
W H I T E P A P E R

Intel® C++ Compiler 8.1
for Windows*

Getting Started Guide

2

Table of Contents

Overview ..3

System Requirements ...4

Installation Notes ..4

Using the Intel® C++ Compiler5

Building “Hello World” with the Intel C++ Compiler6

Building only one file in a project with the
Intel C++ Compiler ...11

Utilities in Intel C++ Compiler12

Compatibility with Visual C++* .NET15

Getting Started with Intel® Compiler Optimizations ..16

The Intel® C++ Compiler, Extended Memory
64 Technology Edition for Windows*16

Additional Information ..17

3

Overview
This document explains how to install the Intel®
C++ Compiler for Windows*; build “Hello World”
project in the Visual C++* 6.0, Visual C++ .NET 2002
and Visual C++ .NET 2003 environments for IA-32
and Itanium®-based systems; and how to get started
optimizing your applications with the Intel® compilers.

The Intel C++ Compiler 8.1 for Windows consists of
the following:
• Intel C++ Compiler for IA–32-based applications: icl

This compiler can be used from a command window
or from within the Visual C++ (6.0 or .NET) IDE.

• Intel C++ Compiler for developing Itanium-based
applications on IA-32 systems: icl
This compiler can be used from a command
window or from within the Visual C++ 6.0 IDE.

• Intel C++ Compiler for Itanium-based applications
on Itanium systems: icl
This compiler can be used from a command
window only.

• Assembler for IA-32-based systems to produce
Itanium-based applications: ias

• Assembler for Itanium-based systems to produce
Itanium-based applications: ias

• Intel® Debugger: idb
The Intel Debugger idb on IA-32 systems has a
Graphic User Interface, but the Intel Debugger idb
on Itanium-based systems doesn’t have a GUI.

• Intel® License Manager for FLEXlm*

• Utilities:

• Code-Coverage tool that may greatly help
developers improve the development efficiency:
codecov.exe, located at the same directory as
icl.exe, default to <program files>\intel\
cpp\compiler80\bin directory.

• Test-Prioritization tool that may help the
developers find the most effective test suites
for the application: tselect.exe, located at the
same directory as icl.exe, default to <program
files>\intel\cpp\compiler80\bin directory.

• Compiler selection tool that integrates Intel C++
Compiler 8.1 with Microsoft Visual C++ 6.0 IDE

• Compiler integration utilities that integrate Intel
C++ Compiler 8.1 with Microsoft Visual C++
.NET IDE 2002 and 2003

• Project converter utility that converts a Visual
C++ .NET project to an Intel C++ compiler
project or back: icProjConvert80.exe, located at
<common files>\intel\shared files\ia32\
bin directory.

• Utility to support non-administrative users at
the start menu Programs\Intel® Software
Development Tools\Intel® C++ Compiler
8.1\Update User’s Registry.

• The Makefile utility that provides users with the
ability to switch between the Intel C++ Compiler
8.1 and the Microsoft Visual C++ 6.0 Compiler
without requiring changes to their makefiles.
The Makefile utility is available from Custom
Installation Type only.

• The icpi Utility to isolate compile/link time errors.
It is located at <installation _ directory>\
Compiler80\ia32\bin\icpi.exe
or at
<installation _ directory>\Compiler80\
Itanium\bin\icpi.exe

• Product documentation including:

• Intel® C++ Compiler Release Notes

• Intel® C++ Compiler User’s Guide

• Intel® Itanium® Assembler User’s Guide

• Intel® Itanium® Architecture Assembly Language
Reference Guide

• Enhancing Performance with Intel® Compilers
(training tutorial)

• Intel® Debugger Manual

• Using the Intel® License Manager for FLEXlm*

4

System Requirements
For developing applications on IA-32 systems
Refer to the latest Intel C++ Compiler Release Notes
for details.

For developing Itanium®-based applications
on Itanium-based systems
Refer to the latest Intel C++ Compiler Release Notes
for details.

Installation Notes
The Intel C++ Compiler 8.1 uses the Windows Installer.
This provides additional options for customization,
update or repair of the installation, as well as providing
a single option for uninstalling all components.

The Intel C++ Compiler uses Macrovision’s FLEXlm
electronic licensing technology. License management
should be transparent. A valid license is required for
installing and using the Intel C++ Compiler. Please
follow the installation steps below to install the FLEXlm
license file.

