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Chapter 1

Introduction

1.1 What is the Intel R© Trace Collector (ITC)?

The Intel R© Trace Collector for MPI applications produces tracefiles that can be analyzed with
the Intel R© Trace Analyzer (ITA) performance analysis tool. Some ITC versions are also able to
trace non-MPI applications, like socket communication in distributed applications or plain serial
programs. It was formerly known as Vampirtrace.

In MPI it records all calls to the MPI library and all transmitted messages, and allows arbitrary
user defined events to be recorded. Instrumentation can be switched on or off at runtime, and a
powerful filtering mechanism helps to limit the amount of the generated trace data.

ITC is an add-on for existing MPI implementations; using it merely requires relinking the appli-
cation with the ITC profiling library (see section 3.1.1). This will enable the tracing of all calls
to MPI routines, as well as all explicit message-passing. On some platforms, calls to user-level
subroutines and functions will also be recorded. Shared libraries (section 3.12) and binary in-
strumentation (section 3.4.4) allow to attach the Trace Collector without and explicit linking step.

To define and trace user-defined events, or to use the profiling control functions, calls to the
ITC API (see section 8) have to be inserted into the application’s source code. This implies a
recompilation of all affected source modules.

A special “dummy” version of the profiling libraries containing empty definitions for all ITC API
routines can be used to “switch off” tracing just by relinking (see section 3.1.3).

1.2 System Requirements and Supported Features

It is compatible with all other MPI implementations that use the same binary interface.
If in doubt, lookup your hardware platform and MPI in the ITC system requirements
list at http://www.intel.com/software/products/cluster . If your combina-
tion is not listed, you can check compatibility yourself by compiling and running the
examples/mpiconstants.c program with your MPI. If any value of the constants
in the output differs from the ones given below, then this version of ITC will not work:

1
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CHAPTER 1. INTRODUCTION

intel64-lin-impi3 intel64-lin-mpich ia32-lin-mpich ia64-lin-mpt
intel64-win-impi32 ia64-lin-mpich
intel64-win-impi64

ia32-lin-impi3
ia64-lin-impi3

sizeof(MPI Datatype) 4 4 4 4
sizeof(MPI Comm) 4 4 4 4
sizeof(MPI Request) 4 8 4 4
MPI CHAR 1275068673 1 1 1
MPI BY TE 1275068685 3 3 27
MPI SHORT 1275068931 4 4 2
MPI INT 1275069445 6 6 3
MPI FLOAT 1275069450 10 10 9
MPI DOUBLE 1275070475 11 11 10
MPI COMM WORLD 1140850688 91 91 1
MPI COMM SELF 1140850689 92 92 2
MPI STATUS SIZE 5 4 4 6
MPI SOURCE 8 4 4 0
MPI TAG 12 8 8 4
MPI ERROR 16 12 12 8

The following features are supported:
Feature Description

Thread-safety 1.3
MPI tracing 3.1
• IO ROMIO, 3.1.8
• MPI One-Sided Communication 3.1.9
• MPI-2 not supported
• fail-safe 3.1.7
• correctness checking 4
SHMEM tracing 3.2
Single-process tracing 3.3
Tracing of Distributed Applications 6
Subroutine tracing 3.4
Tracing of Binaries without Recompilation 3.4.4
Counter tracing API in 8.7
Automatic Counter tracing of OS Activity 3.10
Automatically Recording Source Location Information 3.8 (requires compiler support)
Manually Recording Source Location Information API in 8.3
Recording Statistical Information 3.7
Tracing Libraries at Different Levels of Detail 3.13
Nonblocking Flushing MEM-FLUSHBLOCKS

Most of these features are implemented in the ITC libraries, while some are provided by utilities.
Here is a list of what the different components do:
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1.3. MULTITHREADING

Component Usage

libVTnull Dummy implementation of API (3.11)
libVT MPI tracing (3.1)

SHMEM tracing (3.2)
libVTfs fail-safe MPI tracing (3.1.7)

fail-safe SHMEM tracing (3.2)
libVTmc correctness checking(4)
libVTcs Tracing of Distributed Applications and Single-processes (6, 3.3)
VT sample Automatic Counter tracing with PAPI and getrusage() (3.9)

stftool Manipulation of trace files (7.4.1)
xstftool/expandvtlog.pl Conversion of trace files into readable format (7.4.2)
itcpin Tracing of Binaries without Recompilation (3.4.4)

1.3 Multithreading

This version of the ITC library is thread-safe in the sense that all of its API functions can be called
by several threads at the same time. Some API functions can really be executed concurrently,
others protect global data with POSIX mutexes. More information on tracing multithreaded appli-
cations is found in section 3.6.

1.4 About this Manual

This manual describes how to use Intel R© Trace Collector. On Linux*, Some of the text is also
provided as man pages for easier reading in a shell, for example, the ITC API calls (man VT enter)
and the ITC configuration (man VT CONFIG). To access the man pages, follow the instructions in
the next chapter.

In the PDF version of the manual all special ITC terms and names are hyperlinks that take you
to the definition of the word. The documentation is platform-independent, which means that the
text and even whole sections may not be applicable for platforms. Hence, if you move between
different platforms certain features may work differently.

This manual tries to cover as much as possible independent on the diverse platforms it supports.
Linux* and Microsoft* Windows* frequently have different styles in passing parameters. In partic-
ular parameters to compilers are not consistent between the two operating systems. This manual
follows the nomenclature used on Linux. Here is a list of the most important differences and how
they are mapped from Linux style to the Microsoft* Windows* way:

Linux* Microsoft* Windows*

-L<path> -LIBPATH:<path>
-l<library> <library>.lib
<directory>/<file> <directory>\<file>
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Chapter 2

Installation

On Linux*: After unpacking the ITC archive in a directory of your choice read the file ’relnotes.txt’
for information on how to install Intel R© Trace Collector. On Microsoft* Windows*: execute the
installer file setup.exe and follow the instructions given in the installation wizard.

In order to enable the software, Intel will issue you a license key. The license key is a simple text
file containing details of the software that will be enabled. An evaluation license key contains a
time limited license.

If called without a valid license, or with invalid settings of the above environment variable, instal-
lation aborts with an error message like the following one:

Checking for flexlm license
Feature to check out: TRACE_COLLECTOR

Error: A license for ITrColL could not be obtained (-1,359,2).

Is your license file in the right location and readable?
The location of your license file has to be specified via
the $INTEL LICENSE FILE environment variable.

License file(s) used were (in this order):

Visit http://support.intel.com/support/performancetools/support.htm
if you require technical assistance.

FLEX_CHECKOUT test failed to acquire license (rc=-1)

License management has to be transparent, but if you have any problems during installation,
submit an issue to Intel R© Premier Support or send an email to tracetools @ intel.com.

To acquire a demo license, use Intel Premier Support or contact tracetools@intel.com. This email
address can also be used to find out how to purchase the product. At http://www.intel.
com/software/products/cluster you will also find a list of your local sales channel.

The installer creates itacvars.sh (for shells with Bourne syntax) and itacvars.csh (for
shells with csh syntax) on Linux systems. On Microsoft* Windows* systems you will find
an itacvars.bat batch script . Sourcing the correct file in a shell (with . itacvars.sh , or
source itacvars.csh or itacvars.bat respectively) will update $LD LIBRARY PATH and
$PATH as well as set additional environment variables.
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CHAPTER 2. INSTALLATION

VT ROOT points to the root of the ITC installation. It is used to find the ITC include and li-
brary files when compiling programs in the example makefile (Example: for using it with
’-I$(VT ROOT)’).

VT LIB DIR points to the directory containing the static ITC libraries. It might be useful to create
Makefiles or shorter linkage commands when using ’-L’.

VT SLIB DIR (resp. VT DLL DIR on Microsoft* Windows*) points to the directory containing the
dynamic ITC libraries. It might be useful to create Makefiles or shorter linkage commands
when using ’-L’.

VT ADD LIBS lists libraries ITC is dependent on and needs to be linked against when using
ITC.

VT MPI points to the currently selected MPI implementation as used by VT LIB DIR and
VT SLIB DIR.

VT MPI DLL (Microsoft* Windows* version only) name of the MPI dll to be loaded by an ITC dll.
If the Fortran interface of MPI is involved and MPI offers this in a separate dll (e.g. MPICH2),
it has to be specified via VT FMPI DLL.

The itavars scripts accept an optional argument to specify the desired MPI imple-
mentation you intend to work with: on Linux* impi2 , impi3 , mpich or mpt (e.g.
’source itacvars.csh impi3 ’ selects Intel R© MPI Library version 3), on Microsoft* Windows*
impi32 , impi64 , mpich2_32 , mpich2_64 (e.g. itacvars.bat impi64 selects the 64-bit
version of Intel R© MPI). This mechanism allows you to switch between different MPI implementa-
tions. Without an argument the scripts assume the MPI implementation you selected the default
at installation time (Intel R© MPI on Microsoft* Windows*).

It is possible to install several different ITC packages in parallel on the same machine by using
different directories. Overwriting an old installation with a new one is not recommended, because
this will not ensure that obsolete old files are removed. A single dot “.” can be used to install in
the directory where the archive was unpacked.

In order to use ITC on a cluster of machines you can either install ITC once in a shared directory
which is mounted at the same location on all nodes, or you can install it separately on each node
in a local directory. Neither method has a clear advantage when it comes to runtime performance.
Root privileges are only needed if writing into the desired install directory requires them.

For using shared libraries (section 3.12 or in particular for binary instrumentation (section 3.4.4)
the installation path must be the same on all nodes.

On Microsoft* Windows* Compute Cluster Server most of this is handled by OS provided mecha-
nisms. For Linux* there is a mechanism for unattended mass installations in clusters. It consists
of the following steps:

1. Start the install script with the option --duplicate . It will ask the usual
questions and install ITC, but in addition to that it will create a file called
itc_<platform>_<version>_SilentInstall.ini in the current directory or, if that
directory is not writable, /tmp/itc_<platform>_<version>/SilentInstall.ini .

Alternatively you can modify the existing SilentInstallConfigFile.ini. It is necessary
to acknowledge the End User License Agreement by editing that file and replacing
ITC_EULA=reject with ITC_EULA=accept .

2. Run the install script on each node with the option --silent <.ini file> . This will
install ITC without further questions using the install options from that .ini file. Only error
messages will be printed, all the normal progress messages are suppressed.
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Chapter 3

How to Use ITC

3.1 Tracing MPI Applications

Using Intel R© Trace Collector for MPI is straightforward: relink your MPI application with the ap-
propriate profiling library and execute it following the usual procedures of your system. This will
generate a tracefile suitable for use with ITA, including records of all calls to MPI routines as well
as all point-to-point and collective communication operations performed by the application.

If you wish to get more detailed information about your application, the Trace Collector provides
several methods to instrument your application: Binary instrumentation (see section 3.4.4), com-
piler instrumentation (see section 3.4) and source code instrumentation through its API (see sec-
tion 8). This will allow arbitrary user-defined events to be traced; in practice, it is often very useful
to record your applications entry and exit to/from subroutines or regions within large subroutines.

The following sections explain how to compile, link and execute MPI applications with ITC; if your
MPI is different from the one ITC was compiled for, or is setup differently, then the paths and
options may vary. These sections assume that you know how to compile and run MPI applica-
tions on your system, so before trying to follow the instructions below, read the relevant system
documentation.

3.1.1 Compiling MPI Programs with ITC

Source files without calls to the ITC API can be compiled with the usual methods and without any
special precautions.

Source files that do contain calls to the ITC API need to include the appropriate header files: VT.h
for C and C++ and VT.inc for Fortran.

To compile these source files, the path to the ITC header files have to be passed to the compiler.
On most systems, this is done with the -I flag, say with -I$(VT ROOT)/include.

3.1.2 Linking MPI Programs with ITC

ITC library libVT.a contains entry points for all MPI routines. They have to be linked against
your application object files before your system’s MPI library. ITC requires a set of additional
libraries. For your convenience the itacvars-scripts set the environment variables $VT ADDLIBS
and $VT LIB DIR accordingly. The most easiest way is to use the compile scripts provided by
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the Intel R© MPI Library: simply use the command line argument ’-trace’. It does everything for
you. All it requires is having sourced/executed the respective itacvars script.

In general, a correct link line is achieved as follows (after sourcing/executing the appropriate
itacvars script):
Linux:

mpicc ctest.o -L$ VT LIB DIR -lVT $VT ADDLIBS -o ctest
mpif77 ftest.o -L$ VT LIB DIR -lVT $VT ADDLIBS -o ftest

On Microsoft* Windows* you do not need to specify %VT ADDLIBS %because the corresponding
libraries are automatically pulled in by the VT library:

mpiicc ctest.obj /link /LIBPATH:% VT LIB DIR% VT.lib
mpiifort ftest.obj /link /LIBPATH:% VT LIB DIR% VT.lib

If your MPI installation is different, then the command may differ and/or you might have to add
further libraries manually. Usually it is important that the ITC library is listed on the command line
in front of the MPI libraries: ...-lVT -lmpi... . In general, the same ITC library and link line
is suitable for all compilers and programming languages.

Dependent on the platform $VT ADDLIBS expands to the following
em64t-lin-impi3 : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
em64t-lin-mpich : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
em64t-win-impi32 : ws32 2.lib
em64t-win-impi64 : ws32 2.lib
ia32-lin-impi3 : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
ia32-lin-mpich : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
ia64-lin-impi3 : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
ia64-lin-mpich : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread
ia64-lin-mpt : -ldwarf -lelf -lvtunwind -lnsl -lm -ldl -lpthread

Note: For more convenient usage and extended portability it is recommended to use
$VT ADDLIBS rather than the expanded list of libraries.

Note: When using Intel R© compilers, avoid explicitly linking against the math library. In this case,
for better performance, it is recommended to not specify ’-lm’ and let the Intel R© compiler use its
own and more faster implementation.

