PnP)	30
	6.2.4	Legacy ISA Configuration	31
	6.2.5	Automatic Detection of Video Adapters	32
	6.2.6	Keyboard / Mouse Configuration	32
	6.2.7	Floppy Drives	32
	6.2.8	Universal Serial Bus (USB)	33
6	.3	BIOS Supported Server Management Features	33
	6.3.1	Advanced Configuration and Power Interface (ACPI)	34
	6.3.2	Wake Events	35
	6.3.3	Wired For Management (WFM)	36
	6.3.4	Console Redirection	38
	6.3.5	Serial Ports	41
	6.3.6	System Management BIOS (SMBIOS)	41
	6.3.7	Windows* Compatibility	43
6	.4	BIOS Serviceability Features	44
	6.4.1	Flash Update Utility	44
6	.5	BIOS and BIOS Setup	47
	6.5.1	BIOS Setup Utility	47
	6.5.2	Entering the BIOS Setup Utility	48
	6.5.3	Keyboard Command Bar	48
	6.5.4	Menu Selection Bar	50
	6.5.5	Menu Selection Bar	50
	6.5.6	Main Menu	51
	6.5.7	Advanced Menu	53
	6.5.8	Security Menu	63
	6.5.9	Power Menu	64
	6.5.10	Boot Menu	65
	6.5.11	System Menu	66
	6.5.12	Exit Menu	67
6	.6	BIOS Security Features	68
	6.6.1	Operating Model	68
	6.6.2	Password Protection	68
7.	Error R	eporting and Handling	70

7	7.1	POST Codes, Error Messages, and Error Codes	70
	7.1.1	Port 80 Codes	70
	7.1.2	BIOS POST Beep Codes	76
	7.1.3	BIOS Recovery Beep Codes	77
	7.1.4	POST Error Codes and Messages	78
8.	SE7501	CW2 Connectors and Jumper Blocks	82
8	3.1	Main Power Connector	82
8	3.2	Memory Module Connector	83
8	3.3	Processor Socket	84
8	3.4	System Management Headers	87
	8.4.1	I ² C Header	87
	8.4.2	SCSI Backplane IPMI Connector	87
8	3.5	PCI Slot Connector	87
8	3.6	Front Panel Connectors	90
8	3.7	VGA Connector	90
8	3.8	NIC Connectors	91
8	3.9	ATA Connectors	91
8	3.10	USB Connector	93
8	3.11	Floppy Connector	94
8	3.12	Serial Port Connectors	94
8	3.13	Keyboard and Mouse Connector	95
8	3.14	Miscellaneous Headers and Jumpers	96
	8.14.1	Fan Headers	96
	8.14.2	System Recovery and Update Jumpers	96
9.	Genera	I Specifications	99
ć	9.1	Power Supply Constraints	
	9.1.1	SC5200 Base Chassis Timing Requirements	
	9.1.2	SC5200 Base Redundant Power 12V rail limitations	
	9.1.3	BIOS <f2> "Stay off" switch limitations</f2>	
	9.1.4	Mean Time between Failures	
ć	9.2	Absolute Maximum Ratings	100
ę	9.3	Power Budget	101
ę	9.4	Power Supply Specifications	104
	9.4.1	Power Timing	104

	9.4.2	Voltage Recovery Timing Specifications	107
	9.4.3	Intel Server Chassis SC5200 Base Chassis Timing Requirements with	the ICH3-S107
	9.4.4	Mean Time between failures	108
		an Time Between Failures (MTBF) has been rated at 100,493 hours. Th ed failure rate of the Server Board SE7501CW2	
10.	Product	Regulatory Compliance	109
	10.1.1	Product Safety Compliance	109
	10.1.2	Product EMC Compliance	109
	10.1.3	Product Regulatory Compliance Markings	110
1	0.2	Electromagnetic Compatibility Notices	110
	10.2.1	Europe (CE Declaration of Conformity)	110
	10.2.2	Australian Communications Authority (ACA) (C-Tick Declaration of Co	nformity) 110
	10.2.3	Ministry of Economic Development (New Zealand) Declaration of Confe	ormity110
	10.2.4	BSMI (Taiwan)	110
1	0.3	Replacing the Back-Up Battery	111
11.	Mechan	ical Spefications	112
1	1.1	Mechanical Specifications	112
Ap	pendix A	SE7501CW2 Integration and Usage Tips	115
Ap	pendix B	: Server Board SE7501CW2 Errata	116
1.	Summa	ry Tables of Changes	119
2.	Errata		121
Glo	ossary		126
Re	erence [Documents	129

List of Tables

Table 1. Processor Support Matrix	4
Table 2. Memory Bank Labels	8
Table 3. Supported DDRs	11
Table 4. Video Modes	17
Table 5. PCI Interrupt Routing/Sharing	19
Table 6. Interrupt Definitions	20
Table 7. Monitored Componets	24
Table 8. Monitored Componnets on the board	25
Table 9. Allowed Combinations of Floppy Drive and Floppy Media	
Table 10. Supported Wake Events	35
Table 11. Non-ASCII Key Mappings	40
Table 12. ASCII Key Mappings	40
Table 13. SMBIOS Header Structure	42
Table 14. Setup Utility Screen	48
Table 15. Keyboard Commands	49
Table 16. Menu Selection Bar	50
Table 17. Main Menu	51
Table 18. Primary/Secondary, Master/Slave Submenu	52
Table 19. Advanced Menu	53
Table 20. I/O Device Configuration Submenu	55
Table 21. On Board Device Submenu	57
Table 22. PCI Configuration Submenu	58
Table 23. Onboard NICs Submenu	58
Table 24. Option ROM Scan Submenu	59
Table 25. Server Menu Submenu	59
Table 26. Console Redirection Submenu	60
Table 27. DMI Event Logging Submenu	61
Table 28. Hardware Monitor Submenu	62
Table 29. Security Menu	63
Table 30. Power Menu	64
Table 31. Boot Menu	65
Table 32. System Menu	66
Table 33. Exit Menu	67
Table 34. Security Features Operating Model	68

Table 35.	System ROM BIOS POST Task Point	.70
Table 36.	Crisis Disk Boot Block BIOS POST Task Point	.76
Table 37.	POST Error Beep Codes	.77
Table 38.	BIOS Recovery Beep Codes	.77
Table 39.	Post Error Message	.78
Table 40.	Power Connector Pin-out (J25)	.82
Table 41.	Auxiliary Signal Connector (J24)	.82
Table 42.	Auxiliary CPU Power connector pin-out table (J20)	.82
Table 43.	DIMM Connectors (J39, J40, J41, J42)	.83
Table 44.	Socket 604 Processor Socket Pinout	.84
Table 45.	External I2C Header Pin-out (J26)	.87
Table 46.	HSBP I2C Connector Pin-out (J57)	.87
Table 47.	P32-A 5V 32-bit/33 MHz PCI Slot Pin-out	.87
Table 48.	P64-B/P64-C 3.3V 64-bit/ 100MHz/133MHz PCI-X Slot Pin-out	.88
Table 49.	Front Panel 34-Pin Header Pin-out (J5)	.90
Table 50.	VGA Connector Pin-out (J47)	.90
Table 51.	NIC1 10/100 RJ-45 Connector Pin-outs (J48)	.91
Table 52.	NIC2 10/100/1000 RJ-45 Connector Pin-outs (J45)	.91
Table 53.	ATA-100 40-pin Connectors Pin-out (J8, J7)	.92
Table 54.	USB Connectors Pin-out (J50)	.93
Table 55.	Optional USB Connection Header Pin-out (J10)	.93
Table 56.	Legacy 34-pin Floppy Connector Pin-out (J12)	.94
Table 57.	External DB9 Serial A Port Pin-out (J52)	.94
Table 58.	9-pin Header Serial B Port Pin-out (J28)	.95
Table 59.	Keyboard and Mouse PS/2 Connector Pin-out (J54)	.95
Table 60.	Three-pin Fan Headers Pin-out (J1, J3, J14, J16, J29, J30, J58)	.96
Table 61.	Configuration Jumper Options	.98
Table 62.	Absolute Maximum Ratings1	00
Table 63.	Power Budget Error! Bookmark not define	ed.
Table 64.	Static Power Supply Voltage Specification1	04
Table 65.	Dynamic Power Supply Voltage Specification1	04
Table 66.	Voltage Timing Parameters1	06
Table 67.	Turn On / Off Timing1	06
Table 68.	Transient Load Requirements1	07
Table 69.	Server Board Connector Specifications1	14

List of Figures

Figure 1. Block Diagram	3
Figure 2. Memory Sub-system Block Diagram	6
Figure 3. Memory Bank Label Definition	9
Figure 4. Interrupt Routing Diagram (ICH3-S Internal)	22
Figure 5. Interrupt Routing Diagram	22
Figure 6. PCI Interrupt Mapping Diagram	23
Figure 7. SE7501CW2 Configuration Jumpers (J32)	96
Figure 8. Output Voltage Timing	105
Figure 9. Turn On / Off Timing	
Figure 10. Mechanical Drawing	113

1. Introduction

The SE7501CW2 Technical Product Specification (TPS) provides a high level technical description for the Intel[®] Server Board SE7501CW2. It details the architecture and feature set for all functional sub-systems that make up the server board.

This document is sub-divided into the following main categories:

Chapter 2: Intel[®] Server Board SE7501CW2 Overview

Chapter 3: Functional Architecture

Chapter 4: Included PCI Devices

Chapter 5: Hardware Monitoring

Chapter 6: System BIOS

Chapter 7: Error Handling and Reporting

Chapter 8: Connectors and Jumper Blocks

Chapter 9: General Specifications

Chapter 10: Product Regulatory Compliance

Chapter 11: Mechanical Specifications

1.1 Audience

This document is for individuals who want a technical overview of the server board SE7501CW2. Familiarity with the personal computer, Intel[®] server architecture, Intel[®] processor architecture, memory technologies and the Peripheral Component Interconnect (PCI) local bus architecture is assumed.

2. Intel[®] Server Board SE7501CW2 Overview

The server board SE7501CW2 is a monolithic printed circuit board with features that were designed to support the general-purpose server market. The architecture is based on the Intel[®] E7501 chipset and is capable of supporting one or two Intel[®] Xeon[™] processors with 512 KB L2 cache and up to 8GB of memory.

2.1 SE7501CW2 Feature Set

The SE7501CW2 server board provides the following feature set:

- Dual Intel Xeon processors using the 603-pin INT mPGA package and 604-pin FCPGA package.
- 533 MHz front side bus
- Intel E7501 server chipset
 - MCH memory controller
 - P64H2 64-bit I/O hub
 - ICH3-S I/O controller
 - FWH firmware hub
- Support for up to four DDR200 or DDR266 compliant ECC DDR DIMMs, providing up to 8GB of memory support.
- Three separate and independent PCI buses:
 - Segment A: 32-bit, 33 MHz, 5 V (P32-A) with four embedded devices:
 - 2D/3D graphics controller: ATI Rage* XL with 8 MB of SDRAM
 - One Intel[®] 82550PM 10/100 Fast Ethernet controller
 - One Intel[®] 82540EM gigabit Ethernet controller.
 - Two PCI slots capable of supporting full-length PCI add-in cards
 - Segment B: PCI-X 64-bit, 66MHz, 3.3 V, (P64-B) with the following configuration:
 - Two PCI slots capable of supporting full-length PCI add-in cards
 - Segment C: PCI-X 64-bit, 133 MHz, 3.3 V (P64-C) with the following device:
 - One PCI slot capable of supporting full-length PCI add-in cards
- LPC (Low Pin Count) bus segment with two embedded devices:
 - Super I/O controller chip providing all PC-compatible I/O (floppy, serial, keyboard, mouse) as well as integrated hardware monitoring.
 - Flash ROM device for system BIOS: Intel[®] N82802AC 8 megabit Flash ROM.
- Three external Universal Serial Bus (USB) ports with an additional internal header providing up to two optional USB ports for front panel support. Two USB ports are supported on the SC5250-E chassis.
- Two IDE connectors, supporting up to four ATA-100 compatible devices
- Support for up to five system fans and two processor fans.
- SSI-compliant connectors for SSI interface support: front panel and power connectors.

The figure below shows the functional blocks of the server board and the plug-in modules that it supports.

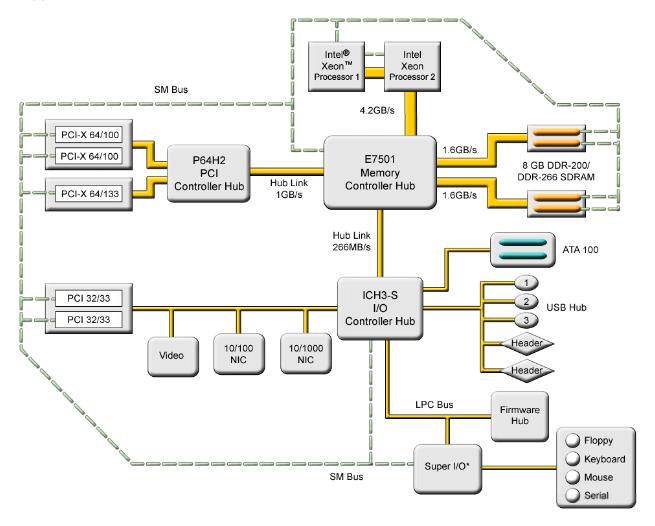


Figure 1. Block Diagram

3. Functional Architecture

This chapter provides a high-level description of the functionality distributed between the architectural blocks of the Intel Server Board SE7501CW2.

3.1 Processor and Memory Subsystem

The Intel[®] E7501 chipset provides a 36-bit address, 64-bit data processor host bus interface, operating at 533MHz in the AGTL+ signaling environment. The MCH component of the chipset provides an integrated memory controller, an 8-bit hub interface, and three 16-bit hub interfaces.

The hub interface provides the interface to two 64-bit, 133- / 100- / 66- / 33-MHz, Rev 2.2 compliant PCI-X bus via the P64H2. The Intel[®] Server Board SE7501CW2 directly supports up to 8GB of ECC memory, using four DDR200 or DDR266 compliant ECC DIMMs. DDR200 DIMMs will run at 400MHz. The ECC implementation in the MCH can detect and correct single-bit errors, and it can detect multiple-bit errors, and supports Intel® x4 Single Device Data Correction with DIMMs that use x4 technology.

3.1.1 Processor Support

The Intel[®] Server Board SE7501CW2 supports one or two Intel[®] Xeon[™] processors in the Socket 604 FCPGA2 package. When two processors are installed, all processors must be of identical revision, core voltage, and bus/core speed. When only one processor is installed, it should be in the socket labeled CPU1 and the other socket must be empty. The support circuitry on the server board consists of the following:

- Dual 604-pin processor sockets supporting 400MHz or 533MHz FSB.
- Processor host bus AGTL+ support circuitry.

Processor Family	Package Type	Frequency	Cache Size	Support
Intel® Xeon™	FCPGA	1.8GHz	512KB	Yes
Intel Xeon	FCPGA	2.0GHz	512KB	Yes
Intel Xeon	FCPGA	2.2GHz	512KB	Yes
Intel Xeon	FCPGA	2.4GHz	512KB	Yes
Intel Xeon	FCPGA	2.6GHz	512KB	Yes
Intel Xeon	FCPGA	2.8GHz	512KB	Yes
Intel Xeon	FCPGA	3.0GHz	512KB	Yes
Intel Xeon	FCPGA	3.06GHz	512KB	Yes
Intel Xeon	FCPGA	3.06GHz	1,024KB	Yes

Table 1. Processor	Support Matrix
--------------------	----------------

Notes:

• Processors must be populated in sequential order. Processor socket #1 must be populated before processor socket #2.

• Intel Server Board SE7501CW2 is designed to provide up to 65A per processors. Processors with higher current requirements are not supported.

In addition to the circuitry described above, the processor subsystem contains the following:

- Reset configuration logic.
- Processor module presence detection logic.
- APIC bus.
- Server monitoring registers and sensors.

3.1.1.1 Processor VRD

The Intel Server Board SE7501CW2 has a single VRD (Voltage Regulator Down) that supports two processors. It is compliant with the VRM 9.1 specification and provides a maximum of *130*Amps, which is capable of supporting current supported processors as well as those supported in the future.

The board hardware and PMC must read the processor VID (voltage identification) bits for each processor before turning on the VRD. If the VIDs of the two processors are not identical, then the PMC will not turn on the VRD and a beep code is generated.

3.1.1.2 Reset Configuration Logic

The BIOS determines the processor stepping, cache size, etc through the CPUID instruction. The requirements are as follows:

- All processors in the system must operate at the same frequency; have the same cache sizes, and same VID. No mixing of product families is supported.
- Processors run at a fixed speed and cannot be programmed to operate at a lower or higher speed.

The processor information is read at every system power-on.

Note: The processor speed is the processor power on reset default value. No manual processor speed setting options exist either in the form of a BIOS setup option or jumpers.

3.1.1.3 Processor Module Presence Detection

Logic is provided on the baseboard to detect the presence and identity of installed processors. The PMC checks the logic and will not turn on the system DC power unless the VIDs of both the processors match in a DP configuration.

3.1.1.4 Interrupts and APIC

Interrupt generation and notification to the processors is done by the APICs in the ICH3-S and the P64H2 using messages on the front side bus.

3.1.2 Memory Subsystem

The server board SE7501CW2 supports up to four DIMM slots for a maximum memory capacity of 8GB. The DIMM organization is x72, which includes eight ECC check bits. The memory interface runs at 266MT/s. The memory controller supports memory scrubbing, single-bit error correction and multiple-bit error detection and Intel x4 Single Device Data Correction technology support with DIMMS built on x4 technology. Memory can be implemented with either single sided (one row) or double-sided (two row) DIMMs.

The figure below provides a block diagram of the memory sub-system implemented on the Intel Server Board SE7501CW2.

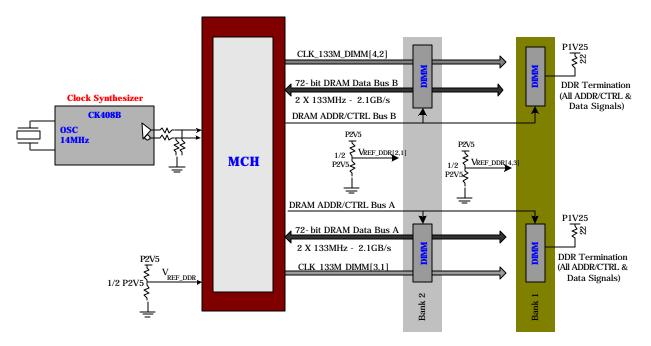


Figure 2. Memory Sub-system Block Diagram

3.1.2.1 Memory DIMM Support

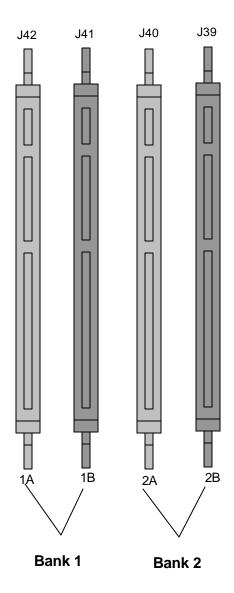
The Intel Server Board SE7501CW2 supports DDR200 compliant registered ECC DIMMs and DDR266 compliant ECC DIMMS. Only DIMMs tested and qualified by Intel or a designated memory test vendor are supported on the server board. A list of qualified DIMMs will be madeis available. Note that all DIMMs are supported by design, but only fully qualified DIMMs will beare supported.

The minimum supported DIMM size is 128 MB. Therefore, the minimum main memory configuration is 128 MB, using one DIMM or 256 MB, using two 128 MB DIMMs. The largest size DIMM supported is a 2 GB registered DDR200 or DDR266 ECC DIMM based on 512-megabit technology. Only the SC5250E, SC500 Base, and SC5200 BRP chassis support 2GB DIMMs. Refer to the chassis Technical Product Specification for details.

- Only registered DDR200 or DDR266 compliant, ECC, DDR memory DIMMs will be supported
- ECC single-bit errors will be corrected and multiple-bit error will be detected. The server board SE7501CW2 supports Intel x4 Single Device Data Correction with x4 DIMMs.
- The maximum memory capacity is 8 GB
- The minimum memory capacity is 128 MB, using one DIMM

3.1.2.2 Memory Configuration

There are two banks of DIMMs, labeled 1 and 2. Each bank provides 144 bits of two-way interleaved memory. Bank 1 contains DIMM locations 1A and 1B and bank 2 contains 2A and 2B. DIMM socket identifiers are marked with silkscreen next to each DIMM socket on the baseboard. The sockets associated with any given bank are located next to each other.


At a minimum, the DIMM 1A socket must be populated with one DIMM for the system to boot. If only a single DIMM is populated in socket 1A, then interleaving and Intel® x4 Single Device Data Correction are unavailable. If bank 2 is populated with less than two DIMMs, the memory for that bank will not be available.

The baseboard's signal integrity and cooling are optimized when memory banks are populated in order. Therefore, bank 1 must be fully populated before inserting any DIMMs into bank 2. DIMM and memory configurations must adhere to the following:

- DDR200 or DDR266 ECC, registered, DDR DIMM modules
- DIMM organization: x72 ECC
- Pin count: 184
- DIMM capacity: 128 MB, 256 MB, 512 MB, 1 GB, 2 GB DIMMs
- Serial PD: JEDEC Rev 2.0
- Voltage options: 2.5V (VDD/VDDQ)
- Interface: SSTL2
- Two DIMMs must be populated in a bank for a 144-bit wide memory data path unless inserting on DIMM in DIMM slot 1A.
- Any or all memory banks may be populated

Memory DIMM	Bank
J42 (DIMM 1A), J41 (DIMM 2A)	1
J40 (DIMM 2A), J39 (DIMM 2B)	2

Table 2. Memory Bank Labels

Revision 1.1

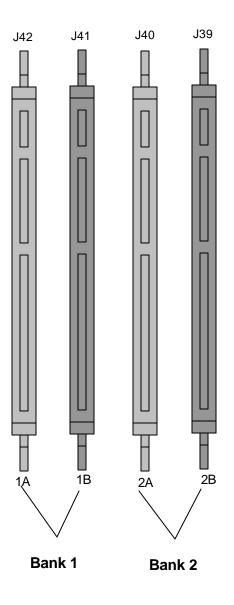


Figure 3. Memory Bank Label Definition

3.1.2.3 I²C Bus

The I²C bus is used by the system BIOS to retrieve DIMM information needed to program the MCH memory registers, which are required to boot the system.

3.1.2.4 DRAM ECC

The ECC used for DRAM provides Intel x4 Single Device Data Correction technology protection for x4 SDRAM modules. DRAM modules that are x8 use the same algorithm but will not have Intel x4 Single Device Data Correction technology protection, since at most only four bits can be corrected with this ECC.

3.2 Intel E7501 Chipset

The Intel Server Board SE7501CW2 is designed around the Intel E7501 chipset. The chipset provides an integrated I/O bridge and memory controller, and a flexible I/O subsystem core (PCI-X). This is targeted for multiprocessor systems and standard high-volume servers. The Intel E7501 chipset consists of three components:

- MCH: Memory Control Hub North Bridge. The MCH North Bridge accepts access requests from the host (processor) bus and directs those accesses to memory or to one of the PCI buses. The MCH monitors the host bus, examining addresses for each request. Accesses may be directed to a memory request queue for subsequent forwarding to the memory subsystem, or to an outbound request queue for subsequent forwarding to one of the PCI buses. The MCH also accepts inbound requests from the P64H2 and the ICH3-S. The MCH is responsible for generating the appropriate controls to control data transfer to and from memory.
- **P64H2: PCI-X 64bit Hub 2.0 I/O Bridge.** The P64H2 provides the interface for two 64bit, 133-MHz Rev. 2.2 compliant PCI-X buses (implemented on Intel[®] Server Board SE7501CW2 as one bus with one 64-bit, 133MHz slot and one bus with two 64-bit, 100MHz slots). The P64H2 is both master and target on both PCI-X buses.
- ICH3-S: IO Control Hub South Bridge. The ICH3-S controller has several components. It provides the interface for a 32-bit, 33-MHz Rev. 2.2-compliant PCI bus. The ICH3-S can be both a master and a target on that PCI bus. The ICH3-S also includes a USB controller and an IDE controller. The ICH3-S is also responsible for much of the power management functions, with ACPI control registers built in. The ICH3-S also provides a number of GPIO pins and has the LPC bus to support low speed legacy I/O. The ICH3-S requires that you only press the power button down briefly on a system reboot, or it will require a second press if held between 1-4 seconds.

The MCH, P64H2, and ICH3-S chips provide the pathway between processor and I/O systems. The MCH is responsible for accepting access requests from the host (processor) bus, and directing all I/O accesses to one of the PCI buses or legacy I/O locations. If the cycle is directed to one of the 64-bit PCI segments, the MCH communicates with the P64H2 through a private interface called the HI (hub interface). If the cycle is directed to the ICH3-S, the cycle is output on the MCH's 8-bit HI 1.5 bus. The P64H2 translates the HI 2.0 bus operation to a 64-bit PCI Rev. 2.1-compliant signaling environment operating between 133 MHz and 33 MHz.

The HI 2.0 bus is 16 bits wide and operates at 66 MHz with 512MT/s, providing over 1 GB per second of bandwidth.

All I/O for the server board, including PCI and PC-compatible, is directed through the MCH and then through either the P64H2 or the ICH3-S provided PCI buses.

- The ICH3-S provides a 32-bit/33-MHz PCI bus hereafter called P32-A.
- The P64H2 provides two independent 64-bit, 133-MHz PCI-X buses hereafter called P64-B, and P64-C.

This independent bus structure allows all three PCI buses to operate independently.

3.2.1 MCH Memory Architecture Overview

The MCH supports a 144-bit memory sub-system that can support a maximum of 8 GB, using 2 GB DIMMs. This configuration needs external registers for buffering the memory address and control signals. In this configuration, the MCH supports four DDR266 compliant registered DIMMs for maximum of 8 GB. The four chip selects are registered inside the MCH and need no external registers for chip selects.

The memory interface runs at 266MT/s. The memory interface supports a 144-bit wide memory array. It uses fifteen address lines (BA[1:0] and MA[12:0]) and supports 64 Mb, 128Mb, 256Mb, or 512Mb DRAM densities. The DDR DIMM interface supports memory scrubbing, single-bit error correction, and multiple bit error detection and Intel x4 Single Device Data Correction technology with x4 DIMMs.

3.2.1.1 DDR Configurations

The DDR interface supports up to 8GB of main memory and supports single- and double-density DIMMs. The DDR can be any industry-standard DDR. The following table shows the DDR DIMM supported.