Notes:
• If you are using another version of the Intel C++

Compiler 8.1, we recommend you uninstall it prior
to installing this product.

• Before installing the compilers, read the software
requirements. Microsoft Platform SDK* should
be installed if you are developing Itanium-based
applications.

Installing the Intel® C++ Compiler
1. Check the hardware and software requirements.

(See above for detail).

2. Install the license.
The installation program of Intel C++ Compiler
checks for a valid license before installing any
component. If you have downloaded the compiler
from Intel® Premier Support, the license key you
received with your Intel C++ Compiler 6.0 or 7.x
for Windows will work with the Intel C++ Compiler
8.1 for Windows unless your support services
have expired.

Here is how to set up the license file before installation.

• If you have an electronically downloaded version of
the Intel C++ Compiler 8.1, the license is sent to
you via e-mail. Follow the instructions in the e-mail
to install the license file.

• If you have a CD version of the Intel C++ Compiler
8.1, a valid license is included on the CD without
support services. The installation program can
automatically locate and install the corresponding
license for you, to c:\program files\Common
Files\Intel\Licenses on both IA-32 and Itanium-
based systems.

Notes for CD-ROM users:
Do the following to obtain access to technical
support and be able to download and execute
product updates:

a. Register: First, locate the serial number found
on the inside flap of the product box. Then, visit
the Web site http://www.intel.com/software/
products/registrationcenter/ and follow the
instructions.

b. Install the new license: Within 24 hours after
registering, you will receive an e-mail containing
an updated license file. Follow the instructions
in the e-mail to install this license file.

For details about the support services license,
please visit http://www.intel.com/software/
products/compilers/cwin/pricelist.htm.

http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/compilers/cwin/pricelist.htm
http://www.intel.com/software/products/compilers/cwin/pricelist.htm

5

3. Obtain administrative (not power user) privilege that
is required in order to install the Intel C++ Compiler
correctly.

4. If you have installed an older package of the Intel
C++ Compiler 8.x for Windows, uninstall it before
installing the newer package.

5. Download the compiler package or purchase the
product CD-ROM.

6. Run the downloaded executable or setup.exe from
the CD-ROM and follow the setup program to finish
the installation.

7. Use the Intel C++ Compiler at a command
prompt or within Microsoft Visual C++ 6.0 or
Visual C++ .NET.

Uninstalling or Repairing the Intel C++ Compiler
Administrative (not power user) privilege is also required
in order to uninstall the Intel C++ Compiler correctly.
Use Windows [Control Panel->add/remove
programs] to uninstall the Intel C++ Compiler.

If you have installed the Intel License Manager for
FLEXlm, uninstall it separately.

Using the Intel® C++ Compiler
A valid FLEXlm license must be installed before
going forward.

The Intel C++ Compiler can be used from either
command line or within the Visual C++ IDE. It is
integrated into the Visual C++ 6.0 IDE through the
“Compiler Selection Tool” and the Visual C++ .NET IDE
through the Visual Studio* Integration Program (VSIP).

Invoking the Intel C++ Compiler from a command
window:
1. Open the command window from Start > All
programs > Intel® Software Development
Tools > Intel® C++ Compiler 8.1 > Build
Environment for IA-32 applications.

2. Invoke icl from the command window:
>> icl hello.cpp

Invoking the Intel C++ Compiler within Visual C++*
6.0 IDE:
1. Create a new project or open an existing project.

2. From the Tools menu, open the “Intel® C++
Compiler Selection Tool” dialog box menu.

6

3. Check the box “Intel® C++ Compiler”.

4. In the project settings, add any extra options
specific to Intel C++ Compiler.

5. Build your application, and you should see that it
uses the Intel C++ Compiler.

Invoking the Intel C++ Compiler within Visual C++
.NET IDE:
1. Create a new project or open an existing project.

2. Convert the project to use Intel C++ Project System
using the pop-up menu by right clicking the project
or solution:

3. In the project property dialog box, some Intel C++
Compiler-specific options have been integrated.
You can also add more specific Intel C++ Compiler
options here.

4. Build your application, and it should use the Intel
C++ Compiler.

More details on using the Intel C++ Compiler for
Windows are discussed below.