One exception from these rules are C++ applications. If they call the C MPI API, then tracing
works as described above, but if they use the MPI 2.0 C++ API, then ITC cannot intercept the MPI
calls. They have to be mapped to the C function calls first with the help of a MPI implementation
specific library which has to be placed in front of the ITC library. The name of that wrapper library
depends on the MPI implementation; here is the command line option which needs to be added
for some of them:

Intel R© MPI Library and Intel R© C++ Compiler version 7.1 -lmpiec

Intel R© MPI Library and Intel R© C++ Compiler version ≥ 8.0 -lmpiic

Intel R© MPI Library and gcc < 3.0 -lmpigc

Intel R© MPI Library and gcc ≥ 3.0 and < 3.4 -lmpigc3

Intel R© MPI Library and gcc ≥ 3.4 -lmpigc4

MPICH* 1.2.x -lpmpich++

8
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Another exception are Fortran compilers which are incompatible with the Intel R© Fortran Compiler
that is used for compiling parts of libVT.a. The only system where such an incompatibility has
been observed so far is the SGI Altix, where a segmentation fault occurs inside the MPT MPI
startup code if Fortran code compiled with ifort is added to a Fortran binary which is linked with
g77. As a workaround for this problem the relevant code is also provided as a library compiled
with g77. It needs to be added to the link line like this:

mpif77 ftest.o -lVTg77 $ VT ADDLIBS -o ftest

In all cases, the binary interface of the MPI libraries has to match the one used by ITC (see section
1.2 for details).

3.1.3 Running MPI Programs with ITC

MPI programs linked with ITC as described in the previous sections can be started in the same
way as conventional MPI applications. ITC reads two environment variables to access the values
of runtime options:

VT CONFIG contains the pathname of an ITC configuration file to be read at MPI initialization
time. A relative path is interpreted starting from the working directory of the MPI process
specified with VT CONFIG RANK.

VT CONFIG RANK contains the rank (in MPI COMM WORLD) of the MPI process that reads
the ITC configuration file. The default value is 0. Setting a different value has no effects
unless the MPI processes do not share the same file system.

The trace data is stored in memory during the program execution, and written to disk at MPI
finalization time. The name of the resulting tracefile depends on the format: the base name
<trace> is the same as the path name of the executable image, unless a different name has
been specified in the configuration file. Then different suffices are used depending on the file
format:

Structured Trace Format (STF, the default) <trace>.stf

single-file STF format <trace>.single.stf

old-style ASCII Vampir format <trace>.avt

A directive in the configuration file (see section Configuration File Format) can influence which
MPI process actually writes the tracefile; by default, it is the same MPI process that reads the
configuration file.

If relative path names are used it can be hard to find out where exactly the tracefile was written.
Therefore ITC prints an informational message to stderr with the file name and the current working
directory as soon as writing starts.

3.1.4 Examples

The examples in the ./examples directory show how to instrument C and Fortran code to collect
information about application subroutines. They come with a GNUmakefile (on Linux*) or Visual
Studio* project files (on Microsoft* Windows*) that work for the MPI this ITC package was compiled
for. If you use a different MPI, then you might have to edit this GNUmakefile. Unless ITC was
installed in a private directory, the examples directory needs to be copied because compiling and
running the examples requires write permissions.
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3.1.5 Trouble Shooting

If generating a trace fails, check first that you can run MPI applications that were linked without
ITC. Then ensure that your MPI is indeed compatible with the one this package was compiled for,
as described under section 1.2. The FAQ may have further information. If this still does not help,
then please submit a report via the Question and Answer Database (QuAD).

3.1.6 Handling of Communicator Names

By default ITC stores names for well-known communicators in the trace: “COMM WORLD”,
“COMM SELF #0”, “COMM SELF #1”, . . . When new communicators are created, their names
are composed of a prefix, a space and the name of the old communicator. For example,
calling MPI Comm dup() on MPI COMM WORLD will lead to a communicator called “DUP
COMM WORLD”.

MPI Function Prefix

MPI Comm create() CREATE
MPI Comm dup() DUP
MPI Comm split() SPLIT

MPI Cart sub() CART SUB
MPI Cart create() CART CREATE

MPI Graph create() GRAPH CREATE
MPI Intercomm merge() MERGE

MPI Intercomm merge() is special because the new communicator is derived from two commu-
nicators, not just one as in the other functions. The name of the new inter-communicator will be
“MERGE <old name 1>/<old name 2>” if the two existing names are different, otherwise it will
be just “MERGE <old name>”.

In addition to these automatically generated names ITC also intercepts MPI Comm set name()
and then uses the name provided by the application. Only the last name set with this function is
stored in the trace for each communicator. Derived communicators always use the name which is
currently set in the old communicator when the new communicator is created.

ITC does not attempt to synchronize the names set for the same communicator in different pro-
cesses, therefore the application has to set the same name in all processes to ensure that this
name is really used by ITC.

3.1.7 Tracing of Failing MPI Applications

Normally if a MPI application fails or is aborted, all trace data collected so far is lost: libVT needs
a working MPI to write the trace file, but the MPI standard does not guarantee that MPI is still
operational after a failure. In practice most MPI implementations just abort the application.

To solve this problem, link the application against libVTfs instead of libVT, like this:

mpicc ctest.o -lVTfs $VT ADDLIBS -o ctest

resp. on Microsoft* Windows*

mpicc ctest.obj VTfs.lib /OUT:ctest
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Under normal circumstances tracing works just like with libVT, but communication during trace file
writing is done via TCP sockets, so it may be a bit slower than over MPI. In order to establish
communication, it needs to know the IP addresses of all involved hosts. It finds them by looking
up the hostname locally on each machine or, if that only yields the 127.0.0.1 localhost IP address,
falls back to broadcasting hostnames. In the latter case hostname lookup must work consistently
in the cluster.

In case of a failure, libVTfs freezes all MPI processes and then writes a trace file with all trace
data. Failures that it can catch include:

Signals These include events inside the applications like segfaults and floating point errors, but
also abort signals sent from outside, like SIGINT or SIGTERM. Only SIGKILL will abort the
application without writing a trace because it cannot be caught.

Premature Exit One or more processes exit without calling MPI Finalize().

MPI Errors MPI detects certain errors itself, like communication problems or invalid parameters
for MPI functions.

Deadlocks If ITC observes no progress for a certain amount of time in any process, then it
assumes that a deadlock has occurred, stops the application and writes a trace file. The
timeout is configurable with DEADLOCK-TIMEOUT. “No progress” is defined as “inside the
same MPI call”.

Obviously this is just a heuristic and may fail to lead to both false positives and false nega-
tives:

Undetected Deadlock If the application polls for a message that cannot arrive with
MPI Test() or a similar, non-blocking function then ITC still believes that progress is
made and will not stop the application. To avoid this the application has to use blocking
MPI calls instead, which is also better for performance.

Premature Abort If all processes remain in MPI for a long time due to a long data trans-
fer for instance, then the timeout might be reached. Because the default timeout is
5 minutes, this is very unlikely.

After writing the trace libVTfs will try to clean up the MPI application run by sending all processes
in the same process group an INT signal. This is necessary because certain versions of MPICH*
may have spawned child processes which keep running when an application aborts prematurely,
but there is a certain risk that the invoking shell also receives this signal and also terminates. If
that happens, then it helps to invoke mpirun inside a remote shell:

rsh localhost ’sh -c "mpirun ..."’

MPI errors cannot be ignored by installing an error handler. libVTfs overrides all requests to
install one and uses its own handler instead. This handler stops the application and writes a trace
without trying to proceed, otherwise it would be impossible to guarantee that any trace will be
written at all.

On Microsoft* Windows* not all features of POSIX* signal handling are available. Therefore, VTfs
on Microsoft* Windows* uses some heuristics and may not work as reliably as on Linux*. Currently
it is not possible to stop a Microsoft* Windows* application run and get a trace file by sending a
signal or terminating the job in the Microsoft* Windows* task manager.

3.1.8 Tracing MPI File IO

On Linux* (only) Intel R© Trace Collector for MPICH* (and compatible) supports tracing of ROMIO,
a portable implementation of MPI-IO. Fully standard-compliant implementations of MPI-IO are
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untested, but might work. For SGI’s MPT (Altix) tracing of ROMIO is only supported if the appli-
cation avoids ROMIO’s non-standard request handles.

This distinction is necessary because ROMIO normally uses its own request handles
(MPIO Request) for functions like MPI File iread() and expects the application to call
MPIO Wait()/MPIO Test(). These two functions are supported if and only if ITC is compiled
with ROMIO support. In that case the wrapper functions for MPI File iread() are compiled
for MPIO Requests and might not work if the MPI and the application use the normal MPI-2
MPI Request.

Applications which avoid the non-blocking IO calls should work either way.

3.1.9 Tracing MPI One-Sided Communication

On SGI Altix (MPT) Intel R© Trace Collector supports tracing a commonly used subset of the one-
sided communication calls in MPI. Nothing needs to be done to enable this tracing, linking as
described in 3.1.2 is sufficient. This table lists which functions are traced and which information is
recorded:

Information Functions

function entry and exit MPI Win create()
MPI Win free()
MPI Win fence()
MPI Win lock()
MPI Win unlock()

function entry and exit, MPI Put()
message with same duration as MPI Get()

function and size giving MPI Accumulate()
the amount of transfered bytes

3.2 Tracing shmem Programs with ITC

On Silicon Graphics* Itanium based systems with MPT* Intel R© Trace Collector supports tracing
of SHMEM. SHMEM calls are also available through the Quadrics MPI implementation. The latter
comes with the necessary instrumentation hooks inside the SHMEM library while MPT’s SHMEM
functions are intercepted by the Trace Collector.

Tracing programs that use SHMEM calls is very similar to tracing MPI programs. There is no need
to change the source code of the program, relinking it with the ITC library is sufficient:

mpicc cshmem.o -lVT $VT ADDLIBS -lshmem -o cshmem
mpif77 fshmem.o -lVT $VT ADDLIBS -lshmem -o fshmem

ITC uses MPI calls internally, so linking requires the same libraries as in section 3.1.2 and the
comments there about choosing the correct MPI still apply. Generating a trace also works as
described above.

There are a few caveats:

program name If an unmodified SHMEM program is traced, ITC will initialize itself and MPI when
shmem init() (Quadrics) or start pes (MPT) is called. Inside this call ITC has no access
to the program’s arguments and in C there is no global variable or function to obtain this
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information, therefore the program name will be set to “UNKNOWN”. By default, the tracefile
will be called “UNKNOWN.stf”. PC tracing (section 3.8) would not work because it needs
access to the binary. There are several solutions:

• In Fortran, ITC can use global functions to obtain the program name and the user does
not need to do anything.

• In C, The application can be changed so that it calls either VT initialize() or MPI Init()
before shmem init() (Quadrics) or start pes (MPT), which will set the program name
based on the arguments supplied to these functions.

• The environment variable VT PROGNAME or the configuration file setting PROG-
NAME can be used to pass the executable file name to ITC without changing the source
code (see VT CONFIG for details).

dynamic linking ITC replaces the shmem functions and calls the original implementation using
the dynamic library loader. This means that statically linking the shmem library is not possi-
ble and that a shared version is required. This is not a problem because the shared shmem
library is the default anyway.

ITC supports the following shmem functions (Fortran functions in uppercase, C in lowercase) and
records the information listed in this table:

Feature Description

Information Functions

start of program SHMEM INIT shmem init
start pes START PES

function entry and exit SHMEM MY PE shmem my pe
my pe n pes

SHMEM N PES shmem n pes
SHMEM QUIET shmem quiet
SHMEM WAIT shmem wait

collective operation, SHMEM BARRIER shmem barrier
function entry and exit SHMEM BARRIER ALL shmem barrier all

SHMEM BROADCAST shmem broadcast
SHMEM BROADCAST4 shmem broadcast32
SHMEM BROADCAST8 shmem broadcast64
SHMEM INT4 MAX TO ALL SHMEM INT8 MAX TO ALL
SHMEM INT4 MIN TO ALL SHMEM INT8 MIN TO ALL
SHMEM INT4 OR TO ALL SHMEM INT8 OR TO ALL
SHMEM INT4 PROD TO ALL SHMEM INT8 PROD TO ALL
SHMEM INT4 SUM TO ALL SHMEM INT8 SUM TO ALL
SHMEM INT4 XOR TO ALL SHMEM INT8 XOR TO ALL
SHMEM REAL4 MAX TO ALL SHMEM REAL8 MAX TO ALL
SHMEM REAL4 MIN TO ALL SHMEM REAL8 MIN TO ALL
SHMEM REAL4 PROD TO ALL SHMEM REAL8 PROD TO ALL
SHMEM REAL4 SUM TO ALL SHMEM REAL8 SUM TO ALL
shmem double max to all shmem float max to all
shmem double min to all shmem float min to all
shmem double prod to all shmem float prod to all
shmem double sum to all shmem float sum to all
shmem longdouble max to all
shmem longdouble min to all
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Feature Description

shmem longdouble prod to all
shmem longdouble sum to all
shmem short and to all shmem int and to all
shmem short max to all shmem int max to all
shmem short min to all shmem int min to all
shmem short or to all shmem int or to all
shmem short prod to all shmem int prod to all
shmem short sum to all shmem int sum to all
shmem short xor to all shmem int xor to all
shmem long and to all shmem longlong and to all
shmem long max to all shmem longlong max to all
shmem long min to all shmem longlong min to all
shmem long or to all shmem longlong or to all
shmem long prod to all shmem longlong prod to all
shmem long sum to all shmem longlong sum to all
shmem long xor to all shmem longlong xor to all

single message, SHMEM CHARACTER GET SHMEM CHARACTER PUT
function entry and exit SHMEM DOUBLE GET SHMEM DOUBLE PUT

SHMEM DOUBLE IGET SHMEM DOUBLE IPUT
SHMEM INTEGER GET SHMEM INTEGER PUT
SHMEM INTEGER IGET SHMEM INTEGER IPUT
SHMEM GET SHMEM PUT
SHMEM GET32 SHMEM PUT32
SHMEM GET64 SHMEM PUT64
SHMEM GET128 SHMEM PUT128
SHMEM GET4 SHMEM PUT4
SHMEM GET8 SHMEM PUT8
SHMEM IGET SHMEM IPUT
SHMEM IGET32 SHMEM IPUT32
SHMEM IGET64 SHMEM IPUT64
SHMEM IGET128 SHMEM IPUT128
SHMEM IGET4 SHMEM IPUT4
SHMEM IGET8 SHMEM IPUT8
SHMEM IXGET SHMEM IXPUT
SHMEM IXGET4 SHMEM IXPUT4
SHMEM REAL GET SHMEM REAL PUT
SHMEM REAL IGET SHMEM REAL IPUT
shmem double get shmem double put
shmem double iget shmem double iput
shmem float get shmem float put
shmem float iget shmem float iput
shmem get shmem put
shmem get32 shmem put32
shmem get64 shmem put64
shmem get128 shmem put128
shmem getmem shmem putmem
shmem iget shmem iput
shmem iget32 shmem iput32
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Feature Description

shmem iget64 shmem iput64
shmem iget128 shmem iput128
shmem int get shmem int put
shmem int iget shmem int iput
shmem ixget shmem ixput
shmem ixget32 shmem ixput32
shmem long get shmem long put
shmem long iget shmem long iput
shmem longdouble get shmem longdouble put
shmem longdouble iget shmem longdouble iput
shmem longlong get shmem longlong put
shmem longlong iget shmem longlong iput
shmem short get shmem short put
shmem short iget shmem short iput

shmem double g shmem double p
shmem float g shmem float p
shmem int g shmem int p
shmem long g shmem long p
shmem short g shmem short p

pairwise message exchange, SHMEM INT4 SWAP SHMEM INT8 SWAP
function entry and exit SHMEM REAL4 SWAP SHMEM REAL8 SWAP

SHMEM SWAP
shmem double swap shmem float swap
shmem int swap shmem long swap
shmem longlong swap shmem short swap
shmem swap

SHMEM INT4 FADD SHMEM INT8 FADD
shmem int fadd shmem long fadd
shmem longlong fadd shmem short fadd

Different tags are used for messages associated with shmem function calls. This can be used to
filter for specific messages:

Function Call Value of Tag

Put 100000
Get 100001

Swap 100002
Add 100003

3.3 Single-process Tracing

Traces of just one process can be generated with the libVTcs library, which allows the generation
of executables that work without MPI.