DIMM Capacity	DIMM Organization	SDRAM Density	SDRAM Organization	# SDRAM Devices / Rows / Banks	# Address bits Rows / Banks / Column
128MB	16M x 72	64Mbit	16M x 4	18/1/4	12/2/10
128MB	16M x 72	64Mbit	8M x 8	18/2/4	12/2/9
128MB	16M x 72	128Mbit	16M x 8	9/1/4	12/2/10
256MB	32M x 72	64Mbit	16M x 4	36/2/4	12/2/10
256MB	32M x 72	128Mbit	32M x 4	18/1/4	12/2/11
256MB	32M x 72	128Mbit	16M x 8	18/2/4	12/2/10
256MB	32M x 72	256Mbit	32M x 8	9/1/4	13/2/10
512MB	64M x 72	128Mbit	32M x 4	36/2/4	12/2/11
512MB	64M x 72	256Mbit	64M x 4	18/1/4	13/2/11
512MB	64M x 72	256Mbit	32M x 8	18/2/4	13/2/10

Table 3. Supported DDRs

DIMM Capacity	DIMM Organization	SDRAM Density	SDRAM Organization	# SDRAM Devices / Rows / Banks	# Address bits Rows / Banks / Column
512MB	64M x 72	512Mbit	64M x 8	9/1/4	13/2/11
1GB	128M x 72	256Mbit	64M x 4	36/2/4	13/2/11
1GB	128M x 72	512Mbit	64M x 8	18/2/4	13/2/11
1GB	128M x 72	512Mbit	128M x 4	18/1/4	13/2/12
2GB	256M x 72	512Mbit	256M x 4	TBD	14/2/11
2GB	256M x 72	512Mbit	256M x 4	TBD	14/2/11
2GB	256M x 72	512Mbit	256M x 4	TBD	14/2/12

3.2.2 MCH North Bridge

The Intel E7501 chipset MCH North Bridge (MCH) is a 1005 ball FC-BGA device and uses the proven components of previous generations like the Intel Xeon processor bus interface unit, the hub interface unit, and the DDR memory interface unit. In addition, the MCH incorporates a hub interface (HI). The hub interface enables the MCH to directly interface with the P64H2. The MCH also increases the main memory interface bandwidth and maximum memory configuration with a 144-bit wide memory interface.

The MCH integrates three main functions:

- An integrated high performance main memory subsystem.
- An HI 2.0 bus interface that provides a high-performance data flow path between the host bus and the I/O subsystem.
- A HI 1.5 bus which provides an interface to the ICH3-S (South Bridge).

Other features provided by the MCH include the following:

- Full support of ECC on the processor bus
- Full support of Intel x4 Single Device Data Correction on the memory interface with x4 DIMMs
- Twelve deep in-order queue
- Full support of registered DDR200 and DDR266 ECC DIMMs
- Support for 8 GB of DDR DIMMs
- Memory scrubbing

3.2.3 P64H2

The P64H2 is a 567-ball FC-BGA device and provides an integrated I/O bridge that provides a high-performance data flow path between the HI 2.0 and the 64-bit I/O subsystem. This subsystem supports peer 64-bit PCI-X segments. Because it has two PCI interfaces, the P64H2 can provide large and efficient I/O configurations. The P64H2 functions as the bridge between the HI and the two 64-bit PCI-X I/O segments. The HI interface can support 1 GB/s of data bandwidth.

3.2.3.1 PCI Bus P64-B I/O Subsystem

P64-B supports two 184-pin, 3.3-volt keyed, 64-bit PCI expansion slot connectors running at 100MHz. Each connector slot supports a 184-pin, 3.3V keyed, 64-bit PCI-X full-length expansion card.

The BIOS is responsible for setting the bus speed of P64-B. The bus speed will always run at the speed of the slowest card installed.

3.2.3.2 PCI Bus P64-C I/O Subsystem

P64-C supports the following embedded devices and connectors:

- One 184-pin, 3.3-volt keyed, 64-bit PCI expansion slot connector running at 133 MHz. This slot is capable of supporting a full-length add-in PCI card.
- This expansion slot can be used for riser card, should this board be integrated into a high-density chassis. The slot is designed to support up to 3 PCI slots on the riser, however actual number of slots and slot speeds will be determined by the signal integrity of the riser card used.

The BIOS is responsible for setting the bus speed of P64-C. The bus speed will always run at the speed of the slowest card installed.

3.2.4 ICH3-S

The ICH3-S is a multi-function device, housed in a 421-pin BGA device, providing a HI 1.5 to PCI bridge, a PCI IDE interface, a PCI USB controller, and a power management controller. Each function within the ICH3-S has its own set of configuration registers. Once configured, each appears to the system as a distinct hardware controller sharing the same PCI bus interface.

On the server board SE7501CW2, the primary role of the ICH3-S is to provide the gateway to all PC-compatible I/O devices and features. The server board uses the following ICH3-S features:

- 32-bit PCI bus interface
- 16-bit LPC bus interface
- IDE interface, with Ultra DMA 100 capability
- Universal Serial Bus (USB) interface
- PC-compatible timer/counter and DMA controllers
- APIC and 8259 interrupt controller
- Power management
- System RTC
- General purpose I/O

The following sections describe how each supported feature is used on the server board SE7501CW2.

3.2.4.1 PCI Bus P32-A I/O Subsystem

The ICH3-S provides a legacy 32-bit PCI subsystem and acts as the central resource on this PCI interface.

P32-A supports the following embedded devices and connectors:

- An ATI* Rage* XL video controller with 3D/2D graphics accelerator
- One Intel[®] 82550PM network controller
- One Intel[®] 82540EM network controller
- Two 5V keyed expansion slots capable of supporting full-length PCI add-in cards operating at 33MHz

3.2.4.2 PCI Bus Master IDE Interface

The ICH3-S acts as a PCI-based Ultra DMA/100 IDE controller that supports programmed I/O transfers and bus master IDE transfers. The ICH3-S supports two IDE channels, supporting two drives each (drives 0 and 1). The Intel Server Board SE7501CW2 provides two SSI compliant 40-pin (2x20) IDE connectors to access the IDE functionality.

The Intel Server Board SE7501CW2 IDE interface supports Ultra DMA/100 Synchronous DMA Mode transfers on each 40-pin connector.

3.2.4.3 USB Interface

The ICH3-S contains three USB revision 1.1 controllers and three USB hubs. The USB controller moves data between main memory and the six USB connectors. All six ports function identically and with the same bandwidth. The server board SE7501CW2 utilizes five of the six ports on the board.

The server board provides three external USB ports on the back of the server board. The triple stack USB connector is located within the standard ATX I/O panel area next to the keyboard and mouse housing. The USB specification defines the external connectors. The SR1350-E chassis supports two front-panel USB connectors.

The fourth and fifth USB ports are optional and can be accessed by cabling from the internal 9pin connector located on the baseboard to external USB ports located either in front or the rear of a given chassis.

3.2.4.4 Compatibility Interrupt Control

The ICH3-S provides the functionality of two 82C59 PIC devices for ISA-compatible interrupt handling.

3.2.4.5 APIC

The ICH3-S integrates an APIC that is used to distribute 24 interrupts.

3.2.4.6 Power Management

One of the embedded functions of the ICH3-S is a power management controller. The SE7501CW2 server board uses this to implement ACPI-compliant power management features. The server board supports sleep states S0, S4, and S5.

3.3 Super I/O

The Winbond* 83627HF Super I/O device contains all of the necessary circuitry to control two serial ports, one parallel port, floppy disk, PS/2-compatible keyboard and mouse, and hardware monitor controller. The SE7501CW2 server board supports the following features:

- GPIOs
- Two serial ports
- Floppy
- Keyboard and mouse
- Local hardware monitoring
- "Wake-on" control

3.3.1 Serial Ports

The server board SE7501CW2 provides two serial ports, an external serial port, and an internal serial header. The following sections provide details on the use of the serial ports.

3.3.1.1 Serial A

Serial A is a standard DB9 interface located at the rear I/O panel of the server board, to the left of the video connector below the parallel port connector. Serial port A is designated by silkscreen as "Serial A" and reference designator J52.

3.3.1.2 Serial B

Serial B is an optional port, accessed through a 9-pin internal header (J28). A standard DH-10 to DB9 cable can be used to direct serial 2 to an external connector, if available on your chassis on any given chassis. The serial B interface follows the standard RS232 pin out. The baseboard has a "Serial B" silkscreen label next to the connector. The serial B connector is located just below PCI slot 5.

3.3.1.3 Floppy Disk Controller

The floppy disk controller (FDC) in the SIO is functionally compatible with floppy disk controllers in the DP8473 and N844077. All FDC functions are integrated into the SIO including analog data separator and 16-byte FIFO. The SE7501CW2 provides a standard 36-pin interface for the floppy disk controller.

3.3.1.4 Keyboard and Mouse

Two external PS/2 ports, located on the back of the baseboard, are provided to access the keyboard or mouse functions. The two ports are interchangeable and will automatically detect and configure a keyboard or mouse plugged into either port.

3.3.1.5 Wake-on Control

The Super I/O contains functionality that allows various events to control the power-on and power-off the system.

3.3.2 BIOS Flash

The server board SE7501CW2 incorporates an Intel[®] N82802AC (FWH8) flash memory component. The N82802AC is a high-performance 8-megabit memory component that provides 1024K x 8 of BIOS and non-volatile storage space. The flash device is connected through the LPC Bus from the ICH3-S.

4. Included PCI Devices

4.1 Video Controller

The Intel Server Board SE7501CW2 provides an ATI Rage XL PCI graphics accelerator, along with 8 MB of video SDRAM and support circuitry for an embedded SVGA video subsystem. The ATI Rage XL chip contains a SVGA video controller, clock generator, 2D and 3D engine, and RAMDAC in a 272-pin PBGA. One 2Mx32 SDRAM chip provides 8 MB of video memory.

The SVGA subsystem supports a variety of modes, up to 1600 x 1200 resolution in 8/16/24/32 bpp modes under 2D, and up to 1024 x 768 resolution in 8/16/24/32 bpp modes under 3D. It also supports both CRT and LCD monitors up to 100 Hz vertical refresh rate.

The server board provides a standard 15-pin VGA connector and supports disabling of the onboard video through the BIOS setup menu or when a plug in video card is installed in any of the PCI slots.

4.1.1.1 Video Modes

The ATI Rage XL chip supports all standard IBM VGA modes. The following table shows the 2D/3D modes supported for both CRT and LCD. The table specifies the minimum memory requirement for various display resolution, refresh rates and color depths.

2D Mode	Refresh Rate (Hz)	SE7501CW2 2D Video Mode Support				
		8 bpp	16 bpp	24 bpp	32 bpp	
640x480	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported	
800x600	60, 70, 75, 90, 100	Supported	Supported	Supported	Supported	
1024x768	60, 72, 75, 90, 100	Supported	Supported	Supported	Supported	
1280x1024	43, 60	Supported	Supported	Supported	Supported	
1280x1024	70, 72	Supported	-	Supported	Supported	
1600x1200	60, 66	Supported	Supported	Supported	Supported	
1600x1200	76, 85	Supported	Supported	Supported	-	
	1		1	·	1	
3D Mode	Refresh Rate (Hz)	SE7501CW2 3D Video Mode Support with Z Buffer Enabled				
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported	
1280x1024	43,60,70,72	Supported	Supported	-	-	
1600x1200	60,66,76,85	Supported	-	_	-	
		•				
3D Mode	Refresh Rate (Hz)	SE7501CW2 3D Video Mode Support with Z Buffer Disable				
640x480	60,72,75,90,100	Supported	Supported	Supported	Supported	
800x600	60,70,75,90,100	Supported	Supported	Supported	Supported	
1024x768	60,72,75,90,100	Supported	Supported	Supported	Supported	

Table 4. Video Modes

2D Mode	Refresh Rate (Hz)	SE7501CW2 2D Video Mode Support			
		8 bpp	16 bpp	24 bpp	32 bpp
1280x1024	43,60,70,72	Supported	Supported	Supported	-
1600x1200	60,66,76,85	Supported	Supported	-	_

4.1.1.2 Video Memory Interface

The memory controller subsystem of the ATI Rage XL arbitrates requests from direct memory interface, the VGA graphics controller, the drawing coprocessor, the display controller, the video scalar, and hardware cursor. Requests are serviced in a manner that ensures display integrity and maximum CPU/coprocessor drawing performance.

The Intel Server Board SE7501CW2 supports an 8 MB (512Kx32bitx4 Banks) SDRAM device for video memory.

4.2 Network Interface Controller (NIC)

The server board SE7501CW2 supports one 10Base-T/100Base-TX network interface controller (NIC) and one 10Base-T/100Base-TX/1000Base-T network interface controller, using the Intel 82550PM NIC and the Intel 82540EM. The 82550PM is a highly integrated PCI LAN controller in a thin BGA 15mm package. The controller's baseline functionality is equivalent to that of the Intel 82559, with the addition of Alert-on-LAN functionality. The server board supports independent disabling of the two NIC controllers through the BIOS setup menu.

The 82550PM supports the following features:

- Glueless 32-bit PCI, CardBus master interface (Direct Drive of Bus), compatible with *PCI local Bus Specification, Revision 2.2.*
- Integrated IEEE 802.3 10Base-T and 100Base-TX compatible PHY.
- IEEE 820.3u auto-negotiation support.
- Full duplex support at both 10 Mbps and 100 Mbps operation.
- Integrated UNDI ROM support.
- MDI/MDI-X and HWI support.
- Low power +3.3 V device.

The 82540EM supports the following features:

- Support for the 33/66MHz bus segment
- Integrated 10/100/1000 Mb/s full and half duplex operation
- SMBUS ASF 1.0, ACPI, WoL and PXE management functions
- Compliant with PCI Power Management v1.1 and ACPI v2.0

4.2.1.1 NIC Connector and Status LEDs

The 82550PM drives two LEDs located on the network interface connector. The right greenLED indicates network connection when on, and transmit/receive activity when blinking. The left green LED indicates 100-Mbps operating mode when lit, and 10-Mbps when off.

The 82540EM drives two LEDs located on the network interface connector. The green (or yellow) LED to the right of the connector indicates a network connection is in place when it is on, and transmit/receive activity when it is blinking. The bi-color LED to the left of the connector indicates 10 Mbps-operation when it is off, 100-Mbps operation when it is a green, and 1000-Mbps operation when it is amber.

4.3 Interrupt Routing

The SE7501CW2 interrupt architecture accommodates both PC-compatible PIC mode and APIC mode interrupts through use of the integrated I/O APICs in the ICH3-S.

4.3.1 Legacy Interrupt Routing

For PC-compatible mode, the ICH3-S provides two 82C59-compatible interrupt controllers. The two controllers are cascaded with interrupt levels 8-15 entering on level 2 of the primary interrupt controller (standard PC configuration). A single interrupt signal is presented to the processors, to which only one processor will respond for servicing. The ICH3-S contains configuration registers that define which interrupt source logically maps to I/O APIC INTx pins.

Both PCI and IRQ interrupt types are handled by the ICH3-S. The ICH3-S translates these to the APIC bus. The numbers in the table below indicate the ICH3-S PCI interrupt input pin to which the associated device interrupt (INTA, INTB, INTC, INTD) is connected. The ICH3-S' I/O APIC exists on the I/O APIC bus with the processors.

Interrupt	INT A	INT B	INT C	INT D		
ATI Rage SL	ICH3-S_PIRQF_L					
82540EM #2	ICH3-S_PIRQE_L	ICH3-S_PIRQE_L				
82550PM #1	ICH3-S_PIRQH_L					
P64H2 BT INTR#	ICH3-S_PIRQC# (for PIC mode)					
P64-C Slot 1	P1_IRQ0_L	P1_IRQ1_L	P1_IRQ2_L	P1_IRQ3_L		
P64-B Slot 2	P2_IRQ0_L	P2_IRQ1_L	P2_IRQ2_L	P2_IRQ3_L		
P64-B Slot 3	P2_IRQ4_L	P2_IRQ5_L	P2_IRQ6_L	P2_IRQ7_L		
P32-A Slot 4	ICH3- S_PIRQB_L	ICH3- S_PIRQC_L	ICH3- S_PIRQB_L	ICH3- S_PIRQC_L		
P32-A Slot 5	ICH3- S_PIRQD_L	ICH3-S_PIRQA_L	ICH3- S_PIRQD_L	ICH3-S_PIRQA_L		

Table 5. PCI Interrupt Routing/Sharing

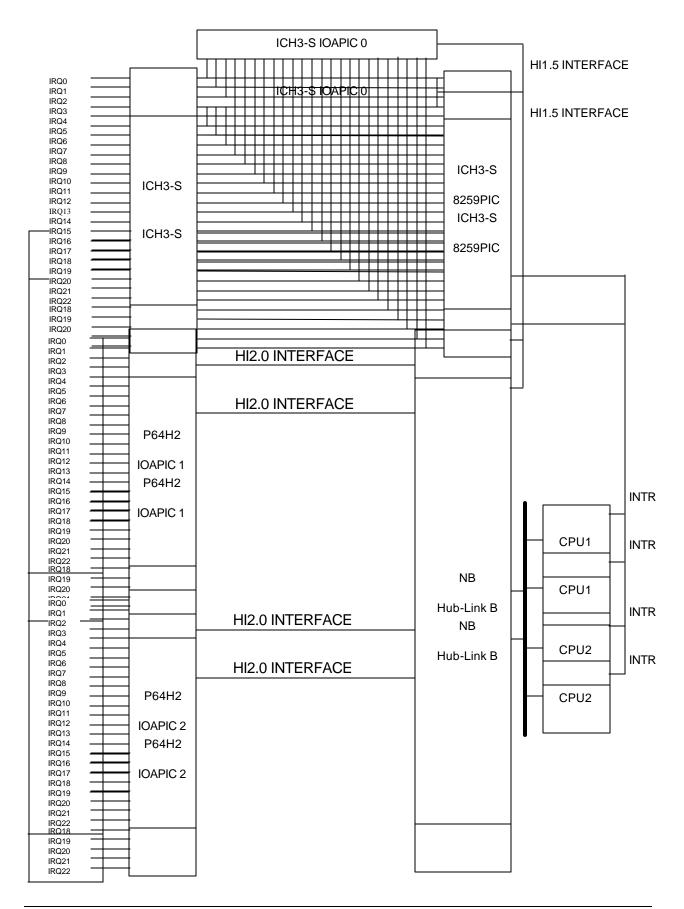
4.3.2 APIC Interrupt Routing

For APIC mode, the Intel Server Board SE7501CW2 interrupt architecture incorporates three Intel[®] I/O APIC devices to manage and broadcast interrupts to local APICs in each processor. The Intel I/O APICs monitor each interrupt on each PCI device including PCI slots in addition to the ISA compatibility interrupts IRQ(0-15). When an interrupt occurs, a message corresponding to the interrupt is sent across the front-side-bus interface to the local APICs. The I/O APICs can also supply greater than 16 interrupt levels to the processor(s).

4.3.3 Legacy Interrupt Sources

The table below recommends the logical interrupt mapping of interrupt sources on the server board. The actual interrupt map is defined using configuration registers in the ICH3-S.

ISA Interrupt	Description
INTR	Processor interrupt.
NMI	NMI to processor.
IRQ0	System timer
IRQ1	Keyboard interrupt.
IRQ2	Slave PIC
IRQ3	Serial port 1 or 2 interrupt from SIO device, user-configurable.
IRQ4	Serial port 1 or 2 interrupt from SIO device, user-configurable.
IRQ5	Parallel Port / Generic
IRQ6	Floppy disk.
IRQ7	Parallel Port / Generic
IRQ8_L	Active low RTC interrupt.
IRQ9	SCI*
IRQ10	Generic
IRQ11	Generic
IRQ12	Mouse interrupt.
IRQ13	Floaty processor.
IRQ14	Compatibility IDE interrupt from primary channel IDE devices 0 and 1.
IRQ15	Secondary IDE Cable
SMI*	System Management Interrupt. General purpose indicator sourced by the ICH3-S to the processors.


Table 6. Interrupt Definitions

4.3.4 Serialized IRQ Support

The server board SE7501CW2 supports a serialized interrupt delivery mechanism. Serialized interrupt requests (SERIRQ) consists of a start frame, a minimum of 17 IRQ / data channels, and a stop frame. Any slave device in the quiet mode may initiate the start frame. While in continuous mode, the start frame is initiated by the host controller.

4.3.5 IRQ Scan for PCIIRQ

The IRQ / data frame structure includes the ability to handle up to 32 sampling channels with the standard implementation using the minimum 17 sampling channels. The server board has an external PCI interrupt serializer for PCIIRQ scan mechanism of ICH3-S to support 16 PCI IRQs.

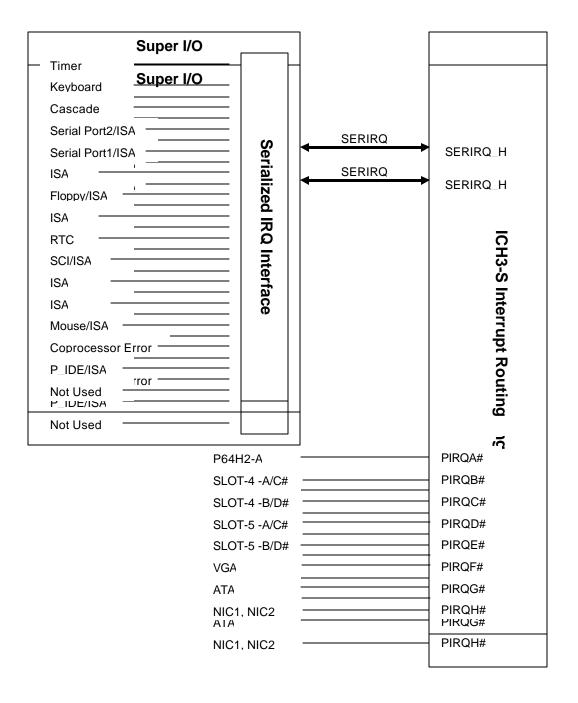


Figure 4. Interrupt Routing Diagram (ICH3-S Internal)

Figure 5. Interrupt Routing Diagram

Note: P1 is P64H2 PCI-bus A, P2 is P64H2 PCI-bus B

Figure 6. PCI Interrupt Mapping Diagram

5. Hardware Monitoring

The Intel Server Board SE7501CW2 has an integrated Winbond* 83627HF SIO controller with integrated hardware monitoring and a MAX6651 controller both of which provide basic hardware monitoring capabilities. These controllers use the I²C bus to communicate to all the sensors integrated on the baseboard.

Below is a table of monitored headers and sensors on the Intel Server Board SE7501CW2.

	Item	Description	
Voltage	Vcpu	Monitors processor voltage. (sIO)	
	1.8V	Monitors +1.8V. (sIO)	
	3.3V	Monitors +3.3V. (sIO)	
	5V	Monitors +5Vcc (sIO)	
	AUX3V	Monitors +3.3 Standby Voltage. (sIO)	
	ENG12V	Monitors +12Vin for processor core VR. (sIO)	
	2.5V	Monitors +2.5V. (sIO)	
	AUX5V	Monitors +5 Standby Voltage. (sIO)	
Fan Speed	PWM1	Controls 2 front system fans (sIO)	
	PWM2	Controls 2 rear system fans (sIO)	
	PWM3	Controls 1 front system fan	
	FanlO0	Monitors Sys Fan1 front fan (sIO)	
	FanlO1	Monitors Sys Fan2 front fan (sIO)	
	Fanl02	Monitors Sys Fan5 front fan (sIO)	
	TACH0	Monitors Sys Fan3rear fan (MAX6651)	
	TACH1	Monitors Sys Fan4rear fan (MAX6651)	
	TACH2	Monitors CPU1 fan (MAX6651)	
	TACH3	Monitors CPU2 fan (MAX6651)	
Temperature	CPU1	Monitors primary processor temperature. (sIO)	
	CPU2	Monitors secondary processor temperature. (sIO)	
	Ambient Temperature	Monitors Ambient temperature (sIO)	

Table 7. Monitored Componets

Below is a diagram describing the Winbond W83627HF chip and MAX6651 chip monitor on the Intel Server Board SE7501CW2 and how monitoring is accomplished.

5.1 LANDesk* Client Manager

The board has an integrated Winbond HECETA chip that is responsible for hardware monitoring. Together, the Winbond HECETA chip and the LANDesk^{*} Client Manager (LDCM) software provide basic server hardware monitoring which alerts a system administrator if a hardware problem occurs on an Server Board-based system. The LDCM software is for use with Windows^{*} 2000 Server and Windows 2000 Advanced Server^{*} operating systems. Below is a table of monitored headers and sensors on the board.

	ltem	Description	
Voltage	Vcpu	Monitors processor voltage	(sIO)
	1.8V	Monitors +1.8V	(sIO)
	3.3V	Monitors +3.3V	(sIO)
	5V	Monitors +5Vcc	(sIO)
	AUX3V	Monitors +3.3 Standby Voltage Vin	(sIO)
	ENG12V	Monitors	(sIO)
	2.5V	Monitors -5V	(sIO)
	Vbat	Monitors battery voltage	(sIO)
	SB5V	Monitors +5 Standby Voltage	(sIO)
Fan Speed	PWM1	Controls 2 front system fans (J1, J3)	(sIO)
	PWM2	Controls 2 rear system fans (J29, J30)	(sIO)
	PWM3	Controls front system fan (J58)	(MAX6651)
	FanIO0	Monitors front fan (J1)	(sIO)
	FanIO1	Monitors front fan (J3)	(sIO)
	FanIO2	Monitors front fan (J58)	(sIO)
	TACH0	Monitors rear fan (J29)	(MAX6651)
	TACH1	Monitors rear fan (J30)	(MAX6651)
	TACH2	Monitors CPU fan (J16)	(MAX6651)
	TACH3	Monitors CPU fan (J14)	(MAX6651)
Temperature	CPU1	Monitors primary processor temperature	(sIO)
	CPU2	Monitors secondary processor temperature	(sIO)
	Ambient	Monitors Ambient temperature	(sIO)

		•		
Table 8.	Monitored	Componnet	s on	the board

6. System BIOS

The server board SE7501CW2 contains the following on-board application-specific integrated circuits (ASICs) that require BIOS support:

- Intel[®] E7501 MCH North Bridge with Memory Controller
- Intel[®] ICH3-S Source Bridge integrate USB controller, IDE controller, SMBUS controller, LPC Bridge, and RTC
- P64H2 PCI bridge support PCI bridging and PCI hot plug
- A 1 MB FWH provides BIOS code storage
- Winbond W83627F Super I/O integrate the Serial Port / Parallel port / PS2 KB / mouse / floppy, and hardware monitor functionality
- ATI Rage XL with 8MB SDRAM support

6.1.1 System Flash ROM Layout

The flash ROM contains system initialization routines, the BIOS Setup Utility, and runtime support routines. The exact layout is subject to change, as determined by Intel. The flash ROM also contains initialization code in compressed form for on-board peripherals, like PXE ROM and video controllers.

The complete ROM is visible, starting at physical address 8 GB minus the size of the flash ROM device. Only the BIOS needs to know the exact map. The BIOS image contains all of the BIOS components at appropriate locations. The flash memory update utility loads the BIOS image minus the recovery block to the flash.

Because of shadowing, none of the flash blocks are visible at the aliased addresses below 1 MB.

A 64KB block is dedicated for boot block code that is to provide the ROM disaster recovery when the system ROM is destroyed by some unexpected reasons, like power failure while update the BIOS.

A 8 KB parameter block in the flash ROM is dedicated to storing configuration data that controls the system configuration (ESCD). Application software must use standard APIs to access these areas; application software cannot access the data directly.

6.2 System Configuration and Initialization

6.2.1 Memory

The following is a list of memory specifications that the system BIOS supports:

Only registered DDR200 or DDR266 memory is supported. When populated with 8 GB of memory, the memory between 8 GB and 4 GB minus a minimum of 128 MB is not accessible for use by the operating system and may be lost to the user. This area is reserved for BIOS, APIC configuration space, PCI adapter interface, and virtual video memory space. This memory space is also lost if the system is populated with memory configurations between max. 3.872 GB and 4 GB. This size has the ability to expand by 128MB multiples if cards demand more space.

Note: The minimum DIMM size is 128 MB, and it will expand automatically based on the PCI card resource claims.

