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Disclaimer and Legal Information
The information in this manual is subject to change without notice and Intel Corporation assumes
no responsibility or liability for any errors or inaccuracies that may appear in this document or any
software that may be provided in association with this document. This document and the software
described in it are furnished under license and may only be used or copied in accordance with the
terms of the license. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. The information in this document is provided in
connection with Intel products and should not be construed as a commitment by Intel Corporation.

EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PROD-
UCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EX-
PRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PUR-
POSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life sav-
ing, life sustaining, critical control or safety systems, or in nuclear facility applications.

Designers must not rely on the absence or characteristics of any features or instructions marked
”reserved” or ”undefined.” Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The software described in this document may contain software defects which may cause the prod-
uct to deviate from published specifications. Current characterized software defects are available
on request.

Intel, the Intel logo, Intel SpeedStep, Intel NetBurst, Intel NetStructure, MMX, i386, i486, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Celeron, Intel Centrino, Intel Xeon, Intel XScale,
Itanium, Pentium, Pentium II Xeon, Pentium III Xeon, Pentium M, and VTune are trademarks
or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Copyright c© Intel Corporation 1996 - 2005.

This product includes software developed by the University of California, Berkley and its contrib-
utors, and software derived from the Xerox Secure Hash Function. It also includes libraries
developed and c© by SGI and Michael Riepe. They are licensed under the GNU Lesser General
Public License (LGPL)and their source code can be found in the “third party” directory.

2



CONTENTS

Contents

Contents I

1 Introduction 1

1.1 What is the Intel R©Trace Collector (ITC)? . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 System Requirements and Supported Features . . . . . . . . . . . . . . . . . . . . 1

1.3 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 About this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation 5

3 How to Use ITC 7

3.1 Tracing MPI Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Single-process Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Tracing Application Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Tracing of Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Multithreaded Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Recording Statistical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Recording Source Location Information . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Recording Hardware Performance Information . . . . . . . . . . . . . . . . . . . . 18

3.9 Recording OS Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.10 Using the Dummy Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.11 Using the Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.12 Tracing Library Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Java Tracing 25

4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Tracing of Distributed Applications 29

I



CONTENTS

5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Using VTserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Running without VTserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Spawning Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Tracing Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.7 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Structured Tracefile Format 35

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 STF Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Single-File STF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4 Configuring STF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 User-level Instrumentation with the API 43

7.1 The ITC API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Initialization, Termination and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Defining and Recording Source Locations . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Defining and Recording Functions or Regions . . . . . . . . . . . . . . . . . . . . . 50

7.5 Defining and Recording Overlapping Scopes . . . . . . . . . . . . . . . . . . . . . 55

7.6 Defining Groups of Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.7 Defining and Recording Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.8 Defining Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.9 Recording Communication Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.10 Additional API Calls in libVTcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.11 C++ API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 ITC Configuration 79

8.1 Configuring ITC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Specifying Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Configuration Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.4 Syntax of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.5 Supported Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.6 How to Use the Filtering Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.7 The Protocol File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A FAQ - Frequently asked questions 95

II



CONTENTS

A.1 General questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Platfrom specific questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III





Chapter 1

Introduction

1.1 What is the Intel R©Trace Collector (ITC)?

The ITC tool for MPI applications produces tracefiles that can be analyzed with the Intel R©Trace
Analyzer (ITA) performance analysis tool. Some ITC versions are also able to trace non-MPI
applications, like Java processes and socket communication in distributed applications. It was
formerly known as Vampirtrace.

In MPI it records all calls to the MPI library and all transmitted messages, and allows arbitrary
user defined events to be recorded. Instrumentation can be switched on or off at runtime, and a
powerful filtering mechanism helps to limit the amount of the generated trace data.

ITC is an add-on for existing MPI implementations; using it merely requires relinking the appli-
cation with the ITC profiling library (see section 3.1.1). This will enable the tracing of all calls
to MPI routines, as well as all explicit message-passing. On some platforms, calls to user-level
subroutines and functions will also be recorded.

To define and trace user-defined events, or to use the profiling control functions, calls to the
ITC API (see section 7) have to be inserted into the application’s source code. This implies a
recompilation of all affected source modules.

A special “dummy” version of the profiling libraries containing empty definitions for all ITC API
routines can be used to “switch off” tracing just by relinking (see section 3.1.3).

1.2 System Requirements and Supported Features

This version of the ITC was compiled for:
EM64T-LIN
Intel MPI 2.0

Java tracing requires a virtual machine that supports the Java Virtual Machine Profiler Interface
(JVMPI), which is not part of the Java platform yet. This extension is supported by several imple-
mentations already, though.

It is compatible with all other MPI implementations that use the same binary interface.
If in doubt, please lookup your hardware platform and MPI in the ITC system require-
ments list at http://www.intel.com/software/products/cluster . If your combi-
nation is not listed, you can check compatibility yourself by compiling and running the
examples/mpiconstants.c program with your MPI. If any value of the constants in
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CHAPTER 1. INTRODUCTION

the output differs from the ones given below, then this version of ITC will not work:
Datatypes:

sizeof(MPI_Datatype): 4
sizeof(MPI_Comm) : 4
sizeof(MPI_Request) : 4

C constants:

MPI_CHAR : 1275068673
MPI_BYTE : 1275068685
MPI_SHORT : 1275068931
MPI_INT : 1275069445
MPI_FLOAT : 1275069450
MPI_DOUBLE : 1275070475
MPI_COMM_WORLD : 1140850688
MPI_COMM_SELF : 1140850689

MPI_Status structure and byte offsets of members:

MPI_STATUS_SIZE : 5
MPI_SOURCE : 8
MPI_TAG : 12
MPI_ERROR : 16

This output is also found in examples/mpiconstants.out .

The following features are supported:
Feature Description

Thread-safety supported, see 1.3
MPI tracing 3.1
• IO not supported
• MPI One-Sided Communication not supported
• MPI-2 not supported
• fail-safe supported (3.1.7)
• correctness checking not supported
Java tracing 4
Single-process tracing 3.2
Tracing of Distributed Applications 5
Subroutine tracing 3.3
Tracing of Binaries without Recompilation 3.3
Counter tracing API in 7.7
Automatic Counter tracing of OS Activity 3.9
Automatically Recording Source Location Information 3.7 (requires compiler support)
Manually Recording Source Location Information API in 7.3
Recording Statistical Information 3.6
Tracing Libraries at Different Levels of Detail 3.12
Nonblocking Flushing MEM-FLUSHBLOCKS

Most of these features are implemented in the ITC libraries, while some are provided by utilities.
Here is a list of what the different components do:

2



1.3. MULTITHREADING

Component Usage

libVTnull Dummy implementation of API (3.10)
libVT MPI tracing (3.1)
libVTfs fail-safe MPI tracing (3.1.7)
libVTcs Tracing of Distributed Applications and Single-processes (5, 3.2)
libVTjava Java tracing (4)

(Distributed Applications and Single Processes)
VT sample Automatic Counter tracing with PAPI and getrusage() (3.8)

stftool Manipulation of trace files (6.4.1)
xstftool/expandvtlog.pl Conversion of trace files into readable format (6.4.2)
itcinstrument Tracing of Binaries without Recompilation (3.3)

1.3 Multithreading

This version of the ITC library is thread-safe in the sense that all of its API functions can be called
by several threads at the same time. Some API functions can really be executed concurrently,
others protect global data with POSIX mutices. More information on tracing multithreaded appli-
cations is found in section 3.5.

1.4 About this Manual

This manual describes how to use ITC. Some of the text is also provided as man pages for
easier reading in a shell, e.g. the ITC API calls (man VT enter) and the ITC configuration (man
VT CONFIG). To access the man pages you must follow the instructions in the next chapter.

In the PDF version of the manual all special ITC terms and names are hyperlinks that take you
to the definition of the word. The documentation is platform-specific, i.e. the text and even whole
sections depend on which features are available or how they work on this platform. If you move
between different platforms and something does not work as expected, please ensure that you
consult the correct documentation.
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Chapter 2

Installation

After unpacking the ITC archive in a directory of your choice you need to enter this directory and
execute the script ./install located there. At this time you must have a license key from Intel.
On Intel architectures ITC uses Macrovision’s FLEXlm electronic licensing technology (FLEXlm is
a registered trademark of Globetrotter Software Inc). This release of the ITC uses version 9.2 of
FLEXlm.

In order to enable the software, Intel will issue you a license key. The license key is a simple text
file containing details of the software that will be enabled. An evaluation license key contains a
time limited license.

The location of this file must be made known to the install command by setting the environment
variable INTEL LICENSE FILE to the full pathname of the file before the installation is invoked.

For example, in the C-shell, type:

setenv INTEL LICENSE FILE /opt/intel/itc/license.dat

or in the Bourne shell, type:

INTEL LICENSE FILE=/opt/intel/itc/license.dat
export INTEL LICENSE FILE

If called without a valid license, or with invalid settings of the above environment variable, instal-
lation aborts with an error message like the following one:

Checking for flexlm license
Feature to check out: TRACE_COLLECTOR

Error: A license for ITrColL could not be obtained (-1,359,2).

Is your license file in the right location and readable?
The location of your license file should be specified via
the $INTEL LICENSE FILE environment variable.

License file(s) used were (in this order):

Please visit http://support.intel.com/support/performancetools/support.htm
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CHAPTER 2. INSTALLATION

if you require technical assistance.

FLEX_CHECKOUT test failed to acquire license (rc=-1)

License management should be transparent, but if you have any problems during installation,
please submit an issue to Intel Premier Support or send an email to tracetools@intel.com.

To acquire a demo license, please use Intel Premier Support or contact tracetools@intel.com.
This email address can also be used to find out how to purchase the product. At http://
www.intel.com/software/products/cluster you will also find a list of your local sales
channel.

After asking about the desired install directory, read and write permissions the install script cre-
ates that directory, copies all files and sets the permissions of the ITC files and directories ac-
cordingly. It also creates sourceme.sh (for shells with Bourne syntax) and sourceme.csh
(for shells with csh syntax). Sourcing the correct file in a shell (with . sourceme.sh resp.
source sourceme.csh ) will set all of the required environment variables.

Default install options are /opt/intel/itc_<platform>_<version> as install directory and
permissions which grant access for all users. <platform> includes the CPU type, operating
system and often also a qualifier to distinguish versions for different MPIs. It is possible to install
several different ITC packages in parallel on the same machine by using different directories.
Overwriting an old installation with a new one is not recommended, because this will not ensure
that obsolete old files are removed. A single dot “.” can be used to install in the directory where
the archive was unpacked.

In order to use ITC on a cluster of machines one can either install ITC once in a shared directory
which is mounted at the same location on all nodes, or one can install it separately on each node
in a local directory. Neither method has a clear advantage when it comes to runtime performance.
Root privileges are only needed if writing into the desired install directory requires them.

There is a mechanism for unattended mass installations in clusters. It consists of the following
steps:

1. Start the install script with the option --duplicate . It will ask the usual
questions and install ITC, but in addition to that it will create a file called
itc_<platform>_<version>_SilentInstall.ini in the current directory or, if that
directory is not writable, /tmp/itc_<platform>_<version>/SilentInstall.ini .

Alternatively one can modify the existing SilentInstallConfigFile.ini. It is necessary
to acknowledge the End User License Agreement by editing that file and replacing
ITC_EULA=reject with ITC_EULA=accept .

2. Run the install script on each node with the option --silent <.ini file> . This will
install ITC without further questions using the install options from that .ini file. Only error
messages will be printed, all the normal progress messages are suppressed.
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Chapter 3

How to Use ITC

3.1 Tracing MPI Applications

Using ITC for MPI is straightforward: relink your MPI application with the appropriate profiling
library and execute it following the usual procedures of your system. This will generate a tracefile
suitable for use with ITA, including records of all calls to MPI routines as well as all point-to-point
and collective communication operations performed by the application.

If you wish to get more detailed information about your application, you can instrument the appli-
cation source code with calls to the ITC API (see section 7) and recompile. This will allow arbitrary
user-defined events to be traced; in practice, it is often very useful to record your applications entry
and exit to/from subroutines or regions within large subroutines.

The following sections explain how to compile, link and execute MPI applications with ITC; if
your MPI is different from the one ITC was compiled for, or is setup differently, then the paths and
options may vary. These sections assume that you know how to compile and run MPI applications
on your system, so before trying to follow the instructions below you should have read the relevant
system documentation.

3.1.1 Compiling MPI Programs with ITC

Source files without calls to the ITC API can be compiled with the usual methods and without any
special precautions.

Source files that do contain calls to the ITC API must include the appropriate header files: VT.h
for C and C++ and VT.inc for Fortran.

To compile these source files, the path to the ITC header files must be passed to the compiler.
On most systems, this is done with the -I flag, e.g. -I$(VT ROOT)/include.

3.1.2 Linking MPI Programs with ITC

ITC library libVT.a contains entry points for all MPI routines. They must be linked against your
application object files before your system’s MPI library, which is achieved as follows:

mpiicc ctest.o $(LFLAGS) -lVT -ldwarf -lelf -lnsl -lm -
lpthread -o ctest

7
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mpiifort ftest.o $(LFLAGS) -lVT -ldwarf -lelf -lnsl -lm -
lpthread -o ftest

If your MPI installation is different, then the command may differ and/or you might have to add
further libraries manually. Usually it is important that the ITC library is listed on the command
line in front of the MPI libraries. In general, the same ITC library and link line is suitable for all
compilers and programming languages.

One exception from these rules are C++ applications. If they call the C MPI API, then tracing
works as described above, but if they use the MPI 2.0 C++ API, then ITC cannot intercept the MPI
calls. They have to be mapped to the C function calls first with the help of a MPI implementation
specific library which has to be placed in front of the ITC library. The name of that wrapper library
depends on the MPI implementation; here is the command line option which needs to be added
for some of them:

Intel R©MPI, gcc < 3.0 -lmpigc

Intel R©MPI, gcc >= 3.0 or icpc -lmpiic

mpich 1.2.x -lpmpich++

Another exception are Fortran compilers which are incompatible with the Intel R©Fortran compiler
that is used for compiling parts of libVT.a. The only system where such an incompatibility has
been observed so far is the SGI Altix, where a segmentation fault occurs inside the MPT MPI
startup code if Fortran code compiled with ifort is added to a Fortran binary which is linked with
g77. As a workaround for this problem the relevant code is also provided as a library compiled
with g77. It needs to be added to the link line like this:

mpiifort ftest.o -lVTg77 $(LFLAGS) -lVT -ldwarf -lelf -lnsl
-lm -lpthread -o ftest

In all cases must the binary interface of the MPI libraries match the one used by ITC (see section
1.2 for details).

3.1.3 Running MPI Programs with ITC

MPI programs linked with ITC as described in the previous sections can be started in the same
way as conventional MPI applications. ITC reads two environment variables to access the values
of runtime options:

VT CONFIG contains the pathname of an ITC configuration file to be read at MPI initialization
time. A relative path is interpreted starting from the working directory of the MPI process
specified with VT CONFIG RANK.

VT CONFIG RANK contains the rank (in MPI COMM WORLD) of the MPI process that reads
the ITC configuration file. The default value is 0. Setting a different value has no effects
unless the MPI processes don’t share the same filesystem.

The trace data is stored in memory during the program execution, and written to disk at MPI
finalization time. The name of the resulting tracefile depends on the format: the base name
<trace> is the same as the path name of the executable image, unless a different name has
been specified in the configuration file. Then different suffices are used depending on the file
format:

8
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Structured Trace Format (STF, the default) <trace>.stf

single-file STF format <trace>.single.stf

old-style ASCII Vampir format <trace>.avt

A directive in the configuration file (see section Configuration File Format) can influence which
MPI process actually writes the tracefile; by default, it is the same MPI process that reads the
configuration file.

If relative path names are used it can be hard to find out where exactly the tracefile was written.
Therefore ITC prints an informational message to stderr with the file name and the current working
directory as soon as writing starts.

3.1.4 Examples

The examples in the ./examples directory show how to instrument C and Fortran code to collect
information about application subroutines. They come with a GNUmakefile that works for the MPI
this ITC package was compiled for. If you use a different MPI, then you might have to edit this
GNUmakefile. Unless ITC was installed in a private directory, the examples directory needs to be
copied because compiling and running the examples requires write permissions.

3.1.5 Trouble Shooting

If generating a trace fails, please check first that you can run MPI applications that were linked
without ITC. Then ensure that your MPI is indeed compatible with the one this package was
compiled for, as described under section 1.2. The FAQ in the appendix A may have further
information. If this still does not help, then please submit a report via the Question and Answer
Database (QuAD).

3.1.6 Handling of Communicator Names

By default ITC stores names for well-known communicators in the trace: “COMM WORLD”,
“COMM SELF #0”, “COMM SELF #1”, . . . When new communicators are created, their names
are composed of a prefix, a space and the name of the old communicator. For example,
calling MPI Comm dup() on MPI COMM WORLD will lead to a communicator called “DUP
COMM WORLD”.

MPI Function Prefix

MPI Comm create() CREATE
MPI Comm dup() DUP
MPI Comm split() SPLIT

MPI Cart sub() CART SUB
MPI Cart create() CART CREATE

MPI Graph create() GRAPH CREATE
MPI Intercomm merge() MERGE

MPI Intercomm merge() is special because the new communicator is derived from two commu-
nicators, not just one as in the other functions. The name of the new inter-communicator will be
“MERGE <old name 1>/<old name 2>” if the two existing names are different, otherwise it will
be just “MERGE <old name>”.
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In addition to these automatically generated names ITC also intercepts MPI Comm set name()
and then uses the name provided by the application. Only the last name set with this function is
stored in the trace for each communicator. Derived communicators always use the name which is
currently set in the old communicator when the new communicator is created.

ITC does not attempt to synchronize the names set for the same communicator in different pro-
cesses, therefore the application should set the same name in all processes to ensure that this
name is really used by ITC.

3.1.7 Tracing of Failing MPI Applications

Normally if a MPI application fails or is aborted, all trace data collected so far is lost: libVT needs
a working MPI to write the trace file, but the MPI standard does not guarantee that MPI is still
operational after a failure. In practice most MPI implementations just abort the application.

To solve this problem an application must be linked against libVTfs instead of libVT, like this:

mpiicc ctest.o $(LFLAGS) -lVTfs -ldwarf -lelf -lnsl -lm -
lpthread -o ctest

Under normal circumstances tracing works just like with libVT, but communication during trace file
writing is done via TCP sockets, so it may be a bit slower than over MPI. In order to establish
communication, it needs to know the IP addresses of all involved hosts. It finds them by looking
up the hostname locally on each machine. Each hostname must be mapped to an IP address that
all processes can connect to. Note that this is not the case if /etc/hosts lists the local hostname
as alias for 127.0.0.1 and processes are started on different hosts.

In case of a failure, libVTfs freezes all MPI processes and then writes a trace file with all trace
data. Failures that it can catch include:

Signals These include events inside the applications like segfaults and floating point errors, but
also abort signals sent from outside, like SIGINT or SIGTERM. Only SIGKILL will abort the
application without writing a trace because it cannot be caught.

Premature Exit One or more processes exit without calling MPI Finalize().

MPI Errors MPI detects certain errors itself, like communication problems or invalid parameters
for MPI functions.

Deadlocks If ITC observes no progress for a certain amount of time in any process, then it
assumes that a deadlock has occurred, stops the application and writes a trace file. The
timeout is configurable with DEADLOCK-TIMEOUT. “No progress” is defined as “inside the
same MPI call”.

Obviously this is just a heuristic and may fail to lead to both false positives and false nega-
tives:

Undetected Deadlock If the application polls for a message that cannot arrive with
MPI Test() or a similar, non-blocking function then ITC still believes that progress is
made and will not stop the application. To avoid this the application should use block-
ing MPI calls instead, which is also better for performance.

Premature Abort If all processes remain in MPI for a long time e.g. due to a long data
transfer, then the timeout might be reached. Because the default timeout is 5 minutes,
this is very unlikely.
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After writing the trace libVTfs will try to clean up the MPI application run by sending all processes
in the same process group an INT signal. This is necessary because certain versions of mpich
may have spawned child processes which keep running when an application aborts prematurely,
but there is a certain risk that the invoking shell also receives this signal and also terminates. If
that happens, then it helps to invoke mpirun inside a remote shell:

rsh localhost ’sh -c "mpirun ..."’

MPI errors cannot be ignored by installing an error handler. libVTfs overrides all requests to
install one and uses its own handler instead. This handler stops the application and writes a trace
without trying to proceed, otherwise it would be impossible to guarantee that any trace will be
written at all.

3.2 Single-process Tracing

Traces of just one process can be generated with the libVTcs library, which allows the generation
of executables that work without MPI.

Linking is accomplished by adding libVTcs.a and the libraries it needs to the link line:

-lVTcs -ldwarf -lelf -lnsl -lm -lpthread

The application must call VT initialize() and VT finalize() to generate a trace. Additional calls exist
in libVTcs to also trace distributed applications, that is why it is called “client-server”. Tracing a
single process is just a special case of that mode of operation. Tracing distributed applications is
described in more detail in section 5.

Subroutine tracing (3.3) or binary instrumentation (3.3) can be used with and without further ITC
API (see chapter 7) calls to actually generate trace events.

libVTcs uses the same techniques as fail-safe MPI tracing (3.1.7) to handle failures inside the
application, therefore it will generate a trace even if the application segfaults or is aborted with
CTRL-C.

3.3 Tracing Application Subroutines

Function tracing is always possible when using the GNU Compiler suite version 2.95.2 or later.
For that the object files that contain functions that are to be traced must be compiled with
“-finstrument-function” and VT must be able to obtain output about functions in the executable.
By default this is done by starting the shell program “nm -P”, which can be changed with the
NMCMD config option.

Function tracing can easily generate large amounts of trace data, especially for object oriented
programs. Folding function calls at run-time can help here, as described in section 3.12.

3.4 Tracing of Binaries

Synopsis
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itcinstrument --input <executable> <options>
--help
--version

Description

The itcinstrument utility program manipulates a binary executable file. It can:

• insert an ITC library into the binary as if the executable had been linked against it
• insert code into the executable which records function entry and exit events, thus allow-

ing more detailed analysis of the user code in an application

Without further options itcinstrument will just analyze the executable to ensure that it can be
instrumented and how. With the ”--list” option it will print a list of all functions found inside
the executable to stdout. The format of this list is the same as the one used for the STATE
configuration option and its ON/OFF flag indicates whether tracing of a function would be
enabled or not. ”--list” can be combined with options that specify a configuration to test
their effect without actually producing a modified executable. In C++ names are demangled
automatically, but only if they follow the current standard which is used by GCC 3.x and newer.

A modified executable is generated only if the ”--output” option is given. Without further
options, itcinstrument will just insert libVT into a MPI application. If the application is not a
MPI application, you need to choose which library to insert with the ”--insert” option. Invoking
itcinstrument on the binary will print a list of all available libraries with a short description of
each one. The ITC documentation also has a full list of all available functions in the ”System
Requirements and Supported Features” section. libVTcs is the one used for ordinary function
tracing.

If you want to do MPI tracing and MPI was linked statically into the binary, then it is necessary
to point itcinstrument towards a shared version of a matching MPI library with ”--mpi”.

Choosing which tracing library to insert and the right MPI library is useful, but not required
when just using ”--list”: if given, then itcinstrument will hide functions that are internal to those
libraries and thus cannot be traced.