Building “Hello World” with the Intel
C++ Compiler
Building “Hello World” in command line for IA-32
processors or Itanium processors

The following describes the steps to building the classic
“Hello World” program.
1. Create a simple “Hello World” C++ program in a

text editor “hello.cpp”:
#include <iostream>
using namespace std;
int main()
{
cout << “Hello World!\n” << endl;
return 0;
}

2. Set up a command window with proper
environment settings:

• To build the program to run on an IA-32 system:

a. Open a command window from
[Start->Programs->Intel® Software
Development Tools->Intel® C++
Compiler 8.1->Build Environment for
32-bit applications]

b. Or open a regular command window, run
the command below to set the environment
settings:
>> <install-dir>\compiler80\ia32\bin
iclvars.bat

 Or run the following command if the Intel C++
Compiler is installed to the default directory.

>> “c:\program files\intel\cpp\
compiler80\ia32\bin\iclvars.bat

7

• To build the program to run on an Itanium-
based system from an IA-32 system:

a. Open a command window from
[Start >Programs->Intel® Software
Development Tools->Intel® C++
Compiler 8.1->Build Environment for
Itanium® applications]

b. Or open a regular command window, run
the command below to set the environment
settings:
>> <install-dir>\compiler80\Itanium\
bin\iclvars.bat

 Or run the following command if the Intel
C++Compiler is installed to the default
directory.
>> “c:\program files\intel\cpp\
compiler80\Itanium\bin\iclvars.bat

3. Compile hello.cpp from the command window
opened from above step:
>> icl hello.cpp

4. Run the executable on an appropriate platform,
an IA-32 system or an Itanium-based system.
>> hello.exe
Hello World!
>>

Building “Hello World” for IA-32 systems within
Microsoft Visual C++* 6.0 IDE

1. Open Microsoft Visual C++ 6.0.

2. Create a Win32 Console Project named “hello”;
select “Hello World” application when creating the
project.

3. From Tools > Intel® C++ Compiler Selection
Tool, open the “Selection Tool” dialog box.

4. Inside the group “IA-32 Compiler Selection”, check
“Intel C++ Compiler” and then click “OK”.

5. Build the project. You’ll notice the Intel C++
Compiler “icl” is used in the output window.

6. Run the executable to test.

8

Building “Hello World” for Itanium-based systems
within Microsoft Visual C++ 6.0 IDE

1. Follow steps 1, 2, and 3 above.

2. Inside the group “Intel Itanium Compiler/
Environment Selection”, check “Intel C++ Compiler”
and “Use Environment Variables Listed Below” and
then click “OK”.

3. Open the “project settings” dialog box.
Click on the “C/C++” tab, and in the “Preprocessor
definitions” input box, add “WIN64”.

4. Click on the “Link” tab, and to the “Project Options”
input box, add “/machine:ia64”.

5. Click “OK”.

6. Build the project. You will see that “Intel® C++
Compiler for Itanium®-based applications” is
displayed in the output window.

7. Run the executable on an Itanium-based system
to test.

9

Building “Hello World” for IA-32 systems with the
Intel C++ Compiler within Microsoft Visual C++
.NET 2002 or 2003 IDE

1. Create a C++ Win32 project called “hellow”. On
the “Application Settings” tab, select “Console
application” and then click the “Finish” button.

2. Open “hellow.cpp” and add
the following:

a. To the top add:
#include <iostream>
using namespace std;

b. To “main()”add:
cout << “Hello World!” <<
endl;

3. Open Tools > Options > Intel® C++. In the left
pane, click “General”.

a. In the right pane, select a version of Intel C++
Compiler you’d like to use.

b. Then click on “Intel C++ 7.1” or “Intel C++ 8.1”
to set the directories and default options.

c. Then click “OK”.

Notes:
• When using Visual C++ .NET 2003, make sure

“/Qvc7.1” is presented in the “Options”
edit box.

• When using Visual C++ .NET 2002, make sure
“/Qvc7” is presented in the “Options”
edit box.

4. Convert the project to use the Intel C++ Compiler:
right click on the project name “hellow”, then do
one of the following:

• From the pop-up menu select “Convert to use Intel®
C++ Project System” to create a hellow.icproj file.

• Or use “icProjConvert80” to convert. See “The
IcProjConvert80 Utility” section on how to use
“icProjConvert80”.