The system BIOS supports registered DIMMs with CL=3 components and CL=2 components when available.

- The baseboard is hard-wired for 2-way interleave and the system BIOS supports only 2-way interleaving.
- DIMMs must be populated in pairs of the same size. Memory timing defaults to the slowest DIMM. One DIMM can however be populated in DIMM slot 1A only.
- The system BIOS supports only Error Correcting Code (ECC) memory.
- DDR 200 ECC DIMMs can only be used if and when 400 Mhz FSB Intel Xeon processors are installed.
- X4/x8 DIMM mixing Read Error Sighting.

All DIMMs must use SPD EEPROM or they will not be recognized by BIOS. Mixing vendors of DIMMs will be supported, but is not recommended as the system will default to the slowest speed that will work with all of the vendors.

The SE7501CW2 server BIOS is responsible for configuring and testing the system memory. Configuring system memory involves probing the memory modules for their characteristics and programming the chipset for optimum performance. The BIOS also verifies that the memory subsystem is functional.

When the system comes out of reset, the main memory is not usable. The BIOS has knowledge of the memory subsystem and it knows the type of memory, the number of DIMM sites, and their locations.

6.2.1.1 Memory Configuration

The SE7501CW2 server board uses the Intel E7501 MCH chipset to configure the system baseboard memory

The SE7501CW2 server BIOS is responsible for configuring and testing the system memory. The configuration of the system memory involves probing the memory modules for their characteristics and programming the chipset for optimum performance.

6.2.1.2 Memory Sizing and Initialization

During POST, the BIOS tests and sizes memory, and configures the memory controller. The BIOS determines the operational mode of the Intel E7501 based on the number of DIMMs installed and the type, size, speed, and memory attributes found on the on-board EEPROM or Serial Presence Detect (SPD) of each DIMM.

The memory system is based on rows. Since the SE7501CW2 server board supports a 2-way interleave, DIMMs must be populated in pairs with the same size, though a single DIMM can be populated only in DIMM 1A. This means two DIMMs are required to constitute a row. Although DIMMs within a row must be identical, the BIOS supports various DIMM sizes and configurations allowing the rows of memory to be different. Memory sizing and configuration is guaranteed only for qualified DIMMs approved by Intel.

The memory-sizing algorithm determines the size of each row of DIMMs. The BIOS tests extended memory according to the option selected in the BIOS Setup Utility. The total amount of configured memory can be found using INT 15h, AH = 88h; ¹INT 15h, function E801h;² or INT 15h, function E820h.³ Refer to Section 1.1 for other nonstandard INT 15h functions supported by the system BIOS.

Because the system supports up to 8 GB of memory, the BIOS creates a hole just below 4 GB to accommodate the system BIOS flash, APIC memory, and memory-mapped I/O located on 32-bit PCI devices. The size of this hole depends upon the number of PCI cards and the memory mapped resources requested by them. It is typically less than 128 MB.

6.2.1.3 ECC Initialization

Because only ECC memory is supported, the BIOS will need to initial the ECC before using it. The BIOS will initial the E7501 chipset Hardware scrubbing function to initialize the ECC function. While initializing base memory, the BIOS must cover the SMRAM and shadow area (0c000h – 0ffffh).

Note: ECC memory initialization cannot be aborted and may result in a noticeable delay, depending on the amount of memory in the system.

¹ INT 15h, AH=88h can report a maximum of 64 MB of contiguous memory.

² INT 15h, function E801h can report a maximum of 4096 MB of contiguous memory.

³ INT 15h, function E820h can report up to 2^{65} –1 bytes of memory including non-contiguous memory regions.

6.2.1.4 Memory Test

Memory can be classified as base memory or extended memory. Base memory is defined as the part of memory that is required for early BIOS code. Typically, 1 MB of memory is used for this. Most of the BIOS code and data is stored in a compressed form inside the BIOS flash and is decompressed into the base memory. The base memory must be available before the BIOS can stack or shadow itself.

Extended memory is the memory above the top of base memory (1 MB through the total memory size). Extended memory may be contiguous or it can have one or more holes.

The memory test consists of two steps: a base memory test and an extended memory test. The base memory test must be run before video is initialized. The video provides a key visual indication that the system is functional, so enabling video as early as possible during POST is a priority. It is possible to test the entire memory in one step, but the memory test and initialization can be a time consuming process. Therefore, the BIOS tests only the minimum amount of memory (1 MB) before video is displayed and it tests the remaining memory after video is initialized. In addition, the BIOS displays the status of extended memory test on the console if diagnostic messages are enabled.

The SE7501CW2 server BIOS implements a 32-bit, fast, enhanced memory test. The code supports page table extensions as defined in the Pentium[®] Pro processor specifications. It is capable of accessing memory above 4 GB and skipping the memory hole. The user can select the coverage for extended memory tests by selecting the desired memory test option in the BIOS Setup Utility.

The "interleave width" of a memory subsystem depends on the chipset configuration. For 2:1 interleave, the interleave width is 128-bits. By default, the BIOS tests one "interleave width" per MB of memory for base as well as extended memory. This default was selected to reduce the time spent in POST. The extended memory test can be aborted by pressing the <ESC> key anytime during the test.

6.2.1.5 Memory Error Detection

During POST memory testing, the detection of single-bit and multi-bit errors in DRAM banks is enabled. If a single-bit error (SBE) or multiple-bit error (MBE) is detected, the location within a 4K chunk will be allocated and reported by E7501 MCH and BIOS which will log the error event to NVRAM. This is done by BIOS automatically. In additional, with multi-bit error, BIOS will stop the remaining memory test, and record the current test memory as the total memory installed.

If the MBE (Multi-Bit Error) is in the first bank of memory, the system will hang and have no video.

MBE/SBE (Single-Bit Error) errors are handled by SMI handler, When either MBE or SBE errors are generated, the SMI will be trigged, and the event will be logged into the Flash ROM. In some cases, the MBE may not be logged because the access area is in experiencing the error. A user can view the event in the <F2> Setup\Advanced\Event Logging\View Event Log). In addition, the system will hang after the event is logged if it is a MBE error.

6.2.2 Processors

The BIOS determines the processor stepping, cache size, etc through the CPUID instruction. The requirements are as follows:

- All processors in the system must operate at the same frequency and have the same cache sizes, and the same VID. No mixing of product families supported.
- Processors run at a fixed speed and cannot be programmed to operate at a lower or higher speed.

6.2.2.1 **Processor Initialization**

The SE7501CW2 server board can support up to two Intel Xeon processors with 512KB L2 caches. The system BIOS must perform the various initialization sequences to program each processor cache, APIC and MTRRs.

6.2.2.2 Processor Microcode Updates

All Intel Xeon processors can correct specific errata by loading an Intel-supplied data block (also called the "update"). The BIOS is responsible for storing the update in a non-volatile memory block and loading it into each processor during the POST sequence.

The Intel Xeon processor with 512KB L2 cache has the same capability for updating the processor microcode as previous Intel[®] processors. The SE7501CW2 server board supports all microcode patches available for the supported processor stepping, plus an additional two empty slots are available for updates.

6.2.3 Extended System Configuration Data (ESCD), Plug and Play (PnP)

The system BIOS supports industry standards for making the system Plug-and-Play ready.

6.2.3.1 Resource Allocation

The system BIOS identifies, allocates, and initializes resources in a manner consistent with other Intel servers. The BIOS scans for the following, in order:

- 1. ISA devices: Although add-in ISA devices are not supported on these systems, some standard PC peripherals may require ISA-style resources. Resources for these devices are reserved as needed.
- 2. When the VGA add-on card is detected, the on-board VGA is automatically disabled. Only add-on VGA will work in such situation.
- 3. PCI devices: The BIOS allocates resources according to the parameters set up by the BIOS Setup and as required by the *PCI Local Bus Specification*, Revision 2.1.

The system BIOS Power-on Self Test (POST) guarantees there are no resource conflicts prior to booting the system. Note that PCI device drivers are required to support the sharing IRQs, which should not be considered a resource conflict.

6.2.3.2 PnP ISA Auto-Configuration

The system BIOS does the following:

- Supports relevant portions of the *Plug and Play ISA Specification*, Revision 1.0a and the *Plug and Play BIOS Specification*, Revision 1.0A.
- Assigns I/O, memory, direct memory access (DMA) channels, and IRQs from the system resource pool to the embedded PnP Super I/O device.
- Does not support add-in PnP ISA devices.

6.2.3.3 PCI Auto-Configuration

The system BIOS supports the INT 1Ah, AH = B1h (16 bit and 32 bit mod) functions, in conformance with the PCI Local Bus Specification, Revision 2.1. The system BIOS also supports the 16- and 32-bit protected mode interfaces as required by the PCI BIOS Specification, Revision 2.1.

Beginning at the lowest device, the BIOS uses a "depth-first" scan algorithm to enumerate the PCI buses. Each time a bridge device is located, the bus number is incremented and scanning continues on the secondary side of the bridge until all devices on the current bus are scanned.

The BIOS then scans for PCI devices using a "breadth-first" search. All devices on a given bus are scanned from lowest to highest before the next bus number is scanned.

The system BIOS POST maps each device into memory⁴ and/or I/O space, and assigns IRQ channels⁵ as required. The BIOS programs the PCI-ISA interrupt routing logic in the chipset hardware to steer PCI interrupts to compatible ISA IRQs.

The BIOS dispatches any option ROM code for PCI devices to the DOS compatibility hole (C0000h to E7FFFh⁶) and transfers control to the entry point. Because the DOS compatibility hole is a limited resource, system configurations with a large number of PCI devices may encounter a shortage of this resource. If the BIOS runs out of option ROM space, some PCI option ROMs are not executed and a POST error is generated. Drivers and/or the operating system can detect installed devices and determine resource consumption using the defined PCI, legacy PnP BIOS, and/or ACPI BIOS interface functions.

The non-volatile RAM (NVRAM) API and the PCI data records are not supported by the system BIOS. The configuration information of the PCI devices is stored in ESCD.

6.2.4 Legacy ISA Configuration

Legacy ISA add-in devices are not supported.

⁴ The BIOS does not support devices behind PCI-to-PCI bridges that require mapping to the first 1 MB of memory space due to PCI architectural limitations (refer to the *PCI-to-PCI Bridge Architecture Specification*).

⁵ PCI IRQ assignments may be overridden using the System Setup Utility.

⁶ Note that the BIOS size may increase thereby limiting the area used by option ROMs to 0C0000h – 0E0000h.

6.2.5 Automatic Detection of Video Adapters

The BIOS detects video adapters in the following order:

- 1. Off-board PCI
- 2. On-board PCI

The on-board (or off-board) video BIOS is shadowed, starting at address C0000h, and is initialized before memory tests begin in POST. Precedence is always given to off-board devices.

6.2.6 Keyboard / Mouse Configuration

The BIOS will supports both a mouse and keyboard attached to the PS/2 connectors at the I/O panel on the board. The use of each device is detected during POST and the KBC is programmed accordingly. Hot plugging of mouse and keyboard from the PS/2 connector is not supported by the system and may have unpredictable results. The BIOS will support the keyboard or mouse in either PS/2 location.

By BIOS automatic detection and swap during POST, Both PS2 port can either support the mouse or keyboard, but cannot support two of the same devices (two keyboards or two mice) at the same time.

6.2.6.1 Boot without Keyboard and/or Mouse

The system can boot with or without a keyboard and/or mouse. Setup does not include an option to disable them. The presence of the keyboard and mouse is detected automatically during POST. If present, the keyboard is tested. The BIOS displays the message "Keyboard Detected" if it detects a keyboard during POST and it displays the message "Mouse Initialized" if it detects a mouse during POST. The system does not halt for user intervention on errors if either the keyboard or the mouse is not detected.⁷

6.2.7 Floppy Drives

The SE7501CW2 server BIOS supports floppy controllers and floppy drives that are compatible with IBM* XT/AT standards. Most floppy controllers have support for two floppy drives although such configurations are rare. At a minimum, the SE7501CW2 BIOS supports 1.44 MB. LS-120 floppy drives are attached to the IDE controller and are covered elsewhere.

The BIOS does not attempt to auto-detect the floppy drive because there is no reliable algorithm for detecting the floppy drive type if no media is installed. The BIOS auto-detects the floppy media if the user specifies the floppy drive type through setup.

BIOS setup includes an option for the user to select the appropriate floppy format or to disable it. The following table shows the floppy types supported by each floppy drive.

⁷ IRQ 12 is not available for other devices if a mouse is not present.

Floppy Drive	Floppy Format	Note
1.44 MB (ordinary)	1.44 MB	DENSEL pin is ignored by these floppy drives
2.88 MB (ordinary)	1.44 MB	The DENSEL pin is ignored by these floppy drives
	2.88 MB	

Table 9. Allowed Combinations of Floppy Drive and Floppy Media

Note: The recovery BIOS requires a 1.44 MB media in a 1.44 MB floppy drive.

6.2.8 Universal Serial Bus (USB)

The SE7501CW2 server BIOS supports a USB keyboard, mouse and boot devices. The SE7501CW2 server platform contains three USB host controllers. Each host controller includes the root hub and two USB ports. Five USB ports are supported in this platform. During POST, the BIOS initializes and configures the root hub ports and looks for a keyboard, mouse, boot device, and the USB hub and enables them.

The BIOS implements legacy USB keyboard support. USB legacy support in BIOS translates commands that are coming from USB keyboard / mouse and translates it into the format the PS2 device generated then sent to the KB controller to emulate the PS2 behavior. It makes the USB keystrokes and the USB mouse movements appear as if they originated from the standard PS/2 devices.

Emulation is transparent to the software. Legacy support is required if the system does not contain a PS/2 keyboard and mouse. BIOS support is not meant to replace a USB driver but will enable the system to allow the USB driver to control these devices.

The PS/2 keyboard/mouse port is considered the primary connection for these input devices. USB ports are treated as a contingency. Use of legacy USB emulation is not encouraged, because USB legacy support involves many SMI (System Management Interrupts) and slows the POST and operating system loader.

- USB legacy support involves many SMIs and slows the POST and operating system loader.
- It is possible to breach system security with a USB keyboard and mouse. Security features are covered in Section 6.6.

In addition, BIOS also support USB Floppy/CDROM/Hard disk boot. With this functionality, the system can work without the legacy device support to achieve a legacy-free requirement.

6.3 **BIOS Supported Server Management Features**

The SE7501CW2 server BIOS supports many standards-based server management features and several proprietary features.

This section describes the implementation of the standard and the proprietary features including console redirection, The BIOS owns console redirection over a serial port.

6.3.1 Advanced Configuration and Power Interface (ACPI)

The primary role of the ACPI BIOS is to supply the ACPI Tables. POST creates the ACPI tables and locates them above 1 MB in extended memory. The location of these tables is conveyed to the ACPI-aware operating system through a series of tables located throughout memory. The format and location of these tables is documented in the publicly available ACPI specification. To prevent conflicts with a non-ACPI-aware operating system, the memory used for the ACPI tables is marked as "reserved" in the INT 15h, function E820h.

As described in the ACPI specification, an ACPI-aware operating system generates an SMI to request that the system be switched into ACPI mode. The BIOS responds by setting up all system (chipset) specific configuration required to support ACPI and sets the SCI_EN bit as defined by the ACPI specification. The system automatically returns to legacy mode on hard reset or power-on reset.

There are three runtime components to ACPI:

- **ACPI Tables:** These tables describe the interfaces to the hardware. ACPI tables can make use of a p-code type of language, the interpretation of which is performed by the operating system. The operating system contains and uses an AML (ACPI Machine Language) interpreter that executes procedures encoded in AML and stored in the ACPI tables; ACPI Machine Language is a compact, tokenized, abstract machine language. The tables contain information about power management capabilities of the system, APICs, and the bus structure. The tables also describe control methods that the operating system uses to change PCI interrupt routing, control legacy devices in Super I/O, and find the cause of wake events.
- **ACPI Registers:** ACPI registers are the constrained part of the hardware interface, described (at least in location) by the ACPI tables.
- ACPI BIOS: This is the code that boots the machine and implements interfaces for sleep, wake, and some restart operations. The ACPI BIOS also provides the ACPI Description Tables.

The server board SE7501CW2 supports S0, S4, and S5 states. The ACPI specification defines the sleep states and requires the system to support at least one of them. These sleep states are required for Microsoft* Windows 2000 Advanced Server WHQL certification, and Red Hat* 8.x hardware certification.

While entering the S4 state, the operating system saves the context to the disk and most of the system is powered off. The system can wake from such a state on various inputs depending on the hardware. Most platforms wake on a power button press, or a signal received from a wake-on-LAN compliant LAN card (or on-board LAN), modem ring, PCI power management interrupt, or RTC alarm. The BIOS performs complete POST upon a wake from S4 and it initializes the platform. The S4 ACPI BIOS state is not supported.

The wake sources are enabled by the ACPI operating systems with co-operation from the drivers; the BIOS has no direct control over the wake sources when an ACPI operating system is loaded. The role of the BIOS is limited to describing the wake sources to the operating system and controlling secondary control/status bits via a Differentiated System Description Table (DSDT).

The S5 state is equivalent to an operating system shutdown. No system context is saved.

6.3.2 Wake Events

The system BIOS is capable of configuring the system to wake up from several sources under a non-ACPI configuration, such as when the operating system does not support ACPI. The typical wake-up sources are described in the table below. Under ACPI, the operating system programs the hardware to wake up on the desired event. The BIOS describes various wake sources to the operating system.

The BIOS always enables the wakeup source, WOL and WOR, in the legacy mode.

Wake Event	Support Wake Events	Support Via Legacy Wake
Power Button	Always wakes system. The Power Botton can be configurable to different functions under the ACPI mode.	Always wakes system
Ring indicate from COM-A	Wakeup from S4/S5 if the system in the S4/S5 state	Yes
Ring indicate from COM-B	Wake up from S4/S5 if system in the S4/S5 state If COM-B is used for emergency management port, COM-B wakeup is disabled.	Yes
PME (Power Management Event) from PCI cards	May support wake from S4/S5 if PCI card supports the PME generation function.	Yes
RTC Alarm	Always wakes the system up from S4.	Yes

Table 10. Supported Wake Events

6.3.2.1 Front Panel Switches

The BIOS supports up to three front panel buttons: the power button, the reset button, and the NMI button. The NMI button is not accessible on all front panel designs.

The power button behaves differently, depending on whether the operating system supports ACPI. If the operating system supports ACPI the power button can be configured as a sleep button via operating system power management option. The operating system causes the system to transition to the appropriate system state depending on the user settings.

6.3.2.1.1 Power Switch Off to On

The chipset can be configured to generate wake up events for several system events: Wake-on-LAN, PCI Power Management Interrupt, and the Real-Time Clock Alarm are examples of these events. If the operating system is ACPI-aware, it programs the wake sources before shutdown. In non-ACPI mode, the BIOS performs the configuration. A transition from power switch results in the SIO W83627 signal the ICH3-S starting the power-up sequence. Since the processors are not executing, the BIOS does not participate in this sequence. The hardware receives power good and reset signal then transition to an ON state.

6.3.2.1.2 On to Off (Legacy)

The SIO is configured to generate an SMI due to a power button event. The BIOS services this SMI and sets the state of the machine in the chipset to the OFF state, then de-asserts the PSON signal.

6.3.2.1.3 On to Off (ACPI)

If an ACPI operating system is loaded, the power button switch generates a request via SCI to the operating system to shutdown the system. The operating system retains control of the system and operating system policy determines the sleep state, if any, into which the system transitions.

6.3.2.1.4 On to Sleep (ACPI)

If an ACPI operating system is loaded and the power button is configured as a sleep button, the sleep button switch generates a request via SCI to the operating system to place the system into sleep mode. The operating system retains control of the system and operating system policy determines the sleep state, if any, into which the system transitions.

6.3.2.1.5 Sleep to On (ACPI)

If an ACPI operating system is loaded and the power button is configured as a sleep button, the sleep button switch generates a wake event to the ACPI chipset and a request via SCI to the operating system to place the system in the On state. The operating system retains control of the system and operating system policy determines the sleep state, if any, and the sleep sources from which the system can wake.

6.3.3 Wired For Management (WFM)

Wired for Management (WFM) is an industry-wide initiative to increase overall manageability and reduce the total cost of ownership. WFM allows a server to be managed over a network. The system BIOS supports revision 2.0 of the *Wired For Management Baseline Specification*. It also supports the pre-boot execution environment, as outlined in the WFM baseline specification, if the system includes an embedded WFM compliant network device.

The system BIOS supports version 2.3.1 of the *System Management BIOS Reference Specification* to help higher-level instrumentation software meet the WFM requirements. The higher-level software can use the information provided by the system management (SM)BIOS to instrument desktop management interface (DMI) standard groups that are specified in the WFM specification.

The BIOS also configures the SYSID table as described in the *Network PC System Design Guidelines, Revision 1.0.* This table contains the globally unique ID (GUID) of the baseboard. The mechanism that sets the GUID in the factory is defined in the SYSID BIOS Support Interface *Requirement Specification, Version 1.2.* The caller must provide the correct security key for this call to succeed.

When in S4/S5 mode, PCI device can use PME(Power Management Event)# signal to wake up the system. It's an essential element in ACPI.

6.3.3.1 PXE BIOS Support

This section discusses host system BIOS support required for PXE compliance and how PXE boot devices (ROMs) and PXE Network Boot Programs (NBPs) use it.

6.3.3.2 BIOS Requirements

PXE-compliant BIOS implementations must:

- Locate and configure all PXE-capable boot devices (UNDI Option ROMs) in the system, both built-in and add-ins.
- Supply a PXE according to this specification if the system includes a built-in network device.
- Implement the following specifications:
 - Plug-and-Play BIOS Specification v1.0a or later.
 - System Management BIOS (SMBIOS) Reference Specification v2.2 or later.
 - The requirements defined in Sections 3 and 4 of the BIOS Boot Specification (BBS) v1.01or later, to support network adapters as boot devices.
 - Supply a valid UUID and Wake-up Source value for the system via the SMBIOS structure table.

6.3.3.3 BIOS Recommendations

To be PXE 2.1-compliant the BIOS should implement the following:

 POST Memory Manager Specification v1.01 or later is strongly recommended. PMM provides a straightforward way for LAN on system board PXE implementations to move their ROM image from UMB to extended memory. While methods to do this exist outside of PMM, their use is undefined and unreliable. Placing PXE ROM images into UMB space reduces the available UMB space by approximately 32 KB. This is sufficient to compromise or even prevent successful operation of some downloaded programs.

The SE7501CW2 server board is compliant with PXE 2.1. It implements the *Post Memory Manager Specification* v1.01.

6.3.4 Console Redirection

The BIOS supports redirection of both video and keyboard via a serial link (Serial A or Serial B). When console redirection is enabled, the local (host server) keyboard input and video output are passed both to the local keyboard and video connections, and to the remote console via the serial link. Keyboard inputs from both sources are valid and video is displayed to both outputs. As an option, the system can be operated without a keyboard or monitor attached to the host system and run entirely from the remote console. Setup and any other text-based utilities can be accessed through console redirection.⁸

⁸ BIOS Setup operates in a graphics video mode when the Kanji language is selected and when the diagnostic screen is disabled. As a result, BIOS console redirection will not redirect the OEM splash screen, redirect Kanji screens to the remote terminal, nor receive Kanji characters from the remote terminal.

6.3.4.1 Operation

When redirecting the console through a modem as opposed to a null modem cable, the modem needs to be configured with the following:

- Auto-answer (for example, ATS0=2, to answer after two rings).
- Modem reaction to DTR set to return to command state (e.g., AT&D1). Failure to provide this results in the modem either dropping the link when the server reboots (as in AT&D0) or becoming unresponsive to server baud rate changes (as in AT&D2).
- The BIOS Setup option for handshaking must be set to CTS.
- If the emergency management port shares the COM port with serial redirection, the handshaking must be set to Xon/Xoff. In selecting this form of handshaking, the server is prevented from sending video updates to a modem that is not connected to a remote modem. If this is not selected, video update data being sent to the modem inhibits many modems from answering an incoming call.

Console redirection is exclusive with Logo display which is determined by the configuration menu "Boot-time Diagnostic Screen", When "Boot time Diagnostic Screen" is enabled, the Console redirection is enabled. On the contrary, when the "Boot time Diagnostic Screen" is disabled, the console re-direction is disabled and the logo screen is used instead.

6.3.4.2 Keystroke Mappings

Phoenix uses serial port interrupt to send the Video RAM data to remote console and receive the remote input. When the data receive from the remote site by serial port, it will be put into the keyboard buffer by int16 to simulate it comes from the local keyboard by INT9.

During console redirection, the remote terminal sends keystrokes to the local server. The remote terminal may be a dumb terminal or a system with a modem running a communication program, such as ProComm^{*}. The local server passes video back over the same link.

For keys that have an ASCII mapping, such as A and Ctrl-A, the remote terminal sends the ASCII character. For keys that do not have an ASCII mapping, such as F1 and Alt-A, the remote must send a string of characters, as defined in the tables below. The strings are based on the ANSI terminal standard. Since the ANSI terminal standard does not define all keys on the standard 101 key U.S. keyboard, mappings for these keys were created, such as F5 – F12, Page Up, and Page Down.

Alt key combinations are created by sending the combination $^[]$ followed by the character to be modified. Once this Alt key combination is sent, the next keystroke is translated into its Alt key mapping. In other words, if $^[]$ is mapped to Shift-F1, then pressing Shift-F1 followed by the letter 'a' would send an Alt-a to the server.

The remote terminal can force a refresh of its video by sending ^ [{. Combinations outside of the ANSI mapping and not listed in the table below are not supported.

Кеу	Normal	Shift	Ctrl	Alt	Кеу	Normal	Shift	Ctrl	Alt
ESC	4	NS	NS	NS	Scroll Lock	NS	NS	NS	NS
F1	^[OP	NS	NS	NS	Pause	NS	NS	NS	NS
F2	^[OQ	NS	NS	NS	Insert	^[[L	NS	NS	NS
F3	^[OR	NS	NS	NS	Delete	(7Fh)	NS	NS	NS
F4	^[OS	NS	NS	NS	Home	^[[H	NS	NS	NS
F5	^[OT	NS	NS	NS	End	^[[K	NS	NS	NS
F6	^[OU	NS	NS	NS	Pg Up	^[[M	NS	NS	NS
F7	^[OV	NS	NS	NS	Pg Down	^[[2J	NS	NS	NS
F8	^[OW	NS	NS	NS	Up Arrow	^[[A	NS	NS	NS
F9	^[OX	NS	NS	NS	Down Arrow	^[[B	NS	NS	NS
F10	^[OY	NS	NS	NS	Right Arrow	^[[C	NS	NS	NS
F11	^[OZ	NS	NS	NS	Left Arrow	^[[D	NS	NS	NS
F12	^[O1	NS	NS	NS	Tab	(09h)	NS	NS	NS
Print Screen	NS	NS	NS	NS					

NS = Not supported

(xxh) = ASCII character xx

Key	Normal	Shift	Ctrl	Alt
Backspace	(08h)	(08h)	(7Fh)	^[](08h)
(accent) `	`	(tilde) ~	NS	^[]`
1	1	!	NS	^[]1
2	2	@	NS	^[]2
3	3	#	NS	^[]3
4	4	\$	NS	^[]4
5	5	%	NS	^[]5
6	6	^	NS	^[]6
7	7	&	NS	^[]]7
8	8	*	NS	^[]]]8
9	9	(NS	^[]]]9
0	0)	NS	^[]]]0
(dash) -	-	(under) _	(1Fh)	^[]]]-
=	=	+	NS	^[]]]=
a to z	a to z	A to Z	(01h) to (1Ah)	^[]ato^[]]]z
[[{	(1Bh)	^[]]][
]]	}	(1Dh)	^[]]]]
١	١		(1Ch)	^[]]\
(semi-colon);	;	(colon) :	NS	^[];
(apostrophe) '	1	(quote) "	NS	^[]'
(comma),	,	<	NS	^[],
(period) .		>	NS	^[].
/	/	?	NS	^[]/
(space)	(20h)	(20h)	(20h)	^[](20h)
NS – not supp		(2011)	(2011)	

Table 12. ASCII Key Mappings

NS = not supported

(xxh) = ASCII character xx

6.3.4.3 Limitations

Console redirection is a real-mode BIOS extension. It does not operate outside of real mode. In addition, console redirection will not function if the operating system or a driver, such as EMM386*, takes the processor into protected mode. If an application moves the processor in and out of protected mode, it should inhibit redirection before entering protected mode and restart redirection when it returns to real mode.

