
Intel® C++ Compiler 8.1 for Windows*
Release Notes

For Intel® IA-32 and Itanium® Processors

Contents
Overview
What's New
System Requirements
Installation
Known Limitations
Technical Support
Documentation
Additional Information
Copyright and Legal Information

Overview
This product provides tools for Windows* software developers to create applications that run at top
speeds on all Intel® IA-32 processors and the Intel® Itanium® processors. Optimizations include
support for Streaming SIMD Extensions 2 (SSE2) in the Intel® Pentium® 4 and Pentium M
processors, Streaming SIMD Extensions 3 (SSE3) in the Intel Pentium 4 processors with SSE3
support, and software pipelining in the Intel Itanium 2 processor. Inter-procedural optimization (IPO)
and profile-guided optimization (PGO) can provide greater application performance. Intel Compilers
support multi-threaded code development through auto parallelism and OpenMP* support.

Tools provided include the Intel® C++ Compiler 8.1 for Windows, the Intel® Debugger 8.1, the
Assembler 7.0 for Itanium-based systems and integration with Microsoft Visual Studio* .NET* 2002 &
2003 and Microsoft Visual C++* 6 (Visual Studio 98). This version of the compiler also includes two
new tools, the Intel Compilers code-coverage Tool and the Intel Compilers test-prioritization tool.

There are three variations of the Intel C++ Compiler for Windows.

• One compiler runs on IA-32 systems and produces applications that run on IA-32 systems.
• A second compiler runs on IA-32 systems but produces Itanium-based applications.
• The third compiler runs on Itanium-based systems and produces Itanium-based applications.

The Intel Debugger runs on IA-32 systems and Itanium-based systems as a 32-bit application. It
debugs both IA-32 applications and Itanium-based applications. If you produce Itanium-based
applications you can run and debug them on an Itanium-based system, or run them on an Itanium-
based system while debugging them from an IA-32 development system using the Intel Debugger's
remote debugging capability.

The Intel C++ Compiler provides integration into Microsoft's Integrated Development Environment
(IDE) provided with Microsoft Visual C++* .NET 2002 and 2003 versions and Microsoft Visual C++ 6,
on IA-32 systems. You should expect differences among the binaries generated in the different
Microsoft Visual C++ environments. The Intel C++ Compiler generates binaries to target each of these
versions with the following command line options: /Qvc6, /Qvc7 and /Qvc7.1.

Product Contents

This product contains the following components:

• Intel® C++ Compiler for 32-bit applications, version 8.1
• Intel C++ Compiler for Itanium-based applications, version 8.1
• Intel C++ Itanium Compiler for Itanium-based applications, version 8.1
• Intel IA-32 Assembler 7.0 to produce Itanium-based applications
• Intel Itanium-based Assembler 7.0 to produce Itanium-based applications
• Intel Debugger 8.1
• Utilities

o Intel Compilers code-coverage tool
o Intel Compilers test-prioritization tool
o Integration into Microsoft's Visual Studio .NET 2002 and 2003 on IA-32 systems
o Compiler Selection Tool for Microsoft Visual C++ 6.0 (Visual Studio 98) on IA-32

systems
o Utility icpi to isolate compile/link time errors located at:

<installation_directory>\Compiler80\ia32\bin\icpi
.exe
or at
<installation_directory>\Compiler80\Itanium\bin\i
cpi.exe

• Documentation and documentation index can be found at
<installation_directory>\Compiler80\docs\ccompindex.ht
m .

o A training tutorial Enhancing Performance with Intel Compilers is provided

Note: The <installation_directory> defaults to <Program
Files>\Intel\cpp\ . The Version 8.1 compiler installs into the compiler80
subdirectory, replacing version 8.0.

To receive technical support and product updates for the tools provided in this product you need to
register. For how to register, please see Technical Support section below.

What's New in Version 8.1
This section discusses new features and changes in the 8.1 release of the Intel® C++ compiler.

New Predefined Macros

The following new predefined macros are now available:

• __INTEL_MS_COMPAT_LEVEL__ specifies the level of Microsoft compatibility
provided. The value of this macro is controlled by the setting of the -Qms option. If no -Qms
option is provided, the value of this macro is 1 (the default setting).

• __INTEL_COMPILER_BUILD_DATE specifies the build date of the compiler in
YYYYMMDD format. It matches the build date shown on the version banner. You can use this
predefined macro if you have a need to conditionalize code based on a specific Intel Compiler
update. The YYYYMMDD string is guaranteed to be an increasing integral value with each
new release.

/O3 enables high-level loop and memory optimizations

In this release, specifying -O3 enables additional loop transformations (interchange, distribution,
collapsing) and memory access optimizations which can improve performance.

/Qipo Intermediate Language Now Contained Within Object
Files

In previous releases, when /Qipo was used, separate .il files were generated to contain
intermediate language. The use of these separate files could cause difficulty building with makefiles. In
this version, the intermediate language is embedded in the .obj files and no separate .il file is
created

New /QipoN Option to Create Multiple Objects

In previous versions, when /Qipo was specified to perform multifile interprocedural optimization,
one object file was generated as input to the linker; this is still the default for version 8.1. New in
version 8.1 is the ability to request that the compiler create multiple object files for input to the linker;
this can, in some cases, reduce link time for large applications. To specify the maximum number of
object files to be produced, use the /QipoN form of the option where N is the maximum number of
object files to be created. For example, /Qipo4 specifies a maximum of 4 object files. The compiler
may choose to create fewer files than the maximum depending on the application size. If /Qipo0 is
specified, the compiler will choose an appropriate number of object files based on the total application
size.