10

5. Open “hello Property Pages”, and click on “Intel®
Specific”.
From the “Compiler and Environment Settings”
drop-down box, select “Intel C++ Compiler (icl)”
and click “OK”.

6. Build the solution.

7. Run the executable to test.

Building existing Visual C++ 6.0 “Hello World” for
IA-32 systems with the Intel C++ Compiler within
Microsoft Visual C++ .NET 2002 or 2003 IDE

1. Open the existing “Hello World” project with
Microsoft Visual C++ .NET and follow the prompt to
convert the project into a Visual C++ .NET solution.

2. Follow steps 3, 4, 5 and 6 above to build the
solution.

After converting, a new layer has been added to the
“Solution Explorer” window. See below for detail.

11

Building only one file in a project with the
Intel C++ Compiler
Building one file with the Intel C++ Compiler
within Microsoft Visual C++ 6.0

1. Open your project with Visual C++ 6.0.

2. From Tools menu, select Intel® C++ Compiler
Selection Tool; The “Selection Tool” dialog box
should pop up.

• In the dialog, uncheck the boxes beside “Intel
C++ Compiler”.

3. Right click on the file you want to build with the
Intel C++ Compiler, and select “settings” in Visual
C++ 6.0.

• In “preprocessor definitions”, add “_USE_
INTEL_COMPILER” and then click “OK”.

4. Build the project. You’ll notice the Intel C++
Compiler is used for the file in the output window.

5. Run the executable on an appropriate system
to test.

Building one file with the Intel C++ Compiler
within Microsoft Visual C++ .NET 2002 or 2003 IDE

1. Open your project with Visual C++ .NET 2002 or
2003 and open the project’s property dialog box.

2. In the Solution Explorer, right-click on the project,
and from the pop-up menu, select “Convert to use
Intel® C++ Project System”.

This will add another layer to the project in the Solution
Explorer.
3. Open the project’s property page:

• In the left pane, click on “Intel® Specific”.

• From the drop-down list in the right pane, select
“Microsoft Visual C++ Compiler (cl.exe)”.

• Click “OK”.

4. Choose one of the following two ways to set up
the system so the Intel C++ Compiler will be used
for the source file:

• Open the property page of the file that you want
to compile with Intel C++ Compiler; in the left
pane click on “Intel® Specific”; from the drop-
down list in the right pane select “Intel C++
Compiler (icl.exe)”; click “OK”.

• Or open the property page of the file that you
want to compile with Intel C++ Compiler;
in the left pane click on “C/C++” and select
“Preprocessor”; to “Preprocessor Definitions”
add “_USE_INTEL_COMPILER”; click “OK”.

5. Build the project. You’ll notice the Intel C++
Compiler is used for the above file.

6. Run the executable.

12

Where:

Option Description

-spi
Sets the filename to use for static profile information.
Default is pgopti.spi

-dpi
Sets the filename to use for dynamic profile
information. Default is pgopti.dpi

-prj
Sets the project name. There is no default project
name.

-counts
Generates dynamic execution counts. Execution
counts are not generated by default.

-nopartial
Treats partially-covered code the same as fully-
covered code. By default, they are not treated the
same.

-comp
Sets the filename that contains the list of files of
interest. There is no default component file name.

-ref
Finds the differential coverage with respect to
ref_dpi_file. Differential coverage is not computed
by default.

-demang
Demangles both argument types of C++ functions
and their names. C++ function arguments are not
demangled by default on Windows.

-mname
Sets the name of the Web-page owner. For two-
word names (e.g., Your Name), enter Your_
Name. Default Web-page owner name is Nobody.

-maddr
Sets the e-mail address of the Web-page owner.
Default e-mail address of the Web-page owner is
Nobody.

-bcolor
Sets the html color name or code of the uncovered
blocks. By default, uncovered blocks are colored
yellow (#ffff99).

-fcolor
Sets the html color name or code of the uncovered
functions. By default, uncovered functions are
colored hot pink (#ffcccc).

-pcolor
Sets the html color name or code of the partially-
covered code. By default, partially-covered code is
colored light brown (#fafad2).

-ccolor
Sets the html color name or code of the covered
code. By default, covered code is colored white
(#ffffff).

-ucolor
Sets the html color name or code of the unknown
code.