Scanning and sending changes in text video memory redirect video. Therefore, console redirection is unable to redirect video in graphics mode. Since the BIOS scans the text video memory, an additional limitation exists if the system does not contain a video graphics adapter or a proprietary means of buffering the video memory. The BIOS may not have a method to send changes in text video memory if an application such as an option ROM writes directly to video memory.

Phoenix uses the serial port interrupt to send the Video RAM data to remote console and receive the remote input. When the data receive from the Remote site by serial port, it will be put into the KB buffer by int16 to simulate it comes from the local KB by INT9.

Software bypasses this handler does not receive redirected keystrokes.

6.3.5 Serial Ports

The SE7501CW2 server board has two serial ports, an internal 9-pin header for COM2, and an external COM1 serial port that can be used.

6.3.6 System Management BIOS (SMBIOS)

This section references the System Management BIOS Reference Specification, Version 2.3.1.

The Desktop Management Interface Specification and its companion, the DMTF Systems Standard Groups Definition, define "...manageable attributes that are expected to be supported by DMI-enabled computer systems." Many of these attributes do not have a standard interface to the management software, but are known by the system BIOS. The system BIOS provides this interface via data structures through which system attributes are reported.

The system administrator can use SMBIOS to obtain the types, capabilities, operational status, installation date, and other information about the system components. The SE7501CW2 BIOS provides the SMBIOS structures via a table-based method. The table convention, provided as an alternative to the calling interface, allows the SMBIOS structures to be accessed under 32-bit protected-mode operating systems such as Windows* 2000. This convention provides a searchable entry-point structure that contains a pointer to the packed SMBIOS structures residing somewhere in 32-bit physical address space. The SMBIOS entry-point structure described below can be located by application software by searching for the anchor-string on paragraph (16-byte) boundaries within the physical memory address range 000F0000h to 000FFFFFh. This entry point encapsulates an intermediate anchor string, which is used by some existing browsers.

The total number of structures can be obtained from the SMBIOS entry-point structure. The system information is presented to an application as a set of structures that are obtained by traversing the SMBIOS structure table referenced by the SMBIOS entry-point structure. The following table describes the types of SMBIOS structures supported by the system BIOS.

Structure Type	Supported	Comments
BIOS Information (Type 0)	Yes	One record for the system BIOS. SMBIOS 2.3 does not allow the use of type 0 records to describe the option ROMs. The system BIOS version string is described in Section 1.1
System Information (Type 1)	Yes	
Baseboard Information (Type 2)	Yes	
Chassis Information (Type 3)	Yes	
Processor Information (Type 4)	Yes	One for every processor slot.
Memory Controller Information (Type 5)	No	Browsers should use Type 16 records.
Memory Module Information (Type 6)	No	Browsers should use Type 17 records.
Cache Information (Type 7)	Yes	Two records for every processor. One record describes L1 cache and the second one describes L2 cache. The disabled bit in the cache configuration field is set if the corresponding processor is absent or disabled.
Port Connector Information (Type 8)	Yes	Describes the baseboard connectors including IDE, floppy, keyboard, mouse, COM ports, and parallel port.
System Slots (Type 9)	Yes	One record for each PCI slot. The number of PCI slots is determined by a supported 1U or 2U chassis.
On-board Device Configuration (Type 10)	Yes	One for each on-board device, like video controller etc.
OEM Strings (Type 11)	Yes	From OEM GPNV area.
System Configuration Options (Type 12)	Yes	Describes the baseboard jumper settings.
BIOS Language Information (Type 13)	Yes	
Group Association (Type 14)	No	None required.
Physical Memory Array (Type 16)	Yes	
Memory Device (Type 17)	Yes	One record for each memory device slot, six total.
Memory Error Information (Type 18)	No	Much more extensive information available in the system event log.
Memory Array Mapped Addresses (Type 19)	Yes	
Memory Device Mapped Addresses (Type 20)	Yes	
Built-in Pointing Devices (Type 21)	No	Applies only to mobile platforms.
Portable Battery (Type 22)	No	Applies only to mobile platforms.
System Reset (Type 23)	No	
Hardware Security (Type 24)	Yes	
Out-of-band Remote Access (Type 30)	No	
System Boot Information (Type 32)	Yes	
Structure Not In Effect (Type 126)	Yes	Indicates software should ignore this structure. These structures may be present.
End of Table (Type 127)	Yes	Structure indicating end of table.

Table 13. SMBIOS Header Structure

6.3.7 Windows* Compatibility

The SE7501CW2 server board is compliant with the Hardware Design Guide v3.0.

The Hardware Design Guide (HDG) for a Windows* NT* platform is intended for systems that are designed to work with Windows NT class operating systems. Each specification classifies the systems further and has different requirements based on the intended usage for that system. For example, a server system used in small home/office environments has different requirements than a system that is used for enterprise applications.

The SE7501CW2 server BIOS meets the applicable requirements as specified in version 3.0 of the HDG specification.

6.3.7.1 Quiet Boot

Version 3.0 of the Hardware Design Guide for Windows NT requires that the BIOS provide minimal startup display during BIOS POST. The system start-up must only draw the user's attention in case of errors or when there is a need for user interaction. By default, the system must be configured so the screen display does not display memory counts, device status, etc, but presents a "clean" BIOS start-up. The only screen display allowed is the OEM splash screen, which can include information such as copyright notices.

The SE7501CW2 server BIOS supports the <ESC> and <F2> hot-keys during POST, giving the user the ability temporarily disable the splash screen to view all diagnostic and initialization messages for the current boot. The splash screen can be disabled for all subsequent boot up sequences by going into the BIOS setup utility and disabling the "Boot Time Diagnostic Screen" option under Advanced menu and it should be disabled when using BIOS console redirection, since it cannot redirect the video if configured for graphics mode.

The BIOS may temporarily remove the splash screen when the user is prompted for a password during POST. The BIOS also allows an OEM to override the standard Intel splash screen with a custom screen. The procedure to replace the logo with an OEM logo is below.

- 1. Execute LOGOV01.exe to extract the content to the diskette. The diskette will include 3.bat, B2P.exe, checkBMP.exe, Logoupd.exe and Logoupd.txt.
- 2. Boot to DOS
- 3. Execute the command "3.bat Filename.bmp"

The SE7501CW2 BIOS maintains the splash screen during option ROM initialization. Since option ROMs expect the video to be in text mode, the BIOS emulates text mode.

6.4 **BIOS Serviceability Features**

The CMOS configuration RAM may be reset by two methods:

- The CMOS clear jumper located on the baseboard. The CMOS can also be set to a default setting through the BIOS Setup. There are six steps involved to clear the CMOS by CMOS clear jumper. The CMOS clear jumper is located on jumper block J32.
 - 1. Power off the system
 - 2. Remove the jumper from pins 9 and 10 (storage location) and place it onto pins 5 and 6 of jumper block J32.
 - 3. Power on the system.
 - 4. Power off the system after it begins beeping.
 - 5. Replace the jumper onto pins 9 and 10.
 - 6. Power on the system.
- It will automatically be reset if it becomes corrupted.

When the BIOS detects a CMOS request, CMOS defaults are loaded during POST sequence. Note that non-volatile storage for embedded devices may or may not be affected by the clear CMOS operation, depending on the available hardware support. The system must be rebooted without the CMOS clear jumper being in the "clear".

Note: If the jumper is left on pins 5 and 6 and the system is powered on, then the BIOS will cause 3 long beeps followed by a 3-second delay and repeat the beep cycle.

6.4.1 Flash Update Utility

The Flash Memory Update utility (Phlash.exe) loads a fresh copy of the BIOS into flash ROM. The loaded code and data include the following:

- On-board video BIOS, ATA-100 RAID BIOS, and PXE option ROMs for the devices embedded on the system board
- The Setup utility
- The System BIOS

Note: The Phlash utility must be run without the presence of a 386 protected mode control program, such as Windows* or EMM386*. Phlash uses the processor's flat addressing mode to update the flash component.

6.4.1.1 Loading the System BIOS

The BIOS release is contained in a BIOS.exe file, which expands to include the following files:

- BIOS.ROM: 512KB/1MB BIOS ROM Image
- PHLASH.EXE: Phlash Utility
- **1.BAT** : Batch file for phlash the ROM
- **2.BAT** : Batch file for phlash the ROM
- Autoexec.bat: Calls options.bat
- Platform.bin: Flashing configuration file
- **Oemphl.exe**: Phlash Utility
- **Options.bat**: Shows the BIOS update procedure.

The BIOS update procedure is as follows:

Note: Use a DOS system to create the diskette.

- 1. Insert a diskette in diskette drive A.
- 2. At the C:\ prompt, for an unformatted diskette, type:

```
format a:/s or, for a diskette that is already formatted, type: sys a:
```

- 3. Press <Enter>.
- 4. Download the BIOS image file to a temporary folder on your hard drive. The image is available from *http://support.intel.com/support/motherboards/server/SE7501CW2*
- 5. Insert the bootable diskette you created in the steps above into the diskette drive.
- 6. Type BIOS.EXE a: to extract the update files from the image file and place them onto the bootable diskette.
- 7. Place the bootable diskette containing the BIOS update files into the diskette drive of your system. Boot the system with the diskette in the drive.
- 8. A menu will appear with two options. Use option 1 to automatically update the system BIOS. Use option 2 to manually update the system BIOS and the User Binary.
- If you selected option 1, to automatically update the system BIOS: The system will execute the Phlash update utility to update the BIOS. When the update is complete, the utility will display a green box with a message that says "Completed Successfully." The system will then reboot.

- 10. If you selected option 2, to manually update the BIOS or to update the flash memory, you can either select "Update Flash Memory From a File" or "Update System BIOS":
 - Update Flash Memory From a File: When prompted for a file name, type BIOS.wph and press Enter.
 - Update System BIOS: The system will warn you that the BIOS will be updated. Verify the BIOS version is correct and press Enter to continue. When the update is complete, the utility will display a green box with a message that says "Completed Successfully." The system will then reboot.
- 11. Wait while the BIOS files are updated. Do **not** power down the system during the BIOS update process! The system will reset automatically when the BIOS update process is completed. Remove the diskette from the diskette drive.
- 12. Check to make sure the BIOS version displayed during POST is the new version as the system reboots.
- 13. Enter Setup by pressing the F2 key during boot. Once in Setup, press the F9 and <Enter> to set the parameters back to default values.
- 14. Re-enter the values you wrote down at the beginning of this process. Press F10 and <Enter> to exit BIOS Setup and Save Changes.
- 15. If you do not set the CMOS values back to defaults using the F9 key, the system may function erratically.

Note: The boot to DOS must be non-himem management environment

BIOS flash update the all the information except the BB, CMOS Custom Defaults and some SMBIOS items, like serial number and product number, created during the shipping process.

6.4.1.2 Splash Screen Update

The baseboard includes an area in flash for implementation-specific OEM. Splash Screen update. With this functionality, user can update his/her own splash screen.

6.4.1.3 BIOS Recovery Mode

If BIOS image is corrupt, or if an update to the system BIOS is not successful, or if the system fails to complete POST and is unable to boot an operating system, it may be necessary to run the BIOS recovery procedure.

Note: BIOS Recovery Mode supports onboard VGA video.

There are two ways to enter the Recovery Mode: Automatic Detection Mode and Force Mode

- Automatic Detection Recovery Mode:
 - 1. If ROM checksum is error during POST, perform a BIOS recovery.
 - 2. Activate the onboard video.
 - 3. There will have a long beep followed by two short beeps, with the beep cycle repeating. The BIOS will try to read the recovery floppy from the disk drive.

- Force Recovery Mode:
 - 1. Power off system.
 - 2. Move the jumper on jumper block J32 from pins 9 and 10 to pins 3 and 4.
 - 3. Insert the recovery diskette in the floppy drive.
 - 4. Power on system.
 - 5. The system will beep during recovery. The recovery is complete when the beeping stops.
 - 6. Power off system
 - 7. Remove the jumper from J32 pin 3-4 on the motherboard and replace it on pins 9 and 10.

Note: Video will not be initialized in recovery mode. One high-pitched beep announces the start of the recovery process. The entire process takes two to four minutes. A successful update ends with two high-pitched beeps. Failure is indicated by an extended series of short beeps.

6.5 BIOS and BIOS Setup

The BIOS embeds a setup utility to configure BIOS and system resources. On-board devices are configured with the BIOS Setup utility that is embedded in flash ROM. BIOS Setup provides enough configuration functionality to boot an operating system image.

The configuration utilities allow the user to modify the CMOS RAM and NVRAM. BIOS POST routines and the BIOS Plug-N-Play auto-configuration manager do actual hardware configuration. The configuration utilities update a checksum for both areas, so potential data corruption is detected by the BIOS before the hardware configuration is saved. If the data is corrupted, the BIOS requests that the user reconfigure the system and reboot.

6.5.1 BIOS Setup Utility

This section describes the ROM-resident setup utility that provides a way to configure the platform. The BIOS Setup utility is part of the system BIOS and allows limited control over onboard resources. The user can disable embedded PCI devices through the setup menus. When these devices are disabled through setup, their resources are freed.

The following embedded devices can be disabled through setup menus, making them invisible to a plug-and-play operating system that scans the PCI bus:

- Embedded video ATI Rage
- NIC1 (82550) and NIC2 (82540)

Note: the BIOS options described in this section may or may not be present in pre-production versions of the system BIOS. This section describes the BIOS utility as it is planned to be at production and is subject to change. Option locations, in a given menu of the BIOS Setup utility as described in this section, may be different from those observed on any one pre-production version of the system BIOS. This section will be updated in the 1.0 release of this document.

The BIOS Setup utility screen is divided into four functional areas. Table 14 describes each area:

Table 14. Setup Utility Screen

Functional Area	Description
Keyboard Command Bar	Located at the bottom of the screen or as part of the help screen. This bar displays the keyboard commands supported by the setup utility.
Menu Selection Bar	Located at the top of the screen. Displays the various major menu selections available to the user. The Server Setup utility major menus are: Main Menu, Advanced Menu, Security Menu, Boot Menu, System Menu and the Exit Menu.
Options Menu	Each Option Menu occupies the left and center sections of the screen. Each menu contains a set of features. Selecting certain features within a major Option Menu drops you into sub-menus.
Item Specific Help Screen	An item-specific Help screen is located at the right side of the screen .

6.5.2 Entering the BIOS Setup Utility

During the BIOS POST operation, the user is prompted to use the F2 function key to enter Setup as follows:

Press <F2> to enter Setup

A few seconds might pass before Setup is entered. This is the result of POST completing test and initialization functions that must be completed before Setup can be entered. When Setup is entered, the Main Menu options page is displayed.

6.5.3 Keyboard Command Bar

The bottom portion of the Setup screen provides a list of commands that are used to navigate through the Setup utility. These commands are displayed at all times.

Each menu page contains a number of configurable options and/or informational fields. Depending on the level of security in affect, configurable options may or may not be changed. If an option cannot be changed due to the security level, its selection field is made inaccessible. The Keyboard Command Bar supports the following:

Table	15.	Kevboard	Commands
10010		1 to y boar a	oominanao

Key	Option	Description			
Enter	Execute Command	The Enter key is used to activate sub-menus when the selected feature is a sub-menu, or to display a pick list if a selected option has a value field, or to select a sub-field for multi-valued features like time and date. If a pick list is displayed, the Enter key will undo the pick list, and allow another selection in the parent menu.			
ESC	Exit	The ESC key provides a mechanism for backing out of any field. This key will undo the pressing of the Enter key. When the ESC key is pressed while editing any field or selecting features of a menu, the parent menu is re-entered.			
		When the ESC key is pressed in any sub-menu, the parent menu is re-entered. When the ESC key is pressed in any major menu, the exit confirmation window is displayed and the user is asked whether changes can be discarded. If "No" is selected and the Enter key is pressed, or if the ESC key is pressed, the user is returned to where they were before ESC was pressed without affecting any existing settings. If "Yes" is selected and the Enter key is pressed, Setup is exited and the BIOS continues with POST.			
Ť	Select Item	The up arrow is used to select the previous value in a pick list, or the previous options in a menu item's option list. The selected item must then be activated by pressing the Enter key.			
\downarrow	Select Item	The down arrow is used to select the next value in a menu item's option list, or a value field's pick list. The selected item must then be activated by pressing the Enter key.			
\leftrightarrow	Select Menu	The left and right arrow keys are used to move between the major menu pages. The keys have no affect if a sub-menu or pick list is displayed.			
Tab	Select Field	The Tab key is used to move between fields. For example, Tab can be used to move from hours to minutes in the time item in the main menu.			
-	Change Value	The minus key on the keypad is used to change the value of the current item to the previous value. This key scrolls through the values in the associated pick list without displaying the full list.			
+	Change Value	The plus key on the keypad is used to change the value of the current menu item to the next value. This key scrolls through the values in the associated pick list without displaying the full list. On 106-key Japanese keyboards, the plus key has a different scan code than the plus key on the other keyboard, but will have the same effect			
F9	Setup Defaults	Pressing F9 causes the following to appear:			
		Setup Confirmation			
		Load default configuration now?			
		[<u>Yes]</u> [No]			
		If "Yes" is selected and the Enter key is pressed, all Setup fields are set to their default values. If "No" is selected and the Enter key is pressed, or if the ESC key is pressed, the user is returned to where they were before F9 was pressed without affecting any existing field values			

F10	Save and Exit	Pressing F10 causes the following message to appear:	
		Setup Confirmation	
		Save Configuration changes and exit now?	
		[<u>Yes]</u> [No]	
		If "Yes" is selected and the Enter key is pressed, all changes are saved ar exited. If "No" is selected and the Enter key is pressed, or the ESC key is p user is returned to where they were before F10 was pressed without affect existing values.	ressed, the

6.5.4 Menu Selection Bar

The Menu Selection Bar is located at the top of the screen. It displays the various major menu selections available to the user:

- Main Menu
- Advanced Menu
- Security Menu
- Boot Menu
- System Menu
- Exit Menu

These and associated sub-menus are described below.

6.5.5 Menu Selection Bar

The Menu Selection Bar is located at the top of the screen and displays the major menu selections available to the user. The menu bar is shown below.

Main	Advanced	Security	Power	Boot	System	Exit	
------	----------	----------	-------	------	--------	------	--

Table 16 lists the menus available in BIOS Setup.

Table 1	16. Menu	Selection	Bar
---------	----------	-----------	-----

Main	Advanced	Security	Power	Boot	System	Exit
Allocates	Configures	Sets and	Allows	Selects boot	Information	Saves or
resources for	advanced	clears	system to	options and	on vendor,	discards
hardware components	features available through the chipset	passwords and security features	disable ACPI reboot and disable power button	power supply controls	processor, memory, peripherals, and BIOS	changes to Setup program options

6.5.6 Main Menu

To access this menu, select Main on the menu bar at the top of the screen.

Main	Advanced	Security	Power	Boot	System	Exit	
Primary Ma	ster						
Primary Sl	ave						
Secondary	Master						
Secondary	Slave						

Table 17 lists the options available on the Main menu. This menu allocates resources for hardware components.

Table 17. Main Menu	
---------------------	--

Feature	Choices	Description
System Time	HH:MM:SS	Sets the system time (hour, minutes, and seconds, on a 24-hour clock).
System Date	MM/DD/YYYY	Sets the system date (month, day, year).
Legacy Diskette A	Disabled 1.44 MB, 3 ½ (default)	Selects the diskette type.
Primary Master	Select to display submenu	Displays IDE device selection.
Primary Slave	Select to display submenu	Displays IDE device selection.
Secondary Master	Select to display submenu	Displays IDE device selection.
Secondary Slave	Select to display submenu	Displays IDE device selection.

6.5.6.1 Primary/Secondary, Master/Slave Submenus

To access this submenu, select Main on the menu bar at the top of the screen and then the master or slave to be configured.

Main	Advanced	Security	Power	Boot	System	Exit
Primary Ma	ster					
Primary Sl	.ave					
Secondary	Master					
Secondary	Slave					

There are four IDE submenus: primary master, primary slave, secondary master, and secondary slave. Table 18 shows the format of the IDE submenus. For brevity, only one example is shown.

Feature	Choices	Description
Туре	No options	Automatically detects the type of IDE device installed.
Multi-Sector Transfers	No options	Specifies the number of sectors that are transferred per block during multiple sector transfers. This option is disabled by default.
LBA Mode Control	No options	Enables Large Block Addressing (LBA) instead of cylinder, head, sector addressing. This option is disabled by default.
32 Bit I/O	Disabled (default)	Enables 32-bit IDE data transfers.
	Enabled	
Transfer Mode	No options	Selects the method of moving data to and from the hard drive. Automatically set to Standard, which selects the optimum transfer mode.
Ultra DMA Mode	No options	Enables Ultra DMA mode.

Table 18. Primary/Secondary, Master/Slave Submenu

6.5.7 Advanced Menu

To access this menu, select Advanced on the menu bar at the top of the screen.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device Configuration					
	On Board Device					
	PCI Configuration					
	Server Menu					
	Console Redirection					
	DMI Event Logging					
	Hardware Monitor					

Table 19 lists the selections available on the Advanced menu. This menu configures advanced features available through the chipset.

Table 19. Advanced Menu

Feature	Choices	Description		
I/O Device Configuration	Select to display submenu	Configures the I/O ports.		
On Board Device	Select to display submenu	Configures the onboardnetwork, and USB controllers.		
PCI Configuration	Select to display submenu	Configures PCI devices.		
Server Menu	Select to display submenu	Sets options for server features.		
Console Redirection	Select to display submenu	Provides additional options to configure the console.		
DMI Event Logging	Select to display submenu	Displays the event logs.		
Hardware Monitor	Select to display submenu	Displays voltages, temperatures, and fan speeds for the system.		
Installed O/S	Win2000/.NET / XP (default) NT4	Specifies the operating system installed on your system that you will use most often. An incorrect setting can cause some operating systems to behave erratically.		
	NetWare Other	Note: If you select NT4, an additional submenu item, NT4 Installation Workaround, will appear. It is disabled by default. To install Windows NT* 4.0, you need to change the NT4 Installation Workaround option to Enabled. Disable it to install pertinent service packs.		
Boot-time Diagnostic	Enabled	Enables or disables the boot-time diagnostic screen.		
Screen	Disabled (default)	Disabled will display the splash screen over the diagnostic screen. This splash screen can be changed to show an OEM-based logo.		

Feature	Choices	Description
Reset Configuration Data	No (default) Yes	Specifies if the extended server configuration data will be reset during the next boot.
		Yes clears the extended server configuration data during the next boot. The system automatically resets this field to No during the next boot.
Large Disk Access Mode	Other DOS (default)	UNIX*, NetWare*, and other operating systems require this option be set to Other. If you install an operating system and the hard drive fails to install, change this setting and try again. Different operating systems require different representations of drive geometries.
PS/2 Mouse	Disabled	Configures the PS/2 mouse.
	Enabled Auto Detect	Disabled prevents any installed PS/2 mouse from functioning but frees up IRQ 12.
	(default)	Enabled forces the PS/2 mouse port to be enabled even if a mouse is not present.
		Auto Detect will enable the PS/2 mouse only if one is present.
Summary Screen	Disabled Enabled (default)	Enables or disables the boot-time hardware/BIOS summary screen.
Legacy USB Support	Disabled	Enables support for legacy USB. It may be necessary to set this
	Enabled (default)	option to Disable to install NetWare 6.0 SP1.
Hyper-Threading	Disabled	Allows Intel Xeon processors to run in hyperthreading mode.
	Enabled (default)	Enabling this setting will improve throughput significantly on certain applications.
QuickBoot Mode	Disabled (default)	Allows the system to skip the memory test while booting. This
	Enabled	decreases the time needed to boot the system.

6.5.7.1 I/O Device Configuration Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then I/O Device Configuration.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device	e Configura	ition			
	On Board Device					
	PCI Configuration					
	Server Menu					
	Console Redirection					
	DMI Event Logging					
	Hardware Monitor					

Table 20 lists the options available through the I/O Device Configuration submenu. This submenu configures the I/O ports on the board.

Feature	Choices	Description
Serial port A	Disabled	Enables or disables serial port A.
	Enabled (default)	Two devices cannot share the same IRQ. Choosing Disabled
		makes serial port A unusable.
Base I/O Address	3F8 (default)	Sets the base I/O address for serial port A.
(This feature is	2F8	
present only when Serial Port A is set to	3E8	
Enabled)	2E8	
Interrupt	IRQ3	Sets the interrupt for serial port A.
(This feature is	IRQ4 (default)	
present only when Serial Port A is set to		
Enabled)		
Serial port B	Disabled	Enables or disables onboard serial port B.
	Enabled (default)	Two devices cannot share the same IRQ. Choosing Disabled makes serial port B unusable.
Base I/O Address	3F8	Sets the base I/O address for serial port B.
(This feature is	2F8 (default)	
present only when Serial Port B is set to	3E8	
Enabled)	2E8	
Interrupt	IRQ3 (default)	Sets the interrupt for serial port B.
(This feature is	IRQ4	
present only when Serial Port B is set to		
Enabled)		

Table 20. I/O Device Configuration Submenu

Feature	Choices	Description
Parallel port	Disabled	Enables or disables the onboard parallel port.
	Enabled (default)	Two devices cannot share the same IRQ. Choosing Disabled makes the parallel port unusable.
Mode	Output only	Sets the mode for the parallel port.
(This feature is	Bi-directional	Output only is the standard printer connection mode.
present only when Parallel Port is set to	EPP	Bi-directional is the standard bidirectional mode.
Enabled)	ECP (default)	EPP is Enhanced Parallel Port mode, a high-speed bidirectional mode. Selection based on what EPP version the printer supports. Only choose a mode that the parallel port device (such as a printer) supports. Check the parallel port device documentation for this information. If this information cannot be located, use the default setting.
		ECP is Extended Capabilities Port mode, a high-speed bidirectional mode.
Base I/O Address	378 (default)	Sets the base I/O address for the parallel port.
(This feature is	278	
present only when Parallel Port is set to Enabled)	3BC	
Interrupt	IRQ5	Sets the interrupt for the parallel port.
(This feature is present only when Parallel Port is set to Enabled)	IRQ7 (default)	
DMA channel	DMA 1	Sets the DMA channel for the parallel port.
(This feature is present only when Parallel Port is set to Enabled)	DMA 3 (default)	
Floppy disk controller	Disabled	Enables or disables the onboard diskette controller.
	Enabled (default)	

6.5.7.2 On Board Device Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then On Board Device.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device	e Configura	ation			
	On Board D	evice				
	PCI Config	guration				
	Server Mer	ıu				
	Console Redirection					
	DMI Event Logging					
	Hardware M	Ionitor				

Table 21 lists the options available through the On Board Device submenu. This submenu configures the network, and USB controllers on the board.