Change in Meaning of /fast

As of the 8.1 release, specifying /fast implies the following options: /O3 /Qipo /QxP

New /Qglobal-hoist[-] Optimization Option

/Qglobal-hoist[-] is an option that controls certain optimizations, load hoisting and
speculative loads, that can move memory loads to a point earlier in the program execution than where
they appear in the source. In most cases, these optimizations are safe and can improve performance.
The default is /Qglobal-hoist, enabling the optimizations.

However, some applications, such as those that use shared or dynamically mapped memory, may fail
if a load is moved too early in the execution stream (for example, before the memory is mapped.) If
you wish to disable these optimizations, specify /Qglobal-hoist- when compiling the source
files which reference the mapped or shared memory.

KMP_SCHEDULE Environment Variable for OpenMP Scheduling
Control

A new environment variable, KMP_SCHEDULE, can be used to fine tune the load balancing of
parallel loops that are statically scheduled under OpenMP with no chunk size specification. The default

value is KMP_SCHEDULE="static,greedy". This results in (#iterations/#threads)
iterations, rounded to the next higher integer, being allocated to most threads, but the final thread(s)
may be allocated much fewer, or even zero, iterations. This corresponds to previous compiler
behavior. The alternative, KMP_SCHEDULE="static,balanced", results in
(#iterations/#threads) iterations, rounded to the next lower integer, being allocated to most threads,
with at most one additional iteration being allocated to some threads. Although the largest number of
iterations assigned to any thread remains the same, this results in a more even sharing of iterations
between threads, which may sometimes lead to a performance improvement.

For example, consider a loop of 9 iterations running on 4 threads:

KMP_SCHEDULE Number of iterations
 Thread 0 Thread 1 Thread 2 Thread 3
"static,greedy" 3 3 3 0
"static,balanced" 3 2 2 2

Additional New Options

For information on these options, please see the New Options section of the on-disk Compiler Options
Quick Reference Guide.

• /fixed
• /Qcxx_features
• /Qipo_separate
• /traceback

What's New in Version 8.0
This section discusses new features and changes in the 8.0 release of the Intel® C++ compiler.

Compiler driver name change

If you use the Intel C++ Compiler for Itanium®-based systems, be aware that the driver name for
Itanium-based systems has changed from ecl to icl.

Default installation directory change

The default installation directory for the Intel C++ Compiler 8.0 for Windows is now <Program
Files>\Intel\cpp\ and the default for the Intel Visual Fortran is <Program
Files>\Intel\Fortran\ If you have both Intel Visual Fortran and Intel C++ compilers
installed, the respective product files are now installed in separate folders; this is a change from
previous releases of Intel compilers. If you are building mixed-language applications from the
command line, and you chose not to update the system environment variables on installation, you
must invoke the other language's initialization batch file (ifortvars.bat or
iccvars.bat) so that the PATH, LIB and INCLUDE environment variables are properly
defined.

Note: Do not force installation of Fortran and C++ into the same folder, as this can result in problems
building applications using Inter-Procedural Optimization(IPO) and Profile-Guided Optimization(PGO).

Optimization support for Intel® Pentium® 4 Processors with SSE3
Instruction Set

A new generation of Intel® Pentium® 4 processors supports the Streaming SIMD Extensions 3 (SSE3)
instruction set, which can improve performance of vectorized loops containing complex data types,
float-to-integer conversions, and horizontal adds.

The Intel C++ Compiler 8.0 for Windows adds the ability to optimize for Intel® processors that support
SSE3. To do so, specify the /QxP or /QaxP options. For further details, please consult the sections
on optimizations in the Intel C++ Compiler User's Guide.

New IA-32 Optimization Options

This release includes two new code generation options. /QxB and /QaxB direct the compiler to
generate code for best performance on the Intel Pentium M processor. The new /QxN and /QaxN
options enable additional optimizations for all Intel Pentium 4 processors. Intel recommends the use of
/QxN and /QaxN for best performance with Pentium 4 processors, and suggests trying /QxB or
/QaxB to see if it helps your application on the Pentium M processor. For more information, please
refer to the sections on optimization in the Intel C++ Compiler User's Guide

Obsolete and Obsolescent Optimization Options

The optimization options /Q[a]xi (optimize for Pentium Pro and Pentium II) and /Q[a]xM
(optimize for Intel® MMX™ instructions set) are no longer supported by the Intel C++ compiler. If these
options are present on the compile command line, an informational message is displayed and the
options are ignored. If you use /Q[a]xi or /Q[a]xM, you should discontinue their use. The
default is to generate generic code that will run on Pentium processor as well as newer IA-32
processors.

The/Q[a]xW (lower optimization level for Pentium 4) will be removed in a future compiler version.
If you use /Q[a]xW, use /Q[a]xN as a replacement when generating code for Intel Pentium 4
processors.