Linking is accomplished by adding libVTcs.a (resp. VTcs.lib on Microsoft* Windows*) and the
libraries it needs to the link line:

-lVTcs $VT ADDLIBS
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The application has to call VT initialize() and VT finalize() to generate a trace. Additional calls
exist in libVTcs to also trace distributed applications, that is why it is called “client-server”. Tracing
a single process is just a special case of that mode of operation. Tracing distributed applications
is described in more detail in section 6.

Subroutine tracing (3.4) or binary instrumentation (3.4.4) can be used with and without further ITC
API (see chapter 8) calls to actually generate trace events.

libVTcs uses the same techniques as fail-safe MPI tracing (3.1.7) to handle failures inside the
application, therefore it will generate a trace even if the application segfaults or is aborted with
CTRL-C.

3.4 Compiler-driven Subroutine Instrumentation

3.4.1 Intel R© Compilers 10.0 and later

The Intel R© compiler can automatically instrument functions during compilation. At runtime Trace
collector will record all function entries and exits in those compilation units. Compile time instru-
mentation is enabled with the switch “-tcollect” (Linux*) or “/Qtcollect” (Microsoft* Windows*). The
switch accepts an optional argument to specify the collecting library to link against. For example,
for non-MPI applications you can select “libVTcs” as follows: “-tcollect=VTcs”. The default value
is “VT”.

Before using this switch with the Intel R© compiler the Trace Collector must have been set up
through one of its set-up scripts.

Note, that while for MPI applications the initialization is done automatically, manual interaction is
needed for non-MPI programs. In this case you must ensure that the Trace Collector gets properly
initialized through its API routines “VT initialize” or “VT init”.

3.4.2 gcc/g++

Similar function tracing is possible through the GNU* compiler suite version 2.95.2 or later. Object
files that contain functions to be traced are compiled with “-finstrument-function” and VT should
be able to obtain output about functions in the executable. By default this is done by starting the
shell program “nm -P”, which can be changed with the NMCMD config option.

3.4.3 Folding

Function tracing can easily generate large amounts of trace data, especially for object oriented
programs. Folding function calls at run-time can help here, as described in section 3.13.

3.4.4 C++ name demangling

By default Trace Collector records function names in their mangled form. The configuration option
DEMANGLE allows to enable automatic demangling of C++ names.
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3.5 Tracing of Binaries and Binary Instrumentation

Synopsis

itcpin [<ITC options>] -- <application command line>
<ITC options> - described below
<command line> - command and (when running it) its options

Description

The itcpin utility program manipulates a binary executable file while it runs. It can:

• insert an ITC library into the binary as if the executable had been linked against it
• automatically initialize the ITC library, if necessary
• record function entry and exit events, thus allowing more detailed analysis of the user

code in an application

Analysis

Without further options itcpin will just analyze the executable given on the command line to
ensure that it can be instrumented and how. With the ”--list” option it will print a list of all
functions found inside the executable to stdout. The format of this list is the same as the
one used for the STATE configuration option and its ON/OFF flag indicates whether tracing
of a function would be enabled or not. ”--list” can be combined with options that specify a
configuration to test their effect without actually running the executable. One relevant options
is ”--debug”, which groups functions by the source file that contains them. The top-level group
is always the binary file containing the function, leading to function names of the format:
<basename binary file>:<basename source file>:<function name>

C++ names are demangled automatically if ”--demangle” is specified. In this case their meth-
ods are grouped according to the class hierarchy by default instead of using the normal file
oriented grouping. When ”--filter” is used, then the filter script is passed all available informa-
tion and can decide itself which grouping it wants to use.

Note that the function list generated that way is limited to the main executable and those
dynamic libraries which are already loaded during startup. Functions in libraries which are
opened dynamically during the normal execution of the application will not be found this way.

Running

The executable is run only if the ”--run” option is given. Unless instructed otherwise, itcpin
will insert libVT if it finds that the main executable references MPI calls. In all other cases it
is necessary to choose which library to insert with the ”--insert” option.

The installation path of the Trace Collector must be the same on all nodes (see section
’Installation’) to ensure that it can find the necessary binaries at run-time.

Invoking itcpin on the executable as described in the previous section will print a list of all
available libraries with a short description of each one. The ITC documentation also has a
full list of all available libraries in the ”System Requirements and Supported Features” section.
libVTcs is the one used for ordinary function tracing.

If you want to do MPI tracing and MPI was linked statically into the binary, then it is necessary
to point itcpin towards a shared version of a matching MPI library with ”--mpi”.

Choosing which tracing library to insert and the right MPI library is useful, but not required
when just using ”--list”: if given, then itcpin will hide functions that are internal to those libraries
and thus cannot be traced.
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Function Tracing

The optional function profiling is enabled with the ”--profile” flag. This records the entry and
exit for functions in the trace file. Limiting the number of recorded functions is recommended
to avoid excessive runtime overhead and reduce the amount of trace data. This can be
done with one or more of the following options: ”--state”, ”--activity”, ”--symbol”, ”--config”.
Alternatively, you can use ”folding” to prune the amount of recorded trace data dynamically
at runtime; see the section ”Tracing Library Calls” in the ITC documentation for details.

Initialization

ITC libraries must be initialized before they can be used. In MPI tracing libraries this is done
implicitly when MPI Init() is called, so inserting the library is enough.

For the other libraries there are two possibilities:

• The application may contain calls to VT initialize() and (for libVTcs)
VT clientinit()/VT serverinit(). To get the application linked libVTnull can be used.
During binary instrumentation all API calls will be redirected into the actual ITC library.
This is also useful when tracing MPI applications, for example to store additional data in
the trace file.

• If the application contains no call to VT initialize(), then itcpin will call VT initialize() as
soon as the ITC library gets inserted.

Startup Scripts

It is quite common that MPI applications are started via scripts. It is possible to invoke itcpin
on the startup script or program loader. itcpin will then monitor this initial loader and all
commands started by it until it finds the main executable.

When inserting an MPI tracing library (regardless whether it was selected explicitly via ”--
insert” or not) then the first executable which contains MPI calls is treated as the main exe-
cutable. If the main executable contains no MPI calls because all of them were moved to a
shared library which is only going to be loaded later, then this heuristic fails.

In that case and when inserting other ITC libraries, the ”--executable” command line option
can be used to specify which executable is to be instrumented.

Limitations

The Microsoft∗ Windows∗ version of itcpin has some limitations against Linux∗ one.

Unless the binary to be instrumented comes with a .pdb symbol file (i.e. has been built with
debug information), itcpin does not see the symbols inside the main binary and thus cannot
detect whether it is an MPI application. In this situation the user has to specify explicitly which
ITC library should be inserted (via --insert).

There is another difference to Linux∗: the name of the MPI dll the application is linked to has
to be specified, either via --mpi or via the environment variable VT MPI DLL. The latter is
already done in the itacvars script, therefore no special action is needed if the application is
linked to the standard MPI dll and itacvars has been executed. When running under itcpin, it
is important that the environment variables VT DLL DIR and VT MPI DLL are set on all MPI
processes. Depending on your MPI, this might require special flags for mpiexec (e.g. mpiexec
-env). For Intel(R) MPI, as an example, after executing the mpivars and itacvars scripts, the
startup command might look like

mpiexec -hosts ... -wdir ... -genv VT DLL DIR "%VT DLL DIR%"
-genv VT MPI DLL "%VT MPI DLL%" itcpin --run -- my_app.exe
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To use itcpin on Microsoft∗ Windows∗ you have to disable the ”McAfee Host Intrusion
Prevention”∗ antivirus software.

Supported Directives

--run
Syntax :
Default : off
itcpin only runs the given executable if this option is used. Otherwise it just analyzes the
executable and prints configurable information about it.

--use-debug
Syntax :
Default : on
Can be used to disable the usage of debugging information for building the function
names in the trace file. By default debugging information is used to find the source file of
each function and to group those functions together in the same class.

--list
Syntax :
Default : off
Enables printing of all functions found inside the input executable and their tracing state.
Function names are listed as they would appear in the trace file:

• class(es) and basic function name are separated by colon(s)
• C++ function names are demangled and the C++ class hierarchy is used if ”--

demangle” is specified; function parameters are stripped to keep the function names
shorter

• functions without such a class or namespace are grouped by source file if that debug
information is available; only the basename of the source file is used (foo.c:bar)

• all other functions are inside the ”Application” default class
--filter

Syntax : <pattern> <replacement>
This option allows to transform function names that are encountered in the binary file
during execution into more useful names that will appear as predefined functions and
function groups in the trace file. For example, all functions with a common prefix FOO
(FOO bar) could be turned into functions inside a common group FOO (FOO:bar).
Please note that this option has changed significantly compared to itcinstrument that was
available in earlier versions of the Trace Collector.
The arguments consist of a pattern that is matched against the input and a replacement
expression that controls the transformation into the output.
The input function names have nearly the same format as in the --list output above. They
contain slightly more information so that a filter can flexibly reduce that information:

• source file names contain the full path, if available
• C++ functions also have their source file as top level class

Example input:

• /home/joe/src/foo.c:FOO bar
• Application:FOO bar
• /home/joe/src/foo.cpp:app:foo:bar

Passing --filter ’Application:FOO (.∗)’ ’FOO:$1’ would transform ”Application:FOO bar” into
”FOO:bar”. The special expression $1 in the replacement pattern refers to the part of the
input that was matched by the first parenthesis in the pattern expression. Note that the single
quotes are only needed to protect the expressions from being garbled by the shell, they are
not part of the expression. If the pattern or the replacement string contain characters like $
or () which are treated specially by the shell it is recommended to specify the filter expression
via an ITC config file: this file would contain lines like
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FILTER ’Application:FOO (.∗)’ ’FOO:$1’

and would be defined to itcpin via --config.

You can specify several --filter options that are applied from left to right. Lets try to strip the
common prefix /home/joe/ from the input and then use the remaining directory and file names
as groups.

First we throw away the common prefix: --filter ’/home/joe/(.∗)’ ’$1’

Then we convert slashes to colons: --filter ’/’ ’:’

As another example you might want to handle Fortran 90 module functions by stripping the
source file or class, then converting the underscore in the function name into a class separator
--filter ’∧[∧:]∗:(([∧ ]∗ ){2,})$’ ’$1’ --filter ’ ’ ’:’ This works for example, for src/foo.f90:foo bar .

While the syntax for the pattern expression and the replacement expression is very simi-
lar to the Perl language the underlying regex library is taken from the boost library project
(’http://www.boost.org/ ’), regex version 1.34.1. Note that --filter replaces all matched
patterns with the replacement, while Perl replaces only the first match by default.

For a detailed reference of the regular expression syntax in the <pattern> ar-
gument please refer to ’http://www.boost.org/libs/regex/doc/syntax -
perl.html ’, For a detailed reference of the special expressions usable in
the <replacement> argument (named ”Format String” in boost terms) refer to
’http://www.boost.org/libs/regex/doc/format perl syntax.html ’.

--insert
Syntax : <libname>

Default : libVT for MPI applications

ITC has several libraries that can be used to do different kinds of tracing. For MPI ap-
plications the most useful one is libVT, so it is the default. For other applications itcpin
cannot guess what the user wants to do, so the library which is to be inserted needs to
be specified explicitly.

--mpi
Syntax : <path to MPI>

If an MPI application is linked statically against MPI, then its executable only contains
some of the MPI functions. Several of the functions required by libVT may not be present.
In this case running the instrumented binary will fail with link errors. itcpin tries to detect
this failure, but if it happens it will not be able to guess what the MPI is that the application
was linked against.

This option provides that information. The MPI installation must have shared libraries
which will be searched for in the following places, in this order:

• <path>
• <path>/lib
• <path>/lib/shared and the names (first with version 1.0, then without):
• libpmpich.so
• libmpich.so
• libpmpi.so
• libmpi.so

If <path> points towards a file, that file has to be a shared library which implements the PMPI
interface and is used directly.