Feature	Choices	Description
Onboard Video	Disabled (default)	Enable/disable onboard PCI ATA Rage XL Controller.
	Enabled	
Onboard NIC 1	Disabled	Enables the onboard PCI Intel 82550PM Controller (Device 4).
	Enabled (default)	
Onboard NIC 2	Disabled	Enables the onboard PCI Intel 82540EM Controller (Device 5).
	Enabled (default)	
Onboard USB	Disabled	Enables the ICH3 USB controllers.
	Enabled (default)	

Table 21. On Board Device Submenu

6.5.7.3 PCI Configuration Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then PCI Configuration.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device	e Configura	ation			
	On Board I	Device				
	PCI Config	guration				
	Slot 1	PCI-X 133				
	Slot 2	Slot 2 PCI-X 100				
	Slot 3	Slot 3 PIC-X 100				
	Slot 4	PCI 32/33				
	Slot 5	Slot 5 PCI 32/33				
	Server Mer	Server Menu				
	Console Re	edirection				
	DMI Event	Logging				
	Hardware M	Monitor				

Table 22 lists the options available through the PCI Configuration submenu. This submenu configures the option ROM area for onboard PCI devices.

Table 22. PCI Configuration S	Submenu
-------------------------------	---------

Feature	Choices	Description
Onboard NICs	Select to display submenu	Set items for configuring the onboard NICs
Slot 1 PCI-X 133	Select to display submenu	Configures the specific PCI device expansion ROM.
Slot 2 PCI-X 100	Select to display submenu	Configures the specific PCI device expansion ROM.
Slot 3 PCI-X 100	Select to display submenu	Configures the specific PCI device expansion ROM.
Slot 4 PCI 32/33	Select to display submenu	Configures the specific PCI device expansion ROM.
Slot 5 PCI 32/33	Select to display submenu	Configures the specific PCI device expansion ROM.

The table below lists the options available when the Onboard NICs option is selected. This submenu appears for each of the PCI slot options available on the Advanced PCI Configuration submenu (see Table 22). For brevity, only one example is shown.

Table 23. Onboard NICs Submenu

Feature	Choices	Description
Onboard NIC1 PXE	Disabled	Enable support for the onboard Intel 82550PM NIC PXE
	(default)	Note: Once PXE boot is enabled, it will not be selectable in the boot
	Enabled	order until after the system is restarted.

Onboard NIC2 PXE	Disabled	Enable support for the onboard Intel 82540EM NIC PXE
	(default)	Note: Once PXE boot is enabled, it will not be selectable in the boot
	Enabled	order until after the system is restarted.

The following table lists the options available on the Option ROM Scan submenu. This submenu appears for each of the PCI slot options available on the Advanced PCI Configuration submenu (see Table 22). For brevity, only one example is shown.

Table 24. Option ROM Scan Submenu

Feature	Choices	Description
Option ROM Scan	Enabled (default)	Initializes the device expansion ROM.
	Disabled	

6.5.7.4 Server Menu Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then Server Menu.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device	e Configura	ation			
	On Board I	Device				
	PCI Config	guration				
	Server Mer	nu				
	Console Re	Console Redirection				
	DMI Event Logging					
	Hardware M	Ionitor				

Table 25 lists the options available through the Server Menu submenu. This submenu allows you to set options for server features.

Table 25. Server Menu Submenu

Feature	Choices	Description
NMI on PERR	Disabled (default)	Enables or disables nonmaskable interrupts (NMI) on parity errors on the PCI bus (PERRs).
	Enabled	
NMI on SERR	Disabled	Enables or disables NMI on system errors on the PCI bus (SERRs).
	Enabled (default)	

6.5.7.5 Console Redirection Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then Console Redirection.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device	Configura	ition			
	On Board D	evice				
	PCI Config	uration				
	Server Men	.u				
	Console Re	direction				
	DMI Event Logging					
	Hardware M	lonitor				

Table 26 lists the options available through the Console Redirection submenu. This submenu provides additional options to configure the console.

Feature	Choices	Description
COM Port Address	Disabled (default)	When enabled, console redirection uses the I/O port specified. All
	On-board COM A	keyboard/mouse and video will be directed to this port. This setting
	On-board COM B	is designed to be used only under DOS in text mode.
Baud Rate	300	When console redirection is enabled, specifies the baud rate to be
	1200	used.
	2400	
	9600	
	19.2K (default)	
	38.4K	
	57.6K	
	115.2K	
Console Type	PC ANSI (default)	Enables the specified console type.
	VT100	PC ANSI is color, 7-bit data.
		VT100 is monochrome, 7-bit data.
Flow Control	None	None disallows flow control.
	XON/XOFF	XON/XOFF is software-based asynchronous flow control.
	CTS/RTS (default)	CTS/RTS is hardware-based flow control.
		When EMP is sharing the COM port as console redirection, the flow control must be set to CTS/RTS.
Console Connection	Direct (default)	Indicates whether the console is connected directly to the system
	Via modem	or whether a modem is used.
Continue C.R. after	Off (default)	Enables console redirection (C.R.) after the operating system has
POST	On	been loaded. If on, the system needs 4 KB of EBDA (Extended BIOS Data Area) memory space.

Table 26. Console Redirection Submenu

6.5.7.6 DMI Event Logging Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then Event Logging.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device Configuration					
	On Board Device					
	PCI Configuration					
	Server Menu Console Redirection DMI Event Logging Hardware Monitor					

Table 27 lists the options available through the DMI Event Logging submenu. This submenu allows you to view the event logs.

Feature	Choices	Description
Event log validity	No options	Indicates if the contents of the event log are valid.
Event log capacity	No options	Indicates if there is space available in the event log.
View DMI event log	<enter></enter>	Select <enter> to display the current event log. Only Single Bit Error (SBE) and Multi Bit Error (MBE) events on the memory bus are supported. No Winbond 83627HF Super I/0 information is available.</enter>
Event Logging	Disabled	Enables logging of events.
	Enabled (default)	
ECC Event Logging	Disabled	Enables logging of ECC events.
	Enabled (default)	
Clear all DMI event logs	No (default)	Clears the event log after booting.
	Yes	Must be set to Yes if the Event Log Validity option is invalid.

Table 27. DMI Event Logging Submenu

6.5.7.7 Hardware Monitor Submenu

To access this submenu, select Advanced on the menu bar at the top of the screen and then Hardware Monitor.

Main	Advanced	Security	Power	Boot	System	Exit
	I/O Device Configuration					
	On Board Device					
	PCI Configuration					
	Server Menu Console Redirection DMI Event Logging Hardware Monitor					

Table 28 lists the settings displayed in the Hardware Monitor submenu. This submenu displays temperature, voltages, and fan speeds for the onboard Super I/O Winbond ASIC (the values listed below are for reference only). Use the up and down arrow keys to scroll through the readings.

Feature	Choices	Description
Hardware Monitor IO index/data	No options	Value fluctuates. Example: 0295h
VCC_CPU_A	No options	Value fluctuates. Example: 1.45 V
+1_8V_A	No options	Value fluctuates. Example: 1.79 V
+3_3V_A	No options	Value fluctuates. Example: 3.24 V
AVCC	No options	Value fluctuates. Example: 5.02 V
AUX3V	No options	Value fluctuates. Example: 3.29 V
+12ENG	No options	Value fluctuates. Example: 12.01 V
+2_5V_A	No options	Value fluctuates. Example: 2.49 V
AUX5V	No options	Value fluctuates. Example: 4.94 V
VBAT_H	No options	Value fluctuates. Example: 2.92 V
Ambiance	No options	Value fluctuates. Example: 35 °C /95 °F
CPU1	No options	Value fluctuates. Example: 51 °C/123 °F
CPU2	No options	Value fluctuates. Example: 34 °C/93 °F
System FAN 1 speed	No options	Value fluctuates. Example: 5260 RPM
System FAN 2 speed	No options	Value fluctuates. Example: 4560 RPM
System FAN 3 speed	No options	Value fluctuates. Example: 4560 RPM
System FAN 4 speed	No options	Value fluctuates. Example: 4560 RPM
System FAN 5 speed	No options	Value fluctuates. Example: 4560 RPM
CPU FAN 1 speed	No options	Value fluctuates. Example: 4560 RPM
CPU FAN 2 speed	No options	Value fluctuates. Example: 4560 RPM

Table 28. Hardware Monitor Submenu

Security Menu 6.5.8

To access this menu, select Security on the menu bar at the top of the screen.

Mai	n Advanced	Security	Power	Boot	System	Exit	
-----	------------	----------	-------	------	--------	------	--

Table 29 lists the options available on the Security menu. Enabling the Supervisor Password field requires a password for entering Setup. The passwords are not case-sensitive.

	lf no pa	ssword previously entered
Feature	Choices	Description
Set User Password	<enter></enter>	The user password controls access to the system at boot. When the <enter> key is pressed, you are prompted for a password; press the ESC key to abort.</enter>
		The supervisor password must be set if a user password is to be used.
		NOTE: Entering Setup with a supervisor password provides full access to all BIOS Setup utility menus.
Set Supervisor Password	<enter></enter>	The supervisor password controls access to the BIOS Setup utility. When the <enter> key is pressed, you are prompted for a password; press the ESC key to abort.</enter>
		This password can be set only if a supervisor password is entered.
		When the user has entered his or her name but the supervisor is not logged in, only the following information is accessible:
		Supervisor password is set to Enabled.
		User password is set to Enabled.
		Set user password [press enter] to enter a user password.
		Password on boot is set to Enabled/Disabled (whichever is in effect). This option is not allowed to change.
Password on boot	Disabled Enabled (default)	Requires password entry before boot. System will remain in secure mode until password is entered. If a user or supervisor password is not entered, the operating system cannot be accessed.
Diskette access	User (default)	Controls who can access diskette drives.
	Supervisor	Supervisor limits access to the diskette drive to the supervisor, who must enter a password.
		User allows access to the diskette drive by entering either the supervisor or the user password.
		Whatever setting is chosen, it becomes functional only if both a supervisor password and a user password have been set (if the User setting is chosen).

Table 29. Security Menu

6.5.9 Power Menu

To access this menu, select Power on the menu bar at the top of the screen.

Main Advanced Sect	rity Power Boo	ot System Exit
--------------------	-----------------------	----------------

Table 30 lists the options available on the Power menu. This menu is designed to disable ACPI automatic reboot in the S0 or S4 states. If these submenus are enabled and AC power is lost, the server power and its operating system will remain off.

Table 30. Power Menu

Feature	Choices	Description
Power Loss Control	Stay Off	Specifies the power level the system returns to after AC power is lost.
	Last State (default)	Stay Off leaves the server power disabled and ACPI does not function to reboot the server in the event of a power failure.
		Last State reboots the system according to ACPI standards.
Power Button	Disable	Enables or disables the power button functionality.
	Enable (default)	

6.5.10 Boot Menu

To access this menu, select Boot on the menu bar at the top of the screen.

Main	Advanced	Security	Power	Boot	System	Exit
		-			-	

Table 31 lists the options available on the Boot menu. This menu allows you to set the boot priority of devices installed in the system. Use the following key combinations to navigate between or view the devices and change the boot priority:

- <Enter> expands or collapses devices that have a "+" or "-" in front of them.
- <Ctrl+Enter> expands all devices.
- <Shift+1> enables or disables devices. Disabled devices appear with a "!" in front of them.
- <+> and <-> moves the device up or down in the list.
- <n> may move the removable device between the hard drive or removable disk.
- <d> removes a device that is not installed.

Boot Priority	Device	Description
1st Boot Device	Removable	Specifies the boot sequence according to the device type. The computer
2nd Boot Device	Devices	will attempt to boot from up to four devices as specified here. Only one of
3rd Boot Device	Hard Drive	the devices can be an IDE hard disk drive.
4th Boot Device	CD-ROM Drive	The default settings for the first through fourth boot devices are,
	Network Boot	respectively:
		Removable Devices: Attempts to boot from the diskette drive or a
		removable device, such as the floppy.
		Hard Drive: Attempts to boot from a hard drive device.
		CD-ROM Drive: Attempts to boot from a CD-ROM drive containing bootable media. This entry appears if there is a bootable CD-ROM that is in a BIOS Boot Specification (BBS)–compliant SCSI CD-ROM.
		Network Boot: This device is the old network boot ROM using hook Interrupt 19h or Interrupt 18h. If the network card ROM contains the string \$PnP, it uses the correct BBS and the device will appear the Boot menu as an independent device. Otherwise, it will appear under the Boot/Network Boot submenu.

Table 31. Boot Menu

6.5.11 System Menu

To access this menu, select System on the menu bar at the top of the screen.

Main Advan	ced Security	Power	Boot	System	Exit	
------------	--------------	-------	------	--------	------	--

Table 32 lists the options available on the System menu. This menu displays information on vendor, processor, memory, peripherals, and BIOS.

Feature	Choices	Description			
Machine	<enter></enter>	Provides basic information on the machine vendor:			
Vendor		Manufacturer: Intel Corporation			
		Product: SE7501CW2			
		Version: 1.00			
		Serial Number: 12345678			
CPU	<enter></enter>	Provides basic information on the processor			
		Boot Strap Processor:			
		Installed Speed: 2.6 GHz (for example)			
		Socket Name: BSP			
		Manufacturer: GenuineIntel			
		Version: Intel(R) XEON(TM)			
		CPUID: 0F27			
		L2 Cache: 512 KB			
		Application Processor:			
		Installed Speed: 2.8 GHZ (for example)			
		Socket Name: AP			
		Manufacturer: GenuineIntel			
		Version: Intel(R) XEON(TM)			
		CPUID: 0F27			
		L2 Cache: 512 KB			
Memory	<enter></enter>	Provides basic information on the memory:			
		System Memory: 640 KB			
		Extended Memory: 255 MB			
		Shadow RAM: 384 KB			
		Cache RAM: 512 KB			
		Installed Size—DIMM 1A, 1B, 2A, and 2B: DIMM size in MB			

Table 32. System Menu

Feature	Choices		Des	cription				
Peripherals	<enter></enter>	Provides the por in user mode	t connectors for onboard	designators. None	e of these can be modified			
		Port Connector	On Board Designator	Port Connector	On Board Designator			
		J52 & J28	Serial A and B	J12	Floppy			
		J47	Parallel	J53	Video			
		J54	Keyboard / mouse	J48 & J45	NIC1 and NIC2			
		J7	Primary IDE	J10 & J50	USB			
		J8	Secondary IDE					
BIOS	<enter></enter>	ROM SIZE: 1024	4 KB					
		Vendor: Phoenix	<pre>K Technologies LTD</pre>					
		Version: 1.14	Version: 1.14					
		Release Date: 1	1/10/2003 – creation date					

6.5.12 Exit Menu

To access this menu, select Exit on the menu bar at the top of the screen

Main Advanced Security	Power	Boot	System	Exit	
------------------------	-------	------	--------	------	--

Table 33 lists the options available in the Exit menu. Select an option using the up or down arrow keys; then press <Enter> to execute the option. Pressing <Esc> does not exit this menu. You must select one of the items from the menu or menu bar to exit.

Table 33. Exit Menu

Choices	Description
Exit Saving Changes	Exits after writing all modified Setup item values to CMOS.
Exit Discarding Changes	Exits leaving CMOS unmodified. User is prompted if any of the setup fields were modified.
Load Setup Defaults	Loads default values for all Setup items.
Discard Changes	Reads previous values of all Setup items from CMOS.
Save Changes	Writes all Setup item values to CMOS.
Load Custom Default	Loads custom default values for all setup items.
Save Custom Default	Saves all Setup item values to NVRAM as a custom default.

6.6 BIOS Security Features

The SE7501CW2 server BIOS provides a number of security features. This section describes the security features and operating model.

Note: The SE7501CW2 server board has the ability to boot from a device attached to the USB port, such as a floppy disk, disk drive or CD-ROM, or ZIP* drive, even if it is attached through a hub. The security model is not supported when booting to a USB device.

6.6.1 Operating Model

The following table summarizes the operation of security features supported by the SE7501CW2 server BIOS.

Mode	Entry Method/ Event	Entry Criteria	Behavior	Exit Criteria	After Exit
Passwor d on boot	Power On/Reset		System halts for User Password before scanning option ROMs. No mouse or keyboard input is accepted except the password.	User Password	Front panel switches are re- enabled. PS/2 Keyboard and PS/2 mouse inputs are accepted. The system boots normally. Boot sequence is determined by Setup options.
Diskette Access	Floppy Access	User password or Supervisor password depend on the setting	Cannot be accessed if the password or authority is not enough	Related passwor d	

Table 34. Security Features Operating Model

6.6.2 Password Protection

The BIOS uses passwords to prevent unauthorized tampering with the system. Once secure mode is entered, access to the system is allowed only after the correct password(s) has been entered. Both the user and Supervisor passwords are supported by the BIOS. User password can only be set with the Supervisor priority. The maximum length of the password is eight characters. The password cannot have characters other than alphanumeric (a-z, A-Z, 0-9). The user and supervisor passwords are not case sensitive.

Once set, a password can be cleared by changing it to a null string. Entering the user password allows the user to modify the time, date, user password, secure mode timer, and secure mode hot-key setup fields. Other setup fields can be modified only if the supervisor password is entered. The user password also allows the system to boot if secure boot is enabled. If only one password is set, this password is required to enter Setup. The supervisor has control over all fields in the setup including the ability to clear user password.

If the user enters three wrong passwords in a row during the boot sequence, the system will be placed into a halt state. This feature makes it difficult to break the password by "trial and error" method. When entering a password, the backspace key is accepted as a character of the password.

6.6.2.1 Supervisor/User Passwords and F2 Setup Usage Model

Notes:

- 1. Visible = option string is active and changeable
- 2. Shaded = option string is grayed-out and view-only

6.6.2.1.1 Three Scenarios

Scenario# 1	
Supervisor Password	Not Installed
User Password	Not Installed
Login Type: N/A	
Set User Password (shaded)	
Set Supervisor Password (visible)	
Password on boot (shaded)	
Diskette Access (shaded)	
Note: User Access Level option will be Full and Shaded	l as long as the
supervisor password is not installed.	

Scenario# 2

Supervisor Password	Installed
User Password	Installed
Login Type: Admin/Supervisor	
Set User Password (visible)	
Set Supervisor Password (Visible)	
Password on boot (visible)	
Diskette Access (visible)	
Login Type: User	
Set User Password (visible)	
Set Supervisor Password (shaded)	
Password on boot (shaded)	
Diskette Access (shaded)	

Scenario# 3

Supervisor PasswordInsUser PasswordNot Ins	
Login Type: Supervisor	
Set User Password (visible)	
Set Supervisor Password (visible)	
User Access Level [Full] (visible)	
Password on boot (shaded)	
Diskette Access (shaded)	

7. Error Reporting and Handling

7.1 POST Codes, Error Messages, and Error Codes

The BIOS indicates the current testing phase during POST by writing a hex code to I/O location 80h. If errors are encountered, error messages or codes will either be displayed to the video screen, or if an error has occurred prior to video initialization, errors will be reported through a series of audio beep codes.

The error codes are defined by Intel and whenever possible are backward compatible with error codes used on earlier platforms.

7.1.1 Port 80 Codes

BIOS will send a 1-byte hex code to the port 80 before each task he wants to perform.

The purpose of the port 80 code provide a troubleshooting method in the event of a system hung during the POST. Below is the table of the Port 80 code and the corresponding task description.

Tpoint	Description
02h	Verify Real Mode. If the CPU is in protected mode, turn on A20 and pulse the reset line, forcing a shutdown 0.
	NOTE: Hook routine should not alter DX, which holds the power up CPU ID.
03h	Disable Non-Maskable Interrupts.
04h	Get CPU type from CPU registers and other methods. Save CPU type in NVRAM.
	NOTE: Hook routine should not alter DX, which holds the power up CPU ID.
06h	Initialize system hardware. Reset the DMA controllers, disable the videos, clear any pending interrupts from the real-time clock and set up port B register.
07h	Disable system ROM shadowed start to execute ROMEXEC code from the flash part. This task is pulled into the build only when the ROMEXEC relocation is installed.
08h	Initialize chip set registers to their initial POST values.
09h	Set in-POST flag in CMOS that indicates we are in POST. This bit determines if the current configuration causes the BIOS to hang. If so, the BIOS, on the next POST, uses default values for its configuration.
0Ah	Initialize CPU registers
0Bh	Enable CPU cache. Set bits in CMOS related to cache.
0Ch	Set the initial POST values of the cache registers if not integrated into the chipset.
0Eh	Set the initial POST values for registers in the integrated I/O chip.
0Fh	Enable the local bus IDE as primary or secondary depending on other drives detected.
10h	Initialize Power Management.
11h	General dispatchers for alternate register initialization. Set initial POST values for other hardware devices defined in the register tables.
12h	Restore the contents of the CPU control word whenever the CPU is reset.
13h	Early reset of PCI devices required to disable bus master. Assumes the presence of a stack and running from decompressed shadow memory.

Table 35. System ROM BIOS POST Task Point

Tpoint	Description		
14h	Verify that the 8742 keyboard controller is responding. Send a self-test command to the 8742 and wait for results. Also read the switch inputs from the 8742 and write the keyboard controller command byte.		
16h	Verify that the ROM BIOS checksums to zero		
17h	Initialize external cache before auto-sizing memory.		
18h	Initialize all three of the 8254 timers. Set the clock timer (0) to binary count, mode 3 (square wave mode), and read/write LSB then MSB. Initialize the clock timer to zero. Set the RAM refresh timer (1) to binary count, mode 2 (Rate Generator), and read/write LSB only. Set the counter to 12H to generate the refresh at the proper rate. Set sound timer (2) to binary count, mode 3, and read/write LSB, then MSB.		
1Ah	 Initialize DMA command register with these settings: Memory to memory disabled Channel 0 hold address disabled Controller enabled Normal timing Fixed priority Late write selection DREQ sense active DACK sense active low. Initialize all 8 DMA channels with these settings: Single mode Address increment Auto initialization disabled (channel 4 - cascade) Verify transfer 		
1Ch	Initialize the 8259 interrupt controller with these settings: 1. ICW4 needed 2. Cascade 3. Edge-triggered mode.		
20h	Verify that DRAM refresh is operating by polling the refresh bit in PORTB.		
22h	Reset the keyboard.		
24h	Set segment-register addressibility to 4 GB		
28h	Using the table of configurations supplied by the specific chips et module, test each DRAM configuration to see if that particular configuration is valid. Then program the chipset to its auto-sized configuration. Before auto-sizing, disable all caches and all shadow RAM.		
29h	Initialize the POST Memory Manager		
2Ah	Zero the first 512K of RAM		
2Ch	Test 512K base address lines		
2Eh	Test first 512K of RAM.		
2Fh	Initialize external cache before shadowing.		
32h	Compute CPU speed.		
33h	Initialize the Phoenix* Dispatch Manager		
36h	Vector to proper shutdown routine.		
38h`	Shadow the system BIOS.		
3Ah	Auto-size external cache and program cache size for enabling later in POST.		
3Ch	Set chipset registers to their CMOS values if CMOS is valid, unless auto configuration is enabled, in which case load the chipset registers from the Setup default table.		
3Dh	Load alternate registers with CMOS values. Register-table pointers are in the altreg table segment.		
41h	Initialize extended memory for RomPilot.		
42h	Initialize interrupt vectors 0 thru 77h to the BIOS general interrupt handler.		

Tpoint	Description
45h	Initialize all motherboard devices.
46h	Verify the ROM copyright notice
47h	Initialize support I2O by initializing global variables used by the I2O code. Paused POST table processing if CMOS bit is set.
48h	Verify that the equipment specified in the CMOS matches the hardware currently installed. If the monitor type is set to 00 then a video ROM must exist. If the monitor type is 1 or 2 set the video switch to CGA. If monitor type 3, set the video switch to mono. Also specify in the equipment byte that disk drives are installed. Set appropriate status bits in CMOS or the BDA if configuration errors are found.
49h	 Perform these tasks: 1. Size the PCI bus topology and set bridge bus numbers. 2. Set the system max bus number. 3. Write a 0 to the command register of every PCI device. 4. Write a 0 to all 6 base registers in every PCI device. 5. Write a -1 to the status register of every PCI device.
4Ah	Initialize all video adapters in system
4Bh	Initialize Quiet Boot if it is installed. Enable both keyboard and timer interrupts (IRQ0 and IRQ1). If your POST tasks require interrupts off, preserve them with a PUSHF and CLI at the beginning and a POPF at the end. If you change the PIC, preserve the existing bits.
4Ch	Shadow video BIOS ROM if specified by Setup, and CMOS is valid and the previous boot was OK.
4Eh	Display copyright notice.
4Fh	Initialize Multi-Boot. Allocate memory for old and new MultiBoot history tables.
50h	Display CPU type and speed
51h	Checksum CMOS and initialize each EISA slot with data from the initialization data block.
52h	Verify keyboard test.
54h	Initialize keystroke clicker if enabled in Setup.
55h	Enabled USB device.
58h	Test for any unexpected interrupts. First do an STI for hot interrupts. Secondly, test the NMI for an unexpected interrupt. Thirdly, enable the parity checkers and read from memory, checking for an unexpected interrupt.
59h	Register POST Display Services, fonts, and languages with the POST Dispatch Manager.
5Ah	Display prompt "Press F2 to enter SETUP"
5Bh	Disable CPU cache.
5Ch	Test RAM between 512K and 640K.
60h	Determine and test the amount of extended memory available. Determine if memory exists by writing to a few strategic locations and see if the data can be read back. If so, perform an address-line test and a RAM test on the memory. Save the total extended memory size in the CMOS at cmosExtended.
62h	Perform an address line test on A0 to the amount of memory available. This test is dependent on the processor, since the test will vary depending on the width of memory (16 or 32 bits). This test will also use A20 as the skew address to prevent corruption of the system memory.
64h	Jump to UserPatch1. See "The POST Component."
66h	Set cache registers to their CMOS values if CMOS is valid, unless auto configuration is enabled, in which case load cache registers from the Setup default table.
67h	Quick initialization of all Application Processors in a multi-processor system.
68h	Enable external cache and CPU cache if present. Configure non-cacheable regions if necessary. NOTE: Hook routine must preserve DX, which carries the cache size to the Display CacheSize J routine.
6Ah	Display external cache size on the screen if it is non-zero. NOTE: Hook routine must preserve DX, which carries the cache size from the cache Configure J routine.