For more information, please refer to the sections on optimization in the Intel C++ Compiler User's
Guide.

Read-Only (constant) data behavior change

Intel® C++ Compiler 8.0 for 32-bit applications
The 7.1 version of the Intel C++ Compiler places all constants and string literals in a writeable data
section. Starting with the Intel C++ Compiler 8.0 the default behavior will change to match either the
behavior of Visual C++ * 6.0 or Visual C++ .NET (2002 or 2003) depending on options used.

• By default or if -Qvc6 is used, the Intel C++ Compiler 8.1 will place the const data in the
read-only data section and string literals in a writeable data section.

• If -Qvc7 or -Qvc7.1 is used, the Intel C++ Compiler 8.1 will place string literals in
the read-only section also.

• If -Gf is used, the Intel C++ Compiler 8.1 will always ensure that string literals are placed
in a writeable section if an application depends on string literals being writeable

Intel C++ Compiler 8.0 for Itanium-based applications
The 7.1 version of the Intel C++ Compiler places all dimensioned constants and string literals in a
writeable data section. Starting with the Intel C++ Compiler 8.0 the default behavior will change to
match the behavior of the Microsoft* C/C++ Compiler.

• By default the dimensioned const data will be placed in a read-only data section and string
literals will be placed in the read-only section.

• If -Gf is used, the Intel C++ Compiler 8.1 will always ensure that string literals are placed
in a writeable section if an application depends on string literals being writeable

Microsoft Visual Studio* .NET* IDE integration

This version of the Intel C++ Compiler for Windows* has significantly improved the integrations with
Microsoft's Visual Studio .NET 2002 and 2003. The following features have been added:

• The utility "Enable or Disable Intel C++ Integration Tool" has
been eliminated. With the improved Visual Studio .NET integrations, you may select to
"Convert to use Intel® C++ Project System" or "Convert to
use Visual C++ Project System..." from the Project Menu.

• Microsoft Visual C++ projects are managed by the Microsoft Visual C++ VS .NET integrations
until the user requests to "Convert to use Intel® C++ Project
System" from the project menu.

• The new utility "icProjConvert80" has been provided to handle the project
conversions of a Visual C++ project to an Intel C++ 8.1 project and back. This utility also
manages the conversion of a Visual C++ project that has been modified by the 7.x Intel C++
Integration Tool to an Intel C++ 8.1 project.

• Non-privileged users may utilize the Intel C++ Project System within Microsoft Visual Studio
.NET.

• The Intel C++ Options dialog accessible from the [Tools..Options] menu displays
each supported Intel C++ compiler on a separate page.

Improved Visual Studio .NET command line option compatibility

The Intel C++ Compiler version 8.1 has improved command-line compatibility with VC++ with the
/showIncludes and /WL driver options.

Visual C++ .NET compatible macros

The __COUNTER__ and __FUNCSIG__ macros have been predefined.

• __COUNTER__ --- Expands to an integer starting with 0 and incrementing by 1 every time
it is used. __COUNTER__ remembers its state when using precompiled headers. If the last
__COUNTER__ value was 4 after building a precompiled header (PCH), it will start with 5
on each PCH use.

• __FUNCSIG__ - Valid only within a function and returns the signature of the enclosing
function (as a string). __FUNCSIG__ is not expanded if you use the /EP or /P compiler
option.

Intel® Compilers code-coverage tool

The Intel® Compilers code-coverage tool leverages the Intel Compilers profile-guided optimization
technology to present developers a complete picture of the coverage of their application code on a
particular workload. To find the application's code coverage the tool combines static profile information
generated by the compiler with dynamic profile information generated by running the user's
instrumented binaries on the workload. The coverage tool uses this information together with the
application sources to create HTML pages with color annotations that highlight the coverage of the
code. Navigation is through frames that make it particularly easy to sort the application's files and
functions and see the least-covered modules and functions. Developers can then use their favorite
browser to display the coverage of their code.

The Intel Compilers code coverage tool can be used in a number of ways to improve development
efficiency, reduce defects, and improve application performance. When applied to the profile of the
application on its test space, the tool can be used to measure the overall quality of testing based on
the coverage information. Similarly, when applied to the profile of a performance workload, the code-
coverage information indicates how well the workload exercises the application's critical code. High
coverage of performance-critical modules is essential to taking full advantage of the profile-guided
optimizations that Intel Compilers offer. The tool also provides an option, useful for both coverage and
performance tuning, through which the users can display the dynamic execution count of each basic
block of the application. Lastly, the coverage tool provides the ability to compare the profile of two
different runs of the application. This feature can be used to find the portion of the application's code
that is not covered by the application's tests but is exercised when the application is used outside the
test space, such as by a customer.

The Intel Compilers code-coverage tool is supported on Intel® Architecture IA-32 and the Itanium
Processor Family on both Windows and Linux* and seamlessly supports C, C++, and Fortran.

