WHITE PAPER

Intel® C++ Compiler 8.1
for Windows*

Getting Started Guide

Intel®

software

development
products

Table of Contents

OVEIVIEW ..ottt 3
System Requirements......................ccccciiiiiiiiiin i, 4
Installation Notesccccooiii 4
Using the Intel® C++ Compiler....................oeoeeeiinnnn. 5
Building “Hello World” with the Intel C++ Compiler....... 6
Building only one file in a project with the
Intel C++ COMPIIEN .vvviviiieeeee e 11
Utilities in Intel C++ Compilerevvevieeeeeiiiiiiiiiinn, 12
Compatibility with Visual C++* .NETcvvvviiiiieiiininns 15

Getting Started with Intel® Compiler Optimizations ..16

The Intel® C++ Compiler, Extended Memory
64 Technology Edition for Windows™.......................... 16

Additional Informationccoooiiii 17

Overview

This document explains how to install the Intel®
C++ Compiler for Windows™; build “Hello World”
project in the Visual C++* 6.0, Visual C++ .NET 2002
and Visual C++ .NET 2003 environments for |A-32
and ltanium®-based systems; and how to get started

optimizing your applications with the Intel® compilers.

The Intel C++ Compiler 8.1 for Windows consists of
the following:

Intel C++ Compiler for IA-32-based applications: icl
This compiler can be used from a command window
or from within the Visual C++ (6.0 or .NET) IDE.

Intel C++ Compiler for developing Itanium-based
applications on IA-32 systems: icl

This compiler can be used from a command
window or from within the Visual C++ 6.0 IDE.

Intel C++ Compiler for ltanium-based applications
on Itanium systems: icl

This compiler can be used from a command
window only.

Assembler for |IA-32-based systems to produce
[tanium-based applications: ias

Assembler for ltanium-based systems to produce
[tanium-based applications: ias

Intel® Debugger: idb

The Intel Debugger idb on IA-32 systems has a
Graphic User Interface, but the Intel Debugger idb
on ltanium-based systems doesn’t have a GUI.
Intel® License Manager for FLEXIm*

Utilities:

e Code-Coverage tool that may greatly help
developers improve the development efficiency:
codecov.exe, located at the same directory as
icl.exe, default to <program files>\intel\
cpp\compiler80\bin directory.

e Test-Prioritization tool that may help the
developers find the most effective test suites
for the application: tselect.exe, located at the
same directory as icl.exe, default to <program
files>\intel\cpp\compiler80\bin directory.

Compiler selection tool that integrates Intel C++
Compiler 8.1 with Microsoft Visual C++ 6.0 IDE

Compiler integration utilities that integrate Intel
C++ Compiler 8.1 with Microsoft Visual C++
.NET IDE 2002 and 2003

Project converter utility that converts a Visual
C++ .NET project to an Intel C++ compiler
project or back: icProjConvert80.exe, located at
<common files>\intel\shared files\ia32\
bin directory.

Utility to support non-administrative users at
the start menu Programs\Intel® Software
Development Tools\Intel® C++ Compiler
8.1\Update User’s Registry.

The Makefile utility that provides users with the
ability to switch between the Intel C++ Compiler
8.1 and the Microsoft Visual C++ 6.0 Compiler
without requiring changes to their makefiles.
The Makefile utility is available from Custom
Installation Type only.

The icpi Utility to isolate compile/link time errors.
It is located at <installation directorys\
Compiler80\ia32\bin\icpi.exe

or at

<installation directory>\Compiler80\
Itanium\bin\icpi.exe

e Product documentation including:

Intel® C++ Compiler Release Notes
Intel® C++ Compiler User’s Guide
Intel® Itanium® Assembler User’s Guide

Intel® Itanium® Architecture Assembly Language
Reference Guide

Enhancing Performance with Intel® Compilers
(training tutorial)

Intel® Debugger Manual
Using the Intel® License Manager for FLEXIm*

System Requirements

For developing applications on IA-32 systems

Refer to the latest Intel C++ Compiler Release Notes
for details.

For developing Itanium®-based applications
on ltanium-based systems

Refer to the latest Intel C++ Compiler Release Notes
for details.

Installation Notes

The Intel C++ Compiler 8.1 uses the Windows Installer.
This provides additional options for customization,
update or repair of the installation, as well as providing
a single option for uninstalling all components.

The Intel C++ Compiler uses Macrovision’s FLEXIm
electronic licensing technology. License management
should be transparent. A valid license is required for
installing and using the Intel C++ Compiler. Please
follow the installation steps below to install the FLEXIm
license file.

Notes:
e |f you are using another version of the Intel C++
Compiler 8.1, we recommend you uninstall it prior
to installing this product.

e Before installing the compilers, read the software
requirements. Microsoft Platform SDK* should
be installed if you are developing Itanium-based
applications.

Installing the Intel® C++ Compiler

1. Check the hardware and software requirements.
(See above for detail).

2. Install the license.
The installation program of Intel C++ Compiler
checks for a valid license before installing any
component. If you have downloaded the compiler
from Intel® Premier Support, the license key you
received with your Intel C++ Compiler 6.0 or 7.x
for Windows will work with the Intel C++ Compiler
8.1 for Windows unless your support services
have expired.