Tpoint	Description
6Bh	If CMOS is bad, load Custom Defaults from flash into CMOS. If successful, reboot.
6Ch	Display shadow message
6Eh	Display the starting offset of the non-disposable segment of the BIOS
70h	Check flags in CMOS and in the BIOS data area for errors detected during POST. Display error messages on the screen.
72h	Check status bits to see if configuration problems were detected. If so, display error messages on the screen.
76h	Check status bits for keyboard-related failures. Display error messages on the screen.
7Ch	Initialize the hardware interrupt vectors from 08 to 0F and from 70h to 77H. Also set the interrupt vectors from 60h to 66H to zero.
7Eh	The Coprocessor initialization test. Use the floating-point instructions to determine if a coprocessor exists instead of the ET bit in CR0.
80h	Disable onboard COM and LPT ports before testing for presence of external I/O devices
81h	Run late device initialization routines.
82h	Test and identify RS232 ports
83h	Configure Fisk Disk Controller
84h	Test and identify Parallel port.
85h	Display any ESCD read errors and configure all PnP ISA devices.
86h	Initialize onboard I/O and BDA according to CMOS and presence of external devices.
87h	Initialize motherboard configurable devices.
88h	Initialize interrupt controller.
89h	Enable non-maskable interrupts.
8Ah	Initialize Extended BIOS Data Area and initialize the mouse.
8Bh	Setup interrupts vector and present bit in Equipment byte.
8Ch	Initialize both of the floppy disks and display an error message if failure was detected. Check both drives to establish the appropriate diskette types in the BIOS data area.
8Fh	Count the number of ATA drives in the system and update the number in bdaFdiskcount.
90h	Initialize hard-disk controller. If the CMOS ram is valid and intact, and fixed disks are defined, call the fixed disk init routine to initialize the fixed disk system and take over the appropriate interrupt vectors.
91h	Configure the local bus IDE timing register based on the drives attached to it.
92h	Jump to UserPatch2. See "The POST Component".
93h	Build the MPTABLE for multi-processor boards
95h	 Check CMOS for CD-ROM drive present Activate the drive by checking for media present Check sector 11h (17) for Boot Record Volume Descriptor Check the boot catalog for validity Pick a boot entry Create a Specification Packet
96h	Reset segment-register addressibility from 8GB to normal 64K by generating a Shutdown 8.
97h	Create pointer to MP table in Extended BDA.
98h	Search for option ROMs. Rom scan the area from C800h for a length of BCP_ROM_Scan_Size (or to E000h by default) on every 2K boundry, looking for add on cards that need initialization.
99h	Check support status ROMs. Rom scan the area from C800h for a length of BCP_ROM_Scan_Size(or to E000h by default) on every 2K boundary, looking for add on cards that need initialization.
9Ah	Shadow miscellaneous ROMs if specified by Setup and CMOS is valid and the previous boot was OK.

Tpoint	Description		
9Ch	Set up Power Management. Initiate power -management state machine.		
9Dh	Initialize Security Engine.		
9Eh	Enable hardware interrupts		
9Fh	Check the total number of Fast Disks (ATA and SCSI) and update the bdaFdiskCount.		
A0h	Verify that the system clock is interrupting.		
A2h	Setup Numlock indicator. Display a message if key switch is locked.		
A4h	Initialize typematic rate		
A8h	Overwrite the "Press F2 for Setup" prompt with spaces, erasing it from the screen.		
Aah	Scan the key buffer to see if the F2 key was struck after keyboard interrupts were enabled. If an F2 keystroke is found, set a flag.		
ACh	Enter SETUP. If (F2 was pressed) go to SETUP Else if (errors were found) display "Press F1 or F2" prompt if (F2 is pressed) go to setup else if (F1 is pressed) boot Else boot		
AEh	Clear ConfigFailedBit and InPostBit in CMOS.		
B0h	Check for errors. If (errors were found) beep twice display "F1 or F2" message if (F2 keystroke) go to SETUP if (F1 keystroke) go to BOOT		
B2h	Change status bits in CMOS and/or the BIOS data area to reflect the fact that POST is complete.		
B4h	One quick beep		
B5h	Turn off <esc> and <f2> key checking. IF (VGA adapter is present) IF (OEM screen is still up) Note OEM screen is gone. Fade out OEM screen. Reset video: clear screen, reset cursor, reload DAC. ENDIF ENDIF</f2></esc>		
B6h	If password on boot is enabled, a call is made to Setup to check password. If the user does not enter a valid password, Setup does not return.		
B7h	Initialize ACPI BIOS.		
B9h	Clear all screen graphics before booting.		
BAh	Initialize the SMBIOS header and sub-structures.		
BCh	Clear parity-error latch		
BDh	Display Boot First menu if MultiBoot is installed.		
BEh	If BCP option is enabled, clear the screen before booting.		
BFh	Check virus and backup reminders. Display System Summary.		
C0h	Try to boot with INT 19		
C1h	Initialize the Post Error Manager.		

Tpoint	Description
C2h	Write PEM errors.
C3h	Display PEM errors.

Tpoint	Description
80h	Initialize the chipset
81h	Initialize the bridge.
82h	Initialize the CPU.
83h	Initialize system timer.
84h	Initialize system I/O
85h	Check force recovery boot.
86h	Check sum BIOS ROM.
87h	Go to BIOS
88h	Initialize Multi Processor.
89h	Set Huge Segment.
8Ah	Initialize OEM special code.
8Bh	Initialize PIC and DMA.
8Ch	Initialize Memory type.
8Dh	Initialize Memory size.
8Eh	Shadow Boot Block.
8Fh	System memory test.
90h	Initialize interrupt vector.
91h	Initialize Run Time Clock.
92h	Initialize video.
93h	Initialize System Management Mode.
94h	Output one beep
95h	Boot to Mini DOS.
96h	Clear Huge Segment
97h	Boot to Full DOS

Table 36. Crisis Disk Boot Block BIOS POST Task Point

7.1.2 BIOS POST Beep Codes

The following table lists POST error beep codes. Prior to system video initialization, the BIOS uses these beep codes to inform users of error conditions.

The beep code occurs only when a critical error or BIOS fails to boot to the operating system. Please note that not all error conditions are supported by BIOS beep codes.

The following list contains some of the beep codes used in SE7501CW2 platform:

- Memory error: A unique beep-code is derived from the port 80h code as follows:
 - The 8-bit error code is broken down to four 2-bit groups.
 - Each group is made one-based (through 4)
 - Short beeps are generated for the number of times in each group. Example:

Port 80h = 0E1h is divided into

11 10 00 01 or beep code 4-3-1-2

- Two short beeps indicates CMOS checksum bad been found and load default.
- Five short beeps indicates Clear CMOS software is on.
- One short beep indicates the BIOS will boot to the operating system.

Tpoint	Beeps	Reason
0E1h	4-3-1-2	No memory DIMM(s)
0E2h	4-3-1-3	Memory type is mismatch
0E3h	4-3-1-4	No DIMM Pair(s) in system
0E8h	4-3-3-1	Memory Error Row Address Bits
0E9h	4-3-3-2	Memory Error Internal Banks
0EAh	4-3-3-3	Memory Error Timing
0EBh	4-3-3-4	Memory Error Register CAS 3
0ECh	4-3-4-1	Memory Error Register NonReg Mix
0EDh	4-3-4-2	Memory Error CAS Latency
0EEh	4-3-4-3	Memory Error Size Not Supported

Table 37. POST Error Beep Codes

7.1.3 BIOS Recovery Beep Codes

Table 38. BIOS Recovery Beep Codes

Beeps	Reason
1	One long beep – video is active.
1-2	One long beep and two short beeps – The system is requesting the the user to insert the BIOS recovery diskette.

7.1.4 POST Error Codes and Messages

The following table defines POST error codes and their associated messages. The BIOS prompts the user to press a key in case of serious errors. The string "Error" precedes some of the error messages to emphasize that the system might be malfunctioning.

During the POST, BIOS may show information on the screen to indicate that an error has been encountered. The table below lists the possible error number that the user may encounter and the related meaning. Most information here show the hardware device issue (failure or not found), some may include the initialization status.

If your system displays one of the messages marked below with an asterisk (*), write down the message and contact your dealer. If your system fails after you make changes in the Setup menus, reset the computer, enter Setup and install Setup defaults or correct the error.

Table 39. Post Error Message

0200 Failure Fixed Disk

Fixed disk is not working or not configured properly. Ensure fixed disk is attached properly. Run Setup. Make sure fixed-disk type is correctly identified.

- 0210 Stuck key Stuck key on keyboard.
- 0211 Keyboard error Keyboard not working.
- * 0212 Keyboard Controller Failed Keyboard controller failed test. May require replacing keyboard controller.
 - 0213 Keyboard locked Unlock key switch Unlock the system to proceed.
- * 0230 Shadow Ram Failed at offset: nnnn Shadow RAM failed at offset nnnn of the 64k block at which the error was detected.
- * 0231 System RAM Failed at offset: nnnn System RAM failed at offset nnnn of in the 64k block at which the error was detected.
- * 0232 Extended RAM Failed at address line: nnnn Extended memory not working or not configured properly at offset nnnn
 - 0250 System battery is dead Replace and run SETUP The CMOS clock battery indicator shows the battery is dead. Replace the battery and run Setup to reconfigure the system.

0251 System CMOS checksum bad - Default configuration used

System CMOS has been corrupted or modified incorrectly, perhaps by an application program that changes data stored in CMOS. The BIOS installed Default Setup Values. If you do not want these values, enter Setup and enter your own values. If the error persists, check the system battery or contact your dealer.

* 0260 System timer error

The timer test failed. Requires repair of system board.

* 0270 Real time clock error

Real-Time Clock fails BIOS hardware test. May require board repair.

0271 Check date and time settings

BIOS found date or time out of range and reset the Real-Time Clock. May require setting legal date (1991-2099).

0280 Previous boot incomplete - Default configuration used

Previous POST did not complete successfully. POST loads default values and offer to run Setup. If the failure was caused by incorrect values and they are not corrected, the next boot will likely fail. On systems with control of wait states, improper Setup settings can also terminate POST and cause this error on the next boot. Run Setup and verify that the wait-state configuration is correct. This error is cleared the next time the system is booted.

0281 Memory Size found by POST differed from EISA CMOS

Memory size found by POST differed from CMOS.

02B0 Diskette drive A error

Drive A: is present but fails the BIOS POST diskette tests. Make sure the drive is defined with the proper diskette type in Setup and that the diskette drive is attached correctly.

02B2 Incorrect Drive A type - run SETUP

Type of floppy drive A: not correctly identified in Setup.

02D0 System cache error - Cache disabled

RAM cache failed and BIOS disabled the cache. On older boards, check the cache jumpers. You may have to replace the cache. See your dealer. A disabled cache slows system performance considerably.

02F0 CPU ID:

CPU socket number for multi-processor error.

* 02F4 EISA CMOS not writeable

Cannot write to EISA CMOS.

* 02F5 DMA Test Failed

Cannot write to extend DMA (Direct Memory Access) registers.

* 02F6 Software NMI Failed

Cannot generate software NMI (Non-Maskable Interrupt).

device Address Conflict

Address conflict for specified device.

Allocation Error for device

Run ISA or EISA Configuration Utility to resolve resource conflict for the specified device.

CD ROM Drive

CD ROM Drive identified

Entering SETUP ...

Starting Setup program

Fixed Disk n

Fixed disk n (0-3) identified

Invalid System Configuration Data Problem with NVRAM (CMOS) data.

IO device IRQ conflict

I/O device IRQ conflict error.

PS/2 Mouse Boot Summary Screen

PS/2 mouse installed.

nnnnM Extended RAM Passed

Where nnnn is the amount of RAM in megabytes successfully tested.

nnnnK Cache SRAM Passed

Where nnnn is the amount of system cache in kilobytes successfully tested.

nnnnK Shadow RAM Passed

Where nnnn is the amount of shadow RAM in kilobytes successfully tested.

nnnnK System RAM Passed

Where nnnn is the amount of system RAM in kilobytes successfully tested.

One or more I2O Block Storage Devices were excluded from the Setup Boot Menu

There was not enough room in the IPL table to display all installed I2O block-storage devices.

Operating system not found

Operating system cannot be located on either drive A: or drive C:. Enter Setup and see if fixed disk and drive A: are properly identified.

Parity Check 1 nnnn

Parity error found in the system bus. BIOS attempts to locate the address and display it on the screen. Parity is a method for checking errors in binary data. A parity error indicates that some data has been corrupted.

Parity Check 2 nnnn

Parity error found in the I/O bus. BIOS attempts to locate the address and display it on the screen.

Press <F1> to resume, <F2> to Setup

Displayed after any recoverable error message. Press <F1> to start the boot process or <F2> to enter Setup and change the settings.

Press <F2> to enter SETUP

Optional message displayed during POST.

Mouse initialized

Mouse identified

Run the I2O Configuration Utility

One or more unclaimed block storage devices have the Configuration Request bit set in the LCT. Run an I2O Configuration Utility (e.g. the SAC utility).

System BIOS shadowed

System BIOS copied to shadow RAM.

Video BIOS shadowed

Video BIOS successfully copied to shadow RAM.

8. SE7501CW2 Connectors and Jumper Blocks

8.1 Main Power Connector

The main power supply connection is obtained using the 24-pin connector. The following table defines the pin-outs of the connector.

Pin	Signal	Color	Pin	Signal	Color
1	+3.3V	Orange	13	+3.3V	Orange
2	+3.3V	Orange	14	-12V	Blue
3	GND	Black	15	GND	Black
4	+5V	Red	16	DC_ON_L	Green
5	GND	Black	17	GND	Black
6	+5V	Red	18	GND	Black
7	GND	Black	19	GND	Black
8	PWR_GOOD_H	Gray	20		
9	AUX5V	Purple	21	+5V	Red
10	+12V	Yellow	22	+5V	Red
11	+12V	Yellow	23	+5V	Red
12	+3.3V	Orange	24	GND	Black

Table 40. Power Connector Pin-out (J25)

Table 41. Auxiliary Signal Connector (J24)

Pin	Signal	Color		
1	T_SCL_H (no connect)	Green		
2	T_SDA_H (no connect)	Yellow		
3	ALERT_L_L	Red		
4	GND	Black		
5	3.3V	Orange		

Table 42. Auxiliary CPU Power connector pin-out table (J20)

Pin	Signal	Pin	Signal
1	GND	5	+12VENG
2	GND	6	+12VENG
3	GND	7	+12VENG
4	GND	8	+12VENG

8.2 Memory Module Connector

The SE7501CW2 server board has four DDR DIMM connectors and supports registered ECC DDR modules.

Pin	Front	Pin	Front	Pin	Front	Pin	Back	Pin	Back	Pin	Back
1	VREF	32	A5	62	VDDQ	93	VSS	124	VSS	154	/RAS
2	DQ0	33	DQ24	63	/WE	94	DQ4	125	A6	155	DQ45
3	VSS	34	VSS	64	DQ41	95	DQ5	126	DQ28	156	VDDQ
4	DQ1	35	DQ25	65	/CAS	96	VDDQ	127	DQ29	157	/CS0
5	DQS0	36	DQS3	66	VSS	97	DM0	128	VDDQ	158	*/CS1
6	DQ2	37	A4	67	DQS5	98	DQ6	129	DM3	159	DM5
7	VDD	38	VDD	68	DQ42	99	DQ7	130	A3	160	VSS
8	DQ3	39	DQ26	69	DQ43	100	VSS	131	DQ30	161	DQ46
9	NC	40	DQ27	70	VDD	101	NC	132	VSS	162	DQ47
10	/RESET	41	A2	71	*/CS2	102	NC	133	DQ31	163	*/CS3
11	VSS	42	VSS	72	DQ48	103	*A13	134	CB4	164	VDDQ
12	DQ8	43	A1	73	DQ49	104	VDDQ	135	CB5	165	DQ52
13	DQ9	44	CB0	74	VSS	105	DQ12	136	VDDQ	166	DQ53
14	DQS1	45	CB1	75	*/CK2	106	DQ13	137	CK0	167	NC
15	VDDQ	46	VDD	76	*CK2	107	DM1	138	/CK0	168	VDD
16	*CK1	47	DQS8	77	VDDQ	108	VDD	139	VSS	169	DM6
17	*/CK1	48	A0	78	DQS6	109	DQ14	140	DM8	170	DQ54
18	VSS	49	CB2	79	DQ50	110	DQ15	141	A10	171	DQ55
19	DQ10	50	VSS	80	DQ51	111	*CKE1	142	CB6	172	VDDQ
20	DQ11	51	CB3	81	VSS	112	VDDQ	143	VDDQ	173	NC
21	CKE0	52	BA1	82	VDDID	113	*BA2	144	CB7	174	DQ60
22	VDDQ	KEY		83	DQ56	114	DQ20	KEY		175	DQ61
23	DQ16	53	DQ32	84	DQ57	115	A12	145	VSS	176	VSS
24	DQ17	54	VDDQ	85	VDD	116	VSS	146	DQ36	177	DM7
25	DQS2	55	DQ33	86	DQS7	117	DQ21	147	DQ37	178	DQ62
26	VSS	56	DQS4	87	DQ58	118	A11	148	VDD	179	DQ63
27	A9	57	DQ34	88	DQ59	119	DM2	149	DM4	180	VDDQ
28	DQ18	58	VSS	89	VSS	120	VDD	150	DQ38	181	SA0
29	A7	59	BA0	90	NC	121	DQ22	151	DQ39	182	SA1
30	VDDQ	60	DQ35	91	SDA	122	A8	152	VSS	183	SA2
31	DQ19	61	DQ40	92	SCL	123	DQ23	153	DQ44	184	VDDSPD

8.3 **Processor Socket**

The SE7501CW2 has two 604-pin processor sockets. The following table provides the processor socket pin numbers and pin names:

Pin No	Pin Name								
A1	Reserved	D29	VCC	K3	VCC	T29	VSS	AB3 2	BSEL1
A2	VCC	D30	VSS	K4	VSS	Т30	VCC	AB4	VCCA
A3	SKTOCC#	D31	VCC	K5	VCC	T31	VSS	AB5	VSS
A4	Reserved	E1	VSS	K6	VSS	U1	VCC	AB6	D63#
A5	VSS	E2	VCC	K7	VCC	U2	VSS	AB7	PWRGOOD
A6	A32#	E3	VID1	K8	VSS	U3	VCC	AB8	VCC
A7	A33#	E4	BPM5#	K9	VCC	U4	VSS	AB9	DBI3#
A8	VCC	E5	IERR#	K23	VCC	U5	VCC	AB10	D55#
A9	A26#	E6	VCC	K24	VSS	U6	VSS	AB11	VSS
A10	A20#	E7	BPM2#	K25	VCC	U7	VCC	AB12	D51#
A11	VSS	E8	BPM4#	K26	VSS	U8	VSS	AB13	D52#
A12	A14#	E9	VSS	K27	VCC	U9	VCC	AB14	VCC
A13	A10#	E10	AP0#	K28	VSS	U23	VCC	AB15	D37#
A14	VCC	E11	BR2# 1	K29	VCC	U24	VSS	AB16	D32#
A15	Reserved	E12	VCC	K30	VSS	U25	VCC	AB17	D31#
A16	Reserved	E13	A2	K31	VCC	U26	VSS	AB18	VCC
A17	LOCK#	E14	A24#	L1	VSS	U27	VCC	AB19	D14#
A18	VCC	E15	VSS	L2	VCC	U28	VSS	AB20	D12#
A19	A7#	E16	COMP1	L3	VSS	U29	VCC	AB21	VSS
A20	A4#	E17	VSS	L4	VCC	U30	VSS	AB22	D13#
A21	VSS	E18	DRDY#	L5	VSS	U31	VCC	AB23	D9#
A22	A3#	E19	TRDY#	L6	VCC	V1	VSS	AB24	VCC
A23	HITM#	E20	VCC	L7	VSS	V2	VCC	AB25	D8#
A24	VCC	E21	RS0#	L8	VCC	V3	VSS	AB26	D7#
A25	TMS	E22	HIT#	L9	VSS	V4	VCC	AB27	VSS
A26	Reserved	E23	VSS	L23	VSS	V5	VSS	AB28	SM_EP_A2
A27	VSS	E24	ТСК	L24	VCC	V6	VCC	AB29	SM_EP_A1
A28	VCC	E25	TDO	L25	VSS	V7	VSS	AB30	VCC
A29	VSS	E26	VCC	L26	VCC	V8	VCC	AB31	VSS
A30	VCC	E27	FERR#	L27	VSS	V9	VSS	AC1	Reserved
A31	VSS	E28	VCC	L28	VCC	V23	VSS	AC2	VSS
B1	Reserved	E29	VSS	L29	VSS	V24	VCC	AC3	VCC
B2	VSS	E30	VCC	L30	VCC	V25	VSS	AC4	VCC
B3	VID4	E31	VSS	L31	VSS	V26	VCC	AC5	D60#

Table 44. Socket 604 F	Processor Socket Pinout
------------------------	-------------------------

Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
B4	VCC	F1	VCC	M1	VCC	V27	VSS	AC6	D59#
B5	OTDEN	F2	VSS	M2	VSS	V28	VCC	AC7	VSS
B6	VCC	F3	VID0	M3	VCC	V29	VSS	AC8	D56#
B7	A31#	F4	VCC	M4	VSS	V30	VCC	AC9	D47#
B8	A27#	F5	BPM3#	M5	VCC	V31	VSS	AC10	VCC
B9	VSS	F6	BPM0#	M6	VSS	W1	VCC	AC11	D43#
B10	A21#	F7	VSS	M7	VCC	W2	VSS	AC12	D41#
B11	A22#	F8	BPM1#	M8	VSS	W3	Reserved	AC13	VSS
B12	VCC	F9	GTLREF	M9	VCC	W4	VSS	AC14	D50#
B13	A13#	F10	VCC	M23	VCC	W5	BCLK1	AC15	DP2#
B14	A12#	F11	BINIT#	M24	VSS	W6	TESTHI0	AC16	VCC
B15	VSS	F12	BR1#	M25	VCC	W7	TESTHI1	AC17	D34#
B16	A11#	F13	VSS	M26	VSS	W8	TESTHI2	AC18	DP0#
B17	VSS	F14	ADSTB1#	M27	VCC	W9	GTLREF	AC19	VSS
B18	A5#	F15	A19#	M28	VSS	W23	GTLREF	AC20	D25#
B19	REQ0#	F16	VCC	M29	VCC	W24	VSS	AC21	D26#
B20	VCC	F17	ADSTB0#	M30	VSS	W25	VCC	AC22	VCC
B21	REQ1#	F18	DBSY#	M31	VCC	W26	VSS	AC23	D23#
B22	REQ4#	F19	VSS	N1	VCC	W27	VCC	AC24	D20#
B23	VSS	F20	BNR#	N2	VSS	W28	VSS	AC25	VSS
B24	LINT0	F21	RS2#	N3	VCC	W29	VCC	AC26	D17#
B25	PROCHOT#	F22	VCC	N4	VSS	W30	VSS	AC27	DBI0#
B26	VCC	F23	GTLREF	N5	VCC	W31	VCC	AC28	SM_CLK
B27	VCCSENSE	F24	TRST#TAP	N6	VSS	Y1	VSS	AC29	SM_DAT
B28	VSS	F25	VSS	N7	VCC	Y2	VCC	AC30	VSS
B29	VCC	F26	THERMTRIP	N8	VSS	Y3	Reserved	AC31	VCC
B30	VSS	F27	A20M#	N9	VCC	Y4	BCLK0	AD1	Reserved
B31	VCC	F28	VSS	N23	VCC	Y5	VSS	AD2	VCC
C1	VSS	F29	VCC	N24	VSS	Y6	TESTHI3	AD3	VSS
C2	VCC	F30	VSS	N25	VCC	Y7	VSS	AD4	VCCIOPLL
C3	VID3	F31	VCC	N26	VSS	Y8	RESET#	AD5	TESTHI5
C4	VCC	G1	VSS	N27	VCC	Y9	D62#	AD6	VCC
C5	Reserved	G2	VCC	N28	VSS	Y10	VCC	AD7	D57#
C6	RSP#	G3	VSS	N29	VCC	Y11	DSTBP3#	AD8	D46#
C7	VSS	G4	VCC	N30	VSS	Y12	DSTBN3#	AD9	VSS
C8	A35#	G5	VSS	N31	VCC	Y13	VSS	AD10	D45#
C9	A34#	G6	VCC	P1	VSS	Y14	DSTBP2#	AD11	D40#
C10	VCC	G7	VSS	P2	VCC	Y15	DSTBN2#	AD12	VCC
C11	A30#	G8	VCC	P3	VSS	Y16	VCC	AD13	D38#
C12	A23#	G9	VSS	P4	VCC	Y17	DSTBP1#	AD14	D39#
C13	VSS	G23	LINT1	P5	VSS	Y18	DSTBN1#	AD15	VSS
C14	A16#	G24	VCC	P6	VCC	Y19	VSS	AD16	COMP0

Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name	Pin No	Pin Name
C15	A15#	G25	VSS	P7	VSS	Y20	DSTBP0#	AD17	VSS
C16	VCC	G26	VCC	P8	VCC	Y21	DSTBN0#	AD18	D36#
C17	A8#	G27	VSS	P9	VSS	Y22	VCC	AD19	D30#
C18	A6#	G28	VCC	P23	VSS	Y23	D5#	AD20	VCC
C19	VSS	G29	VSS	P24	VCC	Y24	D2#	AD21	D29#
C20	REQ3#	G30	VCC	P25	VSS	Y25	VSS	AD22	DBI1#
C21	REQ2#	G31	VSS	P26	VCC	Y26	D0#	AD23	VSS
C22	VCC	H1	VCC	P27	VSS	Y27	Reserved	AD24	D21#
C23	DEFER#	H2	VSS	P28	VCC	Y28	Reserved	AD25	D18#
C24	TDI	H3	VCC	P29	VSS	Y29	SM_TS1_A1	AD26	VCC
C25	VSS	H4	VSS	P30	VCC	Y30	VCC	AD27	D4#
C26	IGNNE#	H5	VCC	P31	VSS	Y31	VSS	AD28	SM_ALERT#
C27	SMI#	H6	VSS	R1	VCC	AA1	VCC	AD29	SM_WP
C28	VCC	H7	VCC	R2	VSS	AA2	VSS	AD30	VCC
C29	VSS	H8	VSS	R3	VCC	AA32	BSEL0	AD31	VSS
C30	VCC	H9	VCC	R4	VSS	AA4	VCC	AE2	VSS
C31	VSS	H23	VCC	R5	VCC	AA5	VSSA	AE3	VCC
D1	VCC	H24	VSS	R6	VSS	AA6	VCC	AE4	Reserved
D2	VSS	H25	VCC	R7	VCC	AA7	TESTHI4	AE5	TESTHI6
D3	VID2	H26	VSS	R8	VSS	AA8	D61#	AE6	SLP#
D4	STPCLK#	H27	VCC	R9	VCC	AA9	VSS	AE7	D58#
D5	VSS	H28	VSS	R23	VCC	AA10	D54#	AE8	VCC
D6	INIT#	H29	VCC	R24	VSS	AA11	D53#	AE9	D44#
D7	MCERR#	H30	VSS	R25	VCC	AA12	VCC	AE10	D42#
D8	VCC	H31	VCC	R26	VSS	AA13	D48#	AE11	VSS
D9	AP1#	J1	VSS	R27	VCC	AA14	D49#	AE12	DBI2#
D10	BR3# ¹	J2	VCC	R28	VSS	AA15	VSS	AE13	D35#
D11	VSS	J3	VSS	R29	VCC	AA16	D33#	AE14	VCC
D12	A29#	J4	VCC	R30	VSS	AA17	VSS	AE15	Reserved
D13	A25#	J5	VSS	R31	VCC	AA1	D24#	AE16	Reserved
D14	VCC	J6	VCC	T1	VSS	AA19	D15#	AE17	DP3#
D15	A1#	J7	VSS	T2	VCC	AA20	VCC	AE18	VCC
D16	A17#	J8	VCC	Т3	VSS	AA21	D11#	AE19	DP1#
D17	A9#	J9	VSS	T4	VCC	AA22	D10#	AE20	D28#
D18	VCC	J23	VSS	T5	VSS	AA23	VSS	AE21	VSS
D19	ADS#	J24	VCC	Т6	VCC	AA24	D6#	AE22	D27#
D20	BR0#	J25	VSS	T7	VSS	AA25	D3#	AE23	D22#
D21	VSS	J26	VCC	Т8	VCC	AA26	VCC	AE24	VCC
D22	RS1#	J27	VSS	Т9	VSS	AA27	D1#	AE25	D19#
D23	BPRI#	J28	VCC	T23	VSS	AA28	SM_TS1_A0	AE26	D16#
D24	VCC	J29	VSS	T24	VCC	AA29	SM_EP_A0	AE27	VSS
D25	Reserved	J30	VCC	T25	VSS	AA30	VSS	AE28	SM_V

Pin No	Pin Name								
D26	VSSSENSE	J31	VSS	T26	VCC	AA31	VCC	AE29	SM_V
D27	VSS	K1	VCC	T27	VSS	AB1	VSS		
D28	VSS	K2	VSS	T28	VCC	AB2	VCC		

Notes:

1. These are "Reserved " pins on the Intel[®] Xeon processor. In systems utilizing the Intel[®] Xeon processor, the system designer must terminate these signals to the processor VCC.