The optional function profiling is enabled with the ”--profile” flag. Limiting the number of
instrumented functions is recommended to avoid excessive runtime overhead and the amount
of trace data. This can be done with one or more of the following options: ”--state”, ”--
activity”, ”--symbol”, ”--config”. Alternatively, one can use ”folding” to prune the amount or
recorded trace data dynamically at runtime; see the section ”Tracing Library Calls” in the ITC
documentation for details.

API calls

In order to trace non-MPI applications the applications must already contain calls to
VT initialize() and VT finalize() to initialize tracing and generate a trace. It is possible to
link the binary against libVTnull, the library which provides dummy implementations of all API
functions.

itcinstrument will intercept all of the API calls and redirect them into the tracing library which
is used by the instrumented binary.

Installation

To run itcinstrument you should source the ITC sourceme scripts; they ensure that the re-
quired environment variables are set correctly. This is not necessary to run the instrumented
binary: although it needs some additional shared libraries, the search path for them gets
inserted into the binary itself.

This works as long as these shared libraries are installed in the same directory on all ma-
chines where the binary is used. If that is not the case, then you have two options:
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• install ITC and ensure that the sourceme script is included before running the instru-
mented binary

• copy the .so files from ITC’s slib directory to the target machines together with the in-
strumented binary and include this directory in the LD LIBRARY PATH

Restrictions

Note that functions are instrumented, not the location where they are called. This implies
that functions found in shared libraries currently cannot be traced. This will be added in later
versions of itcinstrument.

Instrumenting static binaries is not supported. The MPI libraries may be linked statically, but
in order to insert libVT it is necessary to specify the location of the MPI’s shared library with
--mpi because libVT needs to call functions contained (perhaps only) in them.

Supported Directives

--input
Syntax : <filename>

Specifies the executable which is to be instrumented or analyzed.
--output

Syntax : <filename>

Specifies the name of the instrumented executable which shall be generated by itcinstru-
ment.

--use-debug
Syntax :
Default : on
Can be used to disable the usage of debugging information for building the function
names in the trace file. By default debugging information is used to find the source file of
each function and to group those functions together in the same class.

--list
Syntax :
Default : off
Enables printing of all functions found inside the input executable and their tracing state.
Function names are listed as they would appear in the trace file:

• class(es) and basic function name are separated by colon(s)
• C++ function names are demangled and the C++ class hierarchy is used; function

parameters are stripped to keep the function names shorter
• functions without such a class or namespace are grouped by source file if that debug

information is available; only the basename of the source file is used (foo.c:bar)
• all other functions are inside the ”Application” default class

--filter
Syntax : <filter command>

By specifying a command here one can remap the function names as found in the binary
into something more useful in the trace file. For example, all functions with a common
prefix like FOO bar could be turned into functions inside a common class (FOO:bar).
The command is executed in a shell. Its standard input consists of one function name
per line and for each input line, the command must print either the unmodified original
function name or its replacement. To chain several commands together, one can use a
shell pipe.
The input function names have nearly the same format as in the --list output above.
They contain slightly more information so that the filter command can decide itself how
to reduce that information:

• source file names contain the full path, if available
• C++ functions also have their source file as top level class
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Example input:

• /home/joe/src/foo.c:FOO bar
• Application:FOO bar
• /home/joe/src/foo.cpp:app:foo:bar

Example filter commands:

• sed -e ’s/∧Application:FOO \(.∗\)/FOO:\1/’ (use FOO prefix as class)
• sed -e ’s!∧/home/joe/!!’ | sed -e ’s!/!:!g’ (strip common path, use remaining path as class

hierarchy by replacing slash with colon)
• tee /tmp/filterinput.txt (generate a copy of the input which then can be used to test the

effect of filter commands more quickly)
• perl -p -e ’s/∧[∧:]∗:(([∧ ]∗ ){2,})$/$1/ && s/ /:/g;’ (for all names which look like Fortran

90 module functions, strip the source file or class, then convert the underscore in the
function name into a class separator; this works e.g. for src/foo.f90:foo bar )

In the output of the filter command leading and trailing separators are ignored and multiple
separators are treated just like a single one, therefore it does not matter that the last example
also converts the trailing underscore into a separator.

Beware of meta characters in the filter commands: itcinstrument itself treats any command
line argument starting with -- as one of its own command line switches. To avoid that, include
the parameter of --filter in single or double quotes. The shell might also expand certain
characters, both when calling itcinstrument and when executing the filter. To check which
command really gets executed, use --verbose 2. In general the easiest solution is to put the
filter commands into a shell script and give the name of the shell script to --filter.

--insert
Syntax : <libname>

Default : libVT for MPI applications
ITC has several libraries that can be used to do different kinds of tracing. For MPI applica-
tions the most useful one is libVT, so it is the default. For other applications itcinstrument
cannot guess what the user wants to do, so the library which is to be inserted needs to
be specified explicitly. ”itcinstrument --input <executable>” will list the available choices
in this installation of ITC.

--mpi
Syntax : <path to MPI>
If an MPI application is linked statically against MPI, then its executable only contains
some of the MPI functions. Several of the functions required by libVT may not be present.
In this case running the instrumented binary will fail with link errors. itcinstrument tries
to detect this failure, but if it happens it won’t be able to guess what the MPI is that the
application was linked against.
This option provides that information. The MPI installation must have shared libraries
which will be searched for in the following places, in this order:

• <path>
• <path>/lib
• <path>/lib/shared and the names (first with version 1.0, then without):
• libpmpich.so
• libmpich.so
• libpmpi.so
• libmpi.so

If <path> points towards a file, that file must a shared library which implements the PMPI
interface and is used directly.

--profile
Syntax :
Default : off
Enables function profiling in the instrumented binary. Once enabled, all functions in
the executable will be traced. It is recommended to control this to restrict the runtime
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overhead and the amount of trace data by disabling functions which don’t need to be
traced (see --state/symbol/activity filters).

--config
Syntax : <filename>

Specifies a ITC configuration file with STATE, ACTIVITY, SYMBOL configuration op-
tions. The syntax of these options is explained in more detail in the documentation
of VT CONFIG and the normal pattern matching rules apply.
In this context it only matters whether tracing of a specific function is ON or OFF. Rule
entries given on the command line with --state, --activity, --symbol are evaluated before
entries in the configuration file.

--longjmp
Syntax :
Default : off
Profiling an application which uses e.g. setjmp()/longjmp() to transfer control back to a
higher level in the call stack requires extra checks after function calls. Otherwise ITC will
not notice that setjmp() has returned until the next instrumented function is call.
Another situation where the extra check is needed is when function foo() just consists of
a jump instruction via an address pointer into bar() and foo() is instrumented while bar()
isn’t: then returning from foo() will not be logged immediately.
In applications which do not use long jumps this extra check is redundant and just causes
additional overhead, therefore it is disabled by default. If itcinstrument finds calls to
setjmp() or sigsetjmp() it enables this check automatically and prints an information mes-
sage.
If this automatism fails or other functions are used to execute a long jump, then you need
to enable the extra check manually with this configuration option.

--verbose
Syntax : [on|off|<level>]
Default : on
Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.
--state

Syntax : <pattern> <filter body>

Default : on
Defines a filter for any state or function that matches the pattern. Patterns are extended
shell patterns: they may contain the wild-card characters ∗, ∗∗, ? and [] to match any
number of characters but not the colon, any number of characters including the colon,
exactly one character or a list of specific characters. Pattern matching is case insensitive.
The state or function name that the pattern is applied to consists of a class name and
the symbol name, separated by a : (colon). Deeper class hierarchies as in Java or C++
may have several class names, also separated by a colon. The colon is special and not
matched by the ∗ or ? wildcard. To match it use ∗∗. The body of the filter may specify the
logging state with the same options as PCTRACE. On some platforms further options
are supported, as described below.
Valid patterns are:

• MPI:∗ (all MPI functions)
• java:util:Vector∗:∗ (all functions contained in Vector classes)
• ∗:∗send∗ (any function that contains ”send” inside any class)
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• ∗∗:∗send∗ (any function that contains ”send”, even if the class actually consists of
multiple levels; same as ∗∗send∗)

• MPI:∗send∗ (only send functions in MPI)
--symbol

Syntax : <pattern> <filter body>

Default : on
A shortcut for STATE ”∗∗:<pattern>”.

--activity
Syntax : <pattern> <filter body>

Default : on
A shortcut for STATE ”<pattern>:∗”.

3.5 Multithreaded Tracing

To trace multithreaded applications, just link and run as described above. Additional threads will
be registered automatically as soon as they call ITC via MPI wrapper functions or the API. Within
each process every thread will have a unique number starting with zero for the master thread.

With the VT registerthread() API function the application developer can control how threads are
enumerated. VT registernamed() also supports recording a thread name. VT getthrank() can be
used to obtain the thread number that was assigned to a thread.

3.6 Recording Statistical Information

ITC is able to gather and store statistics about the following items:

• function calls

• sent messages

• collective operations

These statistics are gathered even if no trace data is collected, therefore it is a good starting point
for trying to understand an unknown application that might produce an unmanagable trace. To
run an application in this mode one can either set the environment variables VT STATISTICS and
VT PROCESS or point with VT CONFIG to a file like this:

# enable statistics gathering
STATISTICS ON

# no need to gather trace data
PROCESS0:N OFF

The statistics are written into the trace in a machine-readable format, but also into the protocol
(.prot) file in ASCII format. If the protocol file should ever get lost, then the stftool (see section
6.4.1) can convert from the machine-readable format to ASCII text with the same format as in the
protocol file with --print-statistics.

This format was chosen so that text processing programs and scripts such as awk, perl, and
Excel can read it. For each type of statistic, the data for each process resp. pair of processes
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(for messages) is contained in a consecutive block of lines. Beware that ITC is not able to gather
statistics by thread: if the application is multithreaded, statistics are still aggregated by process.

A distinctive tag starts each one. The following table describes the data in the protocol file:
Type Tag Organization Available data

Routines ACTSTATS By process Number of calls
Minimum execution time (exclusive/inclusive)
Maximum execution time (exclusive/inclusive)
Total execution time (exclusive/inclusive)

Messages MSGSTATS By sending/receiving process Number of messages
Total number of bytes
Minimum and maximum size

Within each line, colons separate fields (:). For the three types of statistics, the format is as
follows:

Type Format

Routines <act>:<sym>:<pid>:<count>:
<minexcl>:<maxexcl>:<totalexcl>:
<minincl>:<maxincl>:<totalincl>

Messages <source>:<target>:<count>:<minsize>:<maxsize>:<totalsize>

The fields above have the following definitions:
Field Description Type Units

<act> Activity name String
<sym> Symbol name String
<pid> MPI task rank Integer
<count> Number of invocations/messages Integer
<min/max/totalexcl> Minimum, maximum, total execution time Floating Point Seconds

excluding called routines
<min/max/totalincl> Minimum, maximum, total execution time Floating Point Seconds

including called routines
<minsize>, <maxsize> Minimum, maximum message size Integer Bytes
<totalsize> Sum of message sizes Integer Bytes
<mintime>, <maxtime> Minimum, maximum execution time Floating Point Seconds
<totaltime> Total execution time Floating Point Seconds

Filter utilities, such as awk and perl, and plotting/spreadsheet packages, like Excel, can process
the statistical data easily. In the examples directory an awk script called convert-stats is provided
that illustrates how the values in the protocol file might be processed: it extracts the total times
and transposes the output so that each line has information about one function and all processes
instead of one function and process as in the protocol file. It also summarizes the time for all
processes. For messages the total message length is printed in a matrix with one row per sender
and one column per receiver.

3.7 Recording Source Location Information

To record the locations of subroutine calls in the source code automatically, the relevant applica-
tion modules must be compiled with support for debugging. To do this, use these compiler flags
that enable the generation of debug information for ITC:

mpiicc -g -c ctest.c
mpiifort -g -c ftest.c
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If your compiler does not support a flag, then search for a similar one. On Linux the compiler must
generate dwarf-2 debug infos. This is supported by GCC and was even made the default in GCC
3.1, but older releases need -gdwarf-2 to enable that format. The Intel compiler also uses it by
default since at least version 7.0 and doesn’t need any special options.

Another requirement is that the compiler must use normal stack frames. This is the default in
GCC, but might have been disabled with -fomit-frame-pointer. If that flag is used, then only the
direct caller of MPI or API functions can be found and asking ITC to unwind more than one stack
level may lead to crashes. The Intel compiler does not use normal stack frames by default if
optimization is enabled, but it is possible to turn them on with -fp. Support by other compilers for
both features is unknown.

At runtime Program Counter (PC) tracing must be enabled, either by setting the environment
variable VT PCTRACE to e.g. 5 or by setting VT CONFIG to the name of a configuration file
specifying e.g.:

# trace 4 call levels whenever MPI is used
ACTIVITY MPI 4

# trace one call level in all routines not mentioned
# explicitly; could also be e.g. PCTRACE5
PCTRACEON

PCTRACE sets the number of call levels for all subroutines that do not have their own setting.
Because unwinding the call stack each time a function is called can be very costly and cause
considerable runtime overhead, PCTRACE is disabled by default and should be handled with
care. It is useful to get an initial understanding of an application which then is followed by a
performance analysis without automatic source code locations.

Manual instrumentation of the source code with the ITC API can provide similar information but
without the performance overhead (see VT scldef()/VT thisloc() in section 7.3 for more informa-
tion).

3.8 Recording Hardware Performance Information

ITC can sample Operating System values for each process with the getrusage() system call and
hardware counters with the Performace Application Programming Interface (PAPI). Because PAPI
and getrusage() might not be available on a system, support for both is provided as an additional
layer on top of the normal ITC.

This layer is implemented in the VT sample.c source file. It was not possible to provide a pre-
compiled object file, because PAPI was either not available or not installed when this package
was prepared. The VT sample.o file can be rebuilt by entering the ITC lib directory, editing the
provided Makefile to match the local setup and then typing “make VT sample.o ”. It is possible to
compile VT sample.o without PAPI by removing the line with HAVEPAPI in the provided Make-
file. This results in a VT sample.o that only samples getrusage() counters, which is probably not
as useful as PAPI support.

The VT sample.o object file must be added to the link line in front of the ITC library. With the
symbolic link from libVTsample.a to VT sample.o that is already set in the lib directory it
is possible to use -lVTsample and the normal linker search rules to include this object file. If
it includes PAPI support, then -lpapi must also be added, together with all libraries PAPI itself
needs—please refer to the PAPI documentation for details, which also describes all other aspects
of using PAPI. The link line might look like the following one:
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mpiicc ctest.o <search path for PAPI> $(LFLAGS) -lVTsample -
lVT -lpapi -ldwarf -lelf -lnsl -lm -lpthread <libs required
by PAPI> -o ctest

Then the application must be run with configuration options that enable the counters of interest.
Because ITC cannot tell which ones are interesting, all of them are disabled by default. The con-
figuration option “COUNTER <counter name> ON” enables the counter and accepts wildcards,
so that e.g. “COUNTER PAPI * ON” enables all PAPI counters at once. Section 8 describes how
to use configuration options.

However, enabling all counters at once is usually a bad idea because logging counters not re-
quired for the analysis just increases the amount of trace data. Even worse is that many PAPI
implementations fail completely with an error in PAPI start counters() when too many counters
are enabled because some of the selected counters are mutually exclusive due to restrictions in
the underlying hardware (see PAPI and/or hardware documentation for details).

PAPI counters are sampled at runtime each time a function entry or exit is logged. If this is not
sufficient f.i. because a function runs for a very long time, then ITC must be given a chance to log
data. This is done by inserting calls to VT wakeup() into the source code.

The following Operating System counters are always available, but might not be filled with useful
information if the operating system does not maintain them. They are not sampled as often as
PAPI counters, because they are unlikely to change as often. ITC only looks at them if 0.1 seconds
have passed since last sampling them. This delay is specified in the VT sample.c source code
and can be changed by recompiling it. The man page of getrusage() or the system manual should
be consulted to learn more about these counters:

Counter Class: OS

Counter Name Unit Comment
RUUTIME s user time used
RUSTIME s system time used
RUMAXRSS bytes maximum resident set size
RUIXRSS bytes integral shared memory size
RUIDRSS bytes integral unshared data size
RUISRSS bytes integral unshared stack size
RUMINFLT # page reclaims—total vmfaults
RUMAJFLT # page faults
RUNSWAP # swaps
RUINBLOCK # block input operations
RUOUBLOCK # block output operations
RUMSGSND # messages sent
RUMSGRCV # messages received
RUNSIGNALS # signals received
RUNVCSW # voluntary context switches
RUNIVCSW # involuntary context switches

The number of PAPI counters is even larger and not listed here. They depend on the version of
PAPI and the CPU. A list of available counters including a short description is usually produced
with the command:

<PAPI root >/ctests/avail -a
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3.9 Recording OS Counters

Similar to the process specific counters in the previous section, ITC can also record some Oper-
ating System counters which provide information about a node. In contrast to the process specific
counters these counters are sampled only very infrequently by one background thread per node
and thus the overhead is very low. The amount of trace data also increases just a little.

Nevertheless recording them is turned off by default and needs to be enabled explicitly with the
configuration option “COUNTER <counter name> ON”. The supported counters are:

Counter Class: OS

Counter Name Unit Comment
disk io KB/s read/write disk IO (any disk in the node)
net io KB/s read/write network IO (any system interface)

This might not include the MPI transport layer.
cpu ... percent average percentage of CPU time of all CPUs spent in . . .
cpu idle percent . . . idle mode
cpu sys percent . . . system code
cpu usr percent . . . user code

The delay between recording the current counter values can be changed with the configuration
option “OS-COUNTER-DELAY”, with a default of one second. CPU utilization is calculated by the
OS with sampling, therefore a smaller value does not necessarily provide more detailed informa-
tion. Increasing it could reduce the overhead further, but only slightly because the overhead is
hardly measurable already.

These OS counters appear in the trace as normal counters which apply to all processes running
on a node.

3.10 Using the Dummy Libraries

Programs containing calls to the ITC API (see section 7) can be linked with a “dummy” version of
the profiling libraries to create an executable that will not generate traces and incur a much smaller
profiling overhead. This library is called libVTnull.a and resides in the ITC library directory. Here’s
how a C MPI-application would be linked:

mpiicc ctest.o $(LFLAGS) -lVTnull -o ctest

3.11 Using the Shared Libraries

This version of the ITC also provides all of its libraries as shared objects. They are placed in the
“slib” instead of the “lib” so that the linker still picks up the normal static libraries by default. Using
the static libraries is easier to handle, but in some cases the shared libraries might be useful.
They are not officially supported, though.

To use the shared libraries, add the “slib” directory to the command line of your linker. Then
ensure that your LD LIBRARY PATH includes this directory on all nodes where the program is
started. This can be done either by automatically sourcing the ITC sourceme scripts in the login
scripts of one’s account, setting the variable there directly, or by running the program inside a
suitable wrapper script.

20



3.12. TRACING LIBRARY CALLS

On Linux two different bindings for Fortran are supported in the same library. This works fine when
linking against the static ITC because the linker automatically picks just the required objects from
the library. When using shared libraries, though, it will refuse to generate a binary because it finds
unresolved symbols and cannot tell that those are not needed. To solve this, add -Wl,--allow-shlib-
undefined to the link line. Note that in some distributions of Linux, f.i. RedHat Enterprise Linux
3.0, the linker’s support for this option is broken so that it has no effect (ld version 2.14.90.0.4).

Alternatively one can insert the ITC into a MPI binary that was not linked against it. For that to
work MPI itself must have been linked dynamically. For mpich, one needs to configure mpich
with --enable-sharedlib, then link the application either with -shlib on the command line or the
environment variable MPICH USE SHLIB set to “yes”. When running the dynamically linked MPI
application, LD LIBRARY PATH must be set as described above and in addition to that, the envi-
ronment variable LD PRELOAD must be set to “libVT.so”.

3.12 Tracing Library Calls

Suppose you have an application that makes heavy use of libraries or software components which
might be developed independently of the application itself. As an application developer the rele-
vant part of the trace are the events inside the application and the top-level calls into the libraries
made by the application, but not events inside the libraries. As a library developer the interesting
part of a trace are the events inside one’s library and how the library functions were called by the
application.

lib1 lib2

lib3 lib4

Application Code

System−level Libraries

1 1 1

2

3

2

4

2

Figure 3.1: General structure of an application using many different libraries.

Figure 3.1 shows the calling dependencies in a hypothetical application. This is the application
developer’s view on improving performance:

• lib1, lib2, lib4 are called by the application; the application developer codes these calls and
can change the sequence and parameters to them to improve performance (arrows marked
as 1)

• lib3 is never directly called by the application. The application developer has no way to tailor
the use of lib3. These calls (arrows marked as 3) are therefore of no interest to him, and
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detailed performance data is not necessary.

• lib4 is called both directly by the application, and indirectly through lib2. Only the direct use
of lib4 can be influenced by the application developer, and the information about the indirect
calls (arrows marked 4) are not interesting to her.

For the library developer, the performance analysis model is significantly different. Here, the work-
ings of the application are of no concern apart perhaps from call paths that lead into the library.
The library developer will need detailed information about the workings of say lib2, including the
calls from the application, and the calls to component libraries (lib3 and lib4), and to system-level
services (e.g. MPI). The library developer of lib2 will have no interest in performance data for lib1,
and similarly the library developers of lib1 will have no interest in data from lib2, lib3, and lib4.

If the application and the involved libraries are instrumented to log function calls (either manually
or with a compiler), then ITC supports tracing of the application in a way that just the interesting
data is recorded. This is done by writing a filter rule that turns off tracing once a certain function
entry has been logged and turns it on again when the same function is left again. This effec-
tively hides all events inside the function. In analogy to the same operation in a graphical tree
view this is called FOLDING in ITC. UNFOLDING is the corresponding operation that resumes
tracing again in a section that otherwise would have been hidden. In contrast to turning tracing
on and off with the API calls VT traceon() and VT traceoff(), folding does not log a pseudo-call
to “VT API:TRACEOFF”. Otherwise folding a function that does not call any other function would
log more, not less data. It is also not necessary to turn tracing on again explicitly, this is done
automatically.

Folding is specified with the STATE, SYMBOL or ACTIVITY configuration options. Shell wildcards
are used to select functions by matching against their name (SYMBOL), class (ACTIVITY) or both
(STATE). “FOLD” and “UNFOLD” are keywords that trigger folding or unfolding when a matching
function is entered. With the “CALLER” keyword one can specify as an additional criteria that the
calling function must match a pattern before either folding or unfolding is executed. Section 8.6
has a detailed description of the syntax.

In this section folding is illustrated by giving configurations that apply to the example given above.
A C program is provided in examples/libraries.c that contains instrumentation calls that log
a calltree as it might occur from a program run with library dependencies as in 3.1. Here is an
example of call tree for the complete trace (calls were aggregated and sorted by name, therefore
the order is not sequential):

\->User_Code
+->finalize
| \->lib2_end
+->init
| +->lib1_fini
| \->lib1_main
| +->close
| +->lib1_util
| +->open
| \->read
+->lib4_log
| \->write
\->work

+->lib2_setup
| +->lib3_get
| | \->read
| \->lib4_log
| \->write
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\->lib4_log
\->write

By using the configuration options listed below, different parties can run the same instrumented
executable to get different traces:

application developer: trace the application with only the top-level calls in lib1, lib2, and lib3

STATE lib*:* FOLD

\->User_Code
+->finalize
| \->lib2_end
+->init
| +->lib1_fini
| \->lib1_main
+->lib4_log
\->work

+->lib2_setup
\->lib4_log

lib2 developer: trace everything in lib2, plus just the top-level calls it makes

STATE *:* FOLD
STATE lib2:* UNFOLD

\->User_Code
+->finalize
| \->lib2_end
\->work

\->lib2_setup
+->lib3_get
\->lib4_log

lib2 developer, detailed view: trace the top-level calls to lib2 and all lib2, lib3, lib4, and system
services invoked by them

STATE Application:* FOLD
STATE lib2:* UNFOLD

\->User_Code
+->finalize
| \->lib2_end
\->work

\->lib2_setup
+->lib3_get
| \->read
\->lib4_log

\->write

application and lib4 developers: trace just the calls in lib4 issued by the application

STATE *:* FOLD
STATE lib4:* UNFOLD CALLER Application:*
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\->User_Code
+->lib4_log
| \->write
\->work

\->lib4_log
\->write

It is assumed that application, libraries and system calls are instrumented so that their classes
are different. Alternatively one could match against a function name prefix that is shared by all
library calls in the same library.
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Java Tracing

4.1 Features

Function tracing records all calls to Java or native functions. This is possible without having to
modify the Java application in any way by utilizing the Java Virtual Machine Profiler Interface
(JVMPI).