Here is how to set up the license file before installation.

¢ |f you have an electronically downloaded version of
the Intel C++ Compiler 8.1, the license is sent to
you via e-mail. Follow the instructions in the e-mail
to install the license file.

e [f you have a CD version of the Intel C++ Compiler
8.1, a valid license is included on the CD without
support services. The installation program can
automatically locate and install the corresponding
license for you, t0 c:\program files\Common
Files\Intel\Licenses On both IA-32 and ltanium-
based systems.

Notes for CD-ROM users:

Do the following to obtain access to technical
support and be able to download and execute
product updates:

a. Register: First, locate the serial number found
on the inside flap of the product box. Then, visit
the Web site http://www.intel.com/software/
products/registrationcenter/ and follow the
instructions.

b. Install the new license: Within 24 hours after
registering, you will receive an e-mail containing
an updated license file. Follow the instructions
in the e-mail to install this license file.

For details about the support services license,
please visit http://www.intel.com/software/
products/compilers/cwin/pricelist.ntm.

http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/compilers/cwin/pricelist.htm
http://www.intel.com/software/products/compilers/cwin/pricelist.htm

3. Obtain administrative (not power user) privilege that
is required in order to install the Intel C++ Compiler
correctly.

4. If you have installed an older package of the Intel
C++ Compiler 8.x for Windows, uninstall it before
installing the newer package.

5. Download the compiler package or purchase the
product CD-ROM.

6. Run the downloaded executable or setup.exe from
the CD-ROM and follow the setup program to finish
the installation.

7. Use the Intel C++ Compiler at a command
prompt or within Microsoft Visual C++ 6.0 or
Visual C++ .NET.

Uninstalling or Repairing the Intel C++ Compiler

Administrative (not power user) privilege is also required
in order to uninstall the Intel C++ Compiler correctly.
Use Windows [Control Panel->add/remove
programs] to uninstall the Intel C++ Compiler.

If you have installed the Intel License Manager for
FLEXIm, uninstall it separately.

Using the Intel® C++ Compiler

A valid FLEXIm license must be installed before
going forward.

The Intel C++ Compiler can be used from either
command line or within the Visual C++ IDE. It is
integrated into the Visual C++ 6.0 IDE through the
“Compiler Selection Tool” and the Visual C++ .NET IDE
through the Visual Studio* Integration Program (VSIP).

Invoking the Intel C++ Compiler from a command
window:

1. Open the command window from start > All
programs > Intel® Software Development
Tools > Intel® C++ Compiler 8.1 > Build
Environment for IA-32 applications.

2. Invoke icl from the command window:

>> icl hello.cpp

Invoking the Intel C++ Compiler within Visual C++*
6.0 IDE:
1. Create a new project or open an existing project.

2. From the Tools menu, open the “Intel® C++
Compiler Selection Tool” dialog box menu.

22vyBHello - Microsoft Visual C++ - [y6Hello.cpp]

@ File Edit Wiew Insert Project Build | Tools Window Help
g | = J g | & (] ”EE |A@ Source Browser... Alt+F12 5

ElEee snuree Browser Ele
[Globals) ;I || main

A4 Register Contral
e - A
o isual Component Manager
Wiotkzpace "wEHelo" 1 project(s) A Errar Lookup
= vBHello files #i1 A Active Control Test Container

Ea”gjf'fzpp in 2 OLE/COM Ohject Viewer

o vEHello.cpp t A% Spy++
D Header Filex A4 MFC Tracer
(] Resource Files LI 121 (F) C++ Compiler Selection Tool
iz Readhe.tat A4 WTune(TH) Performance Analyzer
LCustormize
Options...
2 Macro

Becord Quick tMacro Cirl+Shift+F,
Flay Cuick Macro Ctrl+Shitt+F

3. Check the box “Intel® C++ Compiler”.

+ Selection Tool x|
|—IA-32 Compiler Selection
a0 'I Wersion

| [Intel® C++ Compiler
g Directaries

Uzez environment wariables ins Cancel

Pl

Help

— Intel® [taniurm® Campiler / Envirohment Selection

REQUIRES CHAMGES TO PROJECT SETTIMGS! SEE "Help"
You muzt add WIMEd and /machine:iabd to compiler, linker and
librarian zettings ko invoke any Inkel® tanium® compiler. Without
theze options, you will get an 14-32 compilation.

™ Intel® C++ Compiler IB.D ¥ I Yersion

[V Use Enviranment Variables Listed Belaw
Overrides environment variablesz in Toolz-> 0 ptionz-» Directories

Fath

|E:\F'n:ugram Filez\Intel\ Select\bin:C:\Frogram Filez\Comman File:

Ihclude |I::\F'n:|gram Fileshicrozoft SDKMncludehPreRelease;C: \Program

Lib |I::\F'n:|gram FileshCommon Filez\Intel\Shared FileshiaB4\lib,C: WPre

4. In the project settings, add any extra options
specific to Intel C++ Compiler.

5. Build your application, and you should see that it
uses the Intel C++ Compiler.

Invoking the Intel C++ Compiler within Visual C++
.NET IDE:
1. Create a new project or open an existing project.
2. Convert the project to use Intel C++ Project System
using the pop-up menu by right clicking the project

or solution:
@evcHello - Microsoft Visual C++ [design] - vcHello.cpp [[=]x]
File Edit View Tuning Project Buld Debug Tools Window Help
ET:IB. & B R |9 - B |Dahug v B8 suse A= 2
TN ML E S NS T A
nExplorer-v.. & X | Start Page |veHello.cpp | b x
4 Build =1 [+ tmain =1
Rebuild =s the entry point for the console applicaciore]
Clean —
Project Only »
TCHAR® acgv[])
| Add »
Add Refarsnce athnm;
O addweb Peference...
i Set as StatUp Project
Debug »
Sawve voHello
%9 Add Solution to Source Control
[Extract Compag Visual Forran Project tems
2
* Remove
al Rename =
B 32 Propeties | [
| E Comverto use\n(e\(R)C + Project System \

#Start| | 74 & & ~ J @ 2+ =0 WP CIES |uw (B« 2R s11PM

3. In the project property dialog box, some Intel C++
Compiler-specific options have been integrated.
You can also add more specific Intel C++ Compiler
options here.

4. Build your application, and it should use the Intel
C++ Compiler.

More details on using the Intel C++ Compiler for
Windows are discussed below.

Building “Hello World” with the Intel
C++ Compiler

Building “Hello World” in command line for 1A-32
processors or Itanium processors

The following describes the steps to building the classic
“Hello World” program.
1. Create a simple “Hello World” C++ program in a
text editor “hello.cpp”:

#include <iostream>
using namespace std;
int main()

{

cout << “Hello World!\n” << endl;
return O;

}

2. Set up a command window with proper
environment settings:

e To build the program to run on an IA-32 system:

a. Open a command window from
[Start->Programs->Intel® Software
Development Tools->Intel® C++
Compiler 8.1->Build Environment for
32-bit applications]

b. Or open a regular command window, run
the command below to set the environment
settings:

>> <install-dir>\compiler80\ia32\bin
iclvars.bat
Or run the following command if the Intel C++
Compiler is installed to the default directory.

>> “c:\program files\intel\cpp\
compiler80\ia32\bin\iclvars.bat

e To build the program to run on an Itanium- Building “Hello World” for IA-32 systems within

based system from an IA-32 system: Microsoft Visual C++* 6.0 IDE

a. Open a command window from 1. Open Microsoft Visual C++ 6.0.
[Start >Programs->Intel® Software 2. Create a Win32 Console Project named “hello”;
Development Tools->Intel® C++ select “Hello World” application when creating the
Compiler 8.1->Build Environment for project.

Itanium® applications
PP] 3. From Tools > Intel® C++ Compiler Selection

b. Ohr open a regutl)a: commandhwmdow, run Tool, open the “Selection Tool” dialog box.
the command below to set the environment . “ . .
settings: 4. Inside the group “IA-32 Compiler Selection”, check
g. ' . . . “Intel C++ Compiler” and then click “OK”.
>> <install-dir>\compiler80\Itanium\ ' . _
bin\iclvars.bat 5. Build the project. You'll notice the Intel C++
Or run the following command if the Intel Compiler “iel” is used in the output window.
C++Compiler is installed to the default 6. Run the executable to test.
directory.
e el
compiler80\Itanium\bin\iclvars.bat 4 Selection Tool E
i i |4-32 Compiler S elect
3. Compile hello.cpp from the command window P ompiler 3election = |
opened from above step: | W Intel® C++ Compiler |80] Version
>> icl hello.cpp Uses environment variables i > Directories Cancel |
4. Run the executable on an appropriate platform, Help |
an I1A-32 System or an ltanium-based system. — Intel® [tanium® Compiler A Environment Selection
>> hello.exe REQUIRES CHAMGES TO PROJECT SETTIMGS! SEE "Help”
Hello World! ou muzt add WINEd and /machine:iabd to compiler, linker and

libranan zettingz ta invaoke any [ntel® [tanium® compiler. Withaut
theze ophiong, you will get an 14-32 compilation.

[Intel® C++ Compiler IB.D o | "ergion

¥ Usze Environment Yariables Listed Below
Owemdes environment variablez in Toolz->0ptionz-»Directones

>>

Path IE:'\F'ngram Fileshlntelsl S electybin:C: \Program Files\Common File:

Include IE: YProgram FileshMicrozoft SDEMncludehPreReleaze C:\Program

Lib IE:'\F'ngram FileshCammon Filez\Intel\Shared FileshiaB4\lib;C: \Pre

Building “Hello World” for ltanium-based systems
within Microsoft Visual C++ 6.0 IDE
1. Follow steps 1, 2, and 3 above.

2. Inside the group “Intel tanium Compiler/
Environment Selection”, check “Intel C++ Compiler’
and “Use Environment Variables Listed Below” and

then click “OK”.

+ Selection Tool x|

132 Compiler Selection
[T Intel® C++ Compiler

I a0 - I Yersion

g2z erwironment wariables in Toole-> Options-> Directonies

Cancel

Help

¥ Intel® C++ Comgiler

— Intel® [tanium® Compiler / Environment S election

REGUIRES CHAMGES TO PROJECT SETTIMGS! SEE "Help"
ou must add WINES and /machine:iabd to compiler, linker and
librarian settings to invake any [ntel® [Lanium® compiler. Withaut
theze ootions, you will get an 1A-32 compilation.