--profile
Syntax :

Default : off

Enables function profiling in the instrumented binary. Once enabled, all functions in
the executable will be traced. It is recommended to control this to restrict the runtime
overhead and the amount of trace data by disabling functions which do not need to be
traced (see --state/symbol/activity filters).
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--config
Syntax : <filename>

Specifies a ITC configuration file with STATE, ACTIVITY, SYMBOL configuration op-
tions. The syntax of these options is explained in more detail in the documentation
of VT CONFIG and the normal pattern matching rules apply.
In this context it only matters whether tracing of a specific function is ON or OFF. Rule
entries given on the command line with --state, --activity, --symbol are evaluated before
entries in the configuration file.

--executable
Syntax : <file pattern>

Specifies the executable into which the ITC library is to be inserted. When analyzing MPI
applications, the default is to pick the first executable which contains MPI calls. Otherwise
the first executable invoked by the command line will be instrumented.
The parameter is a file pattern which must match a substring of the full executable name.
With | multiple different file patterns can be separated. Note that the real name of the
executable file is matched against and not the name of a symbolic link via which it might
have been invoked.
To find out which executables itcpin looks at and why it ignores the ”right” one, run with
verbosity level 3.

--max-threads
Syntax : <number>
Default : 100
One internal data structure which tracks threads must have a fixed size to avoid locking.
This parameter determines the size of that structure. It must be larger than the number of
threads created during the application run and only has to be increased if the run aborts
with an error message that instructs to do so.

--verbose
Syntax : [on|off|<level>]
Default : on
Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.
--state

Syntax : <pattern> <filter body>

Default : on
Defines a filter for any state or function that matches the pattern. Patterns are extended
shell patterns: they may contain the wild-card characters ∗, ∗∗, ? and [] to match any
number of characters but not the colon, any number of characters including the colon,
exactly one character or a list of specific characters. Pattern matching is case insensitive.
The state or function name that the pattern is applied to consists of a class name and
the symbol name, separated by a : (colon). Deeper class hierarchies as in Java or C++
may have several class names, also separated by a colon. The colon is special and not
matched by the ∗ or ? wildcard. To match it use ∗∗. The body of the filter may specify the
logging state with the same options as PCTRACE. On some platforms further options
are supported, as described below.
Valid patterns are:

• MPI:∗ (all MPI functions)
• java:util:Vector∗:∗ (all functions contained in Vector classes)
• ∗:∗send∗ (any function that contains ”send” inside any class)
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• ∗∗:∗send∗ (any function that contains ”send”, even if the class actually consists of
multiple levels; same as ∗∗send∗)

• MPI:∗send∗ (only send functions in MPI)
--symbol

Syntax : <pattern> <filter body>

Default : on
A shortcut for STATE ”∗∗:<pattern>”.

--activity
Syntax : <pattern> <filter body>

Default : on
A shortcut for STATE ”<pattern>:∗”.

3.6 Multithreaded Tracing

To trace multithreaded applications, just link and run as described above. Additional threads will
be registered automatically as soon as they call ITC via MPI wrapper functions or the API. Within
each process every thread will have a unique number starting with zero for the master thread.

With the VT registerthread() API function the application developer can control how threads are
enumerated. VT registernamed() also supports recording a thread name. VT getthrank() can be
used to obtain the thread number that was assigned to a thread.

3.7 Recording Statistical Information

ITC is able to gather and store statistics about the function calls and their communication

These statistics are gathered even if no trace data is collected, therefore it is a good starting
point for trying to understand an unknown application that might produce an unmanageable trace.
To run an application in this light weight mode you can either set the environment variables
VT STATISTICS=ON and VT PROCESS=OFF or point with VT CONFIG to a file like this:

# enable statistics gathering
STATISTICS ON

# no need to gather trace data
PROCESS0:N OFF

The statistics are written into the STF file. The stftool (see section 7.4.1) can convert from the
machine-readable format to ASCII text with --print-statistics.

The format was chosen so that text processing programs and scripts such as awk, perl, and Excel
can read it. In one line each it prints for each tuple of

• Thread or process

• Function

• Receiver (if applicable)

• Message size (if applicable)

• number of involved processes (if applicable)

22



3.7. RECORDING STATISTICAL INFORMATION

the following statistics:

• Count; number of communications or number of calls as applicable

• Minimum execution time exclusive callee time

• Maximum execution time exclusive callee time

• Total execution time exclusive callee time

• Minimum execution time inclusive callee time

• Maximum execution time inclusive callee time

• Total execution time inclusive callee time

Within each line the fields are separated by colons (:).

Receiver is set to 0xffffffff for file operations and to 0xfffffffe for collective operations. It message
size equals 0xffffffff the only defined value is 0xfffffffe to mark it a collective operation.

The message size is the number of bytes sent or received per single message. With collective
operations the following values (buckets) (of message size) are used for individual instances:

Process-local bucket Is same value on all processes?
MPI Barrier 0 Yes
MPI Bcast number of broadcasted bytes Yes
MPI Gather number of bytes sent Yes
MPI Gatherv number of bytes sent No
MPI Scatter number of bytes received Yes
MPI Scatterv number of bytes received No
MPI Allgather number of bytes sent + received Yes
MPI Allgatherv number of bytes sent + received No
MPI Alltoall number of bytes sent + received Yes
MPI Alltoallv number of bytes sent + received No
MPI Reduce number of bytes sent Yes
MPI Allreduce number of bytes sent + received Yes
MPI Reduce Scatter number of bytes sent + received Yes
MPI Scan number of bytes sent + received Yes

Message is set to 0xffffffff if no message was sent, e.g. for non-MPI functions or functions like
MPI Comm rank.

If more than one communication event (message or collective operation) occur in the same
function call (as it can happen for instance with MPI Waitall, MPI Waitany, MPI Testsome,
MPI Sendrecv etc.), the time in that function is evenly distributed over all communications and
counted once for each message or collective operation. This implies that it is impossible to com-
pute a correct traditional function profile from the data referring to such function instances (e.g.
those that are involved in more than one message per actual function call). Only the ’Total ex-
ecution time inclusive callee time’ and the ’Total execution time exclusive callee time’ can be
interpreted similar to the traditional function profile in all cases.

The number of involved processes is negative for received messages. If messages were received
from a different process/thread it is -2.

Statistics are gathered on the thread level for all MPI functions and for all functions which were in-
strumented through the API (see section 8), binary instrumentation (see section 3.4.4) or compiler
driven instrumentation (see section 3.4).
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Filter utilities, such as awk and perl, and plotting/spreadsheet packages, like Excel, can process
the statistical data easily. In the examples directory a perl script called convert-stats is provided
that illustrates how the values printed by stftool (called with the --dump and --print-statistics op-
tions) might be processed: it extracts the total times and transposes the output so that each line
has information about one function and all processes instead of one function and process as in
the protocol file. It also summarizes the time for all processes. For messages the total message
length is printed in a matrix with one row per sender and one column per receiver.

3.8 Recording Source Location Information

The Intel R© Trace Collector can automatically record the locations of subroutine calls in the source
code. Compile the relevant application modules with support for debugging by using these com-
piler flags that enable the generation of debug information for ITC:

mpicc -g -c ctest.c
mpif77 -g -c ftest.c

If your compiler does not support a flag, then search for a similar one.

At runtime, enable Program Counter (PC) tracing by either setting the environment variable
VT PCTRACE to 5 for example, or by setting VT CONFIG to the name of a configuration file
specifying e.g.:

# trace 4 call levels whenever MPI is used
ACTIVITY MPI 4

# trace one call level in all routines not mentioned
# explicitly; could also be for example, PCTRACE5
PCTRACEON

PCTRACE sets the number of call levels for all subroutines that do not have their own setting.
Because unwinding the call stack each time a function is called can be very costly and cause
considerable runtime overhead, PCTRACE is disabled by default and has to be handled with
care. It is useful to get an initial understanding of an application which then is followed by a
performance analysis without automatic source code locations.

Manual instrumentation of the source code with the ITC API can provide similar information but
without the performance overhead (see VT scldef()/VT thisloc() in section 8.3 for more informa-
tion).

3.8.1 Notes for IA32 and Intel R©64

On ia32-Linux and Intel R©64 the compiler generates dwarf-2 debug infos. This is supported by
GCC and was even made the default in GCC 3.1, but older releases need -gdwarf-2 to enable
that format. The Intel R© compiler also uses it by default since at least version 7.0 and does not
need any special options.

Another requirement is that the compiler has to use normal stack frames. This is the default in
GCC, but might have been disabled with -fomit-frame-pointer. If that flag is used, then only the
direct caller of MPI or API functions can be found and asking ITC to unwind more than one stack
level may lead to crashes. The Intel R© compiler does not use normal stack frames by default
if optimization is enabled, but it is possible to turn them on with -fp. As of version 10.0 of the
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Intel R© compiler, this option is deprecated, use -fno-omit-frame-pointer instead. Support by other
compilers for both features is unknown.

3.9 Recording Hardware Performance Information

On Linux* The Intel R© Trace Collector can sample Operating System values for each process with
the getrusage() system call and hardware counters with the Performance Application Program-
ming Interface (PAPI). Because PAPI and getrusage() might not be available on a system, support
for both is provided as an additional layer on top of the normal ITC.

This layer is implemented in the VT sample.c source file. It was possible to provide a pre-
compiled object files only for IA32 systems, because PAPI was either not available or not in-
stalled when this package was prepared. The VT sample.o file can be rebuilt by entering
the ITC lib directory, editing the provided Makefile to match the local setup and then typing
“make VT sample.o ”. It is possible to compile VT sample.o without PAPI by removing the
line with HAVEPAPI in the provided Makefile. This results in a VT sample.o that only samples
getrusage() counters, which is probably not as useful as PAPI support.

Add the VT sample.o object file to the link line in front of the ITC library. With the symbolic link
from libVTsample.a to VT sample.o that is already set in the lib directory it is possible to
use -lVTsample and the normal linker search rules to include this object file. If it includes PAPI
support, then add -lpapi also, together with all libraries PAPI itself needs, for example -lpfm
to find symbols from libpfm —please refer to the PAPI documentation for details, which also
describes all other aspects of using PAPI. The link line might look like the following one:

mpicc ctest.o <search path for PAPI> -lVTsample -lVT -lpapi
$VT ADDLIBS <libs required by PAPI> -o ctest

Run the application with configuration options that enable the counters of interest. Because ITC
cannot tell which ones are interesting, all of them are disabled by default. The configuration
option “COUNTER <counter name> ON” enables the counter and accepts wildcards, so that for
example “COUNTER PAPI * ON” enables all PAPI counters at once. Section 9 describes how to
use configuration options.

However, enabling all counters at once is usually a bad idea because logging counters not re-
quired for the analysis just increases the amount of trace data. Even worse is that many PAPI
implementations fail completely with an error in PAPI start counters() when too many counters
are enabled because some of the selected counters are mutually exclusive due to restrictions in
the underlying hardware (see PAPI and/or hardware documentation for details).

PAPI counters are sampled at runtime each time a function entry or exit is logged. If this is not
sufficient f.i. because a function runs for a very long time, give ITC a chance to log data. This is
done by inserting calls to VT wakeup() into the source code.

The following Operating System counters are always available, but might not be filled with useful
information if the operating system does not maintain them. They are not sampled as often as
PAPI counters, because they are unlikely to change as often. ITC only looks at them if 0.1 seconds
have passed since last sampling them. This delay is specified in the VT sample.c source code
and can be changed by recompiling it. Consult the man page of getrusage() or the system manual
to learn more about these counters:
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Counter Class: OS

Counter Name Unit Comment
RUUTIME s user time used
RUSTIME s system time used
RUMAXRSS bytes maximum resident set size
RUIXRSS bytes integral shared memory size
RUIDRSS bytes integral unshared data size
RUISRSS bytes integral unshared stack size
RUMINFLT # page reclaims—total vmfaults
RUMAJFLT # page faults
RUNSWAP # swaps
RUINBLOCK # block input operations
RUOUBLOCK # block output operations
RUMSGSND # messages sent
RUMSGRCV # messages received
RUNSIGNALS # signals received
RUNVCSW # voluntary context switches
RUNIVCSW # involuntary context switches

The number of PAPI counters is even larger and not listed here. They depend on the version of
PAPI and the CPU. A list of available counters including a short description is usually produced
with the command:

<PAPI root >/ctests/avail -a

3.10 Recording OS Counters

Similar to the process specific counters in the previous section, ITC can also record some Oper-
ating System counters which provide information about a node. In contrast to the process specific
counters these counters are sampled only very infrequently by one background thread per node
and thus the overhead is very low. The amount of trace data also increases just a little.

Nevertheless recording them is turned off by default and needs to be enabled explicitly with the
configuration option “COUNTER <counter name> ON”. The supported counters are:

Counter Class: OS

Counter Name Unit Comment
disk io KB/s read/write disk IO (any disk in the node)
net io KB/s read/write network IO (any system interface)

This might not include the MPI transport layer.
cpu ... percent average percentage of CPU time of all CPUs spent in . . .
cpu idle percent . . . idle mode
cpu sys percent . . . system code
cpu usr percent . . . user code

The delay between recording the current counter values can be changed with the configuration
option “OS-COUNTER-DELAY”, with a default of one second. CPU utilization is calculated by the
OS with sampling, therefore a smaller value does not necessarily provide more detailed informa-
tion. Increasing it could reduce the overhead further, but only slightly because the overhead is
hardly measurable already.

These OS counters appear in the trace as normal counters which apply to all processes running
on a node.
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3.11 Using the Dummy Libraries

Programs containing calls to the ITC API (see section 8) can be linked with a “dummy” version of
the profiling libraries to create an executable that will not generate traces and incur a much smaller
profiling overhead. This library is called libVTnull.a and resides in the ITC library directory. Here’s
how a C MPI-application would be linked:

mpicc ctest.o -lVTnull $VT ADDLIBS -o ctest

3.12 Using the Shared Libraries

This version of the Intel R©Trace Collector also provides all of its libraries as shared objects. Using
the static libraries is easier to handle, but in some cases the shared libraries might be useful. They
are located in the directory “itac/slib 〈mpi〉” (Linux*) resp. “dll\〈mpi〉” (Microsoft* Windows*). After
sourcing the itacvars script with the appropriate 〈mpi〉 argument, the path of the shared libraries’
directory is contained in the environment variable VT SLIB DIR (resp. VT DLL DIR on Microsoft*
Windows*). It is recommended to use this variable in linker flags like -L$(VT SLIB DIR) in your
Makefile.