All of the ITC API calls described in section 7 are also available and can be used with and with-
out function tracing to log custom events or to mark special code regions. Multiple threads are
supported and source code locations in the Java source code can be recorded.

Future extensions might include tracing of:

• monitor operations

• memory management

4.2 Usage

ITC must be loaded upon startup of the virtual machine to intercept information about function
calls. This is accomplished in Sun compatible Java virtual machines (JVMs) with the following
command line options:

-XrunVTjava

The LD LIBRARY PATH must include the $(VT ROOT)/slib directory or the JVM will complain
about not being able to find libVTcsjava.so.

ITC will be activated automatically before any user thread is created, and thus will be able to trace
the startup of the application, too.

Configuration is done normally by setting VT CONFIG to the name of a config file or other VT
environment variables directly, as described in chapter 8. Because there is no unique application
name in Java, the default name for the generated trace is “<name of JVM binary>”.stf (i.e. usually
“java.stf”) and using the VT LOGFILE NAME variable to override it is advisable.

A full function trace of a Java program can get very large, because of many small functions in the
standard classes. Folding these calls so that only the top-level function call is traced helps a lot.
This is done with the following entries in a VT CONFIG file:
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ACTIVITY * FOLD
ACTIVITY "app class*" UNFOLD

“app class” must be replaced with the name of a user class that is to be traced, because they are
most likely called from class loader functions. Without such an entry ITC would hide these calls
just like all the others done by the standard classes.

By default, function tracing is enabled when starting ITC via -XrunVTjava. To disable function
tracing, one can use this configuration option:

JAVA OFF

In both cases all Java threads are recorded under the names used for them by the Java runtime
system. In contrast to e.g. MPI tracing their creation and termination time is not recorded as
entering resp. leaving “User Code”, because that would be misleading: Java threads enter some
system code first. Instead function tracing should be used to learn which code is actually executed
by a thread.

4.3 API

The basic ITC API is made available in Java as static member functions of the class
com.intel.tracecollector.VT. In order to use this class the CLASSPATH and LD LIBRARY PATH
must both include $(VT ROOT)/lib. ITC must be initialized either at startup of the virtual machine
(as described in the previous section) or with explicit calls to the VT initialize() function.

For tracing of just one process, this function and the matching VT finalize() must be imported from
the com.intel.tracecollector.VTcs class. In previous releases there used to be a different imple-
mentation in com.pallas.vampirtrace.VTsp for tracing of single processes. Now this functionality
is a subset of what VTcs provides: when calling VT initialize() directly, just the current process
is traced. When using the initialization API for distributed tracing, more than one process can
contribute to one trace. This is described in section 5.

In contrast to the C and Fortran version no error codes are returned. Instead the result of the
function is returned and a java.lang.Error exception thrown in case of an error, which should
never happen unless the application is using ITC in the wrong way, without having initialized it
properly, or a fatal error occured, so not catching this is legitimate.

The names of the functions have been adapted to the Java naming conventions and all constants
are defined as static final members of the VT class. They are listed in the detailed function
descriptions given in chapter 7.

Here is an example of a very simple Java program that uses the ITC API:

import com.intel.tracecollector.VT;
import com.intel.tracecollector.VTcs;

public class javaapi {
public static void main(String[] args) {

int clazz, function, i;
byte data[] = new byte[10];

try {
VT.classDef( "VT not initialized yet" );

} catch( Error ex ) {
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System.out.println( ex );
}

VTcs.initialize();

clazz = VT.classDef( "Java API" );
function = VT.funcDef( "main", clazz );
VT.begin( function );
VT.end( function );

for( i = 0; i < 10; i++ ) {
data[i] = (byte)i;

}
VT.logData( data, VT.NOSCL );

VTcs.fini();
}

}
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Chapter 5

Tracing of Distributed Applications

Processes in non-MPI applications or systems are created and communicate using non-standard
and varying methods. The communication may be slow or unsuitable for ITC’s communication
patterns. Therefore a special version of the ITC library was developed that neither relies on MPI
nor on the application’s communication, but rather implements its own communication layer using
TCP/IP.

This chapter describes the design, implementation and usage of ITC for distributed applications.
This is work in progress, so this chapter also contains comments about possible extensions and
feedback is welcome.

5.1 Design

The following conditions must be met by the application:

• The application handles startup and termination of all processes itself. Both startup with a
fixed number of processes and dynamic spawning of processes is supported, but spawning
processes is an expensive operation and shouldn’t be done too frequently.

• For a reliable startup, the application must gather a short string from every process in one
place to boostrap the TCP/IP communication in ITC. Alternatively one process is started first
and its string must be passed to the others. In this case one can assume that the string is
always the same for each program run, but this is less reliable because the string encodes
a dynamically chosen port which may change.

• The hostname must be mapped to an IP address that all processes can connect to. Note
that this is not the case if /etc/hosts lists the hostname as alias for 127.0.0.1 and processes
are started on different hosts.

ITC for distributed applications consists of a special library (libVTcs) that is linked into the applica-
tion’s processes and the VTserver executable, which connects to all processes and coordinates
the trace file writing. Linking with libVTcs is required to keep the overhead of logging events as
small as possible, while VTserver can be run easily in a different process.

Alternatively, the functionality of the VTserver can be acomplished with another API call by one of
the processes.
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5.2 Using VTserver

This is how the application starts, collects trace data and terminates:

1. The application initializes itself and its communication.

2. The application initializes communication between VTserver and processes.

3. Trace data is collected locally by each process.

4. VT data collection is finalized, which moves the data from the processes to the VT server,
where it is written into a file.

5. The application terminates.

The application may iterate several times over points 2 till 4. Looping over 3 and the trace data
collection part of 4 are not supported at the moment, because:

• it requires a more complex communication between the application and VTserver

• the startup time for 2 is expected to be sufficiently small

• reusing the existing communication would only work well if the selection of active processes
does not change

If the startup time turns out to be unacceptably high, then the protocol between application and
ITC could be revised to support reusing the established communication channels.

5.2.1 Initialize and Finalize

The application has to bootstrap the communication between the VTserver and its clients. This is
done as follows:

1. The application server initiates its processes.

2. Each process calls VT clientinit().

3. VT clientinit() allocates a port for TCP/IP communication with the VTserver or other clients
and generates a string which identifies the machine and this port.

4. Each process gets its own string as result of VT clientinit().

5. The application collects these strings in one place and calls VTserver with all strings as soon
as all clients are ready. VT configuration is given to the VTserver as file or via command line
options.

6. Each process calls VT initialize() to actually establish communication.

7. The VTserver establishes communication with the processes, then waits for them to finalize
the trace data collection.

8. Trace data collection is finalized when all processes have called VT finalize().

9. Once the VTserver has written the trace file, it quits with a return code indicating success or
failure.
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Some of the VT API calls may block, especially VT initialize(). They should be executed in a sepa-
rate thread if the process wants to continue. These pending calls can be aborted with VT abort(),
e.g. if another process failed to initialize trace data collection. This failure should be communi-
cated by the application itself and it also has to terminate the VTserver by sending it a kill signal,
because it cannot be guaranteed that all processes and the VTserver will detect all failures that
might prevent establishing the communication.

5.3 Running without VTserver

Instead of starting VTserver as rank #0 with the contact strings of all application processes, one
application process can take over that role. It becomes rank #0 and calls VT serverinit() with the
information normally given to VTserver. This changes the application startup only slightly.

A more fundamental change is supported by first starting one process with rank #0 as server,
then taking its contact string and passing it to the other processes. These processes then give
this string as the initial value of the contact parameter in VT clientinit(). To distinguish this kind of
startup from the dynamic spawning of process described in the next section, the prefix “S” must
be added by the application before calling VT clientinit(). An example where this kind of startup is
useful is a process which preforks several child processes to do some work.

In both cases it may be useful to note that the command line arguments previously passed to
VTserver can be given in the argc/argv array as described in the documentation of VT initialize().

5.4 Spawning Processes

Spawning new processes is expensive, because it involves setting up TCP communication, clock
synchronization, configuration broadcasting etc. It’s flexibility is also restricted because it needs
to map the new processes into the model of “communicators” that provide the context for all
communication events. This model follows the one used in MPI and implies that only processes
inside the same communicator can communicate at all.

For spawned processes, the following model is currently supported: one of the existing processes
starts one or more new processes. These processes need to know the contact string of the spawn-
ing process and call VT clientinit() with that information; in contrast to the startup model from the
previous section, no prefix is used. Then while all spawned processes are inside VT clientinit(),
the spawning process calls VT spawn() which does all the work required to connect with the new
processes.

The results of this operation are:

• a new VT COMM WORLD which contains all of the spawned processes, but not the spawn-
ing process

• a communicator which contains the spawning process and the spawned ones; the spawn-
ing process gets it as result from VT spawn() and the spawned processes by calling
VT get parent()

The first of these communicators can be used to log communication among the spawned pro-
cesses, the second for communication with their parent. There’s currently no way to log commu-
nication with other processes, even if the parent has a communicator that includes them.
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5.5 Tracing Events

Once a process’ call to VT initialize() has completed successfully it can start calling VT API func-
tions that log events. These events will be associated with a time stamp generated by VT and with
the thread that calls the function.

Should the need arise then VT API functions could be provided that allow one thread to log events
from several different sources instead of just itself.

Event types supported at the moment are those also provided in the normal ITC, like
state changes (VT enter(), VT leave()) and sending and receiving of data (VT log sendmsg(),
VT log recvmsg()). The resulting trace file is in a format that can be loaded and analyzed with the
standard ITA tool.

5.6 Usage

Executables in the application must be linked with -lVTcs and the same additional parameters as
listed in section 3.2. It is possible to have processes implemented in different languages, as long
as they use the same version of the libVTcs.

The VTserver has the following synopsis:

VTserver <contact infos> [config options]

Each contact info is guaranteed to be one word and their order on the command line is irrelevant.
The config options can be specified on the command line by adding the prefix ”–” and listing its
arguments after the keyword. This is an example for contacting two processes and writing into
the file ”example.stf” in STF format:

VTserver <contact1> <contact2> --logfile-name example.stf

All options can be given as environment variables. The format of the config file and environment
variables are described in more detail in in the chapter about VT CONFIG.

5.7 Signals

libVTcs uses the same techniques as fail-safe MPI tracing (3.1.7) to handle failures inside the
application, therefore it will generate a trace even if the application segfaults or is aborted with
CTRL-C.

When only one process runs into a problem, then libVTcs tries to notify the other processes,
which then should stop their normal work and enter trace file writing mode. If this fails and the
application hangs, then it might still be possible to generate a trace by sending a SIGINT to all
processes manually.

5.8 Examples

There are two examples using MPI as means of communication and process handling. But as
they are not linked against the normal ITC library, tracing of MPI has to be done with VT API calls.
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clientserver.c is a full-blown example that simulates and handles various error conditions. It uses
threads and fork/exec to run API functions resp. VTserver concurrently. simplecs.c is a stripped
down version that is easier to read, but does not check for errors.

The dynamic spawning of processes is demonstrated by forkcs.c. It first initializes one process as
server with no clients, then forks to create new processes and connects to them with VT spawn().
This is repeated recursively. Communication is done via pipes and logged in the new communi-
cators.

forkcs2.c is a variation of the previous example which also uses fork and pipes, but creates the
additional processes at the beginning without relying on dynamic spawning.
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Chapter 6

Structured Tracefile Format

6.1 Introduction

The Structured Trace File Format (STF) is a format that stores data in several physical files by
default. This chapter explains the motivation for this change and provides the technical back-
ground to configure and work with the new format. It is safe to skip over this chapter because all
configuration options that control writing of STF have reasonable default values.

The development of STF was motivated by the observation that the conventional approach of
handling trace data in a single trace file is not suitable for large applications or systems, where
the trace file can quickly grow into the tens of Gigabytes range. On the display side, such huge
amounts of data cannot be squeezed into one display at once. Mechanisms must be provided to
start at a coarser level of display and then resolve the display into more detailed information.

A coarse view of the data will be represented by frames, which cover different parts of the trace
data and provide previews for these parts, the so called thumbnails. Usually several frames exist
in one trace and the user will be able to navigate through the frames and select one or more to
request additional detailed information. The subdivision of a trace into frames can occur along
three principal dimensions:

along the time axis different frames represent different time intervals.

along the task/thread axis different frames represent different threads or processes

along the kind of trace data a frame can contain any combination of the following categories
of data: state changes, collective operations, point-to-point messages, counter values, and
finally file I/O data (for MPI-I/O, if supported).

For any application, the subdivision of trace data into frames can be defined at runtime by com-
piling calls to the frame definition routines in the ITC API (see section 7.8) into the executable, or
before starting the application by specifying the configuration options discussed in section 8. It is
important to point out that frames are independent of the physical storing of data in files, which is
controlled by another set of configuration options.

These requirements necessitate a more powerful data organization than the previous ITA tracefile
format can provide. In response to this, the Structured Tracefile Format (STF) has been devel-
oped. The aim of the STF is to provide a file format which:

• can arbitrarily be partitioned into several files, each one containing a specific subset of the
data
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• allows fast random access and easy extraction of data

• is extensible, portable, and upward compatible

• is clearly defined and structured

• can efficiently exploit parallelism for reading and writing

• is as compact as possible

The traditional tracefile format is only suitable for small applications, and cannot efficiently be
written in parallel. Also, it was designed for reading the entire file at once, rather than for extracting
arbitrary data. The structured tracefile implements these new requirements, with the ability to
store large amounts of data in a more compact form.

6.2 STF Components

A structured tracefile actually consists of a number of files as shown in the figure 6.1. Depending
on the number of frames and their distribution to actual files, the following component files will be
written, with <trace> being the tracefile name that can be automatically determined or set by the
LOGFILE-NAME directive:

• one index file with the name <trace>.stf

• one record declaration file with the name <trace>.stf.dcl

• one frame file with the name <trace>.stf.frm

• one statistics file with the name <trace>.stf.sts

• one message file with the name <trace>.stf.msg

• one global operation file with the name <trace>.stf.gop

• one or more process files with the name <trace>.stf.pr.<index>

• for the above three kinds of files, one anchor file each with the added extension .anc

The records for routine entry/exit and counters are contained in the process files. The anchor files
are used by ITA to “fast-forward” within the record files; they can be deleted, but that may result in
slower operation of ITA.

Please make sure that you use different names for traces from different runs; otherwise you will
experience difficulties in identifying which process files belong to an index file, and which ones
are left over from a previous run. To catch all component files, use the stftool with the --remove
option to delete a STF file, or put the files into single-file STF format for transmission or archival
with the stftool --convert option (see section 6.4.1).

The number of actual process files will depend on the setting of the STF-USE-HW-STRUCTURE
and STF-PROCS-PER-FILE configuration options described below.
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Definitions
Declaration file
Frame file
Data/Anchor files
Statistics fileFunction declarations

Region declarations
SCL declarations
Counter declarations
...

Frame 1
Thumbnail 1
Thumbnail 2
Frame 2
...

Enter/Exit records Enter/exit anchors Function statistics
Message statistics
...

Message records Message anchors

... ...

Index file

Declaration file

Data files Anchor files Statistics file

Frame file

Figure 6.1: STF components

6.3 Single-File STF

As a new option in ITC, the trace data can be saved in the single-file STF format. This format is
selected by specifying the LOGFILE-FORMAT STFSINGLE configuration directive, and it causes
all the component files of an STF trace to be combined into one file with the extension .single.stf.
The logical frame structure is preserved, as are the precomputed thumbnails. The drawback of
the single-file STF format is that no I/O parallelism can be exploited when writing the tracefile.

Reading it for analysis with ITA is only marginally slower than the normal STF format, unless the
operating system imposes a performance penality on parallel read accesses to the same file.

6.4 Configuring STF

The two main aspects of the STF behavior that can be configured using directives in the ITC
configuration file or the equivalent environment variables as described in section 8 are:

Frame definition: frames can be defined by a regular subdivision of the process and execution
time space, and also depend on the hardware structure of the machine (where all of the
processes are running on the same node in one frame).

Mapping to files: frames are just a logical concept, and need not coincide with the set of files
actually written. ITC allows the event data to be partitioned in the process files by blocking,
or coinciding with the hardware structure, such that events from processes running on the
same node end up in one file.

The most important mechanisms for defining frames supported in ITC are:
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FRAME-USE-HW-STRUCTURE combines all processes running on the same node into the
same frame

PROCS-PER-FRAME <number> limits the number of processes that can be put in a frame

SECONDS-PER-FRAME <timespec > divides frames by time so that no frame corresponds to
more than <timespec> of execution

FRAMES-PER-RUNTIME <num > it adapts the duration so that the given number of frames is
achieved.

DATA-PER-FRAME <sizespec > divides frames in time whenever the data collected by all pro-
cesses exceeds the given freshold

To determine the file layout, the following options can be used:

STF-USE-HW-STRUCTURE will save the local events for all processes running on the same
node into one process file

STF-PROCS-PER-FILE <number > limits the number of processes whose events can be written
in a single process file

STF-CHUNKSIZE <bytes > determines at which intervals the anchors are set

All of these options are explained in more detail in the VT CONFIG chapter.

6.4.1 Structured Trace File Manipulation

Synopsis

stftool <input file> <config options>
--help
--version

Description

The stftool utility program reads a structured trace file (STF) in normal or single-file format. It
can perform various operations with this file:

• extract all or a subset of the trace data (default)
• convert the file format without modifying the content (--convert)
• list the components of the file (--print-files)
• remove all components (--remove)
• rename or move the file (--move)
• manipulate frames in the file (--redo-frames)
• list frames, thumbnails, statistics (--print-frames, --print-thumbnails, --print-statistics)

The output and behaviour of stftool is configured similarly to ITC: with a config file, environ-
ment variables and command line options. The environment variable VT CONFIG can be set
to the name of a ITC configuration file. If the file exists and is readable, then it is parsed first.
Its settings are overriden with environment variables, which in turn are overridden by config
options on the command line.

All config options can be specified on the command line by adding the prefix ”--” and listing
its arguments after the keyword. The output format is derived automatically from the suffix of
the output file. You can write to stdout by using ”-” as filename; this defaults to writing ASCII
VTF.
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These are examples of converting the entire file into different formats:
stftool example.stf --convert example.avt # ASCII
stftool example.stf --convert - # ASCII to stdout
stftool example.stf --convert - --logfile-format SINGLESTF |

gzip -c >example.single.stf.gz # gzipped single-file STF

Without the --convert switch one can extract certain parts, but only write VTF:
stftool example.stf --frames 1

--logfile-name example_frame1.avt # extract frame #1 as ASCII
stftool example.stf --request 1s:5s

--logfile-name example_1s5s.bvt # extract interval as binary

All options can be given as environment variables. The format of the config file and environ-
ment variables are described in more detail in the documentation for VT CONFIG.

Supported Directives

--convert
Syntax : [<filename>]
Default : off
Converts the entire file into the file format specified with --logfile-format or the filename
suffix. Options that normally select a subset of the trace data are ignored when this low-
level conversion is done. Without this flag writing is restricted to ASCII format, while this
flag can also be used to copy any kind of STF trace.

--move
Syntax : [<file/dirname>]
Default : off
Moves the given file without otherwise changing it. The target can be a directory.

--remove
Syntax :
Default : off
Removes the given file and all of its components.

--print-files
Syntax :
Default : off
List all components that are part of the given STF file, including their size. This is similiar
to ”ls -l”, but also works with single-file STF.

--print-statistics
Syntax :
Default : off
Prints the precomputed statistics of the input file to stdout.

--print-frames
Syntax :
Default : off
Prints a list of all frames in the input file to stdout.

--print-thumbnails
Syntax :
Default : off
Prints the precomputed thumbnails of each frame in the input file to stdout. Implies
PRINT-FRAMES.

--print-threads
Syntax :
Default : off
Prints information about each native thread that was encountered by ITC when generat-
ing the trace.
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--print-errors
Syntax :

Default : off

Prints the errors that were found in the application.
--redo-frames

Syntax :

Default : off

Modifies the frames of the STF file without copying it. By default it will keep all frames in
the file, but recalculate their thumbnails. You can control which frames are kept with the
FRAMES filter options and add new ones with FRAME.

--dump
Syntax :

Default : off

This is a shortcut for ”--logfile-name -” and ”--logfile-format ASCII”, i.e. it prints the trace
data to stdout.

--frames
Syntax : <triplets> | <pattern> [on|off]

Default : 0:N = all

With this option you can extract some of the predefined frames from the input file. By
default all frames are enabled, but if you use this option then only those listed explicitly
are extracted. The first form enables frames by their number, while the second one
matches against either the type or label of a frame. The second form overrides the first,
and a filter that matches the label of a frame overrides a filter that matches the type.

If the stftool is used to recalculate frames, then this option specifies which frames are
preserved.

--request
Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

This option has the same arguments as the --frame option below, but in contrast to
defining a new frame, it restricts the data that is written into the new trace to that which
matches the arguments. This option can be used more than once and then data match-
ing any request is written. In addition to those categories mentioned for a frame, ER-
RORS and REQUESTS are also supported categories.

--ticks
Syntax :

Default : off

Setting this option to ’on’ lets stftool interpret all timestamps as ticks (rather than seconds,
miliseconds etc). Given time values are converted into seconds and then truncated
(floor).

--logfile-name
Syntax : <file name>

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or
the current working directory of the process writing it.

If unspecified, then the name is the name of the program plus ”.avt” for ASCII, ”.stf” for
STF and ”.single.stf” for single STF tracefiles. If one of these suffices is used, then they
also determine the logfile format, unless the format is specified explicitly.

In the stftool the name must be specified explicitly, either by using this option or as
argument of the --convert or --move switch.

--logfile-format
Syntax : [ASCII|STF|STFSINGLE|SINGLESTF]

Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all
trace data is written into one file. It is human-readable.
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The Structured Trace File (STF) is a binary format which supports storage of trace data
in several files and allows ITA to analyse the data without loading all of it, so it is more
scalable. Writing it is only supported by ITC at the moment.
One trace in STF format consists of several different files which are referenced by one
index file (.stf). The advantage is that different processes can write their data in paral-
lel (see STF-PROCS-PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of
these files into one (.single.stf), which can be read without unpacking them again. How-
ever, this format does not support distributed writing, so for large program runs with many
processes the generic STF format is better.

--extended-vtf
Syntax :
Default : off in ITC, on in stftool
Several events can only be stored in STF, but not in VTF. ITC libraries default to writing
valid VTF trace files and thus skip these events. This option enables writing of non-
standard VTF records in ASCII mode that ITA would complain about. In the stftool the
default is to write these extended records, because the output is more likely to be parsed
by scripts rather than ITA.