2.0 - I Yersion

W Use Environment ¥ ariabled |
Ovemides erviionment variables in Toolz-» Optionz-» Directories

Pl

Path |C:'\F'rogram FilzzIntelh 5 electsbin:C:\Program Filez\Caormman File:

Include |C:'\F'rogram FileshMicrozoft SDEMnclude'\PreR eleasze;C: \Program

Lib IE:'\F'rogram FilezhCammaon Filezntel\Shared FileshiaB4'ib.C:\Pre

4. Click on the “Link” tab, and to the “Project Options”
input box, add “/machine:ia64”.

5. Click “OK”.

Project Settings

Settings For: |4w/in32 Debug
R vEHello
523 Source Files
: Stdaf.cpp
wEHello.cpp
(2 Headsr Files
[Resource Files
Readhe. bt

General I Debug | C/C++ Link | Flesoulce EE

Categon |General - I Heset |

Output file name:
|Debug.-"v5H ello.exe

Object/library modules:
Ikernel32 lib uzer32 lib gdi32 lib winzpoal ik camdlg32 lib ad

W Generste debuginfo I lgnore all default ibraies
W Link incrementally I™ Generate mapfie

I~ Enable profiing

Project Options:

incremental:yes /pdb:DebugdvEHello.pdb” debug / :I
hi uf-"DebugsvEHello.exe” /pdbtype:
seriifn b4} j

Cancel |

3. Open the “project settings” dialog box.
Click on the “C/C++” tab, and in the “Preprocessor
definitions” input box, add “WIN64".

Project Settings

Settings For. |\win32 Debug
SRz EHello
Ea Source Files

Std&fx cpp
#] vEHelo.cpp
der Files
i1 Resource Files
Readbde. txt

General | Debug C/C++ | Link | Hesourc(EE

Category: I Preprocessor hd I fiEset |

Preprocessor definitions:
ErN32,_DEBUG,_CONSOLE,_MBCS

™ Undefing all symbols

Undefined symbals:

Additional include directories:

™ Ignore standard include paths

Project Options:
fnologo AMLd AW3 AGm AGK 2] A0d D WINTZY D (-

" DEBUG" /D "_COMSOLE" /D "_MBCS" /Fp"
DebugsvEHello.pch” A% /Fo"Debug /Fd 'Debug ;I

Cancel |

6. Build the project. You will see that “Intel® C++
Compiler for Itanium®-based applications” is
displayed in the output window.

7. Run the executable on an ltanium-based system

to test.

Building “Hello World” for 1A-32 systems with the
Intel C++ Compiler within Microsoft Visual C++
.NET 2002 or 2003 IDE

1. Create a C++ Win32 project called “hellow”. On
the “Application Settings” tab, select “Console
application” and then click the “Finish” button.

2. Open “hellow.cpp” and add
the following:

a. To the top add:

#include <iostream>
using namespace std;

pb. To “main()’add:

cout << “Hello World!” <<
endl;

3. Open Tools > Options > Intel® C++. Inthe left
pane, click “General”.

a. In the right pane, select a version of Intel C++
Compiler you'd like to use.

b. Then click on “Intel C++ 7.1” or “Intel C++ 8.1”
to set the directories and default options.

c. Then click “OK”.

Options x|

L3 Ervironment
(23 Source Contral
(1 Test Editor
3 Intel(R) C++
% General

Intel C++ 7.1

Intel C++ 8.1
(£ Intel(R) Fortran
(21 WTune(Th) Performance Toal:
(L1 Database Tools
(£ Debugging
(21 Device Tools
(C3 HTML Designer
(L3 Projects
(21 windows Forms Designer
(23 XML Designet

rtel Cov 811 _ =1L
ntel Co+ 71 S

Share Visual C++ project files

Selected compiler for'win32
Yersion of Intel C++ compiler to be used in Intel C++ projects

4 |+

Reset | QK I Cancel Help |

Notes:

e When using Visual C++ .NET 2003, make sure
“/Qvc74” is presented in the “Options”
edit box.

e When using Visual C++ .NET 2002, make sure
“/Qvc?” is presented in the “Options”
edit box.

Options x|

(23 Environment Executable C:AProgram FilesnteN\CPPACompiler8 D\l
(L1 Source Control Include C:\Program Files\Unte N\CPPA\Compiler801l
(L Text Editar Librar _C:AP, rngram Files\nte N"CPPACompiler8 01l
(23 Intel (R C++ Ich? 1 EDIncatmn link.* S(VCInstaIIDur_l
General
Intel C++ 71
P Intel C++ 81

(21 Intel(R) Fortran

L3 ¥Tune(TH) Perfarmance Toal
(1 Database Tools

(C1 Debugaing

3 Device Tools

[C1 HTML Desigrer

£ Projects

23 Windowss Forms Designer
(21 L Designer

Options
These options are applied to all Intel C++ compilations.