Utilities in Intel C++ Compiler
The Code-Coverage Utility - codecov

This utility induces the Intel compilers’ profile-guided
optimization technology to present developers with a
complete picture of the coverage of their application
code on a particular work load. For more detailed
information, please visit http://www.intel.com/software/
products/compilers/techtopics/pgt.htm.

The major features include basic-block coverage,
function coverage, dynamic counters, differential
coverage, coverage analysis of a subset of application
modules, and more. The utility also shows which
blocks of code or functions are covered or not by the
work loads.

The basic steps of using this utility

1. Obtain the application source code.

2. Compile with “-Qprof_genx” to generate a .spi file
(the default name is “pgopti.spi”).

3. Run the application with a good work load to create
a .dyn file.

4. Generate a .dpi file in one of the following ways:

• Recompile with “-Qprof_use” to generate a .dpi
file by merging all the .dyn files.

• Or use the “profmerge” utility, running it from the
same directory as the .dyn file

>> profmerge –prof_dpi test.dpi

5. Run codecov:
>> codecov –prj myproj –spi pgopti.spi –dpi
–pgopti.dpi

6. Check the result with any Web browser.

Usage: type “codecov /?” from command window for
the latest description.
codecov [-spi spi_file] [-dpi dpi_file] [-prj proj_
name] [-counts] [-nopartial]
[-comp comp_name] [-ref ref_dpi_file] [-demang]
[-mname name] [-maddr addr]
[-bcolor name] [-fcolor name] [-pcolor name]
[-ccolor name] [-ucolor name]

http://www.intel.com/software/products/compilers/techtopics/pgt.htm
http://www.intel.com/software/products/compilers/techtopics/pgt.htm

13

Examples:
1. Basic usage:

>> codecov –prj myproj –spi pgopti.spi –dpi
–pgopti.dpi

2. To find out the differential coverage with two runs:
>> codecov –prj myproj –dpi customer.dpi –ref
apptest.dpi

3. To get code coverage for a subset of application
modules, use the “-comp” option:
>> codecov –prj myproj –spi pgopti.spi –dpi

–pgopti.dpi –comp comp_filename

The Test-Prioritization Utility – tselect

This utility also uses the Intel compilers’ profile-guided
optimization technology to select and prioritize an
application’s tests based on prior execution profiles
of the application. For more detailed information, visit
http://www.intel.com/software/products/compilers/
techtopics/pgt.htm.

The basic steps of using this utility

1. Obtain the application source code.

2. Compile with “-Qprof_genx” to generate a .spi file
(the default name is “pgopti.spi”).

3. Run the application with a good work load to create
a .dyn file.

4. Generate a .dpi file in one of the following ways:

• Recompile with “-Qprof_use” to generate the
.dpi file by merging all the .dyn files.

• Or use the “profmerge” utility, running it from the
same directory as the .dyn file

>> profmerge –prof_dpi test.dpi

5. Repeat steps 3 and 4 for all your test suites.

6. Create a text file “dpilistfile.txt” that contains all the
.dpi files generated above; each line lists only one
.dpi file.

7. Run tselect:
>> tselect –dpi_list dpilistfile.txt –spi
pgopti.spi

8. Check the result with any Web browser.

Usage:
tselect -dpi_list <DPI_list file>
[-spi <SPI file>] [-o <report file>]
[-comp <component file>] [-cutoff <value>]
[-mintime] [-nototal] [-verbose]

Where:

Option Description

-dpi_list <DPI_list
file>

Each line of <DPI_list file> should
include the name of one DPI file.

-spi <SPI file> <SPI file> is the path to the main SPI file.

-o <report file>
<report file> is the path to the generated
report file.

-comp
<component file>

<component file> is the path to the
component file. Each line of <component
file> should include one module or dir
name, for example: /dev/src, c:\dev\
src, src.c, src.h are all valid names.

-cutoff <value>
Terminate when we reach <value>% of
precomputed total coverage. <value>
must be greater than 0.0, e.g., 99.00.

-mintime

Minimize testing execution time; execution
time of each test must be provided on
the same line of DPI_list file after the test
name in dd:hh:mm:ss format.

-nototal Do not precompute the total coverage.