--matched-vtf
Syntax :
Default : off
When converting from STF to ASCII-VTF communication records are usually split up into
conventional VTF records. If this option is enabled, an extended format is written, which
puts all information about the communication into a single line.

--verbose
Syntax : [on|off|<level>]
Default : on
Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.
--frame

Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

This option defines a new frame for certain categories and threads. The <duration> cor-
responds to SECONDS-PER-FRAME, but the value is valid for this frame type alone. If a
window is given (in the form <timespec>:<timespec> with at least one unit descriptor),
frames are created only inside this time interval. It has the usual format of a time value,
with one exception: the unit for seconds ”s” is not optional to distinguish it from a thread
triplet, i.e. use ”10s” instead of just ”10”. The <type> can be any kind of string in single or
double quotation marks, but it should uniquely identify the kind of data combined into this
frame. Valid <categories> are FUNCTIONS, SCOPES, OPENMP, FILEIO, COUNTERS,
MESSAGES, COLLOPS.
All of the arguments are optional and default to ”unnamed frame”, all threads, all cate-
gories and the whole time interval. They can be separated by commas or spaces and it
is possible to mix them as desired.

--thumbnail
Syntax : <pattern> [on|off]
Default : on
Enables or disables those thumbnails whose name matches the pattern.

--message-thumb-size
Syntax : <size>
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Default : 32
This option limits the size of the ”Sent Message Statistics” thumbnail in the x and y di-
rections. Without this limit the thumbnail would require space proportional to the number
of processes squared, which does not scale for large number of processes.

SEE ALSO

VT CONFIG(3)

6.4.2 Expanded ASCII output of STF files

Synopsis

xstftool <STF file> [stftool options]

Valid options are those that work together with ”stftool --dump”, the most important ones
being:

• --request: extract a subset of the data
• --frames: extract trace data of certain frames
• --matched-vtf: put information about complex events like messages and collective oper-

ations into one line

Description

The xstftool is a simple wrapper around the stftool and the expandvtlog.pl Perl script which
tells the the stftool to dump a given Structured Trace Format (STF) file in ASCII format and
uses the script as a filter to make the output more readable.

It is intended to be used for doing custom analysis of trace data with scripts that parse the
output to extract information not provided by the existing tools, or for situations where a few
shell commands provide the desired information more quickly than a graphical analysis tool.

Output

The output has the format of the ASCII Vampir Trace Format (VTF), but entities like function
names are not represented by integer numbers that cannot be understood without remem-
bering their definitions, but rather inserted into each record. The CPU numbers that encode
process and thread ranks resp. groups are also expanded.

Examples

The following examples compare the output of ”stftool --dump” with the expanded output of
”xstftool”:

• definition of a group
DEFGROUP 2147942402 "All_Processes" NMEMBS 2 2147483649 2147483650
DEFGROUP All_Processes NMEMBS 2 "Process_0" "Process_2"

• a counter sample on thread 2 of the first process
8629175798 SAMP CPU 131074 DEF 6 UINT 8 3897889661
8629175798 SAMP CPU 2:1 DEF "PERF_DATA:PAPI_TOT_INS" UINT 8 3897889661
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Chapter 7

User-level Instrumentation with the
API

7.1 The ITC API

The ITC library provides the user with a number of routines that control the profiling library
and record user-defined activities, define groups of processes, define performance counters and
record their values, and finally define and create frames. Header files with the necessary param-
eter, macro and function declarations are provided in the include directory: VT.h for ANSI C and
C++ and VT.inc for Fortran 77 and Fortran 90. It is strongly recommended to include these header
files if any ITC API routines are to be called.

#define VT VERSION
API version constant.
It is incremented each time the API changes, even if the change does not
break compatibility with the existing API. Therefore you should check against
VT VERSION COMPATIBILITY to determine whether your program is compatible with
the ITC library or to compile differently.

#define VT VERSION COMPATIBILITY
Oldest API definition which is still compatible with the current one.
This is set to the current version each time an API change can break programs written
for the previous API. For example, a program written for VT VERSION 2090 will work
with API 3000 if VT VERSION COMPATIBILITY remained at 2090. It may even work
without modifications when VT VERSION COMPATIBILITY was increased to 3000,
but this should be checked.
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enum VT ErrorCode
error codes returned by ITC API.

Enumeration values:
VT OK OK.

VT ERR NOLICENSE no valid license found.

VT ERR NOTIMPLEMENTED Not (yet?) implemented.

VT ERR NOTINITIALIZED Not initialised.

VT ERR BADREQUEST Invalid request type.

VT ERR BADSYMBOLID Wrong symbold id.

VT ERR BADSCLID wrong SCL id.

VT ERR BADSCL wrong SCL.

VT ERR BADFORMAT wrong format.

VT ERR BADKIND Wrong kind found.

VT ERR NOMEMORY Could not get memory.

VT ERR BADFILE Error while handling file.

VT ERR FLUSH Error while flushing.

VT ERR BADARG wrong argument.

VT ERR NOTHREADS no worker threads.

VT ERR BADINDEX wrong thread index.

VT ERR COMM communication error.

VT ERR INVT ITC API called while inside an ITC function.

VT ERR IGNORE non-fatal error code.

Suppose you instrumented your C source code for the API with VT VERSION equal to 3100.
Then you could add the following code fragment to detect incompatible changes in the API:
#include <VT.h>
#if VT VERSIONCOMPATIBILITY > 3100
# error ITC API is no longer compatible with our calls
#endif

Of course, breaking compatibility that way will be avoided at all costs. Beware that you must
compare against a fixed number and not VT VERSION, because VT VERSION will always be
greater or equal VT VERSION COMPATIBILITY.

To make the instrumentation work again after such a change, one can either just update the
instrumentation to accommodate for the change or even provide different instrumentation that is
chosen by the C preprocessor based on the value of VT VERSION.

7.2 Initialization, Termination and Control

ITC is automatically initialized within the execution of the MPI Init() routine. During the execution of
the MPI Finalize() routine, the trace data collected in memory or in temporary files is consolidated
and written into the permanent trace file(s), and ITC is terminated. Thus, it is an error to call ITC
API functions before MPI Init() has been executed or after MPI Finalize() has returned.

In non-MPI applications it may be necessary to start and stop ITC explicitly. These calls also help
to write programs and libraries that use VT without depending on MPI.
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int VT initialize (int ∗ argc , char ∗∗∗ argv )
Initialize ITC and underlying communication.
VT initialize(), VT getrank(), VT finalize() can be used to write applications or libraries
which work both with and without MPI, depending on whether they are linked with
libVT.a plus MPI or with libVTcs.a (distributed tracing) and no MPI.
If the MPI that ITC was compiled for provides MPI Init thread(), then VT init() will call
MPI Init thread() with the parameter required set to MPI THREAD FUNNELED. This
is sufficient to initialize multithreaded applications where only the main thread calls
MPI. If your application requires a higher thread level, then either use MPI Init thread()
instead of VT init() or (if VT init() is called e.g. by your runtime environment) set the
environment variable VT THREAD LEVEL to a value of 0 till 3 to choose thread levels
MPI THREAD SINGLE till MPI THREAD MULTIPLE.
It is not an error to call VT initialize() twice or after a MPI Init().
In a MPI application written in C the program’s parameters must be passed, because
the underlying MPI might require them. Otherwise they are optional and 0 resp. a
NULL pointer may be used. If parameters are passed, then the number of parameters
and the array itself may be modified, either by MPI or ITC itself.
ITC assumes that (∗argv)[0] is the executable’s name and uses this string to find the
executable and as the basename for the default logfile name. Other parameters are
ignored unless there is the special ”–tracecollector-args” parameters: then all following
parameters are interpreted as configuration options, written with a double hyphen as
prefix and a hyphen instead of underscores (e.g. –tracecollector-args –logfile-format
BINARY –logfile-prefix /tmp). These parameters are then removed from the argv array,
but not freed. To continue with the program’s normal parameters, –tracecollector-
args-end may be used. There may be more than one block of ITC arguments on the
command line.

Fortran
VTINIT( ierr )

Java
void initialize( )

Parameters:
argc a pointer to the number of command line arguments

argv a pointer to the program’s command line arguments
Returns:

error code

int VT finalize (void)
Finalize ITC and underlying communication.
It is not an error to call VT finalize() twice or after a MPI Finalize().

Fortran
VTFINI( ierr )

Java
void fini( )

Returns:
error code
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int VT getrank (int ∗ rank )
Get process index (same as MPI rank within MPI COMM WORLD).
Beware that this number is not unique in applications with dynamic process spawn-
ing.

Fortran
VTGETRANK( rank, ierr )

Java
int getRank()

Return values:
rank process index is stored here

Returns:
error code

The following functions control the tracing of threads in a multithreaded application.

int VT registerthread (int thindex )
Registers a new thread with ITC under the given number.
Threads are numbered starting from 0, which is always the thread that has called
VT initialize() resp. MPI Init(). The call to VT registerthread() is optional: a thread
that uses ITC without having called VT registerthread() is automatically assigned the
lowest free index. If a thread terminates, then its index becomes available again and
might be reused for another thread.
Calling VT registerthread() when the thread has been assigned an index already is an
error, unless the argument of VT registerthread() is equal to this index. The thread is
not (re)registered in case of an error.

Java
void registerThread( int thindex )

Parameters:
thindex thread number, only used if >= 0

Returns:
error code:

• VT ERR BADINDEX - thread index is currently assigned to another thread
• VT ERR BADARG - thread has been assigned a different index already
• VT ERR NOTINITIALIZED - ITC wasn’t initialized yet

int VT registernamed (const char ∗ threadname , int thindex )
Registers a new thread with ITC under the given number and name.
Threads with the same number cannot have different names. If you try that, the thread
uses the number, but not the new name.

Java
void registerThread( final String threadname, int thindex )

Parameters:
threadname desired name of the thread, or NULL/empty string if no name

wanted

thindex desired thread number, pass negative number to let ITC pick a number
Returns:

error code, see VT registerthread()
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int VT getthrank (int ∗ thrank )
Get thread index within process.
Either assigned automatically by ITC or manually with VT registerthread().

Fortran
VTGETTHRANK( thrank, ierr )

Java
int getThreadRank()

Return values:
thrank thread index within current thread is stored here

Returns:
error code

The recording of performance data can be controlled on a per-process basis by calls to the
VT traceon() and VT traceoff() routines: a thread calling VT traceoff() will no longer record any
state changes, MPI communication or counter events. Tracing can be re-enabled by calling the
VT traceon() routine. The collection of statistics data is not affected by calls to these routines.
With the API routine VT tracestate() a process can query whether events are currently being
recorded.

void VT traceoff (void)
Turn tracing off for thread if it was enabled, does nothing otherwise.

Fortran
VTTRACEOFF( )

Java
void traceOff()

void VT traceon (void)
Turn tracing on for thread if it was disabled, otherwise do nothing.
Cannot enable tracing if ”PROCESS/CLUSTER NO” was applied to the process in the
configuration.

Fortran
VTTRACEON( )

Java
void traceOn()
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int VT tracestate (int ∗ state )
Get logging state of current thread.
Set by config options PROCESS/CLUSTER, modified by VT traceon/off().
There are three states:

• 0 = thread is logging
• 1 = thread is currently not logging
• 2 = logging has been turned off completely

Note that different threads within one process may be in state 0 and 1 at the same
time because VT traceon/off() sets the state of the calling thread, but not for the whole
process.
State 2 is set via config option ”PROCESS/CLUSTER NO” for the whole process and
cannot be changed.

Fortran
VTTRACESTATE( state, ierr )

Java
int traceState()

Return values:
state is set to current state

Returns:
error code

With the ITC configuration mechanisms described in chapter VT CONFIG, the recording of state
changes can be controlled per symbol or activity. For any defined symbol, the VT symstate()
routine returns whether data recording for that symbol has been disabled.

int VT symstate (int statehandle , int ∗ on )
Get filter state of one state.
Set by config options SYMBOL, ACTIVITY.
Note that a state may be active even if the thread’s logging state is ”off”.

Fortran
VTSYMSTATE( statehandle, on, ierr )

Java
int symState( int statehandle )

Parameters:
statehandle result of VT funcdef() or VT symdef()

Return values:
on set to 1 if symbol is active

Returns:
error code

ITC minimizes the instrumentation overhead by first storing the recorded trace data locally in each
processor’s memory and saving it to disk only when the memory buffers are filled up. Calling the
VT flush() routine forces a process to save the in-memory trace data to disk, and mark the duration
of this in the trace. After returning, ITC continues normally.
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int VT flush (void)
Flushes all trace records from memory into the flush file.
The location of the flush file is controlled by options in the config file. Flushing will be
recorded in the trace file as entering and leaving the state VT API:TRACE FLUSH with
time stamps that indicate the duration of the flushing. Automatic flushing is recorded
as VT API:AUTO FLUSH.

Fortran
VTFLUSH( ierr )

Java
void flush( )

Returns:
error code

Please refer to section 8 to learn about the MEM-BLOCKSIZE and MEM-MAXBLOCKS configu-
ration directives that control ITC’s memory usage.

ITC makes its internal clock available to applications, which can be useful to write instrumentation
code that works with MPI and non-MPI applications:

double VT timestamp (void)
Returns monotonously increasing time stamps that measure seconds, or
VT ERR NOTINITIALIZED.
Time stamps are not guaranteed to be synchronized between processes. Within each
process they are always larger than the value returned by VT timestart().

Fortran
DOUBLE PRECISION VTSTAMP( )

Java
double timeStamp( )

double VT timestart (void)
Returns point in time when process started, or VT ERR NOTINITIALIZED.

Fortran
DOUBLE PRECISION VTTIMESTART( )

Java
double timeStart( )

7.3 Defining and Recording Source Locations

Source locations can be specified and recorded in two different contexts:

State changes, associating a source location with the state change. This is useful to record
where a routine has been called, or where a code region begins and ends.

Communication events, associating a source location with calls to MPI routines, e.g. calls to
the send/receive or collective communication and I/O routines.

To minimize instrumentation overhead, locations for the state changes and communication events
are referred to by integer location handles that can be defined by calling the new API routine
VT scldef(), which will automatically assign a handle. The old API routine VT locdef() which
required the user to assign a handle value has been removed. A source location is a pair of a
filename and a line number within that file.
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int VT scldef (const char ∗ file , int line nr , int ∗ sclhandle )
Allocates a handle for a source code location (SCL).

Fortran
VTSCLDEF( file, line nr, sclhandle, ierr )

Java
int sclDef( final String file, int line nr )

Parameters:
file file name

line nr line number in this file, counting from 1
Return values:

sclhandle the int it points to is set by ITC
Returns:

error code

Some functions require a location handle, but they all accept VT NOSCL instead of a real handle:

#define VT NOSCL
special SCL handle: no location available.

ITC automatically records all available information about MPI calls. On some systems, the source
location of these calls is automatically recorded. On the remaining systems, the source location
of MPI calls can be recorded by calling the VT thisloc() routine immediately before the call to the
MPI routine, with no intervening MPI or ITC API calls.

int VT thisloc (int sclhandle )
Set source code location for next activity that is logged by ITC.
After being logged it is reset to the default behaviour again: automatic PC tracing if
enabled in the config file and supported or no SCL otherwise.

Fortran
VTTHISL( sclhandle, ierr )

Java
void thisLoc( int sclhandle )

Parameters:
sclhandle handle defined either with VT scldef()

Returns:
error code

7.4 Defining and Recording Functions or Regions

ITA can display and analyze general (properly nested) state changes, relating to subroutine calls,
entry/exit to/from code regions and other activities occurring in a process. ITA implements a two-
level model of states: a state is referred to by an activity name that identifies a group of states, and
the state (or symbol) name that references a particular state in that group. For instance, all MPI
routines are part of the activity MPI, and each one is identified by its routine name, e.g. MPI Send
for C and MPI SEND for Fortran.

The ITC API allows the user to define arbitrary activities and symbols and to record entry and exit
to/from them. In order to reduce the instrumentation overhead, symbols are referred to by integer
handles that can be managed automatically (using the VT funcdef() interface) or assigned by the
user (using the old VT symdef() routine). All activities and symbols must be defined by each
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process that uses them, but it is no longer necessary to define them consistently on all processes
(see UNIFY-SYMBOLS).

Optionally, information about source locations can be recorded for state enter and exit events by
passing a non-null location handle to the VT enter()/VT leave() or VT beginl()/VT endl() routines.

7.4.1 New Interface

To simplify the use of user-defined states, a new interface has been introduced for ITC. It manages
the symbol handles automatically, freeing the user from the task of assigning and keeping track of
symbol handles, and has a reduced number of arguments. Furthermore, the performance of the
new routines has been optimized, reducing the overhead of recording state changes.

To define a new symbol, first the respective activity needs to have been created by a call to the
VT classdef() routine. A handle for that activity is returned, and with it the symbol can be defined
by calling VT funcdef(). The returned symbol handle is passed f.i. to VT enter() to record a state
entry event.

int VT classdef (const char ∗ classname , int ∗ classhandle )
Allocates a handle for a class name.
The classname may consist of several components separated by a colon (:). Lead-
ing and trailing colons are ignored. Several colons in a row are treated as just one
separator.

Fortran
VTCLASSDEF( classname, classhandle, ierr )

Java
int classDef( final String classname )

Parameters:
classname name of the class

Return values:
classhandle the int it points to is set by ITC

Returns:
error code
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int VT funcdef (const char ∗ symname , int classhandle , int ∗ statehandle )
Allocates a handle for a state.
The symname may consist of several components separated by a colon (:). If that’s
the case, then these become the parent class(es). Leading and trailing colons are
ignored. Several colons in a row are treated as just one separator.
This is a replacement for VT symdef() which doesn’t require the application to provide
a unique numeric handle.

Fortran
VTFUNCDEF( symname, classhandle, statehandle, ierr )

Java
int funcDef( final String symname, int classhandle )

Parameters:
symname name of the symbol

classhandle handle for the class this symbol belongs to, created with
VT classdef(), or VT NOCLASS, which is an alias for ”Application” if the sym-
name doesn’t contain a class name and ignored otherwise

Return values:
statehandle the int it points to is set by ITC

Returns:
error code

#define VT NOCLASS
special value for VT funcdef(): put function into the default class ”Application”.

7.4.2 Old Interface

To define a new symbol, first determine which value should be used for the symbol handle, and
then call the VT symdef() routine, passing the symbol and activity names, plus the handle value.
It is not necessary to define the activity itself. Care must be taken to avoid using the same handle
value for different symbols.

int VT symdef (int statehandle , const char ∗ symname , const char ∗ activity )
Defines the numeric statehandle as shortcut for a state.
This function will become obsolete and should not be used for new code. Both sym-
name and activity may consist of more than one component, separated by a colon
(:).
Leading and trailing colons are ignored. Several colons in a row are treated as just
one separator.

Fortran
VTSYMDEF( code, symname, activity, ierr )

Parameters:
statehandle numeric value chosen by the application

symname name of the symbol

activity name of activity this symbol belongs to
Returns:

error code
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7.4.3 State Changes

The following routines take a state handle defined with either the new or old interface. Handles
defined with the old interface incur a higher overhead in these functions, because they must be
mapped to the real internal handles. Therefore it is better to use the new interface, so that support
for the old interface may eventually be removed.

ITC distinguishes between code regions (marked with VT begin()/VT end()) and functions
(marked with VT enter()/VT leave()). The difference is only relevant when passing source code
locations:

int VT begin (int statehandle )
Marks the beginning of a region with the name that was assigned to the symbol.
Regions should be used to subdivide a function into different parts or to mark the
location where a function is called.

Notes:
If automatic tracing of source code locations (aka PC tracing) is supported, then
ITC will log the location where VT begin() is called as source code location for
this region and the location where VT end() is called as SCL for the next part of
the calling symbol (which may be a function or another, larger region).

If a SCL has been set with VT thisloc(), then this SCL will be used even if PC tracing
is supported.
The functions VT enter() and VT leave() have been added that can be used to mark
the beginning and end of a function call within the function itself. The difference is that
a manual source code location which is given to VT leave() cannot specify where the
function call took place, but rather were the function is left. So currently it has to be
ignored until the trace file format can store this additional information.
If PC tracing is enabled, then the VT leave routine stores the SCL where the in-
strumented function was called as SCL for the next part of the calling symbol. In
other words, it skips the location where the function is left, which would be recorded if
VT end() were used instead.
VT begin() adds an entry to a stack which can be removed with (and only with)
VT end().

Fortran
VTBEGIN( statehandle, ierr )

Java
void begin( int statehandle )

Parameters:
statehandle handle defined either with VT symdef() or VT funcdef()

Returns:
error code

int VT beginl (int statehandle , int sclhandle )
Shortcut for VT thisloc( sclhandle ); VT begin( statehandle ).

Fortran
VTBEGINL( statehandle, sclhandle, ierr )

Java
void begin( int statehandle, int sclhandle )
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int VT end (int statehandle )
Marks the end of a region.
Has to match a VT begin(). The parameter was used to check this, but this is no longer
done to simplify instrumentation; now it is safe to pass a 0 instead of the original state
handle.

Fortran
VTEND( statehandle, ierr )

Java
void end( int statehandle )

Parameters:
statehandle obsolete, pass anything you want

Returns:
error code

int VT endl (int statehandle , int sclhandle )
Shortcut for VT thisloc( sclhandle ); VT end( statehandle ).

Fortran
VTENDL( statehandle, sclhandle, ierr )

Java
void end( int statehandle, int sclhandle )

int VT enter (int statehandle , int sclhandle )
Mark the beginning of a function.
Usage similar to VT beginl(). See also VT begin().

Fortran
VTENTER( statehandle, sclhandle, ierr )

Java
void enter( int statehandle, int sclhandle )

Parameters:
statehandle handle defined either with VT symdef() or VT funcdef()

sclhandle handle, defined by VT scldef. Use VT NOSCL if you don’t have a
specific value.

Returns:
error code

int VT leave (int sclhandle )
Mark the end of a function.
See also VT begin().

Fortran
VTLEAVE( sclhandle, ierr )

Java
void leave( int sclhandle )

Parameters:
sclhandle handle, defined by VT scldef. Currently ignored, but is meant to spec-

ify the location of exactly where the function was left in the future. Use
VT NOSCL if you don’t have a specific value.

Returns:
error code
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int VT wakeup (void)
Triggers the same additional actions as logging a function call, but without actually
logging a call.
When ITC logs a function entry or exit it might also execute other actions, like sampling
and logging counter data. If a function runs for a very long time, then ITC has no
chance to execute these actions. To avoid that, the programmer can insert calls to this
function into the source code of the long-running function.

Fortran
VTWAKEUP( ierr )

Java
void wakeup()

Returns:
error code

7.5 Defining and Recording Overlapping Scopes

int VT scopedef (const char ∗ scopename , int classhandle , int scl1 , int scl2 , int ∗
scopehandle )
In contrast to a state, which is entered and left with VT begin/VT end() resp.
VT enter/VT leave(), a scope does not follow a stack based approach. It is possible
to start a scope ”a”, then start scope ”b” and stop ”a” before ”b”:

|---- a -----|
|------ b -----|

A scope is identified by its name and class, just like functions. The source code
locations that can be associated with it are just additional and optional attributes; they
could be used to mark a static start and end of the scope in the source.
As functions, the scopename may consist of several components separated by a colon
(:).