Intel Compilers test-prioritization tool

The Intel Compilers test-prioritization tool leverages the Intel Compilers profile-guided optimizations
technology to select and prioritize application's tests based on prior execution profiles of the
application. Using this tool, users can select and prioritize the tests that are more relevant for any
subset of the application's code. When certain modules of an application are changed, the Intel
Compilers test-prioritization tool suggests the tests that are most probably affected by the given
change set. The tool mines the profile data from previous runs of the application, discovers the
dependency between the application's components and its tests, and uses this information to guide the
process of testing. The tool can be used for devising an effective hierarchical testing based on the
application's code coverage. For instance, the tool may be used to find the smallest subset of the
application tests that achieve exactly the same code coverage as the entire set of tests. The tool can
also be used to dramatically reduce the turn-around time of testing. Instead of spending a large
amount of time and finding a possibly-large number of failures, the tool may enable the users to quickly
find a small number of tests that expose the defects associated with the regressions caused by a
change set. The tool offers the potential of significant time saving in testing and development of large-
scale applications where testing is major bottleneck. The tool can be used to minimize the number of
tests that are required to achieve a given overall coverage for any subset of the application. Moreover,
when the execution times of the tests are available, the tool may also be used to select and prioritize
the tests to achieve certain level of code coverage in a minimum amount of time.

The Intel Compilers test-prioritization tool is supported on Intel Architecture IA-32 and the Itanium
Processor Family on both Windows and Linux and seamlessly supports C, C++, and Fortran.

Please refer to the following link for additional details:
http://www.intel.com/software/products/compilers/techtopics/pgt.htm .

/Qalias_arg to force Fortran style parameters

http://www.intel.com/software/products/compilers/techtopics/pgt.htm

By default C assumes that parameters overlap; Fortran semantics assumes parameters do not
overlap. This option allows users to assert Fortran semantics for C programs, improving optimization.
This option would be particularly useful to users writing numerical code in C.

Versioned Intermediate files (.il) during interprocedural
optimization (IPO)

Each .il file generated by IPO will have a version number. The compiler will only accept .il files
with matching versions. The version numbers will be automatically generated and updated as part of
the build process.

libguide can be linked dynamically only

The statically linked library, libguide can potentially cause performance issues that are hard to
debug. The 8.1 compilers will link libguide dynamically regardless of the command line options.

Support for the /Gh and the /GH options

/Gh option is helpful for custom user profiling by calling the __penter function. The prototype for
__penter is not included in any of the standard libraries or Intel libraries. Users do not need to
provide a prototype unless they plan to explicitly call __penter .

/GH option is helpful for custom user profiling by calling the __pexit function. The prototype for
__pexit is not included in any of the standard libraries or Intel libraries. Users do not need to
provide a prototype unless they plan to explicitly call __pexit. /GH is similar to /Gh.

Better debug support for /Qip and /Qipo options

Better debug support is now provided for /Qip and the /Qipo options. Some information about
variables will now be available (although values may not be completely accurate due to optimizations).

/Qfpstkchk option

This option would cause extra code to be generated after every function/subroutine call that would
assure that the FP stack was in the state the compiler expected. When a customer calls a function that
returns an FP value, the FP value is supposed to be returned on the top of the FP stack. If the return
value is unused the compiler must just pop the value off the FP stack to keep the FP stack in the
correct state. However, if the application has called such a function, but either has left out the
function's prototype, or incorrectly prototyped the function such that the compiler doesn't know the
function is returning an FP value, then the FP stack will not get popped as needed. This tends to cause
the FP stack to fill up over time, and eventually overflow. When the stack overflows this generally
results in a NAN value being put into FP calculations, and the programs results differ, or other error
manifests itself. Unfortunately the point where the errors manifest can be arbitrarily far away from the
point of the actual bug. This option will force an access violation exception immediately after such an
incorrect call occurred, thus making it very easy for the user to find these issues.

System Requirements

Minimum Hardware Requirements to Develop IA-32 Applications

• A system based on a 450 MHz Intel® Pentium® II processor or greater, Intel Pentium 4
recommended

• 256 MB of RAM (512 recommended)
• 100 MB of free hard disk space, plus an additional 200 MB during installation for download

and temporary files.
• 100 MB of hard disk space for the virtual memory paging file. Be sure to use at least the

minimum amount of virtual memory recommended by your operating system.

Minimum Hardware Requirements to Develop Itanium®-based Applications
on an IA-32 System

• A system based on a 450 MHz Intel Pentium II processor or greater, Intel Pentium 4
recommended

• 256 MB of RAM (512 recommended)
• 150 MB free hard disk space, plus an additional 200 MB during installation for download and

temporary files.
• 100 MB of hard disk space for the virtual memory paging file. Be sure to use at least the

minimum amount of virtual memory recommended by your operating system.

Minimum Hardware Requirements to Develop Itanium-based Applications
on an Itanium-based System

• A system with an Intel® Itanium® or Itanium 2 processor or greater
• 512 MB of RAM (1 GB recommended)
• 100 MB free hard disk space, plus an additional 200 MB during installation for download and

temporary files.

Software Requirements to Develop IA-32 or Itanium-based Applications on
an IA-32 System

• Windows* 2000, Windows XP, Windows Server 2003
Note: Microsoft Windows 98, Windows 98 SE, Windows Millennium Edition and Windows NT*
are no longer supported for development, but are supported for application deployment

• Supported Microsoft Visual Studio environments
o Microsoft Visual C++* 6.0 Professional Edition or higher
o Microsoft Visual Studio* 6.0 Professional Edition or higher
o Microsoft Visual Studio .NET 2002 or 2003, Professional Edition or higher
o Microsoft Visual C++ .NET 2002 or 2003, Standard Edition or higher

• Microsoft Platform SDK if developing Itanium-based applications.
Note: The DLLs in the Platform SDK directory c:\Program files\Microsoft
SDK\redist\win64 may also be required at runtime.