To use the shared libraries on Linux*, add -L$VT SLIB DIR to the command line of your linker.
Then ensure that your LD LIBRARY PATH includes this directory on all nodes where the program
is started. This can be done either by automatically sourcing the itacvars scripts in the login scripts
of one’s account, setting the variable there directly, or by running the program inside a suitable
wrapper script.

The installation path of the Intel R©Trace Collector should be the same on all nodes (see section
2) to ensure that it can find the necessary binaries at run-time.

Two different bindings for Fortran are supported in the same library. This works fine when linking
against the static ITC because the linker automatically picks just the required objects from the
library. When using shared libraries, though, it will refuse to generate a binary because it finds
unresolved symbols and cannot tell that those are not needed. To solve this, add -Wl,--allow-shlib-
undefined to the link line. Note that in some distributions of Linux, f.i. RedHat Enterprise Linux
3.0, the linker’s support for this option is broken so that it has no effect (ld version 2.14.90.0.4).

Alternatively you can insert the ITC into a MPI binary that was not linked against it. For that to work
MPI itself has to be linked dynamically. For MPICH*, you need to configure MPICH* with --enable-
sharedlib, then link the application either with -shlib on the command line or the environment
variable MPICH USE SHLIB set to “yes”. When running the dynamically linked MPI application,
set LD LIBRARY PATH as described above and in addition to that, set the environment variable
LD PRELOAD to “libVT.so:libpthread.so:libdl.so”. Even more convenient is the simple use of the
’-trace’ option which is provided by ’mpiexec’ of Intel R© MPI library.

To use the dll versions of ITC on Microsoft* Windows* you need a full ITC installation on each
node. Executing the itacvars script with the appropriate MPI argument makes sure that the di-
rectory of the ITC dlls (VT DLL DIR) is added to the PATH so that they are found at runtime. On
Microsoft* Windows*, the ITC dlls have a special feature: they are not directly linked against MPI,
but load the MPI interface dynamically at runtime. Which MPI dlls are to be loaded by ITC is
defined via environment variables VT MPI DLL resp. VT FMPI DLL for the C resp. Fortran MPI
dll. These variables are set via the itacvars script to the default dll of the corresponding MPI (e.g.
“impi.dll” for Intel R©MPI), but may be changed to a different, but binary compatible MPI dll (e.g.
“impid.dll”).
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3.13 Tracing Library Calls

Suppose you have an application that makes heavy use of libraries or software components which
might be developed independently of the application itself. As an application developer the rele-
vant part of the trace are the events inside the application and the top-level calls into the libraries
made by the application, but not events inside the libraries. As a library developer the interesting
part of a trace are the events inside one’s library and how the library functions were called by the
application.

lib1 lib2

lib3 lib4

Application Code

System−level Libraries

1 1 1

2

3

2

4

2

Figure 3.1: General structure of an application using many different libraries.

Figure 3.1 shows the calling dependencies in a hypothetical application. This is the application
developer’s view on improving performance:

• lib1, lib2, lib4 are called by the application; the application developer codes these calls and
can change the sequence and parameters to them to improve performance (arrows marked
as 1)

• lib3 is never directly called by the application. The application developer has no way to tailor
the use of lib3. These calls (arrows marked as 3) are therefore of no interest to him, and
detailed performance data is not necessary.

• lib4 is called both directly by the application, and indirectly through lib2. Only the direct use
of lib4 can be influenced by the application developer, and the information about the indirect
calls (arrows marked 4) are not interesting to her.

For the library developer, the performance analysis model is significantly different. Here, the work-
ings of the application are of no concern apart perhaps from call paths that lead into the library.
The library developer will need detailed information about the workings of say lib2, including the
calls from the application, and the calls to component libraries (lib3 and lib4), and to system-level
services (MPI). The library developer of lib2 will have no interest in performance data for lib1, and
similarly the library developers of lib1 will have no interest in data from lib2, lib3, and lib4.

If the application and the involved libraries are instrumented to log function calls (either manually
or with a compiler), then Intel(R) Trace Collector supports tracing of the application in a way that
just the interesting data is recorded. This is done by writing a filter rule that turns off tracing
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once a certain function entry has been logged and turns it on again when the same function is
left again. This effectively hides all events inside the function. In analogy to the same operation
in a graphical tree view this is called FOLDING in Intel(R) Trace Collector. UNFOLDING is the
corresponding operation that resumes tracing again in a section that otherwise would have been
hidden. In contrast to turning tracing on and off with the API calls VT traceon() and VT traceoff(),
folding does not log a pseudo-call to “VT API:TRACEOFF”. Otherwise folding a function that does
not call any other function would log more, not less data. It is also not necessary to turn tracing
on again explicitly, this is done automatically.

Folding is specified with the STATE, SYMBOL or ACTIVITY configuration options. Shell wildcards
are used to select functions by matching against their name (SYMBOL), class (ACTIVITY) or both
(STATE). “FOLD” and “UNFOLD” are keywords that trigger folding or unfolding when a matching
function is entered. With the “CALLER” keyword one can specify as an additional criteria that the
calling function match a pattern before either folding or unfolding is executed. Section 9.6 has a
detailed description of the syntax.

In this section folding is illustrated by giving configurations that apply to the example given above.
A C program is provided in examples/libraries.c that contains instrumentation calls that log
a calltree as it might occur from a program run with library dependencies as in 3.1. Here is an
example of call tree for the complete trace (calls were aggregated and sorted by name, therefore
the order is not sequential):

\->User_Code
+->finalize
| \->lib2_end
+->init
| +->lib1_fini
| \->lib1_main
| +->close
| +->lib1_util
| +->open
| \->read
+->lib4_log
| \->write
\->work

+->lib2_setup
| +->lib3_get
| | \->read
| \->lib4_log
| \->write
\->lib4_log

\->write

By using the configuration options listed below, different parties can run the same instrumented
executable to get different traces:

application developer: trace the application with only the top-level calls in lib1, lib2, and lib4

STATE lib*:* FOLD

\->User_Code
+->finalize
| \->lib2_end
+->init
| +->lib1_fini
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| \->lib1_main
+->lib4_log
\->work

+->lib2_setup
\->lib4_log

lib2 developer: trace everything in lib2, plus just the top-level calls it makes

STATE *:* FOLD
STATE lib2:* UNFOLD

\->User_Code
+->finalize
| \->lib2_end
\->work

\->lib2_setup
+->lib3_get
\->lib4_log

lib2 developer, detailed view: trace the top-level calls to lib2 and all lib2, lib3, lib4, and system
services invoked by them

STATE Application:* FOLD
STATE lib2:* UNFOLD

\->User_Code
+->finalize
| \->lib2_end
\->work

\->lib2_setup
+->lib3_get
| \->read
\->lib4_log

\->write

application and lib4 developers: trace just the calls in lib4 issued by the application

STATE *:* FOLD
STATE lib4:* UNFOLD CALLER Application:*

\->User_Code
+->lib4_log
| \->write
\->work

\->lib4_log
\->write

It is assumed that application, libraries and system calls are instrumented so that their classes
are different. Alternatively you could match against a function name prefix that is shared by all
library calls in the same library.
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Correctness Checking

4.1 Overview

The checking addresses two different concerns:

• Finding programming mistakes in the application which need to be fixed by the application
developer. These include potential portability problems and violations of the MPI standard
which do not immediately cause problems, but might when switching to different hardware
or a different MPI implementation.

• Detecting errors in the execution environment. This is typically done by users of ISV codes
or system administrators who just need to know whom they have to ask for help.

In the former case correctness checking is most likely done interactively on a smaller development
cluster, but it might also be included in automated regression testing. The second case must use
the hardware and software stack on the system that is to be checked.

While doing correctness checking one has to distinguish error detection which is done automati-
cally by tools and error analysis which is done by the user to determine the root cause of the error
and eventually fix it.

The error detection in ITC is implemented in a special library, libVTmc, which always does online
error detection at runtime of the application. To cover both of the scenarios mentioned above,
recording of error reports for later analysis as well as interactive debugging at runtime are both
supported. At this time libVTmc cannot write a trace file. To switch between correctness checking
and performance analysis one has to rerun the application with one of the performance tracing
libraries (libVT or libVTfs).

In some cases special features in Intel R© MPI Library are required by libVTmc. Therefore this is
currently the only MPI for which a libVTmc is provided.

The errors are printed to STDERR as soon as they are found. Interactive debugging is done with
the help of a traditional debugger: if the application is already running under debugger control,
then the debugger has the possibility to stop a process when an error is found.

Currently it is necessary to manually set a breakpoint in the function
MessageCheckingBreakpoint() . This function and debug information about it are con-
tained in the ITC library. Therefore it is possible to set the breakpoint and after a process was
stopped, to inspect the parameters of the function which describe what error occurred. In later
versions it will also be possible to start a debugger at the time when the error is found.
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4.2 Usage

4.2.1 Inserting ITC

The first step always is to run the application so that libVTmc can intercept all MPI calls. The
available methods to achieve this are exactly the same as for normal performance analysis with
libVT or libVTfs:

1. Use LD_PRELOAD(Linux* only):
mpiexec -genv LD PRELOAD libVTmc.so -n ...

2. Binary instrumentation(section 3.4.4).

3. Relinking the application (3.1.2).

4. ’-check’ command line option of mpiexec (Intel R© MPI library only).

4.2.2 Running with valgrind

For distributed memory checking (LOCAL:MEMORY:INITIALIZATION ) and detecting accesses
to memory that is owned by MPI and thus should not be touched by the application
(LOCAL:MEMORY:ILLEGAL_ACCESS) it is necessary to run all MPI processes under control of the
valgrind memory checker (Linux* only). Valgrind is an open source memory checker which is avail-
able for x86 and Intel R© 64 Linux machines free of charge from http://www.valgrind.org/
and/or packaged by Linux distributors; it is not part of the package distributed by Intel and there-
fore has to be installed separately. Only valgrind versions ≥ 3.2.0 are supported.

The recommended way of invoking valgrind is to invoke it directly on the main MPI process and
to add the mpiexec -l option so that all output printed by valgrind is automatically prefixed with
the MPI process rank. ITC detects that -l is in effect if the Intel R© MPI Library version is 3.0
build 043 or higher and then leaves adding the rank prefix to mpiexec also for ITC’s own output.
One drawback of -l is that it leads to a lot of interleaving of lines if processes generate output
concurrently; this can be solved by redirecting the output to a file and then either grepping for
the output of individual processes (e.g. grep ’ˆ0:’ for rank 0) or sorting the output by rank
(sort -n ).

The LOCAL:MEMORY:ILLEGAL_ACCESScheck causes valgrind reports not just for illegal appli-
cation accesses (as desired) but also for Intel R© MPI Library’s own access to the locked memory
(not desired, because MPI currently owns it and must read or write it). These reports are normal
and the valgrind suppression file in ITC’s lib directory tells valgrind to not print them, but valgrind
must be told about it via its --suppressions option.

When the MPI executable is given on the command line, an MPI application could be started
under valgrind like this:
mpiexec -genv LD_PRELOAD libVTmc.so -l -n <num procs>

valgrind --suppressions=$ VT LIB DIR/impi.supp <application> ...

When a wrapper script is used, then it might be possible to trace through the wrapper script
by adding the --trace-children=yes option, but that could lead to reports about the script
interpreter and other programs, so adding valgrind to the actual invocation of the MPI binary is
easier.
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4.2.3 Configuration

Which errors are checked for at runtime is configurable: all errors have a unique name and are
categorized in a hierarchy similar to functions. For example, “LOCAL:MEMORY:OVERLAP” is a
local check which ensures that memory is not used twice in concurrent MPI operations. The
“CHECK” configuration option matches against these full names of each supported error and
turns it on or off, like this:
# turn all checking off:
# ** matches colons
# * does not
CHECK** OFF
# selectively turn on specific checks:
# - all local checks
CHECKLOCAL:** ON
# - just one global check
CHECKGLOBAL:MSG:DATATYPE:MISMATCH ON

By default ITC checks for all errors and tries to provide as much information about them as possi-
ble. In particular it does stack unwinding and reports source code information for each level in the
call hierarchy. This can be controlled with the PCTRACE configuration option. For performance
analysis that option is off by default, but for correctness checking with libVTmc it is enabled.

Disabling certain errors serves two purposes: first of all it avoids any report about the disabled
errors. Then it can also reduce the overhead for checking if it allows ITC to skip certain code or
communication.

Another relevant setting is the DEADLOCK-TIMEOUT. This controls the same mechanism to
detect deadlocks as in libVTfs. For interactive use it is recommended to set it to a small value like
“10s” to detect deadlocks quickly without having to wait long for the timeout.

The different levels for the VERBOSE configuration of verbosity have the following effects:

0 all extra output disabled, only error summary at the end is printed

1 adds a summary of configuration options as the application starts (default)

2 adds a one-line info message at the beginning by each process with host name, process ID
and the normal rank prefix; this can be useful if output is redirected into one file per process
because it identifies to which process in the parallel application the output belongs

3 adds internal progress messages and a dump of MPI call entry/exit with their parameters and
results

4.2.4 Analyzing the Results

For interactive debugging the application has to be started so that stderr is printed to a console
window. Then one can follow which errors are found while the application is running and start
analyzing them without having to wait for it to complete. If critical errors are found early on one
could even abort the run, fix the problem and restart. This ensures a much faster code and test
cycle than a post-mortem analysis.

The output for each error varies, depending on the error: only the relevant information is printed,
thus avoiding the need to manually skip over irrelevant information. In general ITC starts with the
error name and then continues with a description of the failure.

For each MPI call involved in the error the MPI parameters are dumped. If PC tracing is enabled,
ITC also provides a backtrace of source code locations for each call. For entities like requests the
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involved calls include the places where a request was created or activated. This helps to track
down errors where the problem is not at the place where it is detected.

Because multiple processes might print errors concurrently, each line is prefixed with a tag that
includes the rank of the process in MPI_COMM_WORLDwhich reports the problem. MPI applica-
tions which use process spawning or attachment are not supported at the moment and therefore
that rank is unique.