-verbose
Enable more logging information about
the program progress.

http://www.intel.com/software/products/compilers/techtopics/pgt.htm
http://www.intel.com/software/products/compilers/techtopics/pgt.htm

14

The icProjConvert80 Utility
This utility is used to convert a solution or project(s) in a
solution from the Visual C++ .NET project system to the
Intel C++ Compiler project system, or vice versa.

Usage:
ICProjConvert80 [sln_file] [prj_files] </VC or /IC>
[/s] [/sharedvcproj] [/nologo]

Where:

Option Description

sln_file
A path to a solution file, which should be
converted to the specified project system.
This is the .sln file name.

prj_files

A space separated list of project names,
which should be converted to the
specified project system. This is not the
.vcproj file name, it’s the project name in
the Solution Explorer.

/VC
Convert to the Visual C++ .NET project
system.

/IC Convert to the Intel C++ project system.

/s Silent mode – all information messages
(except errors) are hidden.

/nologo Suppress the startup banner.

-nototal Do not precompute the total coverage.

/sharedvcproj Create shared vcproj.

/? or /h Show help.

Examples:

1. Convert to use the Intel C++ Compiler project
system.
>> icProjConvert80 hellow.sln /IC
Convert all projects in a solution.
>> icProjConvert80 hellow /IC
Convert the project “hellow” only.

2. Convert back to use the Visual C++ .NET project
system.
>> icProjConvert80 hellow.sln /VC
Convert all projects in a solution.
>> icProjConvert80 hellow.sln test /VC
Convert the project “test” in a solution.

Using the “Share Visual C++ project files” feature
The feature “Share Visual C++ project files” means to
share the “.vcproj” files among developers or among
different applications.

There are two situations where this feature comes in
really handy:

• When working with many developers to create an
application and there’s only one copy of the Intel
C++ Compiler, you can use this option to share the
“.vcproj” among the developers without conflicts.
Everybody who shares the Intel C++ Compiler
should maintain their own “.sln” file because this file
will be modified when converting the project(s) to use
the Intel C++ project system, but the “.vcproj” will
not be modified. So the “.vcproj” files can be shared.

• Whenever you develop a library for multiple
applications or groups, and only one application or
one group uses the Intel C++ Compiler, you should
use this feature in this case too. The same rule about
the “.sln” applies here.

Note:
When you convert your project or solution to use
the Intel C++ project system, a new file “.icproj” will
be created for each “.vcproj” file. This “.icproj” file
contains all the options that are specific to the Intel
C++ Compiler like “-Qipo”, “-QxN” or “-Qprof_gen”.

15

There are two methods to achieve the goal above:
• Converting your project from command line:

>> ICProjConvert8x.exe myproj –ic -sharevcproj

• Converting your project within the Visual C++
.NET IDE:

Before converting your project from the pop-up menu,
open the Options dialog and select the “Intel C++”
page and click on “General”. Make sure that the “Share
Visual C++ project files” is set to “Yes”. In Version 8.1
of the Intel C++ Compiler, this field is set to “Yes” as
the default.

Utility to enable a power user other than the
administrative user to use the Intel selection tool
within Visual C++ 6.0
This utility is located at Start > Programs > Intel®
Software Development Tools > Intel® C++
Compiler 8.1 > Update User’s Registry. For a
power user to use the Intel selection tool within Visual
C++ 6.0 IDE, run Visual C++ 6.0 once, then this utility.

Compatibility with Visual C++* .NET
The Intel C++ Compiler 8.1 supports limited features
of Visual C++ .NET, and does not support the attribute
feature and managed code.

For more detailed information, please refer to “Intel
C++ Compiler 8.1 and Microsoft Visual C++ .NET
Compatibility” at http://www.intel.com/software/
products/compilers/cwin/.

For more information on using Intel C++ Compiler 8.1
within Visual C++ .NET, please see “Using the Intel®
C++ Compiler with Microsoft Visual C++ .NET” section
in the Intel C++ Compiler User’s Guide at <install-
dir>\compiler80\docs\ccug.chm.

http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/compilers/cwin/

16

Getting Started with Intel®
Compiler Optimizations
The Intel C++ Compiler enables programmers to
take full advantage of the advanced performance
enhancement features of Intel’s latest IA-32 and
Itanium processors, as well as advanced optimizations.
These include support for Streaming SIMD Extensions
3, profile-guided optimization, interprocedural
optimization, vectorization and processor dispatch.