4 | ¥

Reset | QK I Cancel | Help |

@&vcHello - Microsoft Visual C++ [design] - vcHello.cpp

G- - E@ 4 BEe o B g
nErR

xogjoa))g‘@l i

4. Convert the project to use the Intel C++ Compiler:
right click on the project name “hellow”, then do
one of the following:

e From the pop-up menu select “Convert to use Intel®
C++ Project System” to create a hellow.icproj file.

¢ Or use “icProjConvert80” to convert. See “The
IcProjConvert80 Utility” section on how to use
“icProjConvert80”.

Eile Edit ¥iew Tuning Project Build Debug Tools Window Help
v 8 8B suse

L TR B NX®Y P, E

Solution Explarer -
&

2 x ‘ Start Page |veHello.cpp |

=l I"-Q_\main

es the entry point for the console applicatiorg

Build
Febuild

Clesn

Project Only 13
TCHAR® argv(])
Add 3
Add Reference

Add Web Reference

d!\n");

Setas Startlp Project

Debug. »
SavevcHello

Add Solution to Source Contral

Exfract Compa Yisual Fortran Project fems

XM EYE D

Remoye

<| Fename =

Properties |

Convertto use Intel(R) C++ Project System

Hp... 12
=

#stard| | 25 & @&

g} ENE Al Ea e E‘P =12 va |8« 02 A 511FM

After converting, a new layer has been added to the
“Solution Explorer” window. See below for detail.

#ovcHello - Microsoft Visual C++ [design] - vcHello.cpp

File Edit “iew Tuning Project Build Debug Tools

Enfy = Debug v suse
R IE R DY

B IXEY ZiA”

Window Help

b E T

|Soluti0n Explorer-v.. & X || Start Page vcHeIIn,cpp\ 4k x
2 [ciobalsy =l [_mein [~
g‘ !aSolut\on ‘weHello' {1 projec B¢/ weHello.epp @ Defines the entry point for o
= || [veHello Ak
2 = viHello
i (5] References #include "stdafx.h"
B ‘23 Source Files =
stdafw.cpp Eint _tmainiint arge, _TCHAR® argv([])
[@ vcHello.cpp {
4 Header Files printf{"Hello World!\n"):
stdabeh return 0;
4 (2 Rezource Files i
i Readke t« L
2] re— 1] E
Hre. [ZF . s |1 | »
[Ready | | Lna Col 30 Chz7 [Ims] 4

5. Open “hello Property Pages”, and click on “Intel®

Specific”.

From the “Compiler and Environment Settings”
drop-down box, select “Intel C++ Compiler (icl)”

and click “OK”.
6. Build the solution.
7. Run the executable to test.

Property Pages %]
Coanfiguration: |bctiveDebug) | Biatorm: [activecwinaz) = Canfiguration Manager..

=3 Configuration Propsttie:| B Compiler and Environment Selings

Intel C++ Compiler (icl exe

5l C++

Cornpiler (cl.exe)

General
Debugging El Profile-Guided Optimization
% Intel(R) Specific PGO Phase Microsoft Visu
23 CiC++ Profile Directary TR
&1 Linker E whole Program Optimization
(22 Browse Infarmation Enable WPO No
22 Build Events Assembler Output Mo Listing

A5 List Location

(23 Custom Build Step Object File Name

Compiler and Environment Setlings

Selectths compiler and enviranment settings o be used. Use “Tools | Options
[Intel C++"ta madity the Intel smironment setiings for Intel taols

0K I Cancel

£pply;

Help

Building existing Visual C++ 6.0 “Hello World” for
IA-32 systems with the Intel C++ Compiler within
Microsoft Visual C++ .NET 2002 or 2003 IDE

1. Open the existing “Hello World” project with
Microsoft Visual C++ .NET and follow the prompt to
convert the project into a Visual C++ .NET solution.

2. Follow steps 3, 4, 5 and 6 above to build the
solution.

10

Building only one file in a project with the
Intel C++ Compiler

Building one file with the Intel C++ Compiler
within Microsoft Visual C++ 6.0

1. Open your project with Visual C++ 6.0.

2. From Tools menu, select Intel® C++ Compiler
Selection Tool; The “Selection Tool” dialog box
should pop up.

¢ |n the dialog, uncheck the boxes beside “Intel
C++ Compiler”.

3. Right click on the file you want to build with the
Intel C++ Compiler, and select “settings” in Visual
C++ 6.0.

¢ |n “preprocessor definitions”, add “_USE_
INTEL_COMPILER” and then click “OK”.

4. Build the project. You'll notice the Intel C++
Compiler is used for the file in the output window.

5. Run the executable on an appropriate system
to test.

Building one file with the Intel C++ Compiler
within Microsoft Visual C++ .NET 2002 or 2003 IDE

1. Open your project with Visual C++ .NET 2002 or
2003 and open the project’s property dialog box.
2. In the Solution Explorer, right-click on the project,
and from the pop-up menu, select “Convert to use
Intel® C++ Project System”.
This will add another layer to the project in the Solution
Explorer.
3. Open the project’s property page:
¢ |n the left pane, click on “Intel® Specific”.
e From the drop-down list in the right pane, select
“Microsoft Visual C++ Compiler (cl.exe)”.

e Click “OK”.