When the application terminates, ITC does further error checks (e.g. unfreed resources, pending
messages). Note that if any process is killed without giving it a chance to clean up (i.e. by
sending it a SIGKILL) this final step is not possible. Note that sending a SIGINT to mpiexec via
kill or pressing CTRL-C will cause Intel R© MPI Library to abort all processes with such a hard
SIGKILL.

4.2.5 Debugger Integration

As mentioned earlier, it is currently necessary to manually set a breakpoint in the function
MessageCheckingBreakpoint() . Immediately after reporting an error on stderr this func-
tion is called, so the stack backtrace directly leads to the source code location of the MPI call
where the error was detected. In addition to the printed error report one can also look at the
parameters of the MessageCheckingBreakpoint() which contain the same information. It is
also possible to look at the actual MPI parameters with the debugger because the initial layer of
MPI wrappers in libVTmc is always compiled with debug information. This can be useful if the
application itself lacks debug information or calls MPI with a complex expression or function call
as parameter for which the result is not immediately obvious.

The exact methods to set breakpoints depend on the debugger which is used. Here are some
information how it works with specific debuggers. For additional information or other debuggers
please refer to the debuggers’s user manual.

The first three debuggers mentioned below can be started by Intel R© MPI Library by adding the
-tv , -gdb or -idb options to the command line of mpiexec or mpirun . Allinea’s DDT can be
reconfigured to attach to MPI jobs that it starts.

Using debuggers like that and valgrind are mutually exclusive because the debuggers
would try to debug valgrind, not the actual application. The valgrind --db-attach
option does not work out-of-the-box either because each process would try to read
from the terminal. One solution that is known to work on some systems for an-
alyzing at least valgrind’s reports is to start each process in its own X terminal:
mpiexec -genv LD_PRELOAD libVTmc.so -l -n <numprocs> xterm -e bash -c

’valgrind --db-attach=yes --suppressions=$ VT LIB DIR/impi.supp
<app>; echo press return; read’

In that case ITC’s error handling still occurs outside the debugger, so those errors have to be
analyzed based on the printed reports.

4.2.5.1 Etnus TotalView* debugger

For TotalView* it is necessary to pay attention that the breakpoint should be set for all processes.
For TotalView* there are several ways to automate procedure of setting breakpoints. Mostly it
depends how common it is planned to use this automation.

If it is planned to apply it only for the current program, one can create the file filename.tvd (filename
being the name of the executable) in the working directory in advance and put the following line
into it:
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dfocus gW2 dbreak MessageCheckingBreakpoint

Alternatively one can set the breakpoint in the TotalView* GUI and save breakpoints, which will
also create this file and then reuse the settings for further debug sessions with the same exe-
cutable.

To apply setting this breakpoint for all programms in current working directory one can create a
file .tvdrc with the following lines (or add them if it already exists):

proc my_callback {_id } {
if { $_id == 2 } {

dfocus p$_id dbreak MessageCheckingBreakpoint
}

if { $_id > 2 } {
dfocus p$_id denable -a

}
}
dset TV::process_load_callbacks ::my_callback

To apply this for all debugging sessions, it is necessry to add these lines to the file
$HOME/.totalview/tvdrc . Note there is no dot in the name of this file.

4.2.5.2 GDB, the GNU* Symbolic Debugger

To automate the procedure of setting breakpoints, gdb supports executing commands automati-
cally. To apply setting this breakpoint for all programms in the current working directory one can
create a file .gdbinit with the following lines (or add them if it already exists):
set breakpoint pending on
break MessageCheckingBreakpoint

Due to the order in which files are processed, placing the same commands in a .gdbinit file in
the home directory does not work because the main binary is not loaded yet. As a workaround
one can put the following commands into ˜/.gdbinit and then start MPI applications with the
normal run command:
define hook-run

# important, output is expected by MPI startup helper
echo Starting program...
# allow pending breakpoint
set breakpoint pending on
# set breakpoint now or as soon as function becomes available
break MessageCheckingBreakpoint
# restore default behavior
set breakpoint pending auto
end

4.2.5.3 IDB, the Intel R© Debugger

For idb the following way is used to automate procedure of setting breakpoints. To apply setting
this breakpoint for all programms in the current working directory one can create a file .dbxinit
with the following line (or add them if it already exists):
stop MessageCheckingBreakpoint

Alternatively one can add this command to a .dbxinit file in the home directory, then it is applied
to all programs. A warning about not being able to set this breakpoint in programs without libVTmc
included is normal and can be ignored.
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4.2.5.4 Allinea’s Distributed Debugging Tool, DDT

DDT must be configured to run the user’s application with the necessary Intel R© libraries pre-
loaded. This is best achieved from the “Run” dialog by selecting the Session/Options menu
and choosing “Intel MPI Library” along with selecting the “Submit through queue or config-
ure own mpirun command option”. In the “Submit Command” box enter (without line breaks):
mpiexec -genv LD_PRELOAD libVTmc.so -genv VT DEADLOCKTIMEOUT 20s

-genv VT DEADLOCKWARNING25s -n NUM_PROCS_TAG
DDTPATH_TAG/bin/ddt-debugger

Other boxes can remain empty, and then click “Ok”.

Start the application by pressing the submit button on DDT’s job launch dialog. When the appli-
cation is ready, select the “Control/Add Breakpoint” menu and add a breakpoint at the function
MessageCheckingBreakpoint.

Continue to run and debug your application as normal, the program will stop automatically at
MessageCheckingBreakpoint when an MPI error is detected. You may use the parallel stack
browser to find the processes that are stopped and select any of these processes. The local
variables in this function will identify the error type, the number of errors so far, and the error
message.

You may also set a condition on this breakpoint from the Breakpoints tab, or “Add Breakpoint”
menu, for example to stop only after 20 errors are reported use a condition of “reportnumber >
20”.

4.3 Error Detection

4.3.1 Supported Errors

Errors fall into two different categories:

local checks only need information available in the process itself and thus do not require addi-
tional communication between processes

global information from other processes is required

Another aspect of errors is whether the application can continue after they occurred. Minor prob-
lems which may are may not require fixing are reported as warnings and allow the application
to continue, but they lead to resource leaks or portability problems. Real errors are invalid op-
erations that can only be skipped to proceed, but this either changes the application semantic
(e.g. transmission errors) or leads to follow-up errors (e.g. skipping an invalid send can lead to a
deadlock because of the missing message). Fatal errors cannot be resolved at all and require an
application shutdown.

Problems are counted separately per process. Disabled errors are neither reported nor counted,
even if they still happen to be detected. The application will be aborted as soon as a certain
number of errors are encountered: obviously the first fatal error always requires an abort. Once
the number of errors reaches CHECK-MAX-ERRORS or the total number of reports (regardless
whether they are warnings or errors) reaches CHECK-MAX-REPORTS (whatever comes first),
the application is aborted. These limits apply to each process separately. Even if one process
gets stopped, the other processes are allowed to continue to see whether they run into further
errors. The whole application is then aborted after a certain grace period. This timeout can be set
via CHECK-TIMEOUT.
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The default for CHECK-MAX-ERRORS is 1 so that the first error already aborts, whereas CHECK-
MAX-REPORTS is at 100 and thus that many warnings errors are allowed. Setting both values to
0 removes the limits. Setting CHECK-MAX-REPORTS to 1 turns the first warning into a reason to
abort.

When using an interactive debugger the limits can be set to 0 manually and thus removed, be-
cause the user can decide to abort using the normal debugger facilities for application shutdown.
If he chooses to continue then ITC will skip over warnings and non-fatal errors and try to proceed.
Fatal errors still force ITC to abort the application.

The type of all supported errors is listed in tables 4.1 and 4.2. The description provides just a few
keywords for each error, a more detailed description can be found in the following sections.

Error Name Type Description
LOCAL:EXIT:SIGNAL fatal process terminated by

fatal signal
LOCAL:EXIT:BEFORE_MPI_FINALIZE fatal process exits without

calling MPI Finalize()
LOCAL:MPI:CALL_FAILED depends on MPI and error MPI itself or wrapper

detects an error
LOCAL:MEMORY:OVERLAP warning multiple MPI operations

are started using the
same memory

LOCAL:MEMORY:ILLEGAL_MODIFICATION error data modified while
owned by MPI

LOCAL:MEMORY:INACCESSIBLE error buffer given to MPI
cannot be read or written

LOCAL:MEMORY:ILLEGAL_ACCESS error read or write access to
memory currently owned
by MPI

LOCAL:MEMORY:INITIALIZATION error distributed memory checking
LOCAL:REQUEST:ILLEGAL_CALL error invalid sequence of calls
LOCAL:REQUEST:NOT_FREED warning program creates

suspiciously high number
of requests or exits with
pending requests

LOCAL:REQUEST:PREMATURE_FREE warning freeing an active receive
request is discouraged

LOCAL:DATATYPE:NOT_FREED warning program creates high
number of datatypes

LOCAL:BUFFER:INSUFFICIENT_BUFFER warning not enough space for
buffered send

Table 4.1: Supported Local Errors

4.3.2 How it works

Understanding how ITC finds the various supported errors is important because it helps to un-
derstand what the different configuration options mean, what ITC can do and what it cannot, and
how to interpret the results.

Just as for performance analysis, ITC intercepts all MPI calls using the MPI profiling interface. It
has different wrappers for each MPI call. In these wrappers it can execute additional checks not
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Error Name Type Description
GLOBAL:MSG/COLLECTIVE:DATATYPE:MISMATCH error the type signature does

not match
GLOBAL:MSG/COLLECTIVE:DATA_TRANSMISSION_CORRUPTED error data modified during

transmission
GLOBAL:MSG:PENDING warning program terminates with

unreceived messages
GLOBAL:DEADLOCK:HARD fatal a cycle of processes

waiting for each other
GLOBAL:DEADLOCK:POTENTIAL fatala a cycle of processes, one

or more in blocking send
GLOBAL:DEADLOCK:NO_PROGRESS warning warning when application

might be stuck
GLOBAL:COLLECTIVE:OPERATION_MISMATCH error processes enter different

collective operations
GLOBAL:COLLECTIVE:SIZE_MISMATCH error more or less data than

expected
GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCH error reduction operation

inconsistent
GLOBAL:COLLECTIVE:ROOT_MISMATCH error root parameter inconsistent
GLOBAL:COLLECTIVE:INVALID_PARAMETER error invalid parameter for

collective operation
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH warning MPI Comm free() must

be called collectively

aif check is enabled, otherwise it depends on the MPI implementation

Table 4.2: Supported Global Errors
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normally done by the MPI implementation itself.

For global checks ITC uses two different methods for transmitting the additional information: in
collective operations it executes another collective operation before or after the original opera-
tion, using the same communicator1. For point-to-point communication it sends one additional
message over a shadow communicator for each message sent by the application.

In addition to exchanging this extra data via MPI itself, ITC also creates one background thread per
process. These threads are connected to each other via TCP sockets and thus can communicate
with each other even while MPI is being used by the main application thread.

For distributed memory checking and locking memory that the application should not access, ITC
interacts with valgrind (section 4.2.2) via valgrind’s client request mechanism. Valgrind tracks
definedness of memory (i.e. whether it was initialized or not) within a process; ITC extends that
mechanism to the whole application by transmitting this additional information between processes
using the same methods which also transmit the additional data type information and restoring
the correct valgrind state at the recipient.

Without valgrind the LOCAL:MEMORY:ILLEGAL_MODIFICATIONcheck is limited to reporting
write accesses which modified buffers; typically this is detected long after the fact. With val-
grind, memory which the application hands over to MPI is set to “inaccessible” in valgrind by ITC
and accessibility is restored when ownership is transferred back. In between any access by the
application is flagged by valgrind right at the point where it occurs. Suppressions are used to
avoid reports for the required accesses to the locked memory by the MPI library itself.

4.3.2.1 Parameter Checking (LOCAL:MPI:CALL FAILED)

Most parameters are checked by the MPI implementation itself. ITC ensures that the MPI does not
abort when it finds an error, but rather reports back the error via a function’s result code. Then ITC
looks at the error class and depending on the function where the error occurred decides whether
the error has to be considered as a warning or a real error. As a general rule, calls which free
resources lead to warnings and everything else is an error. The error report of such a problem
includes a stack backtrace (if enabled) and the error message generated by MPI.

Note that in order to catch MPI errors this way ITC overrides any error handlers installed by the
application. Errors will always be reported, even if the application or test program sets an error
handler to skip over known and/or intentionally bad calls. Because the MPI standard does not
guarantee that errors are detected and that proceeding after a detected error is possible, such
programs are not portable and should be fixed. ITC on the other hand knows that proceeding
despite an error is allowed by all supported MPIs and thus none of the parameter errors is con-
sidered a hard error.

Communicator handles are checked right at the start of an MPI wrapper by calling an MPI function
which is expected to check its arguments for correctness. Datatype handles are tracked and then
checked by ITC itself. The extra parameter check is visible when investigating such an error in a
debugger and although perhaps unexpected is perfectly normal. It is done to centralize the error
checking.

4.3.2.2 Premature Exit (LOCAL:EXIT)

ITC monitors the ways how a process can abort prematurely: otherwise fatal signals are caught
in ITC signal handlers. An atexit() handler detects situations where the application or some library

1This is similar to the method described in “Collective Error Detection for MPI Collective Operations”, Chris
Falzone, Anthony Chan, Ewing Lusk, William Gropp, http://www.mcs.anl.gov/˜gropp/bib/papers/2005/
collective-checking.pdf
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decides to quit. MPI_Abort() is also intercepted.

This error is presented just like a LOCAL:MPI:CALL_FAILED , with the same options for inves-
tigating the problem in a debugger. However, these are hard errors and the application cannot
continue to run.

4.3.2.3 Overlapping Memory (LOCAL:MEMORY:OVERLAP)

ITC keeps track of memory currently in use by MPI and before starting a new operation, checks
that the memory that it references is not in use already.

The MPI standard explicitly transfers ownership of memory to MPI even for send operations. The
application is not allowed to read it while a send operation is active and must not setup another
send operation which reads it either. The rationale is that the MPI might modify the data in place
before sending it and revert the change afterwards. In practice MPI implementation do not modify
the memory, so this is a minor problem and just triggers a warning.