Fortran
VTSCOPEDEF( scopename, classhandle, scl1, scl2, scopehandle, ierr )

Java
int scopeDef( final String scopename, int classhandle, int scl1, int scl2 )

Parameters:
scopename the name of the scope

classhandle the class this scope belongs to (defined with VT classdef())

scl1 any kind of SCL as defined with VT scldef(), or VT NOSCL

scl2 any kind of SCL as defined with VT scldef(), or VT NOSCL
Return values:

scopehandle set to a numeric handle for the scope, needed by VT scopebegin()
Returns:

error code
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int VT scopebegin (int scopehandle , int scl , int ∗ seqnr )
Starts a new instance of the scope previously defined with VT scopedef().
There can be more than one instance of a scope at the same time. In order to have
the flexibility to stop an arbitrary instance, ITC assigns an intermediate identifier to it
which can (but does not have to) be passed to VT scopeend(). If the application does
not need this flexibility, then it can simply pass 0 to VT scopeend().

Fortran
VTSCOPEBEGIN( scopehandle, scl, seqnr, ierr )

Java
int scopeBegin( int scopehandle, int scl )

Parameters:
scopehandle the scope as defined by VT scopedef()

scl in contrast to the static SCL given in the scope definition this one can vary
with each instance; pass VT NOSCL if not needed

Return values:
seqnr is set to a number that together with the handle identifies the scope in-

stance; pointer may be NULL
Returns:

error code

int VT scopeend (int scopehandle , int seqnr , int scl )
Stops a scope that was previously started with VT scopebegin().

Fortran
VTSCOPEEND( scopehandle, seqnr, scl )

Java
void scopeEnd( int scopehandle, int seqnr, int scl )

Parameters:
scopehandle identifies the scope that is to be terminated

seqnr 0 terminates the most recent scope with the given handle, passing the
seqnr returned from VT scopebegin() terminates exactly that instance

scl a dynamic SCL for leaving the scope

7.6 Defining Groups of Processes

ITC makes it possible to define an arbitrary, recursive group structure over the processes of an
MPI application, and ITA is able to display profiling and communication statistics for these groups.
Thus, a user can start with the top-level groups and walk down the hierarchy, “unfolding” interest-
ing groups into ever more detail until he arrives at the level of processes or threads.

Groups are defined recursively with a simple bottom-up scheme: the VT groupdef() routine builds
a new group from a list of already defined groups or processes, returning an integer group handle
to identify the newly defined group. The following handles are predefined:

enum VT Group
Enumeration values:

VT ME the calling thread/process.

VT GROUP THREAD Group of all threads.

VT GROUP PROCESS Group of all processes.

VT GROUP CLUSTER Group of all clusters.
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To refer to non-local processes, the lookup routine VT getprocid() translates between ranks in
MPI COMM WORLD and handles that can be used for VT groupdef():

int VT getprocid (int procindex , int ∗ procid )
Get global id for process which is identified by process index.
If threads are supported, then this id refers to the group of all threads within the pro-
cess, otherwise the result is identical to VT getthreadid( procindex, 0, procid ).

Fortran
VTGETPROCID( procindex, procid, ierr )

Java
int getProcID( int procindex );

Parameters:
procindex index of process (0 <= procindex < N )

Return values:
procidpointer to mem place where id is written to

Returns:
error code

The same works for threads:

int VT getthreadid (int procindex , int thindex , int ∗ threadid )
Get global id for the thread which is identified by the pair of process and thread index.

Fortran
VTGETTHREADID( procindex, thindex, threadid, ierr )

Java
int getThreadID( int procindex, int thindex )

Parameters:
procindex index of process (0 <= procindex < N )

thindex index of thread
Return values:

threadid pointer to mem place where id is written to
Returns:

error code
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int VT groupdef (const char ∗ name , int n members , int ∗ ids , int ∗ grouphandle )
Defines a new group and returns a handle for it.
Groups are distinguished by their name and their members. The order of group mem-
bers is preserved, which can lead to groups with the same name and same set of
members, but different order of these members.

Fortran
VTGROUPDEF( name, n members, ids[], grouphandle, ierr )

Java
int groupDef( final String name, int ids[] )

Parameters:
name the name of the group

n members number of entries in the ids array

ids array where each entry is either:

• VT ME
• VT GROUP THREAD
• VT GROUP PROCESS
• VT GROUP CLUSTER
• result of VT getthreadid(), VT getprocid() or VT groupdef()

Return values:
grouphandle handle for the new group, or old handle if the group was defined

already
Returns:

error code

To generate a new group that includes the processes with even ranks in MPI COMM WORLD,
one can code:
int *IDS = malloc(sizeof(*IDS)*(number_procs/2));
int i, even_group;
for( i = 0; i < number_procs; i += 2 )

VT getprocid (i, IDS + i/2);
VT groupdef (‘‘Even Group’’, number_procs/2, IDS, &even_group);

If threads are used, then they automatically become part of a group that is formed by all threads
inside the same process. The numbering of threads inside this group depends on the order in
which threads call VT because they are registered the first time they invoke VT. The order can be
controlled by calling VT registerthread() as the first API function with a positive parameter.

7.7 Defining and Recording Counters

ITC introduces the concept of counters to model numeric performance data that changes over the
execution time. Counters can be used to capture the values of hardware performance counters,
or of program variables (iteration counts, convergence rate, . . . ) or any other numerical quantity.
An ITC counter is identified by its name, the counter class it belongs to (similar to the two-level
symbol naming), and the type of its values (integer or floating-point) and the units that the values
are quoted in (e.g. MFlop/sec).

A counter can be attached to MPI processes to record process-local data, or to arbitrary groups.
When using a group, then each member of the group will have its own instance of the counter
and when a process logs a value it will only update the counter value of the instance the process
belongs to.

Similar to other ITC objects, counters are referred to by integer counter handles that are managed
automatically by the library.
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To define a counter, the class it belongs to must have been defined by calling VT classdef(). Then,
call VT countdef(), and pass the following information:

• the counter name

• the data type

enum VT CountData
Enumeration values:

VT COUNT INTEGER Counter measures 64 bit integer value, passed to
ITC API as a pair of high and low 32 bit integers.

VT COUNT FLOAT Counter measures 64 bit floating point value (native
format).

VT COUNT INTEGER64 Counter measures 64 bit integer value (native
format).

VT COUNT DATA mask to extract the data format.

• the kind of data

enum VT CountDisplay
Enumeration values:

VT COUNT ABSVAL counter shall be displayed with absolute values.

VT COUNT RATE first derivative of counter values shall be displayed.

VT COUNT DISPLAY mask to extract the display type.

• the semantic associated with a sample value

enum VT CountScope
Enumeration values:

VT COUNT VALID BEFORE the value is valid until and at the current
time.

VT COUNT VALID POINT the value is valid exactly at the current time,
and no value is available before or or after it.

VT COUNT VALID AFTER the value is valid at and after the current time.

VT COUNT VALID SAMPLE the value is valid at the current time and
samples a curve, so e.g.
linear interpolation between sample values is possible

VT COUNT SCOPE mask to extract the scope.

• the counter’s target, that is the process or group of processes it belongs to
(VT GROUP THREAD for a thread-local counter, VT GROUP PROCESS for a process-
local counter, or an arbitrary previously defined group handle)

• the lower and upper bounds

• the counter’s unit (an arbitrary string like FLOP, Mbytes)

59



CHAPTER 7. USER-LEVEL INSTRUMENTATION WITH THE API

int VT countdef (const char ∗ name , int classhandle , int genre , int target , const
void ∗ bounds , const char ∗ unit , int ∗ counterhandle )
Define a counter and get handle for it.
Counters are identified by their name (string) alone.

Fortran
VTCOUNTDEF( name, classhandle, genre, target, bounds[], unit, counterhandle,
ierr )

Parameters:
name string identifying the counter

classhandle class to group counters, handle must have been retrieved by
VT classdef

genre bitwise or of one value from VT CountScope, VT CountDisplay and VT -
CountData

target target which the counter refers to (VT ME, VT GROUP THREAD,
VT GROUP PROCESS, VT GROUP CLUSTER or thread/process-id or
user-defined group handle ).

bounds array of lower and upper bounds (2x 64 bit float, 2x2 32 bit integer, 2x
64 bit integer -> 16 byte)

unit string identifying the unit for the counter (like Volt, pints etc.)
Return values:

counterhandle handle identifying the defined counter
Returns:

error code

The integer counters have 64-bit integer values, while the floating-point counters have
a value domain of 64-bit IEEE floating point numbers. On systems that have no
64-bit int type in C, and for Fortran, the 64-bit values are specified using two 32-
bit integers. Integers and floats are passed in the native byte order, but for
VT COUNT INTEGER the integer with the higher 32 bits must be given first on all platforms:

VT COUNT INTEGER 32 bit integer (high) 32 bit integer (low)

VT COUNT INTEGER64 64 bit integer

VT COUNT FLOAT 64 bit float

At any time during execution, a process can record a new value for any of the defined counters
by calling one of the ITC API routines described below. To minimize the overhead, it is possible
to set the values of several counters with one call by passing an integer array of counter handles
and a corresponding array of values. In C, it is possible to mix 64-bit integers and 64-bit floating
point values in one value array; in Fortran, the language requires that the value array contains
either all integer or all floating point values.
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int VT countval (int ncounters , int ∗ handles , void ∗ values )
Record counter values.
Values are expected as two 4-byte integers, one 8-byte integer or one 8-byte double,
according to the counter it refers to.

Fortran
VTCOUNTVAL( ncounters, handles[], values[], ierr )

Parameters:
ncounters number of counters to be recorded

handles array of ncounters many handles (previously defined by VT countdef)

values array of ncounters many values, value[i] corresponds to handles[i].
Returns:

error code

The examples directory contains counterscopec.c , which demonstrates all of these facilities.

7.8 Defining Frames

Frames are a new concept implemented in the structured tracefile format (STF) as supported by
ITC (see section 6 for details about STF). A frame is a subset of a trace file, identified by any
combination of the following

• a time interval (start and end time), defined by calling VT framebegin() resp. VT frameend()

• a subset of threads, defined by who calls VT framedef()

• a subset of data categories:

enum VT Categories
Enumeration values:

VT CAT ANY DATA special value that matches everything.

VT CAT FUNCTIONS function entry/exits (strictly stack oriented).

VT CAT SCOPES scope start/ends (may overlap).

VT CAT OPENMP OpenMP support.

VT CAT FILEIO MPI-IO.

VT CAT COUNTERS counter values.

VT CAT MESSAGES one-to-one communication.

VT CAT COLLOPS communication among more than two threads.

ITC can automatically define frames controlled by the configuration mechanisms described in
chapter 8; it is, however, also possible to define frames and create instances of them with API
calls. For most applications, this will not be necessary—please use the configuration mechanisms
since the proper use of the frame API is quite complex.

A frame set is identified by its name and either belongs to (and contains) all threads of a process
or just those threads that define it:
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enum VT FrameScope
Enumeration values:

VT FRAME PROCESS register all threads of process.

VT FRAME THREAD register calling thread only.

ITC automatically assigns a frame handle for future reference to the newly defined frame set.
After definition, the processes can now create frames belonging to the frame set by starting data
collection into the frame and ending it later. Since a frame cannot contain disjoint time intervals
for any of its processes, starting to collect data into a frame creates a new instance of it, which will
be completed when the process ends data collection. Each frame is identified by a label string
passed with the frame start call.

The frame definition is handled by the VT framedef() routine:

int VT framedef (const char ∗ type , int categories , int target , int ∗ frame handle )
Define a frame.

Fortran
VTFRAMEDEF( type, categories, target, frame handle, ierr )

Java
int frameDef( final String type, int categories, int target )

Parameters:
type string which uniquely identifies frame (must not be NULL)

categories Ored values representing categories (enum VT Categories) to be
held in frame

target VT FRAME PROCESS for registering all threads in a process at once;
subsequent calls to VT framebegin/end must be done only once per frame
instance (the entry- and exit-points must be indicated by one thread only).
VT FRAME THREAD for registering each thread individualy; subsequent
calls to VT framebegin/end must be done by each thread.

Return values:
frame handle handle is stored here

Returns:
error code

To start collecting data into a frame (and thus create a new frame instance), call the
VT framebegin() routine, passing a label to identify the newly created frame instance. To end
an active frame instance, call the VT frameend() routine. Please note that all processes in a
frame have to call VT framebegin() and VT frameend() in a loosely synchronous way to create
a new instance - ITC will match up the first calls to VT framebegin() to start the first instance,
then the first calls to VT frameend() to stop that instance, starting over with the second calls
to VT framebegin() etc. It is possible to have arbitrary overlaps between frames with different
frame handles. If the frame set was defined with VT FRAME THREAD, then every thread in each
participating process must call these functions.
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int VT framebegin (const char ∗ label , int frame handle )
Let a given frame begin for calling thread (VT FRAME THREAD) or the whole process
(VT FRAME PROCESS).
For all threads in the frame this function must be called in the same order and equally
often.

Fortran
VTFRAMEBEGIN( label, framehandle, ierr )

Java
void frameBegin( final String label, int frame handle )

Parameters:
label string which identifies frame instance (may be empty)

frame handle handle identifying frame (from VT framedef)
Returns:

error code

int VT frameend (int frame handle )
Let a given frame end for calling thread (VT FRAME THREAD) or the whole process
(VT FRAME PROCESS).
For all threads in frame this function must be called in the same order and equally
often and must follow a VT framebegin.

Fortran
VTFRAMEEND( frame handle, ierr )

Java
void frameEnd( int frame handle )

Parameters:
frame handle handle identifying frame (from VT framedef)

Returns:
error code

7.9 Recording Communication Events

These are API calls that allow logging of message send and receive and MPI-style collective oper-
ations. Because they are modelled after MPI operations, they use the same kind of communicator
to define the context for the operation:

enum VT CommIDs
Logging send/receive events evaluates process rank local within the active communi-
cator, and matches events only if they are taking place in the same communicator (in
other words, it is the same behaviour as in MPI).
Defining new communicators is currently not supported, but the predefined ones can
be used.

Enumeration values:
VT COMM INVALID invalid ID, do not pass to ITC.

VT COMM WORLD global ranks are the same as local ones.

VT COMM SELF communicator that only contains the active process.
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int VT log sendmsg (int other rank , int count , int tag , int commid , int sclhandle )
Logs sending of a message.

Fortran
VTLOGSENDMSG( other rank, count, tag, commid, sclhandle, ierr )

Java
void logSendmsg( int other rank, int count, int tag, int commid, int sclhandle )

Parameters:
my rank rank of the sending process

other rank rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD,
VT COMM SELF)

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code

int VT log recvmsg (int other rank , int count , int tag , int commid , int sclhandle )
Logs receiving of a message.

Fortran
VTLOGRECVMSG( other rank, count, tag, commid, sclhandle, ierr )

Java
void logRecvmsg( int other rank, int count, int tag, int commid, int sclhandle )

Parameters:
my rank rank of the receiving process

other rank rank of the source process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD,
VT COMM SELF)

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code

The next three calls require a little extra care, because they generate events that not only have a
time stamp, but also a duration. This means that one needs to take a time stamp first, then do the
operation and finally log the event.
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int VT log msgevent (int sender , int receiver , int count , int tag , int commid , dou-
ble sendts , int sendscl , int recvscl )
Logs sending and receiving of a message.

Fortran
VTLOGMSGEVENT( sender, receiver, count, tag, commid, sendts, sendscl,
recvscl, ierr )

Java
void logMsgEvent( int sender, int receiver, int count, int tag, int commid, double
sendts, int sendscl, int recvscl )

Parameters:
sender rank of the sending process

receiver rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD,
VT COMM SELF)

sendts time stamp obtained with VT timestamp()

sendscl handle as defined by VT scldef() for the source code location where the
message was sent, or VT NOSCL

recvscl the same for the receive location
Returns:

error code

int VT log op (int opid , int commid , int root , int bsend , int brecv , double startts ,
int sclhandle )
Logs the duration and amount of transfered data of an operation for one process.

Fortran
VTLOGOP( opid, commid, root, bsend, brecv, startts, sclhandle, ierr )

Java
void logOp( int opid, int commid, int root, int bsend, int brecv, double startts, int
sclhandle )

Parameters:
opid id of the operation; must be one of the predefined constants in enum VT -

OpTypes

commid numeric ID for the communicator; see VT log sendmsg() for valid num-
bers

root rank of the root process in the communicator (ignored for operations without
root, must still be valid, though)

bsend bytes sent by process (ignored for operations that send no data)

brecv bytes received by process (ignored for operations that receive no data)

startts the start time of the operation (as returned by VT timestamp())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code
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int VT log opevent (int opid , int commid , int root , int numprocs , int ∗ bsend , int ∗
brecv , double ∗ startts , int sclhandle )
Logs the duration and amount of transfered data of an operation for all involved pro-
cesses at once.
ITC knows which processes send and receive data in each operation. Unused byte
counts are ignored when writing the trace, so they can be left uninitialized, but NULL
is not allowed as array address even if no entry is used at all.

Fortran
VTLOGOPEVENT( opid, commid, root, numprocs, bsend, brecv, startts, sclhan-
dle, ierr )

Java
void logOpEvent( int opid, int commid, int root, int numprocs, int bsend[], int
brecv[], double startts[], int sclhandle )

Parameters:
opid id of the operation; must be one of the predefined constants in enum VT -

OpTypes

commid numeric ID for the communicator; see VT log sendmsg() for valid num-
bers

root rank of the root process in the communicator (ignored for operations without
root, must still be valid, though)

numprocs the number of processes in the communicator

bsend bytes sent by process

brecv bytes received by process

startts the start time of the operation (as returned by VT timestamp())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code
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enum VT OpTypes
These are operation ids that can be passed to VT log op().
Their representation in the trace file matches that of the equivalent MPI operation.
User-defined operations are currently not supported.

Enumeration values:
VT OP INVALID undefined operation, should not be passed to ITC.

VT OP BARRIER

VT OP BCAST

VT OP GATHER

VT OP GATHERV

VT OP SCATTER

VT OP SCATTERV

VT OP ALLGATHER

VT OP ALLGATHERV

VT OP ALLTOALL

VT OP ALLTOALLV

VT OP REDUCE

VT OP ALLREDUCE

VT OP REDUCE SCATTER

VT OP SCAN

VT OP COUNT number of predefined operations.

Having a duration also introduces the problem of (possibly) having overlapping operations, which
has to be taken care of with the following two calls:
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int VT begin unordered (void)
Starts a period with out-of-order events.
Most API functions log events with just one time stamp which is taken when the event
is logged. That guarantees strict chronological order of the events.
VT log msgevent() and VT log opevent() are logged when the event has finished with
a start time taken earlier with VT timestamp(). This can break the chronological order,
e.g. like in the following two examples:

t1: VT timestamp () "start message"
t2: VT end() "leave function"
t3: VT log msgevent ( t1 ) "finish message"
t1: VT timestamp () "start first message"
t2: VT timestamp () "start second message"
t3: VT log msgevent ( t1 ) "finish first message"
t4: VT log msgevent ( t2 ) "finish second message"

In other words, it is okay to just log a complex event if and only if no other event is
logged between its start and end in this thread. ”logged” in this context includes other
complex events that are logged later, but with a start time between the other events
start and end time.
In all other cases one has to alert ITC of the fact that out-of-order events will follow
by calling VT begin unordered() before and VT end unnordered() after these events.
When writing the events into the trace file ITC increases a counter per thread when
it sees a VT begin unordered() and decrease it at a VT end unordered(). Events are
remembered and sorted until the counter reaches zero, or till the end of the data.
This means that:

• unordered periods can be nested,
• it is not necessary to close each unordered period at the end of the trace,
• but not closing them properly in the middle of a trace will force ITC to use a lot

more memory when writing the trace (proportional to the number of events till
the end of the trace).

Fortran
VTBEGINUNORDERED( ierr )

Java
void beginUnordered()

int VT end unordered (void)
Close a period with out-of-order events that was started with VT begin unordered().

Fortran
VTENDUNORDERED( ierr )

Java
void endUnordered()

7.10 Additional API Calls in libVTcs

int VT abort (void)
Abort a VT initialize() or VT finalize() call running concurrently in a different thread.
This call will not block, but it might still take a while before the aborted calls actually
return. They will return either successfully (if they have completed without aborting)
or with an error code.

Returns:
0 if abort request was sent successfully, else error code
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int VT clientinit (int procid , const char ∗ clientname , const char ∗∗ contact )
Initializes communication in a client/server application.
Must be called before VT initialize() in the client of the application. There are three
possibilities:

1. client is initialized first, which produces a contact string that must be passed to
the server (∗contact == NULL)

2. the server was started first, its contact string is passed to the clients (∗contact
== result of VT serverinit() with the prefix ”S” - this prefix must be added by the
application)

3. a process spawns children dynamically, its contact string is given to its children
(∗contact == result of VT serverinit() or VT clientinit())

Parameters:
procid All clients must be enumerated by the application. This will become the

process id of the local client inside its VT COMM WORLD. If the VTserver
is used, then enumeration must start at 1 because VTserver always gets
rank 0. Threads can be enumerated automatically by ITC or by the client by
calling VT registerthread().

clientname The name of the client. Currently only used for error messages.
Copied by ITC.

Return values:
contact Will be set to a string which tells other processes how to contact this

process. Guaranteed not to contain spaces. The client may copy this string,
but doesn’t have to, because ITC will not free this string until VT finalize() is
called.

Returns:
error code
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int VT serverinit (const char ∗ servername , int numcontacts , const char ∗
contacts [ ], const char ∗∗ contact )
Initializes one process as the server that contacts the other processes and coordinates
trace file writing.
The calling process always gets rank #0.
There are two possibilities:

1. collect all infos from the clients and pass them here (numcontacts >= 0, contacts
!= NULL)

2. start the server first, pass its contact string to the clients (numcontacts >= 0,
contacts == NULL)

This call replaces starting the VTserver executable in a seperate process. Parameters
that used to be passed to the VTserver to control tracing and trace writing can be
passed to VT initialize() instead.

Parameters:
servername similar to clientname in VT clientinit(): the name of the server. Cur-

rently only used for error messages. Copied by ITC.

numcontacts number of client processes

contacts contact string for each client process (order is irrelevant); copied by ITC
Return values:

contact Will be set to a string which tells spawned children how to contact this
server. Guaranteed not to contain spaces. The server may copy this string,
but doesn’t have to, because ITC will not free this string until VT finalize() is
called. ∗contact must have been set to NULL before calling this function.

Returns:
error code
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int VT attach (int root , int comm , int numchildren , int ∗ childcomm )
Connect to several new processes.
These processes must have been spawned already and need to know the contact
string of the root process when calling VT clientinit().
comm == VT COMM WORLD is currently not implemented. It has some design prob-
lems: if several children want to use VT COMM WORLD to recursively spawn more
processes, then their parents must also call VT attach(), because they are part of
this communicator. If the VTserver is part of the initial VT COMM WORLD, then
VT attach() with VT COMM WORLD won’t work, because the VTserver does not
know about the spawned processes and never calls VT attach().

Parameters:
root rank of the process that the spawned processes will contact

comm either VT COMM SELF or VT COMM WORLD: in the first case root must
be 0 and the spawned processes are connected to just the calling process.
In the latter case all processes that share this VT COMM WORLD must call
VT attach() and are included in the new communicator. root then indicates
whose contact infos were given to the children.

numchildren number of children that the spawning processes will wait for
Return values:

childcomm an identifier for a new communicator that includes the parent pro-
cesses in the same order as in their VT COMM WORLD, followed by
the child processes in the order specified by their procid argument in
VT clientinit(). The spawned processes will have access to this communi-
cator via VT get parent().