• Microsoft Macro Assembler (MASM) Version 7.00.9466 or later is required if you want to use
options that produce or operate on assembly files.

• The Intel® C++ Compiler is not designed to be used in the Watcom* development
environment.

Software Requirements to Develop Itanium-based Applications on an
Itanium System

• Windows XP professional 64-bit edition or Windows Server 2003.

• Microsoft Platform SDK.
Note: The DLL's in the Platform SDK directory c:\Program files\Microsoft
SDK\redist\win64 may also be required at runtime.

NOTES:
Adobe* Acrobat Reader* version 4.0 or later is required to view some of the product documentation.

It is the responsibility of application developers to ensure that the machine instructions contained in the
application are supported by the operating system and the processors on which the application is to
run. In particular, programs which use Streaming SIMD Extensions require Windows NT 4.0 with
Service Pack 6 or higher, Windows 2000 or Windows XP, running on an Intel Pentium III processor.
The Streaming SIMD Extensions 2 and Streaming SIMD Extensions 3 of the Intel Pentium 4 processor
also require one of these operating systems.

Installation
Pre-Installation Instructions

To install the Intel® C++ Compiler, you need to obtain an account with administrative privileges. But
any normal account with at least "Users" or "Debugger Users" or higher user privilege can use Intel
C++ Compiler through Visual C++* .NET IDE or command line.

Note: the default installation directory for the Intel C++ Compiler is C:\Program
Files\Intel\cpp\.

If you wish to use the IA-32 compiler that generates Itanium-based applications you must first install
the Microsoft Platform SDK on your IA-32 development system prior to installing this product.

If you wish to use the Itanium-based compiler that generates Itanium-based applications you must first
install the Microsoft Platform SDK on your Itanium-based system before installing this product on it.

Note: If you have version 7.0 or 7.1 of Intel C++ Compiler installed, with the Microsoft Visual C++.NET
integration enabled, you must remove the Visual C++.NET integration before installing this version of
Intel C++ Compiler. To do this, follow these steps:

1. Select Start..Programs..Intel(R) Software Development Tools..Intel(R) C++ Compiler
7.1..Enable or Disable Visual C++.NET 2002 (or 2003) Integration.

2. In the Intel® Package Registration window that appears, select Disable Intel Package and
click OK.

3. In the Windows Control Panel, select Add or Remove Programs.
4. Select the Intel C++ Compiler 7.x you wish to modify and click the Change button. When the

InstallShield* Wizard appears, click Next.
5. Select Modify and click Next.
6. Click on the "+" symbols, as needed, to expand the entries under "Intel(R) C++ Compiler for

32-bit applications", "Microsoft Visual Studio Integration".
7. Change the entries for "For Microsoft Visual C++.NET 2002" and "For Microsoft Visual

C++.NET 2003" to "This feature will not be installed", signified by a red "X". You will see only
the entries corresponding to the editions of Microsoft Visual C++.NET installed on your
system. Click Next.

8. Click Next, Install and then Finish.

The recommended installation order is as follows:

1. Install Visual C++ .NET 2002 or Visual C++ .NET 2003 (Standard edition or above) or Visual
C++ 6.0 Professional edition or above

2. Install Microsoft Platform SDK if needed
3. If you have the Intel C++ Compiler 7.x installed on your system, please uninstall the VC++

.NET Integration as described in the note above.
4. Uninstall other versions of the Intel C++ Compiler 8.x
5. Install this version of the Intel C++ Compiler 8.1

Note: To learn how to uninstall the Intel C++ Compiler, please read the Uninstalling the Compiler
section below.

The Intel C++ Compiler 8.1 can coexist with the Intel C++ Compiler 6.0.1 and 7.1 product.

Installation

1. Installing the license

The Intel C++ Compiler uses Macrovision Corporation's FLEXlm* electronic licensing
technology. License management is transparent. The installation program of the Intel C++
Compiler 8.1 checks for a valid license before installing any component of the product. Also,
the license must remain in place on the system in order to use the Intel C++ Compiler 8.1 to
compile and build programs.

Note: Your existing license for the Intel C++ Compiler for Linux* will work with the 8.1
compiler provided your support services have not expired.

The FLEXlm license daemon for Intel software, used for floating and node-locked licenses
only, is available for multiple platforms. The daemon may be installed on any supported
platform accessible on your local network. The compiler CD contains license daemons for
most platforms. If you do not have the CD, or need a license daemon for an additional
platform, please contact Intel® Premier Support.

2. Here is how to setup the license file before installation.
o If you have an electronically downloaded version of the Intel C++ Compiler 8.1, the

license will be sent to you via email. Please follow the instructions in the email to
install the license file.