2.Baseboards treating AA3 and AB3 as Reserved will operate correctly with a bus clock of 100 MHz.

8.4 System Management Headers

8.4.1 I²C Header

Pin	Signal Name	Description
1	3VSB SDA	Data Line
2	GND	
3	3VSB SCL	Clock Line
4	+5VSB	Power Line

8.4.2 SCSI Backplane IPMI Connector

Table 46. HSBP I2C Connector Pin-out (J57)

Pin	Signal Name	Description
1	5V SDA	Data Line
2	GND	
3	5V SCL	Clock Line
4	1K pull-up to +5V	Power Line

8.5 PCI Slot Connector

There are three PCI buses implemented on the SE7501CW2 board. PCI segment A supports 5V 32-bit/33MHz PCI, segment B supports 3.3V PCI-X 64-bit/100MHz, and segment C supports 3.3V PCI-X 64-bit/133MHz operation. All segments supports full-length PCI add-in cards. The pin-out for each segment is below.

Pin	Side B	Side A	Pin	Side B	Side A
1	-12V	TRST#	32	AD[17]	AD[16]
2	тск	+12V	33	C/BE[2]#	+3.3V
3	Ground	TMS	34	Ground	FRAME#
4	TDO	TDI	35	IRDY#	Ground

Pin	Side B	Side A	Pin	Side B	Side A
5	+5V	+5V	36	+3.3V	TRDY#
6	+5V	INTA#	37	DEVSEL#	Ground
7	INTB#	INTC#	38	Ground	STOP#
8	INTD#	+5V	39	LOCK#	+3.3V
9	PRSNT1#	Reserved	40	PERR#	SMBCLK
10	Reserved	+5V (I/O)	41	+3.3V	SMBDAT
11	PRSNT2#	Reserved	42	SERR#	Ground
12	Ground	Ground	43	+3.3V	PAR
13	Ground	Ground	44	C/BE[1]#	AD[15]
14	Reserved	3.3Vaux	45	AD[14]	+3.3V
15	Ground	RST#	46	Ground	AD[13]
16	CLK	+5V (I/O)	47	AD[12]	AD[11]
17	Ground	GNT#	48	AD[10]	Ground
18	REQ#	Ground	49	Ground	AD[09]
19	+5V (I/O)	PME#	50	CONNECTOR KEY	
20	D[31]	AD[30]	51	CONNECTOR KE	Y
21	AD[29]	+3.3V	52	AD[08]	C/BE[0]#
22	Ground	AD[28]	53	AD[07]	+3.3V
23	AD[27]	AD[26]	54	+3.3V	AD[06]
24	AD[25]	Ground	55	AD[05]	AD[04]
25	+3.3V	AD[24]	56	AD[03]	Ground
26	C/BE[3]#	IDSEL	57	Ground	AD[02]
27	AD[23]	+3.3V	58	AD[01]	AD[00]
28	Ground	AD[22]	59	+5V (I/O)	+5V (I/O)
29	AD[21]	AD[20]	60	ACK64#	REQ64#
30	AD[19]	Ground	61	+5V	+5V
31	+3.3V	AD[18]	62	+5V	+5V

Table 48. P64-B/P64-C 3.3V 64-bit/ 100MHz/133MHz PCI-X Slot Pin-out

Pin	Side B	Side A	Pin	Side B	Side A
1	-12V	TRST#	49	M66EN	AD[09]
2	TCK	+12V	50	Ground	Ground
3	Ground	TMS	51	Ground	Ground
4	TDO	TDI	52	AD[08]	C/BE[0]#
5	+5V	+5V	53	AD[07]	+3.3V
6	+5V	INTA#	54	+3.3V	AD[06]
7	INTB#	INTC#	55	AD[05]	AD[04]
8	INTD#	+5V	56	AD[03]	Ground
9	PRSNT1#	Reserved	57	Ground	AD[02]
10	Reserved	+3.3V (I/O)	58	AD[01]	AD[00]
11	PRSNT2#	Reserved	59	+3.3V (I/O)	+3.3V (I/O)

Pin	Side B	Side A	Pin	Side B	Side A
12	CONNECTOR	KEY	60	ACK64#	REQ64#
13	CONNECTOR	KEY	61	+5V	+5V
14	Reserved	3.3Vaux	62	+5V	+5V
15	Ground	RST#		CONNECTOR I	KEY
16	CLK	+3.3V (I/O)		CONNECTOR I	<ey< td=""></ey<>
17	Ground	GNT#	63	Reserved	Ground
18	REQ#	Ground	64	Ground	C/BE[7]#
19	+3.3V (I/O)	PME#	65	C/BE[6]#	C/BE[5]#
20	AD[31]	AD[30] A	66	C/BE[4]#	+3.3V (I/O)
21	AD[29]	+3.3V	67	Ground	PAR64
22	Ground	AD[28]	68	AD[63]	AD[62]
23	AD[27]	AD[26]	69	AD[61]	Ground
24	AD[25]	Ground	70	+3.3V (I/O)	AD[60]
25	+3.3V	AD[24]	71	AD[59]	AD[58]
26	C/BE[3]#	IDSEL	72	AD[57]	Ground
27	AD[23]	+3.3V	73	Ground	AD[56]
28	Ground	AD[22]	74	AD[55]	AD[54]
29	AD[21]	AD[20]	75	AD[53]	+3.3V (I/O)
30	AD[19]	Ground	76	Ground	AD[52]
31	+3.3V	AD[18]	77	AD[51]	AD[50]
32	AD[17]	AD[16]	78	AD[49]	Ground
33	C/BE[2]#	+3.3V	79	+3.3V (I/O)	AD[48]
34	Ground	FRAME#	80	AD[47]	AD[46]
35	IRDY#	Ground	81	AD[45]	Ground
36	+3.3V	TRDY#	82	Ground	AD[44]
37	DEVSEL#	Ground	83	AD[43]	AD[42]
38	PCIXCAP	STOP#	84	AD[41]	+3.3V (I/O)
39	LOCK#	+3.3V	85	Ground	AD[40]
40	PERR#	SMBCLK	86	AD[39]	AD[38]
41	+3.3V	SMBDAT	87	AD[37]	Ground
42	SERR#	Ground	88	+3.3V (I/O)	AD[36]
43	+3.3V	PAR	89	AD[35]	AD[34]
44	C/BE[1]#	AD[15]	90	AD[33]	Ground
45	AD[14]	+3.3V	91	Ground	AD[32]
46	Ground	AD[13]	92	Reserved	Reserved
47	AD[12]	AD[11]	93	Reserved	Ground
48	AD[10]	Ground	94	Ground	Reserved

8.6 Front Panel Connectors

A standard SSI 34-pin header (J5) is provided to support a system front panel. The header contains reset, NMI, power control buttons, and LED indicators. The following table details the pin out of this header.

Signal Name	Pin	Pin	Signal Name
ACPI_LEDgrn_H	1	2	AUX5V
KEY	3	4	*FAN1_FAULT LED_H
ACPI_LEDgrn_L	5	6	*FAN1_FAULT LED_L
HDD_LED_H	7	8	*FAN2_FAULT LED_H
HDD_LED_L	9	10	*FAN2_FAULT LED_L
ACPI switch	11	12	NIC-1 ACT_LED_H
ACPI switch (GND)	13	14	NIC-1 ACT_LED_L
RESET switch	15	16	*SMB SDA
RESET switch (GND)	17	18	*SMB SCL
*Sleep switch	19	20	INDTRUDER
*Sleep switch (GND)	21	22	NIC-2 ACT_LED_H
NMI switch	23	24	NIC-2 ACT_LED_L
Кеу	25	26	Кеу
Unused	27	28	Unused
Unused	29	30	Unused
Unused	31	32	Unused
Unused	33	34	Unused

Table 49. Front Panel 34-Pin Header Pin-out (J5)

* => NC (No Connect)

8.7 VGA Connector

The following table details the pin-out of the VGA connector.

Table 50. VGA Connector Pin-out (J47)

Pin	Signal Name		
1	Red (analog color signal R)		
2	Green (analog color signal G)		
3	Blue (analog color signal B)		
4	No connection		
5	GND		
6	GND		
7	GND		
8	GND		
9	Fused VCC(+5V)		
10	GND		

Pin	Signal Name		
11	No connection		
12	DDCDAT		
13	HSYNC (horizontal sync)		
14	VSYNC (vertical sync)		
15	DDCCLK		

8.8 NIC Connectors

The SE7501CW2 server board supports two NIC RJ45 connectors. The following table details the pin-out of the connector.

Signal Name	Pin	Pin	Signal Name
ТХР	1	8	CTGND
TCT	2	9	SB3V
ТХМ	3	10	SPEEDLED
RXP	4	11	PRI_ACTLED_FB
RCT	5	12	LILED
RXM	6	13	GND (shield)
NC	7	14	GND (shield)

Table 51. NIC1 10/100 RJ-45 Connector Pin-outs (J48)

Signal Name	Pin	Pin	Signal Name
TCT3	1	10	TXM1
TXM3	2	11	TXP1
TXP3	3	12	TCT1
TXP2	4	13	LED10
TXM2	5	14	ACTLED
TCT2	6	15	LED100
TCT4	7	16	LED1G
TXP4	8	17	GND (shield)
TXM4	9	18	GND (shield)

8.9 ATA Connectors

The Intel Server Board SE7501CW2 provides two 40-pin ATA-100 connectors. The pin-out for both connectors is identical and is listed in the following table.

Pin	Signal Name	Pin	Signal Name
1	RESET_L	2	GND
3	DD7	4	IDE_DD8
5	DD6	6	IDE_DD9
7	DD5	8	IDE_DD10
9	DD4	10	IDE_DD11
11	DD3	12	IDE_DD12
13	DD2	14	IDE_DD13
15	DD1	16	IDE_DD14
17	DD0	18	IDE_DD15
19	GND	20	KEY
21	IDE_DMAREQ	22	GND
23	IDE_IOW_L	24	GND
25	IDE_IOR_L	26	GND
27	IDE_IORDY	28	GND
29	IDE_DMAACK_L	30	GND
31	IRQ_IDE	32	Test Point
33	IDE_A1	34	DIAG
35	IDE_A0	36	IDE_A2
37	IDE_DCS0_L	38	IDE_DCS1_L
39	IDE_HD_ACT_L	40	GND

 Table 53. ATA-100 40-pin Connectors Pin-out (J8, J7)

8.10 USB Connector

The following table provides the pin-out for the three external USB connectors.

Pin	Signal Name
1	Fused VCC0 (+5V /w over current monitor of port 0)
2	DATAL0 (Differential data line paired with DATAH0)
3	DATAH0 (Differential data line paired with DATAL0)
4	GND0
5	VCC1
6	DATAL1
7	DATAH1
8	GND1
9	VCC2
10	DATAL2
11	DATAH2
12	GND2

Table 54	. USB	Connectors	Pin-out (J50)	
----------	-------	------------	---------------	--

A header on the server board provides an option to support one additional USB connector. The pin-out of the header is detailed in the following table.

Pin	Signal Name	Description
1	LUSB4+5V	Front Panel USB4 Power
2	LUSB3+5V	Front Panel USB3 Power
3	LUSB4N_H	Front Panel USB4 Negative Signal
4	LUSB3N_H	Front Panel USB3 Negative Signal
5	LUSB4P_H	Front Panel USB4 Positive Signal
6	LUSB3P_H	Front Panel USB3 Positive Signal
7	Ground	
8	Ground	
9	Кеу	
10	Ground	

 Table 55. Optional USB Connection Header Pin-out (J10)

8.11 Floppy Connector

The server board SE7501CW2 provides a standard 34-pin interface to the floppy drive controller. The following tables detail the pin-out of the 34-pin legacy floppy connector.

Pin	Signal Name	Pin	Signal Name
1	GND	2	FDDENSEL_H
3	GND	4	Unused
5	KEY	6	FDDRATE0_H
7	GND	8	FDINDEX_L
9	GND	10	FDMTR0_L
11	GND	12	FDR1_L
13	GND	14	FDR0_L
15	GND	16	FDMTR1_L
17	Unused	18	FDDIR_H
19	GND	20	FDSTEP_L
21	GND	22	FDWDATA_L
23	GND	24	FDWGATE_L
25	GND	26	FDTRK0_L
27	Unused	28	FLWP_L
29	GND	30	FRDATA_L
31	GND	32	FHDSEL_L
33	GND	34	FDSKCHG_L

 Table 56. Legacy 34-pin Floppy Connector Pin-out (J12)

8.12 Serial Port Connectors

Two serial ports are provided on the server board.

- A standard, external DB9 serial connector is located on the back edge of the baseboard to supply a Serial A interface
- A Serial B port is provided through a 9-pin header on the server board.

The following tables detail the pin-outs of these two ports.

Pin	Signal Name	Description
1	OCDCD1_L	Carrier Detect or Data Set Ready
2	OCSIN1_H	Receive Data
3	OCSOUT1_H	Transmit Data
4	OCDTR1_L	Data Terminal Ready

 Table 57. External DB9 Serial A Port Pin-out (J52)

Pin	Signal Name	Description
5	GND	Signal Ground
6	OCDSR1_L	Request To Send
7	OCRTS1_L	Carrier Detect or Data Set Ready
8	OCCTS1_L	Clear to send
9	OCRI1_L	Ring Indicate

Table 58. 9-pin Header Serial B Port Pin-out (J28)

Pin	Signal Name
1	OCDCD2_L (carrier detect)
2	OCSIN2_H data)
3	OCSOUT2_H (transmit data)
4	OCDTR2_L (data terminal ready)
5	Ground
6	OCDSR2_L (data set ready)
7	OCRTS2_L (request to send)
8	OCCTS2_L (clear to send)
9	OCRI2_L (ring indicate)
10	Missing pin

8.13 Keyboard and Mouse Connector

Two PS/2 ports are provided for use by a keyboard and a mouse. The following table details the pin-out of the PS/2 connector.

PS/2 Connectors	Pin	Signal Name	
Keyboard	1	Keyboard Data	
	2	Кеу	
	3	GND	
	4	Fused VCC	
	5	Keyboard Clock	
	6	Кеу	
Mouse	7	Mouse Data	
	8	Кеу	
	9	GND	
	10	Fused VCC	
	11	Mouse Clock	
	12	Кеу	
	13,14,15,16,17	GND	

Table 59. Keyboard and Mouse PS/2 Connector Pin-out (J54)

8.14 Miscellaneous Headers and Jumpers

8.14.1 Fan Headers

The SE7501CW2 server board provides seven 3-pin fan headers. All fans provide variable speed control. If 4 W fans are used then the fan speed is typically more than 11,000 RPM (+/-1500RPM). It is recommended to run at least 4W fans in 1U chassis. 2W variable speed fans are best used for 2U or larger chassis and typically run less than 5000RPM. If thermal and acoustic issues are of a concern it is recommended that the customer run independent tests to verify results. The fan headers are labeled, CPU Fan 1, CPU Fan 2, SysFan 1, SysFan 2, SysFan 3, SysFan 4 SysFan 5.

Pin	Signal Name	Туре	Description
1	Ground	Power	GROUND is the power supply ground
2	Fan Power	Power	Fan Power
3	Fan Tach	Out	FAN_TACH signal is connected to the SI/O and MAX6651 to monitor the FAN speed

Table 60. Three-pin Fan Headers Pin-out (J1	I, J3, J14, J16, J29, J30,J58)
---	--------------------------------

8.14.2 System Recovery and Update Jumpers

One 8-pin header (J32), located near the NIC 1 connector, provides a total of five 2-pin jumper blocks that are used to configure several system recovery and update options. The figure below shows the jumper pins and their functions.

The factory defaults are set to a protected mode for each function. A jumper stored on pins 9-10 needs to be moved to the specified location to perform the particular function desired. For normal operation, the jumper should remain on the storage pins.

A jumper at pins 7-8 protect the boot block of the BIOS code. This jumper should be in place at all times and only removed when directed by the release notes provided with the BIOS update.

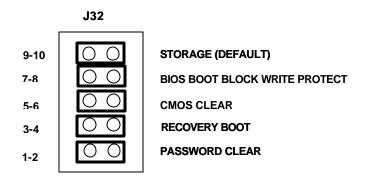


Figure 7. SE7501CW2 Configuration Jumpers (J32)

The following table describes each jumper option.

Table 61.	Configuration	Jumper	Options
-----------	---------------	--------	---------

Pin Number	Option	Description
10-9	Storage	No connect. Default position for jumper storage.
8-7	BIOS Boot Block Write Protect	Pins 7 and 8 should be jumpered to protect the BIOS bootblock from being flashed.
6-5	Clear CMOS	If pins 5 and 6 are jumpered CMOS contents are set to factory defaults during system reset.
4-3	Recovery Mode	If pins 3 and 4 are jumpered, the BIOS will attempt a recovery boot, loading BIOS code from a floppy disk into the Flash device. This is typically used when the BIOS code has been corrupted.
2-1	Clear Password	If pins 1 and 2 are jumpered, administrator and user passwords areas in the CMOS are cleared and set back to the factory default of null.

9. General Specifications

9.1 **Power Supply Constraints**

9.1.1 SC5200 Base Chassis Timing Requirements

The Intel Server Chassis SC5200 Base front panel power switch will not power on if held for between 1 and 4 seconds, because the timing of the ICH3-S component of the E7501 chipset reads power in 1 and 4 second cycles. In other words, if you hold the power button for 1, 2, 3, or 4, seconds the power will not power on, POST will not occur, and the operating system will not boot. If pressing the power button does not cause the server to power on it is recommend that you press the button a second time to guarantee successful power on. If you press the power button to the SE7501CW2 baseboard when power-cycling.

9.1.2 SC5200 Base Redundant Power 12V rail limitations

When using the Intel® Xeon [™] Processors at speeds of 3.0Ghz and above in the Intel Server chassis 5200 Base Redundant Power SKU, the chassis power supply may not be able support all adapter/peripheral loading configurations due to a potential current capacity limitation on the +12V power rail.

9.1.3 BIOS <F2> "Stay off" switch limitations

The BIOS setup switch "Stay Off" has a built in limitation that may be seen under rare brownout / blackout conditions. Under these conditions, if power to the power-supply is off for 2 to 3 seconds, the "Stay Off" switch will allow the server operating system to be booted. This is by design, but may cause confusion to system administrators when the server reboots despite being told to remain off in BIOS with the "Stay Off" switch. Since BIOS interacts differently depending on the power supplies it was determined to leave this small limitation of the "Stay Off" switch. If power is lost for more than 3 seconds of less than 2, then the BIOS switch will work correctly and always leave the server without power.

9.1.4 Mean Time between Failures

The anticipated Mean Time Between Failures (MTBF) is predicted to be 100,496 hours under normal conditions on the SE7501CW2 Server Board.

9.2 Absolute Maximum Ratings

Operating an SE7501CW2 baseboard at conditions beyond those shown in the following table may cause permanent damage to the system. The table is provided for stress testing purposes only. Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Table 62. Absolute Maximum Ratings

Operating Temperature	5 degrees C to 50 degrees C ¹
Storage Temperature	-55 degrees C to +150 degrees C
Voltage on any signal with respect to ground	-0.3 V to Vdd + 0.3V ²
3.3 V Supply Voltage with Respect to ground	-0.3 V to 3.63 V
5 V Supply Voltage with Respect to ground	-0.3 V to 5.5 V

Notes:

- Chassis design must provide proper airflow to avoid exceeding Intel® Xeon processor maximum case temperature.
- VDD means supply voltage for the device

9.3 Power Budget

The following table shows the power consumed on each supply line for a board that is configured with two processors (each 830W max), >1GHz FMB @ 80% usage. This configuration includes four DIMMs stacked burst at 70% max. The numbers provided in the table should be used for reference purposes only. Different hardware configurations will produce different numbers. The numbers in the table reflect a common usage model operating at a higher than average stress levels. Add-on PCI Card numbers are for design budget reference only and should not be used in load calculations. A calculator is available on the following link to assist in determining the power requirements for a user-configured system. Please refer to the

http://support.intel.com/support/motherboards/server/pwr_budget.htm web site for a configurable spreadsheet which may be more accurate based on your system and chassis configuration.

Items					Output Max				rrent			Output Average Current				
Mother Board	Q'ty	Max Power	utilize factor	Average power	+5 V	+3.3 V	+12 V	-12 V	-5 V	+5VSB	+5 V	+3.3 V	+12 V	-12 V	-5 V	+5VSB
Processor Vcore	2	192.00		160.00			20.00						16.67			
Processor VRD Eff@ 80%		38.40	20%	32.00												
NB (E7500MCH)																
Vtt (1.3V~1.475V) / 20A	1	2.75	80%	2.20			0.29						0.23			
Plumas Vcore (1.2V / 4.5A)	1	3.72	65%	2.42		1.41						0.92				
Vddr (2.5V/ 5.8 A)	1	14.50	65%	9.43	3.63						2.36					
1.375 V VRD Eff @80%		0.55	20%	0.44												
1.2 V VRD Eff @80%		0.74	20%	0.48												
2.5 V VRD Eff @80%		2.90	20%	1.89												
SB (ICH3)																
Vcc 3.3 V		1.60	65%	1.04		0.48						0.315				

Intel® Server Board SE7501CW2

Vcc 1.8 V (SC 1548)		0.82	65%	0.53		0.45				0.295		
1.8 V VRD Eff @80%		0.16	20%	0.11								
Vcc_cpu	1	0.08	65%	0.05			0.05				0.03	
Vccsus3.3V 64mA, Vccsus1.8V 14mA		0.26	65%	0.17				0.078				0.051
Memory DDR 266	4											
DDR 2.5V (FAN 5091)		51.88	70%	36.31	12.969				9.08			
Vtt 1.25V (FAN 5066)		7.75	70%	5.43		2.94				2.055		
2.5 V VRD Eff @80%		10.38	20%	7.26								
1.25 V VRD Eff @80%		1.55	20%	1.09								
P64H2												
Vcc 3.3V	2	13.20	70%	9.24		2.00				1.400		
Vcc1.8V (SC 1548)	2	6.34	70%	4.44		1.76				1.232		
1.8 V VRD Eff @80%		1.27	20%	0.89								
VGA RAGE II XL	1	1.15	80%	0.92	0.23	0.39			0.18	0.312		
Super I/O (W83627HF)	1	0.75	80%	0.60		0.23		0.15		0.181		0.121
82540 GIGABIT	1	2.64	80%	2.11				0.80				0.640
NIC 82559 Network chip	1	0.98	80%	0.78				0.20				0.156
CLK3.3(CY28329 Generator)	1	1.35	80%	1.08		0.27				0.216		
Video RAM (2MX 32)	1	0.99	80%	0.79		0.30				0.240		
System ROM (FWH)	1	0.04	80%	0.03		0.01				0.010		
Others		7.50	50%	3.75	1.50				0.75			
USB	2	5.00	50%	2.50	1.00				0.50			
Keyboard	1	0.75	50%	0.38	0.15				0.08			
Mouse	1	0.63	50%	0.31	0.13				0.06			
System Fan	4	9.90	75%	7.43			1.98				1.49	
CPU Fan	2	4.80	75%	3.60			0.48				0.36	

Revision 1.1

Main Board Output Current										13.01	7.171	18.77		0.968
Add-on Card														
PCI slot 64 bit	3	75.00	40%	30.00	15.00	22.80	1.00	0.50	0.375	6.00	9.120	0.40	0.20	0.150
PCI slot 32 bit	2	50.00	40%	20.00	10.00	15.20	1.00	0.50	0.375	4.00	6.080	0.40	0.20	0.150

9.4 Power Supply Specifications

This section provides power supply design guidelines for an Intel Server Board SE7501CW2based system, including voltage and current specifications, and power supply on/off sequencing characteristics.

Parameter	Min	Nom	Max	Units	Tolerance
+3.3 V	+3.25	+3.30	+3.35	V _{rms}	+1.5/-1.5%
+5 V	+4.90	+5.00	+5.10	V _{rms}	+2/-2%
+12 V	+11.76	+12.00	+12.24	V _{rms}	+2/-2%
-12 V	-11.40	-12.20	-13.08	V _{rms}	+9/-5%
+5 VSB	+4.85	+5.00	+5.20	V _{rms}	+4/-3%

 Table 63. Static Power Supply Voltage Specification

	•		
Output	Min	Max	Tolerance
+3.3 V	3.20 V	3.46 V	+5 / -3 %
+5 V	4.80 V	5.25 V	+5 / -4 %
+12 V	11.52 V	12.6 V	+5 / -4 %
+5 V SB	4.80 V	5.25 V	+5/ -4%

Table 64. Dynamic Power Supply Voltage Specification

9.4.1 Power Timing

This section discusses the timing requirements for operation with a single power supply. The output voltages must rise from 10% to within regulation limits (T_{vout_rise}) within 5 ms to 70 ms. The +3.3 V, +5 V and +12 V output voltages start to rise approximately at the same time. All outputs must rise monotonically. The +5 V output must be greater than the +3.3 V output during any point of the voltage rise, however, never by more than 2.25 V. Each output voltage shall reach regulation within 50 ms (T_{vout_on}) of each other and begin to turn off within 400 ms (T_{vout_off}) of each other. The following figure shows the output voltage timing parameters.