Returns:
error code

int VT get parent (int ∗ parentcomm )
Returns the communicator that connects the process with its parent, or
VT COMM INVALID if not spawned.

Return values:
parentcomm set to the communicator number that can be used to log communi-

cation with parents
Returns:

error code

7.11 C++ API

These are wrappers around the C API calls which simplify instrumentation of C++ source code
and ensure correct tracing if exceptions are used. Because all the member functions are provided
as inline functions it is sufficient to include VT.h to use these classes with every C++ compiler.

Here are some examples how the C++ API can be used. nohandles() uses the simpler interface
without storing handles, while handles() saves these handles in static instances of the definition
classes for later reuse when the function is called again:
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void nohandles()
{

VT_Function func( "nohandles", "C++ API", __FILE__, __LINE__ );
}
void handles()
{

static VT_SclDef scldef( __FILE__, __LINE__ );
// VT SCL DEF CXX( scldef ) could be used instead

static VT_FuncDef funcdef( "handles", "C++ API" );
VT_Function func( funcdef, scldef );

}
int main( int argc, char **argv )
{

VT_Region region( "call nohandles()", "main" );
nohandles();
region.end();
handles();
handles();
return 0;

}

7.11.1 VT FuncDef Class Reference

Defines a function on request and then remembers the handle.

Public Methods

• VT FuncDef (const char ∗symname, const char ∗classname)

• int GetHandle ()

7.11.1.1 Detailed Description

Defines a function on request and then remembers the handle.

Can be used to avoid the overhead of defining the function several times in VT Function.

7.11.1.2 Constructor & Destructor Documentation

7.11.1.3 VT FuncDef::VT FuncDef (const char ∗ symname , const char ∗ classname )

7.11.1.4 Member Function Documentation

7.11.1.5 int VT FuncDef::GetHandle ()

Checks whether the function is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because ITC was not initialized or ran out of memory.
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7.11.2 VT SclDef Class Reference

Defines a source code location on request and then remembers the handle.

Public Methods

• VT SclDef (const char ∗file, int line)
• int GetHandle ()

7.11.2.1 Detailed Description

Defines a source code location on request and then remembers the handle.

Can be used to avoid the overhead of defining the location several times in VT Function. Best
used together with the define VT SCL DEF CXX().

7.11.2.2 Constructor & Destructor Documentation

7.11.2.3 VT SclDef::VT SclDef (const char ∗ file , int line )

7.11.2.4 Member Function Documentation

7.11.2.5 int VT SclDef::GetHandle ()

Checks whether the scl is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because ITC was not initialized or ran out of memory.

#define VT SCL DEF CXX( sclvar)
This preprocessor macro creates a static source code location definition for the current
file and line in C++.

Parameters:
sclvar name of the static variable which is created

7.11.3 VT Function Class Reference

In C++ an instance of this class should be created at the beginning of a function.

Public Methods

• VT Function (const char ∗symname, const char ∗classname)
• VT Function (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Function (VT FuncDef &funcdef)
• VT Function (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Function ()
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7.11.3.1 Detailed Description

In C++ an instance of this class should be created at the beginning of a function.

The constructor will then log the function entry, and the destructor the function exit.

Providing a source code location for the function exit manually is not supported, because this
source code location would have to define where the function returns to. This cannot be deter-
mined at compile time.

7.11.3.2 Constructor & Destructor Documentation

7.11.3.3 VT Function::VT Function (const char ∗ symname , const char ∗ classname )

Defines the function with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the function once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized ITC.

Parameters:
symname the name of the function

classname the class this function belongs to

7.11.3.4 VT Function::VT Function (const char ∗ symname , const char ∗ classname ,
const char ∗ file , int line )

Same as previous constructor, but also stores information about where the function is located in
the source code.

Parameters:
symname the name of the function

classname the class this function belongs to

file name of source file, may but does not have to include path

line line in this file where function starts

7.11.3.5 VT Function::VT Function ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the function only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
function handle

7.11.3.6 VT Function::VT Function ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the function and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

function handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

7.11.3.7 VT Function:: ∼VT Function ()

the destructor marks the function exit.
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7.11.4 VT Region Class Reference

This is similar to VT Function, but should be used to mark regions within a function.

Public Methods

• void begin (const char ∗symname, const char ∗classname)
• void begin (const char ∗symname, const char ∗classname, const char ∗file, int line)
• void begin (VT FuncDef &funcdef)
• void begin (VT FuncDef &funcdef, VT SclDef &scldef)
• void end ()
• void end (const char ∗file, int line)
• void end (VT SclDef &scldef)
• VT Region ()
• VT Region (const char ∗symname, const char ∗classname)
• VT Region (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Region (VT FuncDef &funcdef)
• VT Region (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Region ()

7.11.4.1 Detailed Description

This is similar to VT Function, but should be used to mark regions within a function.

The difference is that source code locations can be provided for the beginning and end of the
region, and one instance of this class can be used to mark several regions in one function.

7.11.4.2 Constructor & Destructor Documentation

7.11.4.3 VT Region::VT Region ()

The default constructor does not start the region yet.

7.11.4.4 VT Region::VT Region (const char ∗ symname , const char ∗ classname )

Enter region when it is created.

7.11.4.5 VT Region::VT Region (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line )

Same as previous constructor, but also stores information about where the region is located in the
source code.

7.11.4.6 VT Region::VT Region ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the region only once.
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7.11.4.7 VT Region::VT Region ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the region and source code location only
once.

7.11.4.8 VT Region:: ∼VT Region ()

the destructor marks the region exit.

7.11.4.9 Member Function Documentation

7.11.4.10 void VT Region::begin (const char ∗ symname , const char ∗ classname )

Defines the region with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the region once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized ITC.

Parameters:
symname the name of the region

classname the class this region belongs to

7.11.4.11 void VT Region::begin (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line )

Same as previous begin(), but also stores information about where the region is located in the
source code.

Parameters:
symname the name of the region

classname the class this region belongs to

file name of source file, may but does not have to include path

line line in this file where region starts

7.11.4.12 void VT Region::begin ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the region only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
region handle

7.11.4.13 void VT Region::begin ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the region and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

region handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle
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7.11.4.14 void VT Region::end ()

Leaves the region.

7.11.4.15 void VT Region::end (const char ∗ file , int line )

Same as previous end(), but also stores information about where the region ends in the source
code.

Parameters:
file name of source file, may but does not have to include path

line line in this file where region starts

7.11.4.16 void VT Region::end ( VT SclDef & scldef )

This is a more efficient version which supports defining the source code location only once.
Parameters:

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle
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Chapter 8

ITC Configuration

8.1 Configuring ITC

With a configuration file, the user can customize various aspects of ITC’s operation and define
trace data filters.

8.2 Specifying Configuration Options

The environment variable VT CONFIG can be set to the name of an ITC configuration file. If
this file exists, it is read and parsed by the process specified with VT CONFIG RANK (or 0 as
default). The values of VT CONFIG must be consistent over all processes, although it need not
be set for all of them. A relative path is interpreted as starting from the current working directory;
an absolute path is safer, because mpirun may start your processes in a different directory than
you’d expect!

In addition to specifying options in a config file, all options have an equivalent environment vari-
able. These variables are checked by the process that reads the config file after it has parsed the
file, so the variables override the config file options. Some options like ”SYMBOL” may appear
several times in the config file. A variable may contain line breaks to achieve the same effect.

The environment variable names are listed below in square brackets [] in front of the config option.
Their names are always the same as the options, but with the prefix ”VT ” and hyphens replaced
with an underscores.

Finally, it is also possible to specify configuration options on the command line of a program. The
only exception are Fortran programs (because ITC’s access to command line parameters is lim-
ited there). To avoid conflicts between ITC’s parameters and normal application parameters, only
parameters following the special –itc-args are interpreted by ITC. To continue with the applica-
tion’s normal parameters, –itc-args-end may be used. There may be more than one block of ITC
arguments on the command line.

8.3 Configuration Format

The configuration file is a plain ASCII file containing a number of directives, one per line; any line
starting with the # character is ignored. Within a line, whitespace separates fields, and double
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quotation marks must be used to quote fields containing whitespace. Each directive consists of
an identifier followed by arguments. With the exception of filenames, all text is case-insensitive. In
the following discussion, items within angle brackets (< and >) denote arbitrary case-insensitive
field values, and alternatives are put within square brackets ([ and ]) and separated by a vertical
bar |.

Default values are given in round brackets after the argument template, unless the default is too
complex to be given in a few words. In this case the text explains the default value. In general
the default values are chosen so that features that increase the amount of trace data have to be
enabled explicitly. Memory handling options default to keeping all trace records in memory until
the application is finalized.

8.4 Syntax of Parameters

8.4.1 Time Value

Time values are usually specified as a pair of one floating point value and one character that
represents the unit: c for microseconds, l for milliseconds, s for seconds, m for minutes, h for
hours, d for days and w for weeks. These elementary times are added with a + sign. For instance,
the string 1m+30s refers to one minute and 30 seconds of execution time.

8.4.2 Boolean Value

Boolean values are set to ”on/true” to turn something on and ”off/false” to turn it off. Just using
the name of the option without the ”on/off” argument is the same as ”on”.

8.4.3 Number of Bytes

The amount of bytes can be specified with optional suffices B/KB/MB/GB, which multiply the
amount in front of them with 1/1024/1024∧2/1024∧3. If no suffix is given the number specifies
bytes.

8.5 Supported Directives

LOGFILE-NAME
Syntax : <file name>

Variable : VT LOGFILE NAME

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the
current working directory of the process writing it.

If unspecified, then the name is the name of the program plus ”.avt” for ASCII, ”.stf” for STF
and ”.single.stf” for single STF tracefiles. If one of these suffices is used, then they also
determine the logfile format, unless the format is specified explicitly.

In the stftool the name must be specified explicitly, either by using this option or as argument
of the –convert or –move switch.
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PROGNAME
Syntax : <file name>

Variable : VT PROGNAME

This option can be used to provide a fallback for the executable name in case of ITC not being
able to determine this name from the program arguments. It is also the base name for the
trace file.

In Fortran it may be technically impossible to determine the name of the executable auto-
matically and ITC may need to read the executable to find source code information (see
PCTRACE config option). ”UNKNOWN” is used if the file name is unknown and not specified
explicitly.

LOGFILE-FORMAT
Syntax : [ASCII|STF|STFSINGLE|SINGLESTF]

Variable : VT LOGFILE FORMAT

Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all trace
data is written into one file. It is human-readable.

The Structured Trace File (STF) is a binary format which supports storage of trace data in
several files and allows ITA to analyse the data without loading all of it, so it is more scalable.
Writing it is only supported by ITC at the moment.

One trace in STF format consists of several different files which are referenced by one index
file (.stf). The advantage is that different processes can write their data in parallel (see STF-
PROCS-PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one
(.single.stf), which can be read without unpacking them again. However, this format does not
support distributed writing, so for large program runs with many processes the generic STF
format is better.

EXTENDED-VTF
Syntax :

Variable : VT EXTENDED VTF

Default : off in ITC, on in stftool

Several events can only be stored in STF, but not in VTF. ITC libraries default to writing valid
VTF trace files and thus skip these events. This option enables writing of non-standard VTF
records in ASCII mode that ITA would complain about. In the stftool the default is to write
these extended records, because the output is more likely to be parsed by scripts rather than
ITA.

PROTOFILE-NAME
Syntax : <file name>

Variable : VT PROTOFILE NAME

Specifies the name for the protocol file containing the config options and (optionally) summary
statistics for a program run. Can be an absolute or relative pathname; in the latter case, it is
interpreted relative to the current working directory of the process writing it.

If unspecified, then the name is the name of the tracefile with the suffix ”.prot”.
LOGFILE-PREFIX

Syntax : <directory name>

Variable : VT LOGFILE PREFIX

Specifies the directory of the tracefile. Can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it.

CURRENT-DIR
Syntax : <directory name>

Variable : VT CURRENT DIR
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ITC will use the current working directory of the process that reads the configuration on all
processes to resolve relative path names. You can override the current working directory with
this option.

VERBOSE
Syntax : [on|off|<level>]

Variable : VT VERBOSE

Default : on

Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.
LOGFILE-RANK

Syntax : <rank>

Variable : VT LOGFILE RANK

Determines which process creates and writes the tracefile in MPI Finalize(). Default value is
the process reading the configuration file, or the process with rank 0 in MPI COMM WORLD.

DETAILED-STATES
Syntax : [on|off|<level>]

Variable : VT DETAILED STATES

Default : on

Enables or disables logging of more information in calls to VT enterstate(). That function
might be used by certain MPI implementations, runtime systems or applications to log internal
states. If that is the case, it will be mentioned in the documentation of those components.

<level> is a positive number, with larger numbers enabling more details:

• 0 (= off) suppresses all additional states
• 1 (= on) enables one level of additional states
• 2, 3, ... enables even more details

ENTER-USERCODE
Syntax : [on|off]

Variable : VT ENTER USERCODE

Default : on in most cases, off for Java function tracing

Usually ITC enters the Application:User Code state automatically when registering a new
thread. This make little sense when function profiling is enabled, because then the user can
choose whether he wants the main() function or the entry function of a child thread to be
logged or not. Therefore it is always turned off for Java function tracing. In all other cases it
can be turned off manually with this configuration option.

However, without automatically entering this state and without instrumenting functions
threads might be outside of any state and thus not visible in the trace although they exist.
This may or may not be intended.

COUNTER
Syntax : <pattern> [on|off]

Variable : VT COUNTER

Enables or disables a counter whose name matches the pattern. By default all counters
defined manually are enabled, whereas counters defined and sampled automatically by ITC
are disabled. Those automatic counters are not supported for every platform.
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INTERNAL-MPI
Syntax : [on|off]

Variable : VT INTERNAL MPI

Default : on

Allows tracing of events inside the MPI implementation. This is enabled by default, but even
then it still requires a MPI implementation which actually records events. The ITC documen-
tation describes in more detail how an MPI implementation might do that.

JAVA
Syntax : [on|off]

Variable : VT JAVA

Default : on in libVTjava, off in libVTsocket

This option controls Java function tracing. It serves as a master switch that - when turned off
- avoids the overhead of function tracing completely.

PCTRACE
Syntax : [on|off|<trace levels>|<skip levels>:<trace levels>]

Variable : VT PCTRACE

Default : off

Some platforms support the automatic stack sampling for MPI calls and user-defined events.
ITC then remembers the Program Counter (PC) values on the call stack and translates them
to source code locations based on debug information in the executable. It can sample a
certain number of levels (<trace levels>) and skip the initial levels (<skip levels>). Both
values can be in the range of 0 to 15.

Skipping levels is useful when a function is called from within another library and the source
code locations within this library shall be ignored. ON is equivalent to 0:1 (no skip levels, one
trace level).

The value specified with PCTRACE applies to all symbols that are not matched by any filter
rule or where the relevant filter rules sets the logging state to ON. In other words, an explicit
logging state in a filter rule overrides the value given with PCTRACE.

PROCESS
Syntax : <triplets> [on|off|no|discard]

Variable : VT PROCESS

Default : 0:N on

Specifies for which processes tracing is to be enabled. This option accepts a comma sep-
arated list of triplets, each of the form <start>:<stop>:<incr> specifying the minimum and
maximum rank and the increment to determine a set of processes (similar to the Fortran 90
notation). Ranks are interpreted relative to MPI COMM WORLD, i.e. start with 0. The letter
N can be used as maximum rank and is replaced by the current number of processes. F.i.
to enable tracing only on odd process ranks, specify ”PROCESS 0:N OFF” and ”PROCESS
1:N:2 ON”.

A process that is turned off can later turn logging on by calling VT traceon() (and vice versa).
Using ”no” disables ITC for a process completely to reduce the overhead even further, but
also so that even VT traceon() cannot enable tracing.

”discard” is the same as ”on”, so data is collected and thumbnails and statistics will be cal-
culated, but the collected data is not actually written into the trace file. This mode is useful
if looking at frames and the statistics contained in their thumbnails is sufficient: in this case
there is no need to write the trace data.

CLUSTER
Syntax : <triplets> [on|off|no|discard]

Variable : VT CLUSTER
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Same as PROCESS, but filters based on the host number of each process. Hosts are distin-
guished by their name as returned by MPI Get hostname() and enumerated according to the
lowest rank of the MPI processes running on them.

MEM-BLOCKSIZE
Syntax : <number of bytes>

Variable : VT MEM BLOCKSIZE

Default : 64KB

ITC keeps trace data in chunks of main memory that have this size.
MEM-MAXBLOCKS

Syntax : <maximum number of blocks>

Variable : VT MEM MAXBLOCKS

Default : 4096

ITC will never allocate more than this number of blocks in main memory. If the maximum
number of blocks is filled or allocating new blocks fails, then ITC will either flush some of them
onto disk (AUTOFLUSH), overwrite the oldest blocks (MEM-OVERWRITE) or stop recording
further trace data.

MEM-MINBLOCKS
Syntax : <minimum number of blocks after flush>

Variable : VT MEM MINBLOCKS

Default : 0

When ITC starts to flush some blocks automatically, then it can flush all (the default) or keep
some in memory. The latter may be useful to avoid long delays or to avoid unnecessary disk
activity.

MEM-INFO
Syntax : <threshold in bytes>

Variable : VT MEM INFO

Default : 500MB

If larger than zero, than ITC will print a message to stderr each time more than this amount of
new data has been recorded. These messages tell how much data was stored in RAM and
in the flush file, and can serve as a warning when too much data is recorded.

AUTOFLUSH
Syntax : [on|off]

Variable : VT AUTOFLUSH

Default : on

If enabled (which it is by default), then ITC will append blocks that are currently in main
memory to one flush file per process. During trace file generation this data is taken from the
flush file, so no data is lost. The number of blocks remaining in memory can be controlled
with MEM-MINBLOCKS.

MEM-FLUSHBLOCKS
Syntax : <number of blocks>

Variable : VT MEM FLUSHBLOCKS

Default : 1024

This option controls when a background thread flushes trace data into the flush file without
blocking the application. It has no effect if AUTOFLUSH is disabled. Setting this option to a
negative value also disables the background flushing.

Flushing is started whenever the number of blocks in memory exceeds this threshold or when
a thread needs a new block, but cannot get it without flushing.

If the number of blocks also exceeds MEM-MAXBLOCKS, then the application is stopped
until the background thread has flushed enough data.
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MEM-OVERWRITE
Syntax : [on|off]

Variable : VT MEM OVERWRITE

Default : off

If auto flushing is disabled, then enabling this lets ITC overwrite the oldest blocks of trace
data with more recent data.

FLUSH-PREFIX
Syntax : <directory name>

Variable : VT FLUSH PREFIX

Default : content of env variables or ”/tmp”

Specifies the directory of the flush file. Can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it.

On Unix systems, the flush file of each process will be created and immediately removed
while the processes keep their file open. This has two effects:

• flush files do not clutter the file system if processes get killed prematurely
• during flushing, the remaining space on the file systems gets less although the file which

grows is not visible any more
The file name is ”VT-flush-<program name> <rank>-<pid>.dat”, with rank being the rank of the
process in MPI COMM WORLD and <pid> the Unix process id.

A good default directory is searched for among the candidates listed below in this order:

• first directory with more than 512MB
• failing that, directory with most available space

Candidates (in this order) are the directories refered to with these environment variables and
hard-coded directory names:

• BIGTEMP
• FASTTEMP
• TMPDIR
• TMP
• TMPVAR
• ”/work”
• ”/scratch”
• ”/tmp”

FLUSH-PID
Syntax : [on|off]

Variable : VT FLUSH PID

Default : on

The ”-<pid>” part in the flush file name is optional and can be disabled with ”FLUSH-PID
off”.

ENVIRONMENT
Syntax : [on|off]

Variable : VT ENVIRONMENT

Default : on

Enables or disables logging of atttributes of the runtime environment.
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STATISTICS
Syntax : [on|off]

Variable : VT STATISTICS

Default : off

Enables or disables statistics about messages, OpenMP regions and symbols. These statis-
tics are gathered by ITC independently from logging them and written to the protocol file, so
you can get statistics in a machine-readable ASCII format without generating or loading the
complete trace file.

DYNAMIC-STATS
Syntax : <filename> [<triplet>]

Variable : VT DYNAMIC STATS

This option is only available if STATISTICS was enabled in the initial ITC configuration file.

Each time VT confsync() is called, the current statistics can be written into a separate file.
The number of times that VT confsync() is called are counted by ITC (starting with 1) and if
the filename contains one or more ”d”, then they are replaced by this counter value.

It is not necessary to make the filename unique like that, though: ITC will remove the file
before writing into it, so one can read old statistics while the application is running without
getting parts of the file overwritten with new statistics (on Unix an application like ”more” may
have the old file open, while ITC is writing into another file with the same name).

The optional triplet specifies which instances of VT confsync() will create this statistics file.
It is always counting from the current instance forward, so 1:1:1 refers to the next (and only
the next) instance of VT confsync(). If you omit this parameter, then the statistics file will be
written each time VT confsync() is called.

VT confsync() will generate the statistics file at the beginning and at the end, so if you set
your breakpoint into VT confbreak(), the statistic file will be up-to-date if it was enabled for
the current instance of VT confsync(), and if it was disabled and is enabled by changing the
configuration the file will have been updated when VT confsync() completes.

STF-USE-HW-STRUCTURE
Syntax : [on|off]

Variable : VT STF USE HW STRUCTURE

Default : usually on

If the STF format is used, then trace information can be stored in different files. If this option
is enabled, then trace data of processes running on the same node are combined in one file
for that node. This is enabled by default on most machines because it both reduces inter-
node communication during trace file generation and resembles the access pattern during
analysis. It is not enabled if each process is running on its own node.

This option can be combined with STF-PROCS-PER-FILE to reduce the number of processes
whose data is writen into the same file even further.

STF-PROCS-PER-FILE
Syntax : <number of processes>

Variable : VT STF PROCS PER FILE

Default : 16

In addition to or instead of combining trace data per node, the number of processes per file
can be limited. This helps to restrict the amount of data that has to be loaded when analysing
a sub-set of the processes.

If STF-USE-HW-STRUCTURE is enabled, then STF-PROCS-PER-FILE has no effect unless
it is set to a value smaller than the number of processes running on a node. To get files that
each contain exactly the data of <n> processes, set STF-USE-HW-STRUCTURE to OFF
and STF-PROCS-PER-FILE to <n>.
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In a single-process, multithreaded application trace this configuration option is used to deter-
mine the number of threads per file.

STF-CHUNKSIZE
Syntax : <number of bytes>

Variable : VT STF CHUNKSIZE

Default : 64KB

ITC uses so called anchors to navigate in STF files. This value determines how many bytes
of trace data are written into a file before setting the next anchor. Using a low number allows
more accurate access during analysis, but increases the overhead for storing and handling
anchors.

FRAME-USE-HW-STRUCTURE
Syntax : [on|off]

Variable : VT FRAME USE HW STRUCTURE

Default : usually on

When writing STF, then frames provide precalculated thumbnails of trace data. One frame
covers a time interval and a set of processes. You can configure frames independently from
the physical layout of the data, but the config options to do that are very similar. This config
options corresponds to STF-USE-HW-STRUCTURE.

This option can be combined with PROCS-PER-FRAME.
FRAME-GROUP

Syntax : <group name>

Variable : VT FRAME GROUP

This option overrides FRAME-USE-HW-STRUCTURE: instead of using the hardware struc-
ture, a group is taken and for each of its members a set of frames is generated. For example,
if group ”odd even” contains groups ”odd” with all processes having an odd process rank and
”even” with the other processes, the FRAME-GROUP ”odd even” will create frames labeled
”odd” and ”even” covering the two set of processes.