If you have a CD version of the Intel C++ Compiler 8.1, a valid license is included on
the CD and the installation program can locate it automatically. But, in order to obtain
access to technical support and to be able to download and execute product updates,
as a CD-ROM user you must do the following:

1. Register your product: First, locate the serial number found on the inside
flap of the product box. Then, visit the web site
http://www.intel.com/software/products/registrationcenter/ and follow the
instructions. After the registration you will receive an email within 24 hours
containing a new license.

2. Install the new license: The new license in the email typically entitles you to
one year of support services that allow you to download and execute product
updates and obtain full technical support. The email also contains the
instructions on how to install the license. Please follow the instructions to
finish the new license installation.

Note:
The license file must have an extension ".lic".

https://premier.intel.com/
http://www.intel.com/software/products/registrationcenter/

The default license directory is C:\Program Files\Common
Files\Intel\Licenses\.

For details about the support service license, please see
http://www.intel.com/software/products/compilers/cwin/pricelist.htm .

3. Installing the Intel C++ Compiler

After you have downloaded the package, simply run the downloaded executable (For example
w_cc_p_8.1.xxx.exe).

Install time license checking
Before installing any component, the installation program of Intel C++ Compiler 8.1 checks for a valid
license. It searches for a valid license file at folders pointed by "INTEL_LICENSE_FILE" first. If there's
no valid license, you will be prompted to enter a valid license file that you have just created in the
previous step.

After the license check, simply follow the setup program's prompts to complete the installation. The
installation program will install the corresponding license to C:\Program Files\Common
Files\Intel\Licenses on both IA-32 systems and Itanium-based systems.

If you have any problems running the compiler, please make sure a valid license file (*.lic) is located in
the license directory. If you still have problems, please submit an issue to Premier Support. See the
Technical Support section of this document for details.

The Intel C++ Compiler 8.1 license can coexist with previous versions of the Intel Compiler license.

Note about Intel Debugger Installation

If you install both Intel® Visual Fortran and Intel C++, you will have two copies of the Intel® Debugger.
Whichever version was installed most recently is the one that will be used by default.

Uninstalling the Compiler

To uninstall the Intel C++ Compiler 8.1 for Windows completely, you need to uninstall the following
with "Add/Remove Programs" from the "Control Panel".

• Intel C++ Compiler 8.1 for Windows
• Intel® License Manager for FLEXlm if installed

Note: uninstalling the Intel C++ Compiler does not delete the corresponding license file.

Known Limitations
• Installation related limitations

o After installation from an electronic download, an unpacked copy of the installation
files remains in a temporary directory, by default C:\Documents and
Settings\username\Local
Settings\Temp\IntelC++Compiler80. If desired, the user may
delete these files.

http://www.intel.com/software/products/compilers/cwin/pricelist.htm

o If you install the Intel® C++ Compiler 8.1 through Microsoft Terminal Services Client*,
you need to log off after finishing the installation and re-log on in order for
environment variables to be set correctly when using the Intel C++ Compiler.

o If you have the Intel C++ Compiler 6.0.1 on your system, before installing the 8.1,
please uninstall the VC++ .NET 2002 Integration Tool of the Intel C++ Compiler 6.0.1
with the "Modify" feature provided in the program "Modify or Remove
Intel® C++ and EDB".
When you uninstall the Intel C++ Compiler 8.1, please reinstall the VC++ .NET 2002
Integration Tool of the Intel C++ Compiler 6.0.1.

o If you have both the Intel C++ Compiler 7.1 and 8.1 installed to a system with Visual
C++ * 6.0 installed, uninstalling the 7.1 will also remove the "Intel C++ Compiler
Selection Tool" for 8.1 if it's installed. Please repair or reinstall 8.1 to fix the problem.

o If you install the Intel C++ Compiler 8.1 with VS .NET integration to a different
location than where it was previously installed on your system (install-uninstall-
reinstall), the VS .NET will be unable to locate the Intel C++ Compiler 8.1 within the
IDE.
The work around is to delete the following registry keys:

 HKEY_CURRENT_USER\software\intel\ide\C++\80
 HKEY_CURRENT_USER\software\intel\compilers\c++\80

• Limitations on Visual C++ .NET language support
There are a number of new features introduced by Visual C++ .NET that are not support by
this version of Intel C++ Compiler for Windows. Please read the User's Guide for additional
information.

o Attributed code is not supported
o Event handling (new keywords) is not supported
o Managed extensions for C++ is not supported

• Limitations on integration with Visual C++ .NET
o The Intel C++ compiler only supports non VC++ .NET specific project types such as

"Win32 Console Project", "Win32 Application", etc.
Project types with VC++ .NET attributes such as the ones below cannot be converted
to an Intel C++ project:

 Empty Project (.NET)
 Class Library (.NET)
 Console Application (.NET)
 Windows Control Library (.NET)
 Windows Forms Application (.NET)
 Windows Service (.NET)

• Limitation with the Intel® Debugger (IDB)
o The Intel Debugger is not supported on Windows systems with only Visual Studio*

.NET (2002 or 2003) Standard Edition installed.
o The Intel Debugger for Itanium-based system does not have a Graphical User

Interface (GUI) in this release of the product. It may provide a GUI in the near future.
• There will be an increase in compile time when -Zi is used together with inlining. Inlining

can happen if the user specifies -ipo, -ip or compiles a C++/C99 program at option
levels -O1 or above. This is due to the generation of debug information. For many
applications, this combination of compiler options will not increase compile time or compile-
time memory use.