The optimizations are intended for use in product-release
builds of applications, not necessarily for earlier phases
of application development cycles. In general, increasing
the degree of optimization done by the compiler leads
to an increase in compile-time and reduced debugging
capability. This section describes an optimization
methodology with the Intel C++ Compiler.

During the application development, the “-Zi -Od”
switches are recommended to allow fast compile
times and full debugging with no optimization. To
start to optimize, the default optimization “-O2” is
recommended. The “-O3” option enables advanced
optimizations. The “-QaxN”, “-QaxP”, “-QaxB”,
“-QaxW”, “-QaxK”, “-QaxM” and “-Qaxi” switches
are used for generating specialized code for specific
Intel® processors as well as generic IA-32 code.
Interprocedural optimization allows the compiler
to optimize across different compilation units and can
provide large performance improvements. Profile
guided optimization uses information obtained by
running an instrumented executable that allows the
compiler to rebuild the application knowing where
the majority of the computations are. Of course,
not all optimizations are beneficial for all applications.
For additional details on optimizing, the paper,
“Optimizing Applications with the Intel C++ and
Fortran Compilers” is available at http://www.intel.
com/software/products/compilers/cwin/. For complete
information on the individual optimizations, please refer
to the Intel C++ Compiler’s Compiler User’s Guide at
<install-dir>\compiler80\docs\ccug.chm.

Remember to always measure the performance of your
application after each optimization to verify the benefits.
The VTune™ Performance Analyzer can be a great
help for measuring the performance benefits of each,
as well as giving advice on further tuning opportunities.
Additional information is available at http://www.intel.
com/software/products/vtune/.

The Intel® C++ Compiler,
Extended Memory 64
Technology Edition for
Windows*
The Intel® C++ Compiler, Extended Memory 64
Technology (EM64T) Edition is designed to create
optimized applications for Intel® EM64T systems. Refer
to its release notes for the system requirements,
installation notes and the latest updates.

The Intel C++ Compiler EM64T Edition is an IA-32
application and it can be installed on any IA-32-based
system or Intel EM64T-based system running
Windows. Integration into the Microsoft Visual C++
.NET development environment is not provided in this
release. Use the command-line environment to build
applications for Intel EM64T-based systems.

The Intel Debugger for Intel EM64T systems is part of
this compiler package, but only command-line interface
is supported in this release. It only supports native
debugging functionality; remote-debugging is
not supported in this release.

http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/compilers/cwin/
http://www.intel.com/software/products/vtune/
http://www.intel.com/software/products/vtune/

17

Additional Information
Intel® Software College provides a one-stop
shop at Intel for training developers on leading edge
software development technologies. Training consists
of online and instructor-led courses covering all Intel
architectures, platforms and technologies. You can
find more information about it at http://www.intel.com/
software/college/.

Intel® Premier Support Web site. Your feedback is
very important to us. To receive technical support and
product updates for the tools provided in this product
you need to register at http://www.intel.com/software/
products/registrationcenter/. To submit an issue or
feature request, please go to Intel Premier Support at
https://premier.intel.com/ after registering.

Compiler support information: Top technical issues
and product errata are available at http://support.intel.
com/support/performancetools/c/windows.

Product release notes: Located at <install-dir>\
compiler80\docs\Crelnotes.htm

Compiler User’s Guide: Located at <install-dir>\
compiler80\docs\ccug.chm

Bug fix information: For each package of the Intel
compiler, there is a text file posted at https://premier.
intel.com/. The file name is something like <package_
id>_README.txt. It contains the bug fix information for
the package.

http://www.intel.com/software/college/
http://www.intel.com/software/college/
http://www.intel.com/software/products/registrationcenter/
http://www.intel.com/software/products/registrationcenter/
http://support.intel.com/support/performancetools/c/windows
http://support.intel.com/support/performancetools/c/windows
https://premier.intel.com/
https://premier.intel.com/

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
USA

For product and purchase information visit:
www.intel.com/software/products

Intel, Itanium, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make
changes to specifications and product descriptions at any time, without notice.

Copyright © 2001-2004, Intel Corporation. All rights reserved. 0904/AXB/ITF/PDF/xx 304278-001

www.intel.com/software/products