The group may have been defined with the GROUP configuration option, with the API call
VT groupdef() or be one of the predefined groups. However, no distinction is made between
threads and processes in these groups: if a thread is listed, then the whole process is inside
the corresponding frame.

This option can be combined with PROCS-PER-FRAME.
PROCS-PER-FRAME

Syntax : <number of processes>

Variable : VT PROCS PER FRAME

Default : 16

In addition or instead of calculating frames per node, the number of processes per frame can
be limited. Setting it to 0 is the same as setting it to unlimited.

ALL-PROCS-FRAME
Syntax : [on|off]

Variable : VT ALL PROCS FRAME

Default : on

By default one frame called ”all processes” will be created, covering all processes with du-
ration divided exactly like the others, thus giving an overview of the whole machine at each
time and simplifying the task of selecting all processes. If this and the ”all” frame mentioned
below both cover the whole program run, then only the ”all” frame is generated.
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ALL-FRAME
Syntax : [on|off]

Variable : VT ALL FRAME

Default : on

By default one frame called ”all” will be created, covering the whole program run and without
division in time. Its thumbnails serve as an overview of the the whole program.

SECONDS-PER-FRAME
Syntax : <duration>

Variable : VT SECONDS PER FRAME

Default : 10 minutes

Most frames that are created with config options are divided into parts no longer than this
time limit; only the ”all” frame always covers the whole program run, and frames created via
the ITC API at runtime are not modified either. <duration> has the usual format for a time
value.

FRAMES-PER-RUNTIME
Syntax : <number>

Variable : VT FRAMES PER RUNTIME

Default : 1

Both SECONDS-PER-FRAME and FRAMES-PER-RUNTIME divide the whole program run
into frames of equal length. While SECONDS-PER-FRAME results in frames of equal dura-
tion, FRAMES-PER-RUNTIME produces the same, fixed number of frames for each program
run. ITC will look at both options and pick the larger number of frames, so the default of 1 for
FRAMES-PER-RUNTIME basically disables this feature.

Even with SECONDS-PER-FRAME larger than the program’s runtime and FRAMES-PER-
RUNTIME set to 1 there may be more than one frame if FRAME-USE-HW-STRUCTURE or
PROCS-PER-FRAME produce frames for specific processes.

DATA-PER-FRAME
Syntax : <number of bytes>

Variable : VT DATA PER FRAME

Default : 80MB

One advantage of frames is that they allow selective loading of trace data, but this only works
well if frames don’t include too much trace data. Having frames that include equal amounts
of data (and thus events) also helps to zoom into regions of high activity.

This option sets an upper limit for the amount of data in main memory that is stored in (and
thus needs to be loaded from) frames with the same time intervals. For applications which log
many events the default values usually lead to shorter frames than specified in SECONDS-
PER-FRAME. Setting SECONDS-PER-FRAME to an even higher value leads to frames that
are generated by their amount of data as the only criterion.

Note that the data is stored more efficiently in STF files, so the resulting number of frames
will be higher than the final trace file size divided by the specified amount of data per frame.

The advantages of looking at data in memory are that communication between processes
during trace file writing can be avoided and that the resulting frames are tailored for tools that
may have to load them completely for analysis.

FRAMES-MAXNUM
Syntax : <number>

Variable : VT FRAMES MAXNUM

Default : 0
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This option sets an upper limit for the total number of frames generated by ITC. Because the
current release of ITA does not need frames, writing any frame is disabled by default.

Increasing the number enables writing of frames. Then the it can be used as a safeguard
against unintentionally generating a large number of frames, which can happen e.g. with a
low value for SECONDS-PER-FRAME and a long program run. It has no effect on frames
created via the ITC API.

FRAME
Syntax : ”<type>”, <thread triplets>, <categories>, <duration>, <window>

Variable : VT FRAME

This option defines a new frame for certain categories and threads. The <duration> cor-
responds to SECONDS-PER-FRAME, but the value is valid for this frame type alone. If
a window is given (in the form <timespec>:<timespec> with at least one unit descriptor),
frames are created only inside this time interval. It has the usual format of a time value, with
one exception: the unit for seconds ”s” is not optional to distinguish it from a thread triplet, i.e.
use ”10s” instead of just ”10”. The <type> can be any kind of string in single or double quo-
tation marks, but it should uniquely identify the kind of data combined into this frame. Valid
<categories> are FUNCTIONS, SCOPES, OPENMP, FILEIO, COUNTERS, MESSAGES,
COLLOPS.

All of the arguments are optional and default to ”unnamed frame”, all threads, all categories
and the whole time interval. They can be separated by commas or spaces and it is possible
to mix them as desired.

GROUP
Syntax : <name> <name>|<triplet>[, ...]

Variable : VT GROUP

This option defines a new group. The members of the group can be other groups or pro-
cesses enumerated with triplets. Groups are identified by their name. It is possible to refer to
automatically generated groups (e.g. those for the nodes in the machine), however, groups
generated with API functions must be defined on the process which reads the config to be
usable in config groups.

Example:
GROUPodd 1:N:2
GROUPeven 0:N:2
GROUP"odd even" odd,even

THUMBNAIL
Syntax : <pattern> [on|off]

Variable : VT THUMBNAIL

Default : on

Enables or disables those thumbnails whose name matches the pattern.
MESSAGE-THUMB-SIZE

Syntax : <size>

Variable : VT MESSAGE THUMB SIZE

Default : 32

This option limits the size of the ”Sent Message Statistics” thumbnail in the x and y directions.
Without this limit the thumbnail would require space proportional to the number of processes
squared, which does not scale for large number of processes.

OS-COUNTER-DELAY
Syntax : <delay>

Variable : VT OS COUNTER DELAY

Default : 1 second
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If OS counters have been enabled with the COUNTER configuration option, then these coun-
ters will be sampled every <delay> seconds. As usual, the value may also be specified with
units, e.g. 1m for one minute.

SYNC-DURATION
Syntax : <duration>

Variable : VT SYNC DURATION

Default : -1 for MPI applications unless mpich is used, 2 seconds otherwise

ITC usually uses a barrier at the beginning and the end of the program run to take synchro-
nized time stamps on processes. This method may fail if a barrier does not synchronize the
processes well enough. In this case an advanced algorithm based on statistical analysis of
message round-trip times might yield better results. It also requires several seconds of mes-
sage exchanges at the beginning and the end of the program run, though. <duration> has
the usual format of time values in ITC.

This options enables this algorithm by setting the number of seconds that ITC exchanges
messages among processes. A value less or equal zero disables the statistical algorithm. A
good number of seconds to start with is 10.

SYNCED-CLUSTER
Syntax : [on|off]

Variable : VT SYNCED CLUSTER

If enabled, then ITC assumes that processes running on any host use the same clock and
does no clock synchronization itself, unless you explicitly enable the statistical sampling al-
gorithm by setting SYNC-DURATION.

The default value of this option is taken from the MPI attribute MPI WTIME IS GLOBAL if ITC
uses MPI Wtime() as clock.

SYNCED-HOST
Syntax : [on|off]

Variable : VT SYNCED HOST

Default : on

If enabled, then ITC assumes that processes running on the same host use the same clock
and only synchronizes the clocks of different hosts. Because clock synchronization cannot
achieve perfect results avoiding it whenever possible is desirable.

Currently this option is enabled by default on all platforms. If the MPI attribute MPI WTIME -
IS GLOBAL is set to true, then this config option is irrelevant and the result of MPI Wtime()
is taken as it is without any clock correction.

NMCMD
Syntax : <command + args> ”nm -P”

Variable : VT NMCMD

If function tracing with GCC 2.95.2+’s -finstrument-function is used, then ITC will be called
at function entry/exit. Before logging these events it must map from the function’s address in
the executable to its name.

This is done with the help of an external program, usually nm. You can override the default if it
is not appropriate on your system. The executable’s filename (including the path) is appended
at the end of the command, and the command is expected to print the result to stdout in the
format defined for POSIX.2 nm.

UNIFY-SYMBOLS
Syntax : [on|off]

Variable : VT UNIFY SYMBOLS

Default : on
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During post-processing ITC unifies the ids assigned to symbols on different processes. This
step is redundant if (and only if) all processes define all symbols in exactly the same order
with exactly the same names. As ITC cannot recognize that automatically this unification can
be disabled by the user to reduce the time required for trace file generation. Make sure that
your program really defines symbols consistently when using this option!

UNIFY-SCLS
Syntax : [on|off]

Variable : VT UNIFY SCLS

Default : on

Same as UNIFY-SYMBOLS for SCLs.
UNIFY-GROUPS

Syntax : [on|off]

Variable : VT UNIFY GROUPS

Default : on

Same as UNIFY-SYMBOLS for groups.
UNIFY-COUNTERS

Syntax : [on|off]

Variable : VT UNIFY COUNTERS

Default : on

Same as UNIFY-SYMBOLS for counters.

8.6 How to Use the Filtering Facility
A single configuration file can contain an arbitrary number of filter directives that are evaluated
whenever a state is defined. Since they are evaluated in the same order as specified in the
configuration file, the last filter matching a state determines whether it is traced or not. This
scheme makes it easily possible to focus on a small set of activities without having to specify
complex matching patterns. Being able to turn entire activities (groups of states) on or off helps
to limit the number of filter directives. All matching is case-insensitive.

Example:

# disable all MPI activities
ACTIVITY MPI OFF
# enable all send routines in MPI
STATE MPI:*send ON
# except MPI_Bsend
SYMBOL MPI_bsend OFF
# enable receives
SYMBOL MPI_recv ON
# and all test routines
SYMBOL MPI_test* ON
# and all wait routines, recording locations of four calling levels
SYMBOL MPI_wait* 4
# enable all activities in the Application class, without locations
ACTIVITY Application 0

In effect, all activities in the class Application, all MPI send routines except MPI Bsend(), and all
receive, test and wait routines will be traced. All other MPI routines will not be traced.

Beside filtering specific activities or states it is also possible to filter by process ranks in MPI -
COMM WORLD. This can be done with the configuration file directive PROCESS. The value of
this option is a comma separated list of Fortran 90-style triplets. The formal definition is as follows:
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<PARAMETER-LIST> := <TRIPLET>[,<TRIPLET>,...]
<TRIPLET> := <LOWER-BOUND>[:<UPPER-BOUND>[:<INCREMENT>]]

The default value for <UPPER-BOUND> is N (equals size of MPI COMM WORLD) and the de-
fault value for <INCREMENT> is 1.

For instance changing tracing only on even process ranks and on process 1 the triplet list is:
0:N:2,1:1:1, where N is the total number of processes. All processes are enabled by default, so
you have to disable all of them first (”PROCESS 0:N OFF”) before enabling a certain subset again.
For SMP clusters, the ”CLUSTER” filter option can be used to filter for particular SMP nodes.

The STATE/ACTIVITY/SYMBOL rule body may offer even finer control over tracing depending on
the features available on the current platform:

• Special filter rules make it possible to turn tracing on and off during runtime when certain
states (aka functions) are entered or left. In contrast to VT traceon/off() no changes in the
source code are required for this. So called ”actions” are ”triggered” by entering or leaving
a state and executed before the state is logged.

• If folding is enabled for a function, then this function is traced, but not any of those that it
calls. If you want to see one of these functions, then you must unfold it.

• Counter sampling can be disabled for states (and in a similar way for OpenMP regions).

Here’s the formal specification:

<SCLRANGE> := on|off|<trace>|<skip>:<trace>
<PATTERN> := <state or function wild-card as defined for STATE>
<SCOPE_NAME> := [<class name as string>:]<scope name as string>

<ACTION> := traceon|traceoff|restore|none|
begin_scope <SCOPE_NAME>|end_scope <SCOPE_NAME>

<TRIGGER> := [<TRIPLET>] <ACTION> [<ACTION>]
<ENTRYTRIGGER> := entry <TRIGGER>
<EXITTRIGGER> := exit <TRIGGER>
<COUNTERSTATE> := counteron|counteroff
<FOLDING> := fold|unfold
<CALLER> := caller <PATTERN>
<RULEENTRY> := <SCLRANGE>|<ENTRYTRIGGER>|<EXITTRIGGER>|

<COUNTERSTATE>|<FOLDING>|<CALLER>

The filter body of a filter may still consist of a <SCLRANGE> which is valid for every instance of
the state (as described above), but also of a counter state specification, an <ENTRYTRIGGER>
which is checked each time the state is entered and an <EXITTRIGGER> for leaving it. The
caller pattern, if given, is an additional criteria for the calling function that must match before the
entry, exit or folding actions are executed. The body may have any combination of these entries,
separated by commas, as long as no entry is given more than once per rule.

Counter sampling can generate a lot of data, and some of it may not be relevant for every function.
By default all enabled counters are sampled whenever a state change occurs or when an Open-
MP region starts or ends. The ”COUNTERON/OFF” rule entry modifies this for those states that
match the pattern. There is no control over which counters are sampled on a per-state basis,
though, you can only enable or disable sampling completely per state. This example disables
counter sampling in any state, then enables it again for MPI functions:

SYMBOL * COUNTEROFF
ACTIVITY MPI COUNTERON
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8.7 The Protocol File

The protocol file has the same syntax and entries as a ITC configuration file. Its extension is
.prot, with the basename being the same as the tracefile. It lists all options with their values used
when the program was started, thus it can be used to restart an application with exactly the same
options.

All options are listed, even if they were not present in the original configuration. This way you can
find about f.i. the default value of SYNCED-HOST/CLUSTER on your machine. Comments tell
where the value came from (default, modified by user, default value set explicitly by the user).

Besides the configuration entries, the protocol file contains some entries that are only informa-
tive. They are all introduced by the keyword INFO. The following information entries are currently
supported:

INFO NUMPROCS
Syntax : <num>

Number of processes in MPI COMM WORLD.
INFO CLUSTERDEF

Syntax : <name> [<rank>:<pid>]+

For clustered systems, the processes with Unix process id <pid> and rank in MPI COMM -
WORLD <rank> are running on the cluster node <name>. There will be one line per cluster
node.

INFO PROCESS
Syntax : <rank> ”<hostname>” ”<IP>” <pid>

For each process identified by its MPI <rank>, the <hostname> as returned by gethost-
name(), the <pid> from getpid() and all <IP> addresses that <hostname> translates into
with gethostbyname() are given. IP addresses are converted to string with ntoa() and sepa-
rated with commas. Both hostname and IP string might be empty, if the information was not
available.

INFO BINMODE
Syntax : <mode>

Records the floating-point and integer-length execution mode used by the application.
There may be other INFO entries that represent statistical data about the program run. Their
syntax is explained in the file itself.
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Appendix A

FAQ - Frequently asked questions

This chapter is divided into a more general and a platform specific part. Please refer to the
appropriate part for your questions.

A.1 General questions

A.1.1 Interpretation of a version number

The version numbers consist of a string and four separate numbers:

<product> <major>.<minor>.<release>.<internal>

The <product> string is necessary because there are many different distributions of ITC which
are all numbered independently of each other. Some of these distributions are:

PRODUCT: the official product version

ASCI/VGV: a version produced for the Advanced Simulation and Computing Initiative

NEC: Vampirtrace/SX, as distributed by NEC

COMPAQ: Vampirtrace/SC, an enhanced version produced for HP (formerly Compaq)

<major> and <minor> are incremented if and only if new features are added. Together they can
serve as a label for the functionality of a product, as in ”release 3.1 has feature xyz that was not
found in 3.0”. <major> is only incremented after significant changes.

<internal> is incremented each time a new package is prepared and ensures that two files
with different content also have different versions. It is called ”internal” because it is incremented
even if the package is not released to the end customer.

Once the package has been released to the customer, the <internal> counter is reset to 0
and the <release> counter is incremented. From this rule follows that the version with the
highest <internal> counter is the one delivered to the customer, and that this counter is not
necessarily zero. In general, two packages with the same <major> .<minor> version, but a
different <release> number only differ in the number of bug fixes, so one could say ”release
3.1.0 has bug abd which is fixed in 3.1.1”.
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A.1.2 How to limit the tracefile size

Although ITC uses a compact binary format to store the trace data, tracefile sizes for real-world
applications can get immense. The best approach it to limit the number of events to be logged
by scaling down the application, like f.i. iteration count, number of processes, problem size etc.
This also shortens the time required to run a test. Quite often, this is not acceptable because
reduced input datasets are not available or performance analysis for reduced problems is simply
not interesting. In that case there are basically four other options:

• Enable trace data collection for a subset of the application’s runtime only: by inserting calls
to VT traceoff() and VT traceon(), an application programmer can easily limit the profiling to
interesting parts of an application or a subset of iterations. This will require recompilation of
(a subset of) the application though, which may not be possible, or at least inconvenient.

• If the application has a complex call graph e.g. due to automatic function tracing, then
folding of functions can prune the call tree a lot at run-time and thus cut down the trace file
size. This feature is not supported by all ITC versions.

• Use the activity/symbol filtering mechanism to limit the set of logged events. For this the
application doesn’t need to be changed in any way. However, the user must have an idea
of which events are interesting enough to be traced, and which events can be discarded.
As every MPI routine call generates roughly the same amount of trace data the possible
reduction in data volume is quite high: concentrate on the calls actually communicating
data, and don’t trace the administrative MPI routines.

• Use the process or node or time interval filters to limit data collection to a subset of pro-
cesses.

A.1.3 How to limit the memory consumption

During the application run, ITC first stores trace data in memory buffers. There are two options
that control the allocation of these buffers: MEM-BLOCKSIZE specifies the size of each memory
block in bytes, and MEM-MAXBLOCKS determines the maximum number of memory blocks. ITC
will not exceed the memory limits set by MEM-BLOCKSIZE*MEM-MAXBLOCKS. When this trace
data memory is exhausted, one of three actions are taken:

• If the AUTOFLUSH option is enabled (the default), the collected trace data is flushed to
disk, and the trace collection continues. The spill files are automatically merged when the
application finalizes, so that all records will appear in the tracefile.

• If AUTOFLUSH is disabled and MEM-OVERWRITE is enabled, the trace buffers will be
overwritten from the beginning, in effect recording the last n records.

• Else, the trace collection will be stopped, in effect collecting the first n records.

Placing trace data in main memory can slow down the application if it needs the memory itself.
Setting MEM-MAXBLOCKS puts a hard limit on the amount of memory used by ITC, but can
disrupt the application when a process must wait for flushing of trace data. To avoid this, ITC
can be told to start flushing earlier in the background with the MEM-FLUSHBLOCKS option. This
option is only available in more recent thread-safe versions of ITC.

In order to understand how much memory is currently in use, ITC can add counter data to the
trace:
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Counter Class: VT BUFFERING

Counter Name Unit Comment
data in ram bytes amount of trace data stored in main memory
data in file bytes amount of trace data stored in flush file
flush active boolean unequal zero if background flushing is active

If enabled, each process will store its own values for these counters in the trace each time they
change. This makes it possible to take the effect of buffer handling into account when doing
the analysis of the trace. These counters are not enabled by default. It is necessary to add
the following lines to a configuration file (see usage of VT CONFIG) to enable each counter:
COUNTERdata_in_ram ON
COUNTERdata_in_file ON
COUNTERflush_active ON

At runtime, ITC also provides feedback on the amount of data collected: with the default setting
of 500MB for the MEM-INFO configuration option a message is printed each time more than this
amount of new data is recorded by a process. The value is chosen so that the message serves
as a warning when the amount of trace data exceeds the amount that can usually be handled
without problems. In order to use it as a kind of progress report a much lower value would be
more appropriate.

A.1.4 How to manage ITC API calls

The API routines greatly extend the functionality of ITC. Unfortunately, manually instrumenting
the application source code with the ITC API makes code maintenance harder. An application
that contains calls to the ITC API requires the ITC library to link and incurs a certain profiling
overhead. The dummy API library libVTnull.a helps in this situation: all the API calls map to
empty subroutines, and no trace data is ever gathered if an application is linked to it. Still, the
extraneous function calls remain and may cause a slight overhead.

It is recommended that the C pre-processor (or an equivalent tool for Fortran) be used to guard
all the calls to the ITC API by #ifdef directives. This will allow easy generation of a plain vanilla
version and an instrumented version of a program.

A.1.5 What happens if a program fails ?

The ITC library stores trace data first in buffers in the application memory, and then in flush
files (one per MPI process) when the buffers have been filled. In normal operation, the library
will merge the trace data from each process during execution of the MPI_Finalize() rou-
tine, and write the trace data into a single tracefile suitable for input to ITA. If a program fails,
MPI_Finalize() is never executed, and no ITA tracefile is written.

A.1.6 Troubleshooting

The ITC library can report four basic error classes:

1. Setup errors

2. Invalid configuration file format

3. Erroneous use of the API routines
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4. Insufficient memory

The first category includes invalid settings of the VT_ environment variables, failure to open the
specified tracefile etc. A warning message is printed, the library ignores the erroneous setup and
tries to continue with default settings.

For the second class, a warning message is printed, the faulty configuration file line is ignored,
and the parser continues with the next line.

When an ITC API routine is called with invalid parameters, a negative value is returned (as a
function result in C, in the error parameter in Fortran), and operation continues. Invoking any API
routines before MPI_Init() or after MPI_Finalize() is considered erroneous, and the call is
silently ignored.

An insufficient memory error can occur during execution of an API routine or within any MPI routine
if tracing is enabled. In the first case, an error code (VT_ENOMEMor VTENOMEM) is returned to the
calling process; in any case, ITC prints an error message and attempts to continue by disabling
the collection of trace data. Within MPI_Finalize() , the library will try to generate a tracefile
from the data gathered before the insufficient memory error.

Although ITC tries to handle out-of-memory situations gracefully, library calls in the application
might not be as tolerant, or the operating system does not handle such a situation well enough.
To avoid a memory error in the first place, try to limit the amount of trace data as explained in
the section “Limiting Memory Consumption” (A.1.3). The memory requirements of ITC can be
reduced with the MEM-BLOCKSIZE and MEM-MAXBLOCKS config options. The AUTOFLUSH
option needs to remain enabled if you want to see a trace of the whole application run.

A.1.7 Can’t find the tracefile

Unless told otherwise in the configuration file, ITC will write the trace data to the file
argv[0].stf , with argv[0] being the application name in the command line (same as
getarg(0) in Fortran). Note that your MPI library or the MPI execution script may interfere
with argv[0] , and that only the process actually writing the tracefile (usually the one with rank
0 in MPI_COMM_WORLD) will look at it. A relative pathname will be interpreted relative to that
process’ current working directory.

You can however change the tracefile name with the LOGFILE-NAME directive in a configuration
file.

If it turns out that ITC can’t create the specified tracefile, it will attempt to write to the file /tmp/VT-
<pid>.stf , with <pid> being the Unix process id of the tracefile-writing MPI process.

In any case, an information message with the actual tracefile name will be printed by ITC within
MPI_Finalize() .

On systems where not all processes see the same files, be sure to look for the tracefile in the
correct process’ filesystem. You can influence which process will write the file by setting an
environment variable or by a directive in the configuration file.

A.1.8 User-defined activities don’t work

In order to minimize the instrumentation overhead, ITC does not check for global consistency of
the activity codes specified by calls to VT symdef() or VTSYMDEF(). It is the user’s responsibility
to ensure that

• The same code is used for the same activity in all processes

98



A.1. GENERAL QUESTIONS

• Two different symbols never share the same code

If these rules are violated, ITA might complain about duplicate activities, or activities may be mis-
labeled in ITA displays.