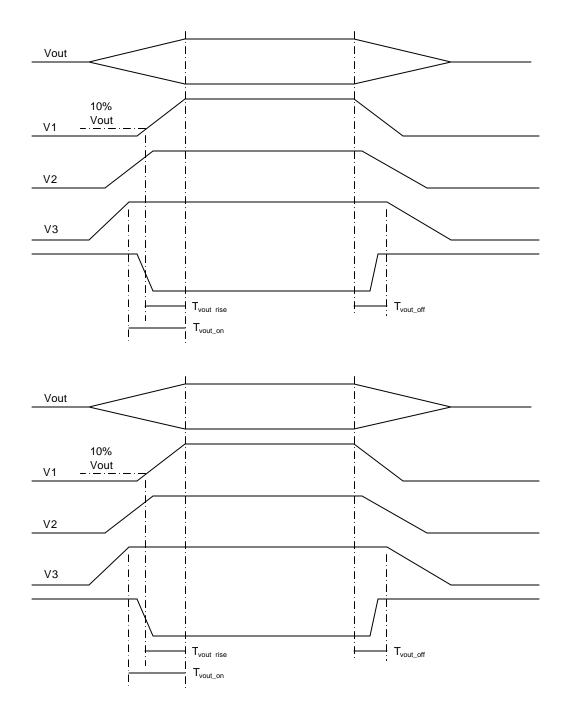
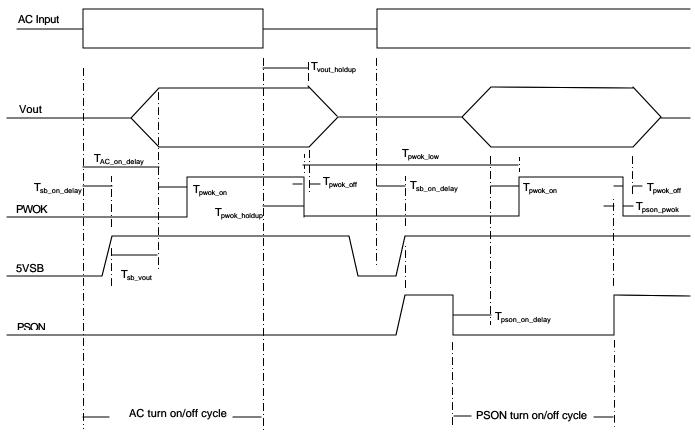



Figure 8. Output Voltage Timing

The following tables show the timing requirements for a single power supply being turned on and off via the AC input, with PSON held low and the PSON signal, with the AC input applied. The ACOK# signal is not being used to enable the turn on timing of the power supply.

Table 65. Voltage Timing Parameters

ltem	Description	Min	Мах	Units
T _{vout_rise}	Output voltage rise time from each main output.	5	70	msec
T _{vout_on}	All main outputs must be within regulation of each other within this time.		50	msec
T _{vout_off}	All main outputs must leave regulation within this time.		400	msec

Figure 9. Turn On / Off Timing

Table 66. Turn On / Off Timing

ltem	Description	Min	Max	Units
T _{sb_on_delay}	Delay from AC being applied to 5VSB being within regulation.		1500	msec
T _{ac_on_delay}	Delay from AC being applied to all output voltages being within regulation.		2500	msec
T_{vout_holdup}	Time all output voltages stay within regulation after loss of AC.	21		msec
T _{pwok_holdup}	Delay from loss of AC to de-assertion of PWOK	20		msec
T _{pson_on_delay}	Delay from PSON [#] active to output voltages within regulation limits.	5	400	msec
T _{pson_pwok}	Delay from PSON [#] deactive to PWOK being de-asserted.		50	msec

Item	Description	Min	Max	Units
T _{pwok_on}	Delay from output voltages within regulation limits to PWOK asserted at turn on.	100	1000	msec
T _{pwok_off}	Delay from PWOK de-asserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits.	2		msec
T _{pwok_low}	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal.	100		msec
T _{sb_vout}	Delay from 5 V SB being in regulation to O/Ps being in regulation at AC turn on.	50	1000	msec

9.4.2 Voltage Recovery Timing Specifications

The power supply must conform to the following specifications for voltage recovery timing under load changes:

- Voltage shall remain within +/- 5% of the nominal set voltage on the +5 V, +12 V, 3.3 V, -5 V and -12 V output, during instantaneous changes in load shown in the following table.
- Voltage regulation limits shall be maintained over the entire AC input range and any steady state temperature and operating conditions specified.
- Voltages shall be stable as determined by bode plot and transient response. The combined error of peak overshoot, set point, regulation, and undershoot voltage shall be less than or equal to +/-5% of the output voltage setting. The transient response measurements shall be made with a load changing repetition rate of 50 Hz to 5 kHz. The load slew rate shall not be greater than 0.2 A /μs.

Output	Step Load Size	Starting Level		
+3.3 V	4.8 A	30Min. Load	Min. load + 4.8 A and step up to max. load	0.50 A/μs
+5 V	3.0 A	30Min. Load	Min. load + 3.0 A and step up to max. load	0.50 A/μs
+12 V	10.4 A	Min. Load	Min. load + 10.4 A and step up to max. load	0.50 A/μs
+5 VSB	500 mA	Min. Load	Min. load + 500 mA and step up to max. load	0.50 A/μs
-12 V	325 mA	Min. Load	Min load +325 mA and step up to max. load	0.50 A/μs

Table 67. Transient Load Requirements

9.4.3 Intel Server Chassis SC5200 Base Chassis Timing Requirements with the ICH3-S

The Intel Server Chassis SC5200 Base front panel power switch will not power on if held between 1-4 seconds, because the timing of the ICH3-S component of the E7501 chipset reads power in 1 and 4 second cycles. In other words, if you hold the power button for 1, 2, 3, or 4, seconds the power won't power on, POST will not occur, and the operating system will not boot. If pressing the power button does not power on the server it is recommend that you press a second time to guarantee successful power on. If you press the power button for less than 1

second it will power on. These exceptions may require special attention to the SE7501CW2 baseboard when power-cycling.

9.4.4 Mean Time between failures

The Mean Time Between Failures (MTBF) has been rated at 100,493 hours. This is the forecasted failure rate of the Server Board SE7501CW2.

10. Product Regulatory Compliance

10.1.1 Product Safety Compliance

The SE7501CW2 complies with the following safety requirements:

- UL 1950 CSA 950 (US/Canada)
- EN 60 950 (European Union)
- IEC60 950 (International)
- CE Low Voltage Directive (73/23/EEC) (European Union)
- EMKO-TSE (74-SEC) 207/94 (Nordics)
- GOST R 50377-92 (Russia)

10.1.2 **Product EMC Compliance**

The SE7501CW2 has been has been tested and verified to comply with the following electromagnetic compatibility (EMC) regulations when installed in a compatible Intel host system. For information on compatible host system(s), contact your local Intel representative.

- FCC (Class A Verification) Radiated & Conducted Emissions (USA)
- ICES-003 (Class A) Radiated & Conducted Emissions (Canada)
- CISPR 22 (Class A) Radiated & Conducted Emissions (International)
- EN55022 (Class A) Radiated & Conducted Emissions (European Union)
- EN55024 (Immunity) (European Union)
- CE EMC Directive (89/336/EEC) (European Union)
- AS/NZS 3548 (Class A) Radiated & Conducted Emissions (Australia / New Zealand)
- RRL (Class A) Radiated & Conducted Emissions (Korea)
- BSMI (Class A) Radiated & Conducted Emissions (Taiwan)

10.1.3 Product Regulatory Compliance Markings

This product is provided with the following product certification markings:

- cURus Recognition Mark
- CE Mark
- Russian GOST Mark
- Australian C-Tick Mark
- Korean RRL MIC Mark
- Taiwan BSMI DOC Mark and BSMI EMC Warning

10.2 Electromagnetic Compatibility Notices

10.2.1 Europe (CE Declaration of Conformity)

This product has been tested in accordance too, and complies with the Low Voltage Directive (73/23/EEC) and EMC Directive (89/336/EEC). The product has been marked with the CE mark to illustrate its compliance.

10.2.2 Australian Communications Authority (ACA) (C-Tick Declaration of Conformity)

This product has been tested to AS/NZS 3548, and complies with ACA emission requirements. The product has been marked with the C-Tick mark to illustrate its compliance.

10.2.3 Ministry of Economic Development (New Zealand) Declaration of Conformity

This product has been tested to AS/NZS 3548, and complies with New Zealand's Ministry of Economic Development emission requirements.

10.2.4 BSMI (Taiwan)

The BSMI DOC Mark is silk screened on the component side of the server board; and the following BSMI EMC warning is marked on the server board.

警告使用者: 還是甲類的資訊產品,在層性的環境中使用時, 可能會提成射巢干發,在還種情況下,使用者會 強度成操取某些過當的對策。

10.3 Replacing the Back-Up Battery

The lithium battery on the server board powers the RTC for up to 10 years in the absence of power. When the battery starts to weaken, it loses voltage, and the server settings stored in CMOS RAM in the RTC (for example, the date and time) may be wrong. Contact your customer service representative or dealer for a list of approved devices.

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer. Discard used batteries according to manufacturer's instructions.

A ADVARSEL!

Lithiumbatteri - Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandøren.

Lithiumbatteri - Eksplosjonsfare. Ved utskifting benyttes kun batteri som anbefalt av apparatfabrikanten. Brukt batteri returneres apparatleverandøren.

Explosionsfara vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

A VAROITUS

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.

11. Mechanical Spefications

11.1 Mechanical Specifications

The following figure shows the server board technical drawing.

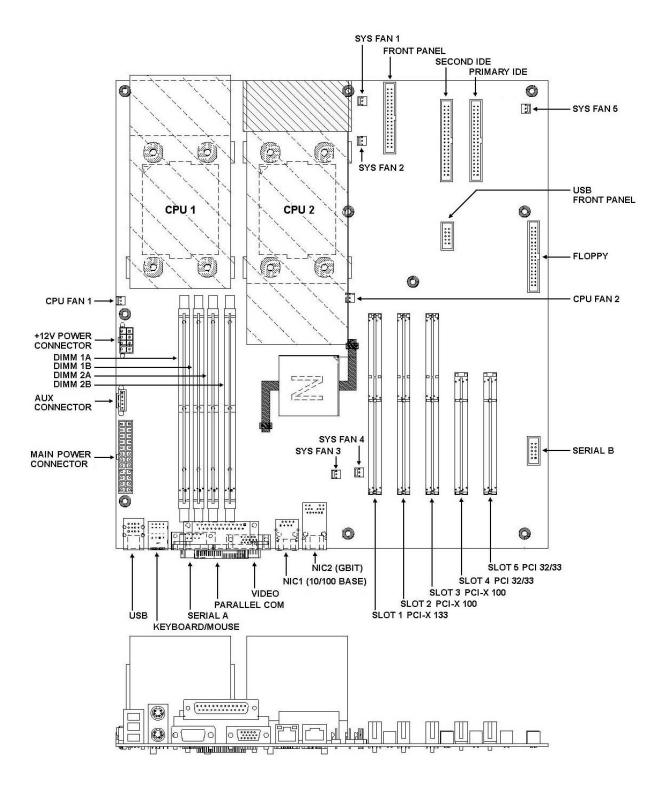


Figure 10. Mechanical Drawing

Note: CPU 1 PWT for correct position needs to blow from the edge of the board.

ltem	Q'ty	Manufacturer and Part Number	Description
1	2	AMP* 1489688-1	604P Socket 603/604
2	1	Lotes* F1366RB5L	3P CPU Fan 1
3	1	Lotes F1366RB5L	3P CPU Fan 2
4	1	Lotes F1366RB5L	3P System Fan 1
5	1	Lotes F1366RB5L	3P System Fan 2
6	1	Lotes F1366RB5L	3P System Fan 3
7	1	Lotes F1366RB5L	3P System Fan 4
8	1	AMPHENOL* G821A234PAAM02	24P Front Panel Connector
9	2	AMPHONEL G821A340PAAG01	40P IDE Connector
10	1	AMPHENOL G821A240PAAG01	40P Secondary IDE Connector
11	1	AMPHONEL G821A440PAAG01H	40P Primary IDE Connector
12	1	AMPHONEL G821A234PAAM01	34P Floppy Connector
13	2	AMP* 0-0011299-6	120P PCI 33MHz Slot
		Foxconn* EH06007-GL-V	
14	2	AMP 1-145165-2	184P PCI-X 100MHz Slot
15	1	FOXCONN EH09247-GY-V	184P PCI-X 133MHz Slot
16	2	KDS* AT49	8P NIC Connector
17	1	Lotes D2415CB3S	15P Video Connector
		Amphenol G17DH1500232PT	
18	1	FOX DM11351-PR3	25P Parallel Connector
19	1	FOX DT10121-P5T	9P COM 1 Connector (Serial 1)
20	1	FOX MH11061-PD2	12P PS/2 Connector (Keyboard/Mouse)
21	1	Amphenol GSB12311	12P USB Connector
23	1	Foxconn HM20120	24P Main Power Connector
23	1	Lotes C8566SB5N	
24	1	MOLEX* 3928-1243	
		MOLEX 70545-0039	5P AUX Power Connector
25	1	MOLEX 44472-0854	8P +12V CPU Power Connector
	I		

Table 68.	Server	Board	Connector	Specifications
14010 001				opeenieanene

Appendix A: SE7501CW2 Integration and Usage Tips

This section provides a bullet list of useful information that is unique to the SE7501CW2 server board and should be kept in mind while assembling and configuring your SE7501CW2 based server.

- Only DP capable Intel[®] Xeon[™] processors with 512K cache are supported on SE7501CW2.
- Processors must be populated in the sequential order; that is, processor socket #1 must be populated before processor socket #2
- You do not need to populate a terminator in an unused processor socket.
- Except for the ability to use a single DIMM in socket DIMM 1A, memory DIMMs must be installed in pairs. DIMM pairs are located adjacent to one another. See the board silkscreen.

Appendix B: Server Board SE7501CW2 Errata

Nomenclature

- **Specification Changes** are modifications to the current published specifications for the Server Board SE7501CW2, and Server Chassis SC5200. These changes will be incorporated in a future release of the given document.

- **Specification Clarifications** describe a specification in greater detail or further highlight a specification's impact to a complex design situation. These clarifications will be incorporated in a future release of the given document.

- **Documentation Changes** include typos, errors, or omissions from documents that are currently published. These documents may include Product Specs and Users Guides. These changes will be incorporated in a future release of the given document.

- Errata are design defects or errors. Errata may cause operation of a specified product to deviate from published specifications. Hardware and software designed to be used with any given processor stepping must assume that all errata documented for that processor stepping are present on all devices. Errata listed in this document that have no plans to be fixed will be listed in later revisions of current published specifications for the given product.

Product Scope

Product Code	Order Code (MM#)	Top Assembly # (TA#)	Baseboard PBA #	BIOS Rev. / Build #	HSC Revision	Product Change Notification #
BCW533BB	852948	C28924-302	C26740-302	1.00	.11	(1 st Production)
SE7501CW2	852945	C30360-001	C26740-302			
BCW533BB	852948	C28924-302	C26740-302	1.01	.11	Web-post only
SE7501CW2	852945	C30360-001	C26740-302			
BCW533BB	852948	C28924-303	C26740-303	1.03	.11	103278-02
SE7501CW2	852945	C30360-002	C26740-303			

Below are the specific SE7501CW2 board revisions covered in this document.

Below are the specific Intel® Server Chassis SC5200 revisions covered in this document. May want to check the numbers below with the systems guys, the TA# are obsoleted in Speed

Product Code	Order Code (MM #)	Top Assembly # (TA #)	Front Panel PBA#	HSC Firmware Rev.	Power Supply Module Part #	Product Change Notification #
KHD3BASE450	844923	A85319-001	835851	NA	844924	NA 1st Production
KHD3BASE450	844923	A85319-002	835851	NA	844924	PCN 102640-01
KPTBASE450	852511	C25401-001	C26802- 101	NA	A85459-005	NA
KPTBASE450BLK	852295	C25402-002	C26802- 101	N/A	A85459-005	NA

Below are the specific Intel® Server Chassis SC5250-E revisions covered in this document.

Product Code	Order Code (MM #)	Top Assembly # (TA #)	Front Panel PBA#	HSC Firmware Rev.	Power Supply Module Part #	Product Change Notification #
KPTBASE450	853511		NA	NA	NA	Beige
KPTBASE405BLK	852295		NA	NA	NA	Black
KPTBASE450	854463		NA	NA	NA	
KPTBASE450BLKNA	864465		NA	NA	NA	

Below are the specific Intel® Server Chassis SR1350-E revisions covered in this document.

Product Code	Order Code (MM #)	Top Assembly # (TA #)	Front Panel PBA#	HSC Firmware Rev.	Power Supply Module Part #	Product Change Notification #
SR1350ENA	853585					
SR1350E	853585					

1. Summary Tables of Changes

The following tables indicate the errata and the document changes that apply to the Intel® Server Board SE7501CW2. Intel intends to fix some of the specified errata in future updates to the server board. Documentation changes will be made in future updates to the given document. The tables use the following notations:

Doc:	Intel intends to update the appropriate document in a future revision.
Investigating	Intel is investigating the issue.
Fix:	Intel intends to fix this erratum in a future update of the board.
Fixed:	This erratum has been addressed.
NoFix:	There are no plans to fix this erratum.
Shaded:	This erratum is either new or has been modified from the previous specification update.

Table 69: Errata Summary

No.	Plans	Description of Errata
1.	Fixed	LANDesk* Client Manager 6.3 doesn't display data for the five onboard fans.
2.	Fixed	Server Board SE7501CW2 NIC2 may be unable to join a Windows* 2000 Service Pack 3 domain if more that 4 Gigabytes of memory is installed.
3.	Fixed	BIOS support for multi-speed fans isn't included in BIOS v1.00.
4.	Fix	BIOS support not contained in BIOS v1.00 for Intel® Xeon processor stepping C1 to D1.
5.	Fix	Microsoft Windows* Server 2003 support
6.	Investigating	LANDesk* Client Manger 6.3 fails to operate under Windows* Server 2003.
7.	Fix	J32 not populated with jumpers on the "Spare Jumper" and the "BIOS BootBlock WP"
8.	Fix	Server Chassis SR1350-E PCI-Riser card doesn't work with PCI cards.
9.	Fix	What BIOS level should I run with my SR1350-E chassis?

Following are in-depth descriptions of each erratum / documentation change indicated in the tables above. The errata and documentation change numbers below correspond to the numbers in the tables.

2. Errata

1. Server Board SE7501CW2 using LANDesk* Client Manger 6.3 fails to read the five system fans though BIOS <F2> Advanced | "Hardware Monitoring" displays active fans.

- **Problem** Fans are not monitored with initial version of LANDesk* Client manager's version (registry file) released with initial SE7501CW2 product code C30359-002.
- Implication Fans won't be monitored in LANDesk* Client Manager 6.3 and will display 0 RPM (revolutions per minute).

Workaround None.

Status This has been fixed with an update to the Windows* 2000 registry that can be downloaded at http://support.intel.com/support/motherboards/server/se7501CW2/. By early Q'3 2003 this will be updated on the resource CD of the said boxboard SKU. Read Technical Advisory 649-1 for more details.

Server Board SE7501CW2's integrated Intel® 82540EM Network Controller (NIC2) may be unable to join a Windows* 2000 Service Pack 3 domain if more that 4 Gigabytes of memory is installed.

- **Problem** If the "Physical Address Extension" in the Windows^{*} 2000 is removed from the boot.ini file by deleting the "pae" line then then system will fail to join a network domain.
- Implication This only fails if loading 4-8Gigabytes of memory. However if 1-3Gigabytes are loaded adding NIC2 to the domain will work correctly. This only fails with the onboard NIC2 (Intel® 82450EM Network Controller). Under this scenario only NIC1 (Intel® 82550PM Controller) will allow you to connect to the domain.
- Workaround None
- Status
 This has been fixed in BIOS v1.01. Please download the current BIOS and follow instructions to flash the system

 http://support.intel.com/support/motherboards/server/se7501cw2/
 .

3. Server Board SE7501CW2 BIOS v1.00 doesn't support gradient fan speeds.

- **Problem** In BIOS v1.00 fans won't decrease their speed or the number of revolutions per minute.
- **Implication** System fans will stay operating at maximum speed regardless of system configuration.

Workaround None

 Status
 This has been fixed in BIOS v1.01 and under certain thermal conditions fans will be decrease speed. BIOS v1.01 is currently available at http://support.intel.com/support/motherboards/server/se7501cw2/.

4. Intel® Xeon[™] processor stepping C1 to D1 is not supported in BIOS v1.00 or v1.01

- Problem Newer D1 stepping Intel® Xeon[™] processors require a microcode update that is not included with BIOS v1.00 or v1.01. Intel® Xeon[™] processors with older C1 stepping will continue to work even when a newer BIOS microcode is available. Only Intel® Xeon[™] processors with the D1 stepping will be incompatible with BIOS v1.00 or v1.01.
- **Implication** The Intel® Xeon[™] processors with D1 are available; it will be mandatory to upgrade to BIOS v1.03.
- Workaround None
- Status Supported in BIOS v1.03. At this time the Server Board SE7501CW2 with PBA number C267640-303 or higher is loaded with the the D1 supported microcode. Please upgrade the existing BIOS v1.03 for Server Boards SE7501CW2 with PBA number C26740-302, and below, found at http://support.intel.com/support/motherboards/server/se7501CW2

5. Has the board been validated with Microsoft Windows* Server 2003.

Problem Concern over validation of Microsoft's new Windows* Server 2003.

Implication Potential driver limitations.

- **Workaround** At this time all Microsoft Windows* 2000 drivers are known to work successfully with Microsoft Windows* Server 2003.
- Status
 This work has been completed and the Intel® Server Board SE7501CW2

 Tested Hardware and Operating System List is available at
 http://support.intel.com/support/motherboards/server/se7501cw2/

6. LANDesk* Client Manager 6.3 is not fully supported under Microsoft Windows* Server 2003.

- Problem LANDesk* Client Manager 6.3 will not show all hardware devices (fans, temperatures, voltages) since the SMBus driver is incompatible under Windows* Server 2003.
- Implication Only BIOS <F2> 'Advanced | Hardware Monitor' allows you to monitor system hardware under Windows* Server 2003. Only the BIOS <F2> setup will allow you to fully monitor hardware un Windows* Server 2003.
- **Workaround** Use BIOS <F2> "Advanced | Hardware Monitor" to check system hardware.
- Status Intel is investigating the possibility of fixing this erratum. Likely a new version of LANDesk* Client Manager will be released to support Windows* 2003. It will contain an updated SMBus driver and will require a reinstallation.

7. Server Board SE7501CW2 PBA C27640-302 and below does not contain jumpers for J32 pins 7-9 (BIOS BootBlock WP) and pins 9-10 (Spare Jumper).

- Problem Initial fabs of the Server Board SE7501CW2 PBA C27640-301 andC27640-302 doesn't ship with jumpers in place.
- **Implication** A customer could potentially update BIOS since the jumper is not in place on pins 7-9.
- **Workaround** Purchase spare jumpers and populate the two above mentioned settings.
- Status This will be fixed in PBA C27640-303 and above on Server Board SE7501CW2.

8. Can't use the Server Chassis PCI-Riser card with BIOS v1.03

Problem I can't get the new Server Chassis SR1350-E PCI-Riser card to work with BIOS v1.03.

- Implication Using PCI cards in the Server Chassis SR1350-E chassis with the PCI-Riser card fails.
- Workaround Upgrade to BIOS v1.03 or above and then upgrade the PCI bus with the PCIriser card utility for Server Board SE7501CW2 only. This is found on support.intel.com

Status Fixed.

9. What level of BIOS is supported with the Server Chassis SR1350-E?

- Problem Will production BIOS v1.01 support the Server Chassis SR1350-E?
- Implication Fans and PCI bus may not work correctly under certain scenarios.
- Workaround Upgrade to BIOS v1.03 or above. Also, make sure you have isntalled the separate PCI-Riser utility if you plan on using the Server Chassis SR1350-E PCI-Riser after upgrading to the BIOS.
- Status Supported with BIOS v1.03 or above.

Glossary

Term	Definition
ACPI	Advanced Configuration and Power Interface
ANSI	American National Standards Institute
AP	Application Processor
ASIC	Application Specific Integrated Circuit
ASR	Asynchronous Reset
BGA	Ball-grid Array
BIOS	Basic input/output system
BIST	Built-in self test
Bridge	Circuitry connecting one computer bus to another, allowing an agent on one to access the other.
BSP	Bootstrap Processor
Byte	8-bit quantity.
CIOB	PCI 64-bit hub
CMOS	In terms of this specification, this describes the PC-AT compatible region of battery-backed 128 bytes of memory, which normally resides on the server board.
CSB5	Legacy I/O controller hub
DCD	Data Carrier Detect
DMA	Direct Memory Access
DMTF	Distributed Management Task Force
ECC	Error Correcting Code
EMC	Electromagnetic Compatibility
EMP	Emergency management port.
EPS	External Product Specification
ESCD	Extended System Configuration Data
FDC	Floppy Disk Controller
FIFO	First-In, First-Out
FRB	Fault resilient booting
FRU	Field replaceable unit
GB	1024 MB.
GPIO	General purpose I/O
GUID	Globally Unique ID
Hz	Hertz (1 cycle/second)
HDG	Hardware Design Guide
I2C	Inter-integrated circuit bus
IA	Intel® architecture
ICMB	Intelligent Chassis Management Bus
IERR	Internal error
IMB	Inter Module Bus
IP	Internet Protocol
IPMB	Intelligent Platform Management Bus
IPMI	Intelligent Platform Management Interface

Term	Definition
IRQ	Interrupt Request
ISC	Intel® Server Control
ITP	In-target probe
KB	1024 bytes
KCS	Keyboard Controller Style
LAN	Local area network
LBA	Logical Block Address
LCD	Liquid crystal display
LPC	Low pin count
LSB	Least Significant Bit
LVD	Low-Voltage Differential
LVDS	Low-Voltage Differential SCSI
MB	1024 KB
MBE	Multi-Bit Error
Ms	milliseconds
MSB	Most Significant Bit
MTBF	Mean Time Between Failures
Mux	multiplexor
NIC	Network Interface Card
NMI	Non-maskable Interrupt
OEM	Original equipment manufacturer
Ohm	Unit of electrical resistance
P32-A	32-bit PCI Segment
P64-B	Full-length 64/66 MHz PCI Segment
P64-C	low-profile 64/66 MHz PCI Segment
PBGA	Pin Ball Grid Array
PDB	Power Distribution Board
PEF	Platform Event Filtering
PERR	Parity Error
PET	Platform Even Trap
PIO	Programmable I/O
PMB	Private Management Bus
PMC	Platform Management Controller
PME	Power Management Event
PnP	Plug and Play
POST	Power-on Self Test
PWM	Pulse-Width Modulator
RAIDIOS	RAID I/O Steering
RAM	Random Access Memory
RI	Ring Indicate
RISC	Reduced instruction set computing
RMCP	Remote Management Control Protocol

Term	Definition
ROM	Read Only Memory
RTC	Real Time Clock
SAF-TE	SCSI Accessed Fault-Tolerant Enclosure Specification
SBE	Single-Bit Error
SCI	System Configuration Interrupt
SDR	Sensor Data Record
SDRAM	Synchronous Dynamic RAM
SEL	System event log
SERIRQ	Serialized Interrupt Requests
SERR	System Error
SM	Server Management
SMI	Server management interrupt. SMI is the highest priority nonmaskable interrupt
SMM	System Management Mode
SMS	System Management Software
SNMP	Simple Network Management Protocol
SPD	Serial Presence Detect
SSI	Server Standards Infrastructure
SSU	Server Setup Utility
TPS	Technical Product Specification
UART	Universal asynchronous receiver and transmitter
USB	Universal Serial Bus
VGA	Video Graphic Adapter
VID	Voltage Identification
VRM	Voltage Regulator Module
Word	16-bit quantity
ZCR	Zero Channel RAID

Reference Documents

Refer to the following documents for additional information:

- PCI Local Bus Specification Revision 2.2
- ATI RAGE XL Graphics Controller Specifications, Technical Reference Manual, Rev 2.01
- SE7501CW2 BIOS External Product Specification rev 1.09
- SE7501CW2 Baseboard External Product Specification 1.0¹
- Winbond* 83627HF Super I/O Controller Technical Reference, rev 1.0

⁹ Please contact your Intel field person for informaiton on how to obtain this document.