Issues relating to Multiple Object File Interprocedural Optimization

The following issues are expected to be resolved in a future update:

/Qipo1 doesn't guarantee only one object file

Specifying an explicit number of files object files to be generated with /QipoN doesn't turn
off the compiler heuristic for dividing and object file into two object files when it gets too big.

Because of this, you cannot currently turn off IPO multiple objects by explicitly specifying one
object file using /Qipo1.

/Qqipo_separate is not recognised by xilink

The /Qipo_separate option is not recognized by xilink. This causes IPO
compilations using this option to fail.

Explicit naming of obj and asm files ignored with /Qipo multiple objects

When using /Qipo_c or /Qipo_S (explicit .obj or .asm files, respectively), options to
explicitly name these files are ignored by the compiler for when generating multiple objects.

asm files generated by /Qipo_S fail to assemble with multiple object IPO

The assembler complains that routines being called haven't been defined.

Limited Debug Information with Automatic CPU Dispatching (/Qax*)

Compilation using /Qax{W|N|B|P} results in two copies of generated code for each function.
One for IA-32 generic code and one for CPU specific code. The symbol for each function then refers to
an Auto CPU Dispatch routine that decides at run-time which one of the generated code sections to
execute. Debugger breakpoints that are set on these functions by name cause the application to stop
in the dispatch routine. This may cause unexpected behavior when debugging. This issue may be
addressed in a future version of the Intel Debugger and Compilers.

Cannot Debug or View Traceback for IA-32 Programs Built with /Oy-

Compilation using /Oy- specifies that the IA-32 EBP register be used as a general purpose register,
eliminating its use as a frame pointer. Debuggers and traceback handlers may not be able to properly
unwind through a stack that contains a call to a function that is compiled in this manner.

Other Issues

Please click on the following links to see additional notes and known issues in the latest version of
each tool.

• Intel® C++ Compiler to produce IA-32 applications
Note, this file is available only if the compiler for 32-bit applications is installed.

• Intel® C++ Compiler to produce Itanium®-based applications
Note, this file is available only if the compiler for Itanium-based applications is installed.

Technical Support
Your feedback is very important to us. To receive technical support for the tools provided in this
product and technical information including FAQ's and product updates, you need to be registered for
an Intel® Premier Support account on our secure web site, https://premier.intel.com. Please register at

https://premier.intel.com/

http://support.intel.com/support/performancetools/support.htm and click on "Registration
Center".

Note:

• Registering for support varies for release product or pre-release products (alpha, beta, etc) -
only released products have support web pages on http://support.intel.com.

• If you are having trouble registering or unable to access your Premier Support account,
contact developer.support@intel.com. Please do not email your technical issue to
developer.support@intel.com as it is not a secure medium.

• If you have forgotten your password, please email a request to: quad.support@intel.com.
Please do not email your technical issue to this email address as it is not a secure medium.

For information about the Intel® C++ Compiler's Users Forums, FAQ's, tips and tricks, and other
support information, please visit: http://support.intel.com/support/performancetools/c/windows/. For
general support information please visit http://www.intel.com/software/products/support/.

Submitting Issues

Steps to submit an issue:

1. Go to https://premier.intel.com/.
2. Type in your Login and Password. Both are case-sensitive.
3. Click the "Submit" button.
4. Read the Confidentiality Statement and click the "I Accept" button.
5. Click on the "Go" button next to the "Product" drop-down list.
6. Click on the "Submit Issue" link in the left navigation bar.
7. Choose "Development Environment (tools,SDV,EAP)" from the

"Product Type" drop-down list.
8. If this is a software or license-related issue, choose "Intel C++ Compiler,

Windows*" from the "Product Name" drop-down list.
9. Enter your question and complete the fields in the windows that follow to successfully submit

the issue.

Guidelines for problem report or product suggestion:

1. Describe your difficulty or suggestion.
For problem reports please be as specific as possible, so that we may reproduce the problem.
For compiler problem reports, please include the compiler options and a small test case if
possible.

2. Describe your system configuration information.
Run the compiler (icl) from the command window like below:
(Note: in order to display the correct Package ID, the command should be invoked from
the drive where the compiler is installed.)
 >> icl on an IA32-based system or Itanium-based system
and copy the "Package ID" (e.g. w_cc_b_8.1.xxx) from the output into the
corresponding Premier Support field. Please include any other specific information that may
be relevant to helping us to reproduce and address your concern.

3. If you were not able to install the compiler or cannot get the Package ID, enter the filename
you downloaded as the package ID.

Resolved Issues

http://support.intel.com/support/performancetools/support.htm
http://support.intel.com/
mailto:developer.support@intel.com
mailto:developer.support@intel.com
mailto:quad.support@intel.com
http://support.intel.com/support/performancetools/c/windows/
http://www.intel.com/software/products/support/
https://premier.intel.com/

Please review <package ID>_README (e.g. w_cc_p[c]_8.1.xxx_README),
available for download from Intel® Premier Support, https://premier.intel.com, to see which issues
have been resolved in the latest version of the compiler.