A.1.9 Messages are not shown

In order for messages to be indicated in the ITA displays, both the calls to the sending and the
receiving MPI routine must have been traced. For nonblocking receives, the call to the MPI wait
or test routine that did complete the receive request must be logged.

If tracing has been disabled during runtime it can happen that for some messages, either the
sending or the receiving call has not been traced. As a consequence, these messages are not
shown by ITA, and other messages can appear to be sent to or received at the wrong place.
Similarly, filtering out some of the above mentioned MPI routines has the same effect.

A.1.10 Does ITC support MPI-IO?

MPI-IO statistics can be investigated in ITA with the display (Global Displays:I/O Events Statistics).
The display option is available in all ITA 4.x versions. If a tracefile contains MPI-IO trace data, this
option can be used to display it. If a tracefile does not include MPI-IO data, then there is nothing
to be displayed.

ITC only supports standard MPI-IO, that is if the according MPI release implements the full and
standard compliant MPI-IO functionality.

Platforms on which ITC can record MPI-IO trace data:

• IBM AIX 5.1 (Product 3.0 and above)

• Sparc Solaris 2.8 (Product 3.0 and above)

• Intel Itanium with SGI MPT 1.8 (Product 3.1 and above)

• Fujitsu VPP

• Hitachi SR8000

• NEC SX

A.1.11 Bad Clock Resolution

If the clock resolution is very low, i.e. the timer function returns the same value for a long period
of time, then many events will be recorded on the same time stamp and analysis of such a trace
becomes very hard. In particular the Global Timeline becomes useless.

ITC 4.0.2 will issue a warning like “minimum clock increment 1e-3s is very high, please fix system
setup to obtain better traces” if it detects this. The minimum clock increment is always stored in
the trace file infos, because the timer base also listed there may be lower than the real value.

This problem was observed on some versions of Tru64 and certain Red Hat EL3.0 kernel versions
for Itanium. The following releases (see /etc/r*release* on a Red Hat derived system) are
definitely affected:
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• Rocks release 3.1.0 (Matterhorn)

These are not:

• Rocks release 3.2.0

• Red Hat Enterprise Linux AS release 3 (Taroon Update 1), kernel 2.4.21-9.EL

• Red Hat Linux Advanced Server release 2.1AS (Derry), kernel 2.4.18-e.40smp

A.2 Platfrom specific questions

A.2.1 Linux: Can’t find libelf

If you compile your MPI program on Linux you may run into the following linker problem.

/usr/bin/ld: cannot find -lelf

This means that the linker cannot find the libelf.a library. Some distributions don’t install this library
by default. In some older ITC distributions it wasn’t included either, so you had to install this
package from your Linux installation media. But now this error should no longer occur because
now a version of libelf is included in the same directory as libVT itself.

A.2.2 AIX 5.1: Undefined symbol

If you get the following error message on IBM AIX 5.1 when linking a MPI program:

mpxlf90 -o hello hello.f -L$ PAL ROOT/lib -lVT -lld
** hello === End of Compilation 1 ===
1501-510 Compilation successful for file hello.f.
ld: 0711-317 ERROR: Undefined symbol: mpi_status_ignore
ld: 0711-317 ERROR: Undefined symbol: mpi_statuses_ignore
ld: 0711-345 Use the -bloadmap or -bnoquiet option
to obtain more information.

Please compile/link with mpxlf90_r or mpxlf_r which use an updated version of MPI.

A.2.3 ITC and ScaMPI

In addition to page 4 in the ITC UserGuide, we have to admit that there is an exception to the
rule that libVT.a has to be included before the systems MPI libraries. If you use the Scali MPI
implementation ScaMPI than you need to use

-lfmpi -lVT -lmpi

This is necessary because the ScaMPI Fortran library libfmpi.so is a Fortran wrapper to the MPI
functions in the libmpi.so library. The libmpi.so library have weak symbols on MPI_* with true
functions PMPI_ to support an external trace library. Since the functions in libfmpi.so (mpi_* )
calls the MPI_* functions, the ITC library for C should be suited for generating the trace info.
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A.2.4 ITC and Quadrics MPI

When writing a large trace of a Quadrics MPI run you may get errors like “THRD: elan3 alloc:
Exhausted ALLOC” or “elan baseInit: Failed to allocate vaddr space”. These occur because
ITC sends many messages which Quadrics MPI considers as small and thus buffers them without
waiting for the recipient. Eventually this overflows the available buffers. Some versions of Quadrics
MPI also had a memory handling bug.

There are several independent solutions to this problem which all work by configuring ITC or MPI
via environment variables. They are listed here in the order in which they should be tried:

1. VT MEM BLOCKSIZE=128KB - increases the chunk size used by ITC so that Quadrics MPI
switches to a blocking send mode

2. LIBELAN TPORT BIGMSG=32768 - decreases the threshold in Quadrics MPI to achieve
the same result, but may also have a negative effect on application performance

3. MPI USE LIBELAN SUB=0 - disables usage of Elan library in Quadrics MPI and thus avoids
the problematic code altogether

A.2.5 Error: Unsupported Architecture

We do not test or validate the Intel R©Trace Collector on systems using non-Intel processors. Be-
cause of potential architectural differences, we cannot ensure that crucial performance results
are correct. Therefore, rather than allow test or validations that could lead to potentially incorrect
results, we prevent our tool from running on systems using non-Intel processors.

101



INDEX

Index

--activity
command line switch definition, 16

--config
command line switch definition, 15

--convert
command line switch definition, 39

--dump
command line switch definition, 40

--extended-vtf
command line switch definition, 41

--filter
command line switch definition, 13

--frame
command line switch definition, 41

--frames
command line switch definition, 40

--input
command line switch definition, 13

--insert
command line switch definition, 14

--list
command line switch definition, 13

--logfile-format
command line switch definition, 40

--logfile-name
command line switch definition, 40

--longjmp
command line switch definition, 15

--matched-vtf
command line switch definition, 41

--message-thumb-size
command line switch definition, 41

--move
command line switch definition, 39

--mpi
command line switch definition, 14

--output
command line switch definition, 13

--print-errors
command line switch definition, 40

--print-files
command line switch definition, 39

--print-frames
command line switch definition, 39

--print-statistics
command line switch definition, 39

--print-threads
command line switch definition, 39

--print-thumbnails
command line switch definition, 39

--profile
command line switch definition, 14

--redo-frames
command line switch definition, 40

--remove
command line switch definition, 39

--request
command line switch definition, 40

--state
command line switch definition, 15

--symbol
command line switch definition, 16

--thumbnail
command line switch definition, 41

--ticks
command line switch definition, 40

--use-debug
command line switch definition, 13

--verbose
command line switch definition, 15, 41

∼VT Function
VT Function, 74

∼VT Region
VT Region, 76

VT Categories
VT.h, 61

VT CommIDs
VT.h, 63

VT ErrorCode
VT.h, 44

VT FrameScope
VT.h, 62

VT OpTypes
VT.h, 67

ALL-FRAME
config directive definition, 88

ALL-PROCS-FRAME
config directive definition, 87

102



INDEX

AUTOFLUSH
config directive definition, 84

begin
VT Region, 76

CLUSTER
config directive definition, 83

COUNTER
config directive definition, 82

CURRENT-DIR
config directive definition, 81

DATA-PER-FRAME
config directive definition, 88

DETAILED-STATES
config directive definition, 82

DYNAMIC-STATS
config directive definition, 86

end
VT Region, 76, 77

ENTER-USERCODE
config directive definition, 82

ENVIRONMENT
config directive definition, 85

environment variable
VT CONFIG, 8
VT CONFIG RANK, 8

EXTENDED-VTF
config directive definition, 81

FLUSH-PID
config directive definition, 85

FLUSH-PREFIX
config directive definition, 85

FRAME
config directive definition, 89

FRAME-GROUP
config directive definition, 87

FRAME-USE-HW-STRUCTURE
config directive definition, 87

FRAMES-MAXNUM
config directive definition, 88

FRAMES-PER-RUNTIME
config directive definition, 88

GetHandle
VT FuncDef, 72
VT SclDef, 73

GROUP
config directive definition, 89

INFO BINMODE
config directive definition, 93

INFO CLUSTERDEF
config directive definition, 93

INFO NUMPROCS
config directive definition, 93

INFO PROCESS
config directive definition, 93

INTERNAL-MPI
config directive definition, 83

JAVA
config directive definition, 83

LOGFILE-FORMAT
config directive definition, 81

LOGFILE-NAME
config directive definition, 80

LOGFILE-PREFIX
config directive definition, 81

LOGFILE-RANK
config directive definition, 82

MEM-BLOCKSIZE
config directive definition, 84

MEM-FLUSHBLOCKS
config directive definition, 84

MEM-INFO
config directive definition, 84

MEM-MAXBLOCKS
config directive definition, 84

MEM-MINBLOCKS
config directive definition, 84

MEM-OVERWRITE
config directive definition, 85

MESSAGE-THUMB-SIZE
config directive definition, 89

NMCMD
config directive definition, 90

OS-COUNTER-DELAY
config directive definition, 89

PCTRACE
config directive definition, 83

PROCESS
config directive definition, 83

PROCS-PER-FRAME
config directive definition, 87

PROGNAME
config directive definition, 81

PROTOFILE-NAME
config directive definition, 81

SECONDS-PER-FRAME
config directive definition, 88

103



INDEX

STATISTICS
config directive definition, 86

STF-CHUNKSIZE
config directive definition, 87

STF-PROCS-PER-FILE
config directive definition, 86

STF-USE-HW-STRUCTURE
config directive definition, 86

SYNC-DURATION
config directive definition, 90

SYNCED-CLUSTER
config directive definition, 90

SYNCED-HOST
config directive definition, 90

THUMBNAIL
config directive definition, 89

UNIFY-COUNTERS
config directive definition, 91

UNIFY-GROUPS
config directive definition, 91

UNIFY-SCLS
config directive definition, 91

UNIFY-SYMBOLS
config directive definition, 90

VERBOSE
config directive definition, 82

VT.h
VT Categories, 61
VT CommIDs, 63
VT ErrorCode, 44
VT FrameScope, 62
VT OpTypes, 67

VT abort, 68
VT attach, 71
VT begin, 53
VT begin unordered, 68
VT beginl, 53
VT CAT ANY DATA, 61
VT CAT COLLOPS, 61
VT CAT COUNTERS, 61
VT CAT FILEIO, 61
VT CAT FUNCTIONS, 61
VT CAT MESSAGES, 61
VT CAT OPENMP, 61
VT CAT SCOPES, 61
VT classdef, 51
VT clientinit, 69
VT COMM INVALID, 63
VT COMM SELF, 63
VT COMM WORLD, 63
VT COUNT ABSVAL, 59

VT COUNT DATA, 59
VT COUNT DISPLAY, 59
VT COUNT FLOAT, 59
VT COUNT INTEGER, 59
VT COUNT INTEGER64, 59
VT COUNT RATE, 59
VT COUNT SCOPE, 59
VT COUNT VALID AFTER, 59
VT COUNT VALID BEFORE, 59
VT COUNT VALID POINT, 59
VT COUNT VALID SAMPLE, 59
VT CountData, 59
VT countdef, 60
VT CountDisplay, 59
VT CountScope, 59
VT countval, 61
VT end, 54
VT end unordered, 68
VT endl, 54
VT enter, 54
VT ERR BADARG, 44
VT ERR BADFILE, 44
VT ERR BADFORMAT, 44
VT ERR BADINDEX, 44
VT ERR BADKIND, 44
VT ERR BADREQUEST, 44
VT ERR BADSCL, 44
VT ERR BADSCLID, 44
VT ERR BADSYMBOLID, 44
VT ERR COMM, 44
VT ERR FLUSH, 44
VT ERR IGNORE, 44
VT ERR INVT, 44
VT ERR NOLICENSE, 44
VT ERR NOMEMORY, 44
VT ERR NOTHREADS, 44
VT ERR NOTIMPLEMENTED, 44
VT ERR NOTINITIALIZED, 44
VT finalize, 45
VT flush, 49
VT FRAME PROCESS, 62
VT FRAME THREAD, 62
VT framebegin, 63
VT framedef, 62
VT frameend, 63
VT funcdef, 52
VT get parent, 71
VT getprocid, 57
VT getrank, 46
VT getthrank, 47
VT getthreadid, 57
VT Group, 56
VT GROUP CLUSTER, 56
VT GROUP PROCESS, 56

104



INDEX

VT GROUP THREAD, 56
VT groupdef, 58
VT initialize, 45
VT leave, 54
VT log msgevent, 65
VT log op, 65
VT log opevent, 66
VT log recvmsg, 64
VT log sendmsg, 64
VT ME, 56
VT NOCLASS, 52
VT NOSCL, 50
VT OK, 44
VT OP ALLGATHER, 67
VT OP ALLGATHERV, 67
VT OP ALLREDUCE, 67
VT OP ALLTOALL, 67
VT OP ALLTOALLV, 67
VT OP BARRIER, 67
VT OP BCAST, 67
VT OP COUNT, 67
VT OP GATHER, 67
VT OP GATHERV, 67
VT OP INVALID, 67
VT OP REDUCE, 67
VT OP REDUCE SCATTER, 67
VT OP SCAN, 67
VT OP SCATTER, 67
VT OP SCATTERV, 67
VT registernamed, 46
VT registerthread, 46
VT SCL DEF CXX, 73
VT scldef, 50
VT scopebegin, 56
VT scopedef, 55
VT scopeend, 56
VT serverinit, 70
VT symdef, 52
VT symstate, 48
VT thisloc, 50
VT timestamp, 49
VT timestart, 49
VT traceoff, 47
VT traceon, 47
VT tracestate, 48
VT VERSION, 43
VT VERSION COMPATIBILITY, 43
VT wakeup, 55

VT ALL FRAME
env variable definition, 88

VT ALL PROCS FRAME
env variable definition, 87

VT AUTOFLUSH
env variable definition, 84

VT CLUSTER
env variable definition, 83

VT COUNTER
env variable definition, 82

VT CURRENT DIR
env variable definition, 81

VT DATA PER FRAME
env variable definition, 88

VT DETAILED STATES
env variable definition, 82

VT DYNAMIC STATS
env variable definition, 86

VT ENTER USERCODE
env variable definition, 82

VT ENVIRONMENT
env variable definition, 85

VT EXTENDED VTF
env variable definition, 81

VT FLUSH PID
env variable definition, 85

VT FLUSH PREFIX
env variable definition, 85

VT FRAME
env variable definition, 89

VT FRAME GROUP
env variable definition, 87

VT FRAME USE HW STRUCTURE
env variable definition, 87

VT FRAMES MAXNUM
env variable definition, 88

VT FRAMES PER RUNTIME
env variable definition, 88

VT GROUP
env variable definition, 89

VT INTERNAL MPI
env variable definition, 83

VT JAVA
env variable definition, 83

VT LOGFILE FORMAT
env variable definition, 81

VT LOGFILE NAME
env variable definition, 80

VT LOGFILE PREFIX
env variable definition, 81

VT LOGFILE RANK
env variable definition, 82

VT MEM BLOCKSIZE
env variable definition, 84

VT MEM FLUSHBLOCKS
env variable definition, 84

VT MEM INFO
env variable definition, 84

VT MEM MAXBLOCKS
env variable definition, 84

105



INDEX

VT MEM MINBLOCKS
env variable definition, 84

VT MEM OVERWRITE
env variable definition, 85

VT MESSAGE THUMB SIZE
env variable definition, 89

VT NMCMD
env variable definition, 90

VT OS COUNTER DELAY
env variable definition, 89

VT PCTRACE
env variable definition, 83

VT PROCESS
env variable definition, 83

VT PROCS PER FRAME
env variable definition, 87

VT PROGNAME
env variable definition, 81

VT PROTOFILE NAME
env variable definition, 81

VT SECONDS PER FRAME
env variable definition, 88

VT STATISTICS
env variable definition, 86

VT STF CHUNKSIZE
env variable definition, 87

VT STF PROCS PER FILE
env variable definition, 86

VT STF USE HW STRUCTURE
env variable definition, 86

VT SYNC DURATION
env variable definition, 90

VT SYNCED CLUSTER
env variable definition, 90

VT SYNCED HOST
env variable definition, 90

VT THUMBNAIL
env variable definition, 89

VT UNIFY COUNTERS
env variable definition, 91

VT UNIFY GROUPS
env variable definition, 91

VT UNIFY SCLS
env variable definition, 91

VT UNIFY SYMBOLS
env variable definition, 90

VT VERBOSE
env variable definition, 82

VT CONFIG
environment variable, 8

VT CONFIG RANK
environment variable, 8

VT abort
VT.h, 68

VT attach
VT.h, 71

VT begin
VT.h, 53

VT begin unordered
VT.h, 68

VT beginl
VT.h, 53

VT CAT ANY DATA
VT.h, 61

VT CAT COLLOPS
VT.h, 61

VT CAT COUNTERS
VT.h, 61

VT CAT FILEIO
VT.h, 61

VT CAT FUNCTIONS
VT.h, 61

VT CAT MESSAGES
VT.h, 61

VT CAT OPENMP
VT.h, 61

VT CAT SCOPES
VT.h, 61

VT classdef
VT.h, 51

VT clientinit
VT.h, 69

VT COMM INVALID
VT.h, 63

VT COMM SELF
VT.h, 63

VT COMM WORLD
VT.h, 63

VT COUNT ABSVAL
VT.h, 59

VT COUNT DATA
VT.h, 59

VT COUNT DISPLAY
VT.h, 59

VT COUNT FLOAT
VT.h, 59

VT COUNT INTEGER
VT.h, 59

VT COUNT INTEGER64
VT.h, 59

VT COUNT RATE
VT.h, 59

VT COUNT SCOPE
VT.h, 59

VT COUNT VALID AFTER
VT.h, 59

VT COUNT VALID BEFORE
VT.h, 59

106



INDEX

VT COUNT VALID POINT
VT.h, 59

VT COUNT VALID SAMPLE
VT.h, 59

VT CountData
VT.h, 59

VT countdef
VT.h, 60

VT CountDisplay
VT.h, 59

VT CountScope
VT.h, 59

VT countval
VT.h, 61

VT end
VT.h, 54

VT end unordered
VT.h, 68

VT endl
VT.h, 54

VT enter
VT.h, 54

VT ERR BADARG
VT.h, 44

VT ERR BADFILE
VT.h, 44

VT ERR BADFORMAT
VT.h, 44

VT ERR BADINDEX
VT.h, 44

VT ERR BADKIND
VT.h, 44

VT ERR BADREQUEST
VT.h, 44

VT ERR BADSCL
VT.h, 44

VT ERR BADSCLID
VT.h, 44

VT ERR BADSYMBOLID
VT.h, 44

VT ERR COMM
VT.h, 44

VT ERR FLUSH
VT.h, 44

VT ERR IGNORE
VT.h, 44

VT ERR INVT
VT.h, 44

VT ERR NOLICENSE
VT.h, 44

VT ERR NOMEMORY
VT.h, 44

VT ERR NOTHREADS
VT.h, 44

VT ERR NOTIMPLEMENTED
VT.h, 44

VT ERR NOTINITIALIZED
VT.h, 44

VT finalize
VT.h, 45

VT flush
VT.h, 49

VT FRAME PROCESS
VT.h, 62

VT FRAME THREAD
VT.h, 62

VT framebegin
VT.h, 63

VT framedef
VT.h, 62

VT frameend
VT.h, 63

VT FuncDef
VT FuncDef, 72

VT FuncDef, 72
GetHandle, 72
VT FuncDef, 72

VT funcdef
VT.h, 52

VT Function, 73
∼VT Function, 74
VT Function, 74

VT get parent
VT.h, 71

VT getprocid
VT.h, 57

VT getrank
VT.h, 46

VT getthrank
VT.h, 47

VT getthreadid
VT.h, 57

VT Group
VT.h, 56

VT GROUP CLUSTER
VT.h, 56

VT GROUP PROCESS
VT.h, 56

VT GROUP THREAD
VT.h, 56

VT groupdef
VT.h, 58

VT initialize
VT.h, 45

VT leave
VT.h, 54

VT log msgevent
VT.h, 65

107



INDEX

VT log op
VT.h, 65

VT log opevent
VT.h, 66

VT log recvmsg
VT.h, 64

VT log sendmsg
VT.h, 64

VT ME
VT.h, 56

VT NOCLASS
VT.h, 52

VT NOSCL
VT.h, 50

VT OK
VT.h, 44

VT OP ALLGATHER
VT.h, 67

VT OP ALLGATHERV
VT.h, 67

VT OP ALLREDUCE
VT.h, 67

VT OP ALLTOALL
VT.h, 67

VT OP ALLTOALLV
VT.h, 67

VT OP BARRIER
VT.h, 67

VT OP BCAST
VT.h, 67

VT OP COUNT
VT.h, 67

VT OP GATHER
VT.h, 67

VT OP GATHERV
VT.h, 67

VT OP INVALID
VT.h, 67

VT OP REDUCE
VT.h, 67

VT OP REDUCE SCATTER
VT.h, 67

VT OP SCAN
VT.h, 67

VT OP SCATTER
VT.h, 67

VT OP SCATTERV
VT.h, 67

VT Region, 75
∼VT Region, 76
begin, 76
end, 76, 77
VT Region, 75

VT registernamed

VT.h, 46
VT registerthread

VT.h, 46
VT SCL DEF CXX

VT.h, 73
VT SclDef

VT SclDef, 73
VT SclDef, 73

GetHandle, 73
VT SclDef, 73

VT scldef
VT.h, 50

VT scopebegin
VT.h, 56

VT scopedef
VT.h, 55

VT scopeend
VT.h, 56

VT serverinit
VT.h, 70

VT symdef
VT.h, 52

VT symstate
VT.h, 48

VT thisloc
VT.h, 50

VT timestamp
VT.h, 49

VT timestart
VT.h, 49

VT traceoff
VT.h, 47

VT traceon
VT.h, 47

VT tracestate
VT.h, 48

VT VERSION
VT.h, 43

VT VERSION COMPATIBILITY
VT.h, 43

VT wakeup
VT.h, 55

108


	Contents
	Introduction
	What is the Intel®Trace Collector (ITC)?
	System Requirements and Supported Features
	Multithreading
	About this Manual

	Installation
	How to Use ITC
	Tracing MPI Applications
	Single-process Tracing
	Tracing Application Subroutines
	Tracing of Binaries
	Multithreaded Tracing
	Recording Statistical Information
	Recording Source Location Information
	Recording Hardware Performance Information
	Recording OS Counters
	Using the Dummy Libraries
	Using the Shared Libraries
	Tracing Library Calls

	Java Tracing
	Features
	Usage
	API

	Tracing of Distributed Applications
	Design
	Using VTserver
	Running without VTserver
	Spawning Processes
	Tracing Events
	Usage
	Signals
	Examples

	Structured Tracefile Format
	Introduction
	STF Components
	Single-File STF
	Configuring STF

	User-level Instrumentation with the API
	The ITC API
	Initialization, Termination and Control
	Defining and Recording Source Locations
	Defining and Recording Functions or Regions
	Defining and Recording Overlapping Scopes
	Defining Groups of Processes
	Defining and Recording Counters
	Defining Frames
	Recording Communication Events
	Additional API Calls in libVTcs
	C++ API

	ITC Configuration
	Configuring ITC
	Specifying Configuration Options
	Configuration Format
	Syntax of Parameters
	Supported Directives
	How to Use the Filtering Facility
	The Protocol File

	FAQ - Frequently asked questions
	General questions
	Platfrom specific questions