4. Choose one of the following two ways to set up
the system so the Intel C++ Compiler will be used
for the source file:

e QOpen the property page of the file that you want
to compile with Intel C++ Compiler; in the left
pane click on “Intel® Specific”; from the drop-
down list in the right pane select “Intel C++
Compiler (icl.exe)”; click “OK”.

e Or open the property page of the file that you
want to compile with Intel C++ Compiler;
in the left pane click on “C/C++” and select
“Preprocessor’; t0 “Preprocessor Definitions”
add “_USE_INTEL_COMPILER’; click “OK”.

vcHello.cpp Property Pages x|

Blatform: [active(win32) |

Configuration: |bctive(Debug)

_INTEL_COMPILER _>

=3 Configuration Properties

!

2 Cicer

Preprocessor Definiions

Specifies one or more preprocessor defines. {Dmacro])

[| cancal Bpply Help

5. Build the project. You'll notice the Intel C++
Compiler is used for the above file.

6. Run the executable.

11

Utilities in Intel C++ Compiler
The Code-Coverage Utility - codecov

This utility induces the Intel compilers’ profile-guided
optimization technology to present developers with a
complete picture of the coverage of their application
code on a particular work load. For more detailed
information, please visit http://www.intel.com/software/
products/compilers/techtopics/pgt.ntm.

The major features include basic-block coverage,
function coverage, dynamic counters, differential
coverage, coverage analysis of a subset of application
modules, and more. The utility also shows which
blocks of code or functions are covered or not by the
work loads.

The basic steps of using this utility
1. Obtain the application source code.

2. Compile with “-Qprof_genx” to generate a .spi file
(the default name is “pgopti.spi”).

3. Run the application with a good work load to create
a .dyn file.

4. Generate a .dpi file in one of the following ways:

e Recompile with “-Qprof_use” to generate a .dpi
file by merging all the .dyn files.

e Or use the “profmerge” utility, running it from the
same directory as the .dyn file
>> profmerge -prof dpi test.dpi

5. Run codecov:
>> codecov —-prj myproj —-spi pgopti.spi —-dpi
—pgopti.dpi

6. Check the result with any Web browser.

Usage: type “codecov /?” from command window for

the latest description.
codecov [-spi spi_file] [-dpi dpi_file]
name] [-counts] [-nopartiall]
[-comp comp name] [-ref ref dpi file] [-demang]
[-mname name] [-maddr addr]
[-bcolor name] [-fcolor name] [-pcolor name]
[-ccolor name] [-ucolor name]

[-pr]j proj_

Where:

Option Description

Sets the filename to use for static profile information.

“spl Default is pgopti.spi

Sets the filename to use for dynamic profile

-dpi information. Default is pgopti.dpi

Sets the project name. There is no default project

Prl name.

Generates dynamic execution counts. Execution

- t
counts counts are not generated by default.

Treats partially-covered code the same as fully-
covered code. By default, they are not treated the
same.

-nopartial

Sets the filename that contains the list of files of

-C . ,)
omp interest. There is no default component file name.

Finds the differential coverage with respect to
ref_dpi_file. Differential coverage is not computed
by default.

-ref

Demangles both argument types of C++ functions
and their names. C++ function arguments are not
demangled by default on Windows.

-demang

Sets the name of the Web-page owner. For two-
word names (e.g., Your Name), enter Your_
Name. Default Web-page owner name is Nobody.

-mname

Sets the e-mail address of the Web-page owner.
Default e-mail address of the Web-page owner is
Nobody.

-maddr

Sets the html color name or code of the uncovered
blocks. By default, uncovered blocks are colored
yellow (#ffff99).

-bcolor

Sets the html color name or code of the uncovered
functions. By default, uncovered functions are
colored hot pink (#ffcccce).

-fcolor

Sets the html color name or code of the partially-
covered code. By default, partially-covered code is
colored light brown (#fafad?).

-pcolor

Sets the html color name or code of the covered
code. By default, covered code is colored white

().

Sets the html color name or code of the unknown
code.

-ccolor

-ucolor

12

http://www.intel.com/software/products/compilers/techtopics/pgt.htm
http://www.intel.com/software/products/compilers/techtopics/pgt.htm

Examples:

1. Basic usage:
>> codecov —prj myproj —-spi pgopti.spi -dpi
—pgopti.dpi

2. To find out the differential coverage with two runs:
>> codecov —prj myproj —-dpi customer.dpi -ref
apptest.dpi

3. To get code coverage for a subset of application

modules, use the “-comp” option:

>> codecov -prj myproj -spi pgopti.spi —-dpi
—pgopti.dpi —-comp comp filename

The Test-Prioritization Utility — tselect

This utility also uses the Intel compilers’ profile-guided
optimization technology to select and prioritize an
application’s tests based on prior execution profiles
of the application. For more detailed information, visit
http://www.intel.com/software/products/compilers/
techtopics/pgt.htm.

The basic steps of using this utility
1. Obtain the application source code.

2. Compile with “-Qprof_genx” to generate a .spi file
(the default name is “pgopti.spi”).

3. Run the application with a good work load to create
a .dyn file.

4. Generate a .dpi file in one of the following ways:

e Recompile with “-Qprof_use” to generate the
.dpi file by merging all the .dyn files.

e Or use the “profmerge” utility, running it from the
same directory as the .dyn file
>> profmerge -prof dpi test.dpi
5. Repeat steps 3 and 4 for all your test suites.