Obviously, writing into the same memory twice in possibly random order or writing into memory
which the MPI might read from is a real error. However, detecting these real errors is harder for
message receives because the size of the buffer given to MPI might be larger than the actual
message: even if buffers overlap, the messages might be small enough to not lead to writes into
the same memory. Because the overlap check is done when a send buffer is handed over to MPI,
only a warning is generated. The application might be able to continue normally, but the source
code should be fixed because under a strict interpretation of the MPI standard using the same
buffer twice is already illegal even if the actual messages do not overlap.

Because the problem might be at the place where the memory was given to MPI initially and not
where it is reused, ITC also provides both call stacks.

4.3.2.4 Detecting illegal buffer modifications (LOCAL:MEMORY:ILLEGAL MODIFICATION)

MPI owns the memory that active communication references. The application must not touch it
during that time. Illegal writes into buffers that the MPI is asked to send are detected by calculating
a checksum of the data immediately before the request is activated and comparing it against a
checksum when the send completes. If the checksum is different, someone must have modified
the buffer. The reported LOCAL:MEMORY:ILLEGAL_MODIFICATIONis a real error.

This problem is more common with non-blocking communication because the application gets
control back while MPI still owns the buffer and then might accidentally modify the buffer. For non-
blocking communication the callstacks of where the send was initiated and where it completed
are provided. For persistent requests it is also shown where it was created.

The problem might also occur for blocking communication, for example when the MPI implemen-
tation incorrectly modifies the send buffer, the program is multithreaded and writes into it or other
communication happens to write into the buffer. In this case only the callstack of the blocking call
where the problem was detected gets printed.

Strictly speaking, reads are also illegal because the MPI standard makes no guaranteed about
the content of buffers while MPI owns them. Because reads do not modify buffers, such errors
are not detected. Writes are also not detected when they happen (which would make debugging
a lot easier) but only later when the damage is detected.
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4.3.2.5 Buffer given to MPI cannot be read or written (LOCAL:MEMORY:INACCESSIBLE)

During the check for LOCAL:MEMORY:ILLEGAL_MODIFICATIONof a send buffer ITC will read
each byte in the buffer once. This works for contiguous as well as non-contiguous datatypes. If any
byte cannot be read because the memory is inaccessible, a LOCAL:MEMORY:INACCESSIBLEis
reported. This is an error because it is only possible to proceed by skipping the entire operation.

Disabling the LOCAL:MEMORY:ILLEGAL_MODIFICATIONcheck also disables the accessibility
check and send operations are then treated like receive operations: for receive operations no
similar check is performed because the MPI standard does not say explicitly that the whole receive
buffer has to be accessible–only the part into which an incoming message actually gets copied
must be writable. Violations of that rule are caught and reported as fatal LOCAL:EXIT:SIGNAL
errors.

4.3.2.6 Distributed Memory Checking (LOCAL:MEMORY:INITIALIZATION)

This feature is enabled by default if all processes run under valgrind (see section 4.2.2). If that
is not the case, it is disabled. If in doubt, check the configuration summary at the beginning
of the run to see whether this feature was enabled or not. There are no ITC error reports with
this type; valgrind’s error reports have to be watched instead to find problems related to memory
initialization. See the section “Use of uninitialised values” in valgrind’s user guide for details.

If enabled, then valgrind’s tracking of memory definedness is extended to the whole application.
For applications which transmit partially initialized data between processes, this avoids two cases:

false positive sending the message with the partially initialized data triggers a valgrind report for
send or write system calls at the sender side

false negative at the recipient, valgrind incorrectly assumes that all incoming data is completely
initialized and thus will not warn if the uninitialized data influences the control flow in the
recipient; normally it would report that

To handle the false positive case valgrind must have been started with the suppression file pro-
vided with ITC. The local/memory/valgrind example demonstrates both cases.

Turning this feature off is useful if the application is supposed to be written in such a way that it
never transmits uninitialized data. In that case ITC’s suppression file should not be used because
it would suppress warnings at the sender and the LOCAL:MEMORY:ILLEGAL_ACCESSmust be
disabled as it would cause extra valgrind reports.

4.3.2.7 Illegal Memory Access (LOCAL:MEMORY:ILLEGAL ACCESS)

This feature depends on valgrind the same way as LOCAL:MEMORY:INITIALIZATION . This
check goes beyond LOCAL:MEMORY:ILLEGAL_MODIFICATIONby detecting also reads and re-
porting them through valgrind at the point where the access happens. Disabling it might improve
performance and help if the provided suppression rules do not manage to suppress reports about
valid accesses to locked memory.

4.3.2.8 Request Handling (LOCAL:REQUEST)

When the program terminates ITC prints a list of all unfreed MPI requests together with their
status. Unfreed requests are usually currently active and application should have checked their
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status before terminating. Persistent requests can also be passive and need to be freed explicitly
with MPI_Request_free() .

Not freeing requests blocks resources inside the MPI and can cause application failures. Each
time the total number of active requests or inactive persistent requests exceeds another mul-
tiple of the CHECK-MAX-REQUESTS threshold (i.e. after 100, 200, 300, . . . requests) a
LOCAL:REQUEST:NOT_FREEDwarning is printed with a summary of the most frequent calls
where those requests were created. The number of calls is configured via CHECK-LEAK-
REPORT-SIZE.

Finalizing the application with pending requests is not an error according to the MPI standard, but
is not good practice and can potentially mask real problems. Therefore a request leak report will
be always generated during finalize if at least one request was not freed.

If there are pending receives the check for pending incoming messages is disabled because some
or all of them might match with the pending receives.

Note that active requests that were explicitely delete with MPI_Request_free() will show up in
another leak report if they have not completed by the time when the application terminates. Most
likely this is due to not having a matching send or receive elsewhere in the application, but it might
also be caused by posting and deleting a request and then terminating without giving it sufficient
time to complete.

The MPI standard recommends that receive requests are not freed before they have completed.
Otherwise it is impossible to determine whether the receive buffer can be read. Although not
strictly marked an error in the standard, a LOCAL:REQUEST:PREMATURE_FREEwarning is re-
ported if the application frees such a request prematurely. For send requests the standard de-
scribes a method how the application can determine that it is safe to reuse the buffer, thus this is
not reported as an error.

In both cases actually deleting the request is deferred in a way which is transparent to the applica-
tion: at the exit from all MPI calls which communicate with other processes ITC will check whether
any of them has completed and then execute the normal checking that it does at completion of
a request (LOCAL:MEMORY:ILLEGAL_MODIFICATION) and also keep track of the ownership of
the memory (LOCAL:MEMORY:OVERLAP).

In addition not freeing a request or freeing it too early, persistent requests also require that calls
follow a certain sequence: create the request, start it and check for completion (can be repeated
multiple times), delete the request. Starting a request while it is still active is an error which is
reported as LOCAL:REQUEST:ILLEGAL_CALL. Checking for completion of an inactive persistent
request on the other hand is not an error.

4.3.2.9 Datatype Handling (LOCAL:DATATYPE)

Unfreed datatypes can cause the same problems as unfreed requests, so the same kind of leak
report is generated for them when their number exceeds CHECK-MAX-DATATYPES. However,
because not freeing datatypes is common practice there is no leak report during finalize unless
their number exceeds the threshold at that time. That is in contrast to requests which are always
reported then.

4.3.2.10 Buffered Sends (LOCAL:BUFFER:INSUFFICIENT BUFFER)

ITC intercepts all calls related to buffered sends and simulates the worst-case scenario
that the application has to be prepared for according to the standard. By default
(GLOBAL:DEADLOCK:POTENTIALenabled) it also ensures that the sends do not complete before
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there is a matching receive.

By doing both it detects several different error scenarios which all can lead to insufficient available
buffer errors that might not occur depending on timing and/or MPI implementation aspects:

Buffer Size The most obvious error is that the application did not reserve enough buffer
to store the message(s), perhaps because it did not actually calculate the size with
MPI_Pack_size() or forgot to add the MPI_BSEND_OVERHEAD. This might not show
up if the MPI implementation bypasses the buffer, e.g. for large messages. Example:
local/buffered_send/size .

Race Condition Memory becomes available again only when the oldest messages are trans-
mitted. It is the responsibility of the application to ensure that this happens in time be-
fore the buffer is required again; without suitable synchronization an application might run
only because it is lucky and the recipients enter their receives early enough. Examples:
local/buffered_send/race , local/buffered_send/policy .

Deadlock MPI_Buffer_detach() will block until all messages inside the buffer have been
sent. This can lead to the same (potential) deadlocks as normal sends. Example:
local/buffered_send/deadlock .

Because it is critical to understand how the buffer is currently being used when a new buffered
send does not find enough free space to proceed, the LOCAL:BUFFER:INSUFFICIENT_BUFFER
error message contains all information about free space, active and completed mes-
sages and the corresponding memory ranges. Memory ranges are given using the
[start address, end address[ notation where the end address is not part of the mem-
ory range. For convenience the number of bytes in each range is also printed. For messages this
includes the MPI_BSEND_OVERHEAD, so even empty messages have a non-zero size.

4.3.2.11 Deadlocks (GLOBAL:DEADLOCK)

Deadlocks are detected via a heuristic: the background thread in each process cooperates with
the MPI wrappers to detect that the process is stuck in a certain MPI call. That alone is not an
error because some other processes might still make progress. Therefore the background threads
communicate if at least one process appears to be stuck. If all processes are stuck, this is treated
as a deadlock. The timeout after which a process and thus the application is considered as stuck
is configurable with DEADLOCK-TIMEOUT.

The timeout defaults to 1 minute which should be long enough to ensure that even very long
running MPI operations are not incorrectly detected as being stuck. In applications which are
known to execute correct MPI calls much faster, it is advisable to decrease this timeout to detect
a deadlock sooner.

This heuristic fails if the application is using non-blocking calls like MPI_Test() to poll for comple-
tion of an operation which can no longer complete. This case is covered by another heuristic: if the
average time spent inside the last MPI call of each process exceeds the DEADLOCK-WARNING
threshold, then a GLOBAL:DEADLOCK:NO_PROGRESS\warning is printed, but the application is
allowed to continue because the same high average blocking time also occurrs in correct applica-
tion with a high load imbalance. For the same reason the warning threshold is also higher than
the hard deadlock timeout.

To help analyzing the deadlock, ITC prints the callstack of all process. A real hard deadlock exists
if there is a cycle of processes waiting for data from the previous process in the cycle. This data
dependency can be an explicit MPI_Recv() , but also a collective operation like MPI_Reduce() .

If message are involved in the cycle, then it might help to replace send or receive calls with their
non-blocking variant. If a collective operation prevents one process from reaching a message
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send that another process is waiting for, then reordering the message send and the collective
operation in the first process would fix the problem.

Another reason could be messages which were accidentally sent to the wrong process. This can
be checked in debuggers which support that by looking at the pending message queues. In the
future ITC might also support visualizing the program run in ITA in case of an error. This would
help to find messages which were not only sent to the wrong process, but also received by that
processes and thus do not show up in the pending message queue.

In addition to the real hard deadlock from which the application cannot recover MPI applications
might also contain potential deadlocks: the MPI standard does not guarantee that a blocking send
returns unless the recipient calls a matching receive. In the simplest case of a head-to-head send
with two processes, both enter a send and and then the receive for the message that the peer just
sent. This deadlocks unless the MPI buffers the message completety and returns from the send
without waiting for the corresponding receive.

Because this relies on undocumented behaviour of MPI implementations this is a hard to detect
portability problem. ITC detects these GLOBAL:DEADLOCK:POTENTIALerrors by turning each
normal send into a synchronous send. The MPI standard then guarantees that the send blocks
until the corresponding receive is at least started. Send requests are also converted to their
synchronous counterparts; they block in the call which waits for completion. With these changes
any potential deadlock automatically leads to a real deadlock at runtime and will be handled as
described above. To distinguish between the two types, check whether any process is stuck in a
send function. Due to this way of detecting it, even the normally non-critical potential deadlocks
do not allow the application to proceed.

4.3.2.12 Checking message transmission (GLOBAL:MSG)

For each application message, another extra message is sent which includes:

• a datatype signature hash code (for GLOBAL:MSG:DATATYPE:MISMATCH)

• a checksum of the data (for GLOBAL:MSG:DATA_TRANSMISSION_CORRUPTED)

• a stack backtrace for the place where the message was sent (for both of these errors and
also for GLOBAL:MSG:PENDING)

Only disabling of all of these three errors avoids the overhead for the extra messages.

Buffered messages which are not received lead to a resource leak. They are detected each time a
communicator is freed or (if a communicator does not get freed) when the application terminates.

The information provided includes a callstack of where the message was sent as well as the
current callstack where the error is detected.

4.3.2.13 Datatype mismatches (GLOBAL:*:DATATYPE:MISMATCH)

Datatype mismatches are detected by calculcating a hash value of the datatype signature and
comparing that hash value: if the hash values are different, the type signatures must have been
different too and an error is reported. Because the information about the full type signature at the
sender is not available, it has to be deduced from the function call parameters and/or source code
locations where the data is transmitted.

If the hash values are identical, then there is some small chance that the signatures were different
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although no error is reported. Because of the choice of a very advanced hash function2 this is very
unlikely. This hash function can also be calculated more efficiently than traditional hash functions.

4.3.2.14 Data modified during transmission (GLOBAL:*:DATA TRANSMISSION CORRUPTED)

After checking that the datatype signatures in a point-to-point message transfer or collective data
gather/scatter operation at sender and receiver match, ITC also verifies that the data was trans-
ferred correctly by comparing additional checksums that are calculated inside the sending and
receiving process. This adds another end-to-end data integrity check which will fail if any of the
components involved in the data transmission malfunctioned (MPI layer, device drivers, hardware).

In cases where this GLOBAL:*:DATA_TRANSMISSION_CORRUPTEDerror is obviously the result
of some other error, it is not reported separately. This currently works for truncated message
receives and datatype mismatches.