Documentation
You can view the Intel® compiler and related HTML-based documentation with your Web browser,
which provide full navigation, index look-up, search, and hyperlink capabilities.

The documentation index is provided for easy access of all the documents. The Document index is
available from the Intel C++ Compiler program folder and is located at:
<installation_directory>\Compiler80\docs\ccompindex.htm. A
training tutorial Enhancing Performance with Intel Compilers is also available from the Intel C++
Compiler program folder. The Intel® Debugger Manual is available from the Intel® Debugger program
folder.

The document Intel® C++ Compiler User's Guide is now organized into separate parts:

• An Options Quick Reference Guide
• User's Guide for Building Applications
• User's Guide for Optimizing Applications
• Reference Information

Note:

In the documentation index file (ccompindex.htm), if you find that certain links
do not work, please access the following Web page to download a patch for Internet
Explorer* applicable to your operating system:

http://support.microsoft.com/support/KB/articles/Q811/6/30.asp

For more information on problems opening HTML Help files using the
windows.showhelp attribute, see Microsoft Knowledge Base Article 822989.

Additional Information
Related Products and Services

Information on Intel software development products is available at
http://www.intel.com/software/products.

Some of the related products include:

• The Intel® Software College provides training for developers on leading-edge software
development technologies. Training consists of online and instructor-led courses covering all
Intel architectures, platforms, tools, and technologies.

• The VTune™ Performance Analyzer enables you to evaluate how your application is utilizing
the CPU and helps you determine if there are modifications you can make to improve your
application's performance.

• The Intel® C++ and Fortran Compilers are an important part of making software run at top
speeds with full support for the latest Intel IA-32 and Itanium® processors.

https://premier.intel.com/
http://support.microsoft.com/support/KB/articles/Q811/6/30.asp
http://www.intel.com/software/products
http://www.intel.com/software/college/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/compilers/index.htm

• The Intel® Performance Library Suite provides a set of routines optimized for various Intel
processors. The Intel® Math Kernel Library, which provides developers of scientific and
engineering software with a set of linear algebra, fast Fourier transforms and vector math
functions optimized for the latest Intel Pentium® and Intel Itanium processors. The Intel®
Integrated Performance Primitives consists of cross-platform tools to build high performance
software for several Intel architectures and several operating systems.

Copyright and Legal Information
Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel
products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

This Release Note, as well as the software described in it, is furnished under license and may only be
used or copied in accordance with the terms of the license. The information in this manual is furnished
for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document or any software that may be provided in association
with this document.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this Release Note may contain software defects which may cause the
product to deviate from published specifications. Current characterized software defects are available
on request.

Intel SpeedStep, Intel Thread Checker, Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel
NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium
III Xeon, Pentium M, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation. All rights reserved.

http://www.intel.com/software/products/perflib/index.htm
http://www.intel.com/software/products/mkl/index.htm
http://www.intel.com/software/products/ipp/index.htm
http://www.intel.com/software/products/ipp/index.htm

	Intel® C++ Compiler 8.1 for Windows* �Release Notes
	For Intel® IA-32 and Itanium® Processors
	Contents
	Overview
	Product Contents

	What's New in Version 8.1
	New Predefined Macros
	/O3 enables high-level loop and memory optimizations
	/Qipo Intermediate Language Now Contained Within Object File
	New /QipoN Option to Create Multiple Objects
	Change in Meaning of /fast
	New /Qglobal-hoist[-] Optimization Option
	KMP_SCHEDULE Environment Variable for OpenMP Scheduling Cont
	Additional New Options

	What's New in Version 8.0
	Compiler driver name change
	Default installation directory change
	Optimization support for Intel® Pentium® 4 Processors with S
	New IA-32 Optimization Options
	Obsolete and Obsolescent Optimization Options
	Read-Only (constant) data behavior change
	Microsoft Visual Studio* .NET* IDE integration
	Improved Visual Studio .NET command line option compatibilit
	Visual C++ .NET compatible macros
	Intel® Compilers code-coverage tool
	Intel Compilers test-prioritization tool
	/Qalias_arg to force Fortran style parameters
	Versioned Intermediate files (.il) during interprocedural op
	libguide can be linked dynamically only
	Support for the /Gh and the /GH options
	Better debug support for /Qip and /Qipo options
	/Qfpstkchk option

	System Requirements
	Minimum Hardware Requirements to Develop IA-32 Applications
	Minimum Hardware Requirements to Develop Itanium®-based Appl
	Minimum Hardware Requirements to Develop Itanium-based Appli
	Software Requirements to Develop IA-32 or Itanium-based Appl
	Software Requirements to Develop Itanium-based Applications

	Installation
	Pre-Installation Instructions
	Installation
	Note about Intel Debugger Installation
	Uninstalling the Compiler

	Known Limitations
	Issues relating to Multiple Object File Interprocedural Opti
	Limited Debug Information with Automatic CPU Dispatching (/Q
	Cannot Debug or View Traceback for IA-32 Programs Built with
	Other Issues

	Technical Support
	Submitting Issues
	Steps to submit an issue:
	Guidelines for problem report or product suggestion:

	Resolved Issues

	Documentation
	Additional Information
	Related Products and Services

	Copyright and Legal Information

