
White Paper Building Linux* Kernel with Intel® C++ Compiler

Building Linux* Kernel
with
Intel® C++ Compiler
for Linux 10.0

White Paper
Feilong Huang

Developer Products Division

White Paper Building Linux* Kernel with Intel® C++ Compiler

Table of content
Introduction .. 2
Command Line Compatibility ... 2
Building on IA-64 .. 3
GCC source Compatibility .. 3
Conclusion ... 5
Additional Information .. 5

Introduction

Intel® C++ Compilers have been in the market for over 10 years. More and more
software developers are interested in using it to extract better performance on
Windows* and Linux*.

As the most essential part of a Linux operating system, Linux Kernel is highly-
optimized by the kernel developers. Additionally there are many GNU* C
Language extensions, programming tricks and inline assembly code. This makes
it challenging for compilers to optimize the Kernel. Building the Linux kernel with
Intel C++ Compiler (icc) is an ongoing project at Intel. The goal is to improve
gcc* source compatibility of the Intel C++ Compiler, and to find opportunities to
improve kernel performance.

Intel Corporation and Red Flag* Software Co., Ltd, announced that Red Flag was
the first company to use the Intel C++ Compiler for Linux to compile a
commercial version of its Linux operating system. Details of this announcement
are available at
http://www.intel.com/pressroom/archive/releases/20040803net.htm .

Command Line Compatibility

icc does not recognize some gcc options, such as
-fno-unit-at-a-time
-msoft-float
-gstabs
-pipe
-mfixed-range (partially implemented in icc)
-mregparam=n (IA-32, Intel 64 only. Implemented in 10.0)
-m32 (IA-32, Intel 64 only)

Most of those options are not critical and can be ignored without affecting the
objects generated by icc. For those options that change the behavior of Linux
kernel, we need to replace them with a corresponding icc option. These types of
options include -mfixed-range, -mregparam etc.

http://www.intel.com/pressroom/archive/releases/20040803net.htm

White Paper Building Linux* Kernel with Intel® C++ Compiler

The following options are not recommended for use with the Intel C++ compiler
when building the Kernel.

-Werror
-nostdinc

Intel C++ Compiler is stricter in syntax checking and will report more warnings
than the GNU compiler. Therefore, -Werror may cause the compiler stop
during compilation.

The required substitute header files are supplied with icc for compatibility and
performance. The –nostdinc option inhibits the compiler from using those
header files.

For example, we have our own va_arg macro in <icc installation
dir>/include/xarg.h. With –nostdinc, icc will use GNU va_arg macro
as follows.

#define va_arg(v,l) __builtin_va_arg(v,l)

Unfortunately Intel C++ Compiler does not support __builtin_va_arg. So
Intel C++ Compiler will report an error with –nostdinc.

A simple wrapper script to ignore or replace unrecognized compiler options, and
then invoke Intel C++ Compiler, can make the command line to compile Linux
kernel with Intel C++ Compiler straight forward. In the example script provided
here, environment variables HOSTCC and CC will need to be set to the name of
the wrapper script.

make menuconfig
make HOSTCC=<name of wrapper> CC=<name of wrapper>
make modules_install

Building on IA-64
Intel C++ Compiler supports inline assembly code on IA-32 and Intel 64. IA-64
compilers do not support inline assembly. Instead intrinsics that are C-like
functions are recommended. Assembly code on IA-64 needs to be rewritten
using corresponding intrinsics. Intel C++ Compiler documentation includes a
mapping of assembly instructions to intrinsics. Most of these changes have been
checked into Linux kernel source tree.

GCC source Compatibility
Some Linux kernel source issues were observed during the compilation of Linux
kernel with Intel C++ Compiler. These defects may have been fixed in the newer
Linux kernel already.

White Paper Building Linux* Kernel with Intel® C++ Compiler

• volatile attribute
Look at the following code snippet from include/asm-ia64/spinlock.h

define _raw_spin_lock(x) \
do { \

 __u32 *ia64_spinlock_ptr = (__u32 *) (x);
\
__u64 ia64_spinlock_val; \
… \
if (unlikely(ia64_spinlock_val)) { \

do { \
while (*ia64_spinlock_ptr) \

ia64_barrier(); \
… \
} while (ia64_spinlock_val); \

} \
} while (0)

In the above code snippet, ia64_spinlock_ptr points to a 32-bit volatile data
in memory. Without a “volative” keyword, compiler may generate the
following asm code (shown in pseudo code) for the while loop, which is legal.

 load ia64_spinlock_ptr, register
label: test register

 jump-if-not-zero label

Unfortunately, the above code results in a dead lock of Linux kernel because the
32-bit data pointed by ia64_spinlock_ptr is not reloaded. GNU compiler
occasionally generates the “right” code, which is what kernel developers want.

label: load ia64_spinlock_ptr, register
 test register
 jump-if-not-zero label

In this case, a “volatile” attribute is needed for the variable
ia64_spinlock_ptr, to make sure other compilers won’t fail.

• inline keyword
The inline keyword is just a hint to compilers. Compilers may or may not inline
an inline function. Here is an instance about inline keyword.
In some applications gettimeofday() is a done very often, for example for
time stamping all transactions. It would be nice if it could be implemented with
very low overhead.
One way of obtaining a fast gettimeofday() is by writing the current time in a
fixed place, on a page mapped into the memory of all applications, and updating

White Paper Building Linux* Kernel with Intel® C++ Compiler

this location on each clock interrupt. These applications could then read this fixed
location with a single instruction - no system call required.
There might be other data that the kernel could make available in a read-only
way to the process, like perhaps the current process ID. A vsyscall is a
"system" call that avoids crossing the userspace-kernel boundary.
vsyscall() and do_vgettimeofday() are in a special page, which can be
accessed in user mode.
Intel C++ Compiler doesn’t inline the function “sync_core”, which is marked as
an inline function in include/asm-x86_64/processor.h. Thus, the function
is compiled as a separate function in the kernel image. vsyscall() calls
do_vgettimeofday() and do_vgettimeofday() calls sync_core(). The
first two functions are called by user applications while sync_core() is a kernel
function. This will cause a page fault. The following illustrates the call-graph of
these 3 functions.

vsyscall()
|

 do_vgettimeofday() user space
| --------------------------

sync_core() kernel space

gcc happens to inline sync_core, so the problem is concealed in gcc-compiled
kernel.

Conclusion
Intel® C++ Compiler is highly compatible with GNU Compiler. We’ve
successfully compiled Linux kernel 2.4.21 and 2.6.9 with Intel C++ Compiler on
IA-32, Intel® 64 and IA-64, with a small wrapper script and a limited number of
temporary source patches.

Additional Information
Intel® Compilers for Linux*: Compatibility with GNU Compilers

http://www.intel.com/support/performancetools/c/linux/sb/cs-007707.htm

White Paper Building Linux* Kernel with Intel® C++ Compiler

For product and purchase information visit:
www.intel.com/software/products

Intel, the Intel logo, Intel Leap ahead, and Intel Leap ahead logo, Pentium, and Itanium are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL
PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life
sustaining applications. Intel may make changes to specifications and product descriptions at
any time, without notice.

Copyright © 2007, Intel Corporation. All Rights Reserved.

	Introduction
	Command Line Compatibility
	Building on IA-64
	GCC source Compatibility
	Conclusion
	Additional Information