6. Create a text file “dpilistfile.txt” that contains all the
.dpi files generated above; each line lists only one
dpi file.

7. Run tselect:

>> tselect -dpi_list dpilistfile.txt -spi
pgopti.spi

8. Check the result with any Web browser.

Usage:
tselect -dpi_list <DPI_list file>
[-spi <SPI file>] [-o <report file>]
[-comp <component file>] [-cutoff <value>]
[-mintime] [-nototal] [-verbose]

Where:

Option Description

-dpi_list <DPI_list Each line of <DPI_list file> should
file> include the name of one DPI file.

-spi <SPl file> <SPI file> is the path to the main SPI file.

<report file> is the path to the generated

-0 <report file> report file,

<component file> is the path to the
component file. Each line of <component
file> should include one module or dir
name, for example: /dev/src, c:\dev\
src, src.c, src.h are all valid names.

-comp
<component file>

Terminate when we reach <value>% of
precomputed total coverage. <value>
must be greater than 0.0, e.g., 99.00.

-cutoff <value>

Minimize testing execution time; execution
time of each test must be provided on

-mintime the same line of DPL_list file after the test
name in dd:hh:mm:ss format.

-nototal Do not precompute the total coverage.
Enable more logging information about

-verbose 99ing

the program progress.

13

http://www.intel.com/software/products/compilers/techtopics/pgt.htm
http://www.intel.com/software/products/compilers/techtopics/pgt.htm

The icProjConvert80 Utility

This utility is used to convert a solution or project(s) in a
solution from the Visual C++ .NET project system to the

Intel C++ Compiler project system, or vice versa.

Usage:

ICProjConvert80 [sln file] [prj_files] </VC or /IC>

[/s] [/sharedvcproj] [/nologo]

Where:

Option Description

A path to a solution file, which should be
sin_file converted to the specified project system.

This is the .sln file name.

A space separated list of project names,

which should be converted to the
prj_files specified project system. This is not the

.veproj file name, it’s the project name in

the Solution Explorer.

Convert to the Visual C++ .NET project

e system.

/IC Convert to the Intel C++ project system.

/s Silent mode - all information messages
(except errors) are hidden.

/nologo Suppress the startup banner.

-nototal Do not precompute the total coverage.

/sharedvcproj Create shared veproj.

/?or/h Show help.

Examples:

1. Convert to use the Intel C++ Compiler project
system.
>> icProjConvert80 hellow.sIn /IC
Convert all projects in a solution.
>> icProjConvert80 hellow /IC
Convert the project “hellow” only.

2. Convert back to use the Visual C++ .NET project
system.
>> icProjConvert80 hellow.sIn /VC
Convert all projects in a solution.
>> icProjConvert80 hellow.sIn test /VC
Convert the project “test” in a solution.

Using the “Share Visual C++ project files” feature
The feature “Share Visual C++ project files” means to
share the “.veproj” files among developers or among
different applications.

There are two situations where this feature comes in
really handy:

e When working with many developers to create an
application and there’s only one copy of the Intel
C++ Compiler, you can use this option to share the
“veproj” among the developers without conflicts.
Everybody who shares the Intel C++ Compiler
should maintain their own “.slIn” file because this file
will be modified when converting the project(s) to use
the Intel C++ project system, but the “.veproj” will
not be modified. So the “.veproj” files can be shared.

e \Whenever you develop a library for multiple
applications or groups, and only one application or
one group uses the Intel C++ Compiler, you should
use this feature in this case too. The same rule about
the “.sIn” applies here.

Note:

When you convert your project or solution to use
the Intel C++ project system, a new file “.icproj” will
be created for each “.veproj” file. This “.icproj” file
contains all the options that are specific to the Intel
C++ Compiler like “-Qipo”, “~“QxN” or “-Qprof_gen”.

14

There are two methods to achieve the goal above:
e Converting your project from command line:
>> ICProjConvert8x.exe myproj —ic -sharevcproj

e Converting your project within the Visual C++
.NET IDE:

Before converting your project from the pop-up menu,
open the Options dialog and select the “Intel c++”
page and click on “General”’. Make sure that the “Share
Visual C++ project files” is set to “Yes”. In Version 8.1
of the Intel C++ Compiler, this field is set to “Yes” as
the default.

Options x|
(21 Environment = Compiler seledion
(23 Source Control Selected compiler for Win32 Intel C++ 8.1
(L1 Text Editor E Conversion options
(=3 Intsl(F) C++ Tes =

% General

Intel C++ 7.1

Intel C++ 8.1
(£ InteliR) Fortran
23 ¥TuneiTh) Performance Tool
(£ Database Tools
(13 Debugging
(21 Device Tools
(23 HTML Designer
(L1 Projects
(L3 windows Forms Designer
(23 XML Designer

Mo

Bhare Yisual C++ project files
Cantrals the use of converted VC++ project file by Visual C++ Project System

4 |

Reset | OK |

Cancel Help |

Utility to enable a power user other than the
administrative user to use the Intel selection tool
within Visual C++ 6.0

This utility is located at start > Programs > Intel®
Software Development Tools > Intel® C++
Compiler 8.1 > Update User’s Registry. Fora
power user to use the Intel selection tool within Visual
C++ 6.0 IDE, run Visual C++ 6.0 once, then this utility.

Compatibility with Visual C++* .NET

The Intel C++ Compiler 8.1 supports limited features
of Visual C++ .NET, and does not support the attribute
feature and managed code.

For more detailed information, please refer to “Intel
C++ Compiler 8.1 and Microsoft Visual C++ .NET
Compatibility” at http://www.intel.com/software/
products/compilers/cwin/.

For more information on using Intel C++ Compiler 8.1
within Visual C++ .NET, please see “Using the Intel®
C++ Compiler with Microsoft Visual C++ .NET” section
in the Intel C++ Compiler User’s Guide at <install-
dir>\compiler80\docs\ccug.chm.

15

http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/compilers/cwin/

Getting Started with Intel®
Compiler Optimizations

The Intel C++ Compiler enables programmers to
take full advantage of the advanced performance
enhancement features of Intel’s latest I1A-32 and
[tanium processors, as well as advanced optimizations.
These include support for Streaming SIMD Extensions
3, profile-guided optimization, interprocedural
optimization, vectorization and processor dispatch.

The optimizations are intended for use in product-release
builds of applications, not necessarily for earlier phases
of application development cycles. In general, increasing
the degree of optimization done by the compiler leads

to an increase in compile-time and reduced debugging
capability. This section describes an optimization
methodology with the Intel C++ Compiler.

During the application development, the “-Zi -0d”
switches are recommended to allow fast compile
times and full debugging with no optimization. To
start to optimize, the default optimization “-02” is
recommended. The “-08” option enables advanced
optimizations. The “-QaxN”, “-QaxP”, “-QaxB”,
“-QaxW”, “-QaxK”, “-QaxM” and “-Qaxi” switches

are used for generating specialized code for specific
Intel® processors as well as generic IA-32 code.
Interprocedural optimization allows the compiler
to optimize across different compilation units and can
provide large performance improvements. Profile
guided optimization uses information obtained by
running an instrumented executable that allows the
compiler to rebuild the application knowing where
the majority of the computations are. Of course,

not all optimizations are beneficial for all applications.
For additional details on optimizing, the paper,
“Optimizing Applications with the Intel C++ and
Fortran Compilers” is available at http://www.intel.
com/software/products/compilers/cwin/. For complete
information on the individual optimizations, please refer
to the Intel C++ Compiler’s Compiler User’s Guide at
<install-dir>\compiler80\docs\ccug.chm.

Remember to always measure the performance of your
application after each optimization to verify the benefits.
The VTune™ Performance Analyzer can be a great
help for measuring the performance benefits of each,
as well as giving advice on further tuning opportunities.
Additional information is available at http://www.intel.
com/software/products/viune/.

The Intel® C++ Compiler,
Extended Memory 64
Technology Edition for
Windows*

The Intel® C++ Compiler, Extended Memory 64
Technology (EM64T) Edition is designed to create
optimized applications for Intel® EM64T systems. Refer
to its release notes for the system requirements,
installation notes and the latest updates.

The Intel C++ Compiler EMB4T Edition is an IA-32
application and it can be installed on any IA-32-based
system or Intel EM64 T-based system running
Windows. Integration into the Microsoft Visual C++
.NET development environment is not provided in this
release. Use the command-line environment to build
applications for Intel EM64T-based systems.

The Intel Debugger for Intel EM64T systems is part of
this compiler package, but only command-line interface
is supported in this release. It only supports native
debugging functionality; remote-debugging is

not supported in this release.

16

http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/

Additional Information

Intel® Software College provides a one-stop

shop at Intel for training developers on leading edge
software development technologies. Training consists
of online and instructor-led courses covering all Intel
architectures, platforms and technologies. You can
find more information about it at http://www.intel.com/
software/college/.

Intel® Premier Support Web site. Your feedback is
very important to us. To receive technical support and
product updates for the tools provided in this product
you need to register at http://www.intel.com/software/
products/registrationcenter/. To submit an issue or
feature request, please go to Intel Premier Support at
https://premier.intel.com/ after registering.

Compiler support information: Top technical issues
and product errata are available at http://support.intel.
com/support/performancetools/c/windows.

Product release notes: Located at <install-dir>\
compiler80\docs\Crelnotes.htm

Compiler User’s Guide: Located at <install-dir>\
compiler80\docs\ccug.chm

Bug fix information: For each package of the Intel
compiler, there is a text file posted at https://premier.
intel.com/. The file name is something like <package_
id>_README.txt. It contains the bug fix information for
the package.

17

http://www.intel.com/software/college/
http://www.intel.com/software/college/
http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/registrationcenter/
http://support.intel.com/support/performancetools/c/windows
http://support.intel.com/support/performancetools/c/windows
https://premier.intel.com/
https://premier.intel.com/

intal.

Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119
USA

For product and purchase information visit:
www.intel.com/software/products

Intel, Itanium, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Copyright © 2001-2004, Intel Corporation. All rights reserved. 0904/AXB/ITF/PDF/xx 304278-001

www.intel.com/software/products