4.3.2.15 Checking of Collective Operations (GLOBAL:COLLECTIVE)

Checking correct usage of collective operations is easier than checking messages. At the begin-
ning of each operation, ITC broadcasts the same data from rank #0 of the communicator. This
data includes:

• type of the operation

• root (zero if not applicable)

• reduction type (predefined types only)

Now all involved processes check these parameters against their own parameters and report
an error in case of a mismatch. If the type is the same, for collective operations with a root
process that rank and for reduce operations the reduction operation are also checked. The
GLOBAL:COLLECTIVE:REDUCTION_OPERATION_MISMATCHerror can only be detected for pre-
defined reduction operation because it is impossible to verify whether the program code associ-
ated with a custom reduction operation has the same semantic on all processes. After this step
depending on the operation different other parameters are also shared between the processes
and checked.

Invalid parameters like MPI_DATATYPE_NULL where a valid datatype is re-
quired are detected while checking the parameters. They are reported as one
GLOBAL:COLLECTIVE:INVALID_PARAMETER error with a description of the parameter
which is invalid in each process. This leads to less output than printing one error for each
process.

If any of these checks fails, the original operation is not executed on any process. Therefore
proceeding is possible, but application semantic will be affected.

4.3.2.16 Freeing communicators (GLOBAL:COLLECTIVE:COMM FREE MISMATCH)

A mistake related to MPI_Comm_free() is freeing them in different orders on the involved pro-
cesses. The MPI standard specifies that MPI_Comm_free() must be entered by the processes
in the communicator collectively. Some MPIs including Intel R© MPI Library deadlock if this rule is
broken, whereas others implement MPI_Comm_free() as a local call with no communication.

2“Hash functions for MPI datatypes”, Julien Langou, George Bosilca, Graham Fagg, Jack Dongarra, http://www.
cs.utk.edu/˜library/TechReports/2005/ut-cs-05-552.pdf
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To ensure that this error is detected all the time, ITC treats MPI_Comm_free()
just like the other collective operations. There is no special error message for
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCH, it will be reported as a mismatch be-
tween collective calls (GLOBAL:COLLECTIVE:OPERATION_MISMATCH) or a deadlock, so
GLOBAL:COLLECTIVE:COMM_FREE_MISMATCHjust refers to the check which enables or dis-
ables this test, not a specific error instance.
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Time Stamping

ITC assigns a local time stamp to each event that it records. A time stamp consists of two parts
which together guarantee that each time stamp is unique:

Clock Tick counts how often the timing source incremented since the start of the run.

Event Counter is incremented for each time stamp which happens to have the same clock tick
as the previous time stamp. In the unlikely situation that the event counter overflows, ITC
artificially increments the clock tick. When running ITC with VERBOSE > 2, it will print
the maximum number of events on the same clock tick during the whole application run. A
non-zero number implies that the clock resolution was too low to distinguish different events.

Both counters are stored in a 64 bit unsigned integer with the event counter in the low-order bits.
Legacy applications can still convert time stamps as found in a trace file to seconds by multiplying
the time stamp with the nominal clock period defined in the trace file header: if the event counter
is zero, this will not incur any error at all. Otherwise the error is most likely still very small. The
accurate solution however is to shift the time stamp by the amount specified as “event bits” in
the trace header (and thus removing the event counter), then multiplying with the nominal clock
period and 2 to the power of “event bits”.

Currently ITC uses 51 bits for clock ticks, which is large enough to count 251ns, which equals
251/1e9/60/60/24 ≥ 26 days before the counter overflows. At the same time with a clock of only
ms resolution, you can distinguish 264−51 = 8192 different events with the same clock tick, which
are events with a duration of 0.1us.

Before writing the events into the global trace file, local time stamps are replaced with global ones
by modifying their clock tick. A situation where time stamps with different local clock ticks fall on
the same global clock tick is avoided by ensuring that global clock ticks are always larger than
local ones.

The nominal clock period in the trace file is chosen so that it is sufficiently small to capture the
offsets between nodes as well as the clock correction: both leads to fractions of the real clock
period and rounding errors would be incurred when storing the trace with the real clock period.
The real clock period might be hard to figure out exactly anyway. Also, the clock ticks are scaled so
that the whole run takes exactly as long as determined with gettimeofday() on the master process.
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5.1 Clock Synchronization

By default ITC synchronizes the different clocks at the start and at the end of a program run by
exchanging messages in a fashion similar to the Network Time Protocol (NTP): one process is
treated as the master and its clock becomes the global clock of the whole application run. During
clock synchronization, the master process receives a message from a child process and replies
by sending its current time stamp. The child process then stores that time stamp together with
its own local send and receive time stamps. One message is exchanged with each child, then
the cycles starts again with the first child until SYNC-MAX-MESSAGES have been exchanged
between master and each child or the total duration of the synchronization exceeds SYNC-MAX-
DURATION.

ITC can handle timers which are already synchronized among all process on a node (SYNCED-
HOST) and then only does the message exchange between nodes. If the clock is even synchro-
nized across the whole cluster (SYNCED-CLUSTER), then no synchronization is done by ITC at
all.

The gathered data of one message exchange session is used by the child processes to calculate
the offset between its clock and the master clock: it is assumed that the duration of messages
with equal size is equally fast in both directions, so that the average of local send and receive
time coincides with the master time stamp in the middle of the message exchange. To reduce the
noise, the 10% message pairs with the highest local round-trip time are ignored because those
are the ones which most likely suffered from not running either process in time to react in a timely
fashion or other external delays.

With clock synchronization at the start and end ITC’s clock correction uses a linear transformation,
that is a scaling local clock ticks and shifting them, which is calculated by linear regression of
all available sample data. If the application also calls VT timesync() during the run, then clock
correction is done with a piece-wise interpolation: the data of each message exchange session is
condensed into one pair of local and master time by averaging all data points, then a constrained
spline is constructed which goes through all of the condensed points and has a contiguous first
derivative at each of these joints.

int VT timesync (void)

Gathers data needed for clock synchronization.

This is a collective call, so all processes which were started together must call this function or it
will block.

This function does not work if processes were spawned dynamically.
Fortran

VTTIMESYNC( ierr )

5.2 Choosing a Timer

A good timer has the following properties:

• high resolution (one order of magnitude higher than the resolution of the events that are to
be traced)

• low overhead
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• linearly increasing values for a long period of time (at least for the duration of a program
run); in particular it should not jump forwards or backwards

ITC supports several different timers. Because the quality of these timers depends on factors
which are hard to predict (like specific OS bugs, available hardware and so on), a test program is
provided which can be run to answer the following questions:

• What is the resolution of a timer?

• What is its overhead?

• How well does clock synchronization work with the default linear transformation?

• If it does not work well, how often does the application have to synchronize to achieve good
non-linear interpolation?

To test the quality of each timer, link the timerperformance.c program from the examples directory.
The makefile already has a target “vttimertest” (linked against libVT and MPI) and for “timertestcs”
(linked against libVTcs and no MPI). Use the MPI version if you have MPI, because libVT supports
all the normal timers from libVTcs plus “MPI Wtime” and because only the MPI version can test
whether the clock increases linearly by time-stamping message exchanges.

To get a list of supported timers, run with the configuration option TIMER set to LIST. This can
be done easily by setting the VT TIMER environment variable. The subsections below have more
information about possible choices, but not all of them may be available on each system.

To test an individual timer, run the binary with TIMER set to the name of the timer to be tested.
It will repeatedly acquire time stamps and then for each process (“vttimertest”) or the current
machine (“timertestcs”) print a histogram of the clock increments observed. A good timer has
most increments close or equal to the minimum clock increment that it can measure. Bad clocks
have a very high minimum clock increment (a bad resolution) or only occasionally increment by a
smaller amount.

Here is a the output of “timertestcs” one a machine with a good gettimeofday() clock:
bash$ VT TIMER=gettimeofday ./timertestcs
performance: 2323603 calls in 5.000s wall clock time = 2.152us/call =

464720 calls/s
measured clock period/frequency vs. nominal:

1.000us/1.000MHz vs. 1.000us/1.000MHz
overhead for sampling loop: 758957 clock ticks (= 758.958ms)

for 10000000 iterations = 0 ticks/iteration
average increase: 2 clock ticks = 2.244us = 0.446MHz

median increase: 2 clock ticks = 2.000us = 0.500MHz
< 0 ticks = 0.00s : 0
< 1 ticks = 1.00us: 0

>= 1 ticks = 1.00us: #################### 2261760
>= 501 ticks = 501.00us: 1
>= 1001 ticks = 1.00ms: 0
...

The additional information at the top starts with the performance (and thus overhead) of the timer.
The next line compares the measured clock period (calculated as elapsed wall clock time divided
by clock ticks in the measurement interval) against the one that the timer is said to have; for
gettimeofday() this is not useful, but for example CPU cycle counters (details below) there might be
differences. Similarly, the overhead for an empty loop with a dummy function call is only relevant
for a timer like CPU cycle counters with a very high precision. For that counter however the
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overhead caused by the loop is considerable, so during the measurement of the clock increments
ITC subtracts the loop overhead.

Here is an example with the CPU cycle counter as timer:
bash$ VT TIMER=CPU ./timertestcs
performance: 3432873 calls in 5.000s wall clock time = 1.457us/call =

686535 calls/s
measured clock period/frequency vs. nominal:

0.418ns/2392.218MHz vs. 0.418ns/2392.356MHz
overhead for sampling loop: 1913800372 clock ticks (= 800.011ms)

for 10000000 iterations = 191 ticks/iteration
average increase: 3476 clock ticks = 1.453us = 0.688MHz

median increase: 3473 clock ticks = 1.452us = 0.689MHz
< 0 ticks = 0.00s : 0
< 1 ticks = 0.42ns: 0

>= 1 ticks = 0.42ns: 0
>= 501 ticks = 209.43ns: 0
>= 1001 ticks = 418.44ns: 0
>= 1501 ticks = 627.45ns: 0
>= 2001 ticks = 836.46ns: 0
>= 2501 ticks = 1.05us: 0
>= 3001 ticks = 1.25us: #################### 3282286
>= 3501 ticks = 1.46us: 587
>= 4001 ticks = 1.67us: 8
>= 4501 ticks = 1.88us: 1
>= 5001 ticks = 2.09us: 869

Testing whether the timer increases linearly is more difficult. It is done by comparing the send
and receive time stamps of ping-pong message exchanges between two processes after ITC
has applied its time synchronization algorithm to them: the algorithm will scale and shift the time
stamps based on the assumption that data transfer in both directions is equally fast. So if the
synchronization works, the average difference between the duration of messages in one direction
minus the duration of the replies has to be zero. The visualization of the trace “timertest.stf”
should show equilateral triangles.

If the timer increases linearly, then one set of correction parameters applies to the whole trace. If
it does not, then clock synchronization might be good in one part of the trace and bad in another
or even more obvious, be biased towards one process in one part with a positive difference and
biased towards the other in another part with a negative difference. In either case tweaking the
correction parameters would fix the time stamps of one data exchange, but just worsen the time
stamps of another.

When running the MPI “vttimertest” with two or more processes it will do a short burst of
data exchanges between each pair of processes, then sleep for 10 seconds. This cycle is
repeated for a total runtime of 30 seconds. This total duration can be modified by giving
the number of seconds as command line parameter. Another argument on the command
line also overrides the duration of the sleep. After MPI Finalize() the main process will read
the resulting trace file and print statistics about the message exchanges: for each pair of
processes and each burst of message exchanges, the average offset between the two pro-
cesses is given. Ideally these offsets will be close to zero, so at the end the pair of pro-
cesses with the highest absolute clock offset between sender and receiver will be printed:
maximum clock offset during run:

1 <-> 2 374.738ns (latency 6.752us)
to produce graph showing trace timing, run: gnuplot timertest.gnuplot

50



5.2. CHOOSING A TIMER

If the value is much smaller than the message latency, then clock correction worked well through-
out the whole program run and can be trusted to accurately time individual messages.

Running the test program for a short interval is useful to test whether the NTP-like message
exchange works in principle, but to get realistic results you have to run the test for several minutes.
If a timer is used which is synchronized within a node, then you should run with one process per
node because ITC would use the same clock correction for all processes on the same node
anyway. Running with multiple processes per node in this case would only be useful to check
whether the timer really is synchronized within the node.

To better understand the behaviour of large runs, several data files and one command file for
gnuplot are generated. Running gnuplot as indicated above will produce several graphs:

Application Run a graph connecting the offsets derived from the application’s message ex-
changes with straight lines: this shows whether the deviation from the expected zero offset
is linear or not; this can be very noisy because outliers are not removed

Clock Transformation a graph showing the clock samples that ITC itself took at the application
start, end and in VT timesync() and what the transformation from local clock ticks to global
clock ticks looks like.

Interpolation Error a graph comparing a simple linear interpolation of ITC’s sample data against
the non-linear constrained spline interpolation: at each sample point, the absolute delta
between measured time offset and the corresponding interpolated value is shown above
the x-axis (for linear interpolation) and below (for splines)

raw clock samples for the first three message exchanges of each process the raw clock samples
taken by ITC are shown in two different ways: all samples and just those actually used by
ITC after removing outliers. In these displays the height of the error bars corresponds to the
round-trip time of each sample measured on the master. If communication works reliably,
most samples should have the same round-trip time.

Note that the graphs use different coordinate systems: the first one uses global time for both axis,
the latter two have local time on the x-axis and a delta in global time on the y-axis. So although
the same error will show up in all of them, in one graph it will be as a deviation f.i. below the x-axis
and in the other above it.

Also, the later two graphs are only useful if ITC really uses non-linear interpolation which is not
the case if all intermediate clock samples are skipped: although the test program causes a clock
synchronization before each message exchange by calling VT timesync(), at the same time it tells
ITC to not use those results and thus simulates a default application run where synchronization is
only done at the start and end.

This can be overridden by setting the TIMER-SKIP configuration option or VT TIMER SKIP en-
vironment variable to a small integer value: it chooses how often the result of a VT timesync()
is ignored before using a sample for non-linear clock correction. The skipped samples serve as
checks that the interpolation is sound.

In the following figures the test program was run using the CPU timer source, with a total runtime
of 10 minutes and skipping 5 samples:
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bash$ VT TIMER SKIP=5 VT TIMER=CPU mpirun -np 4 timertest 600
...
[0 (node0)] performance: 115750510 calls in 5.000s wall

clock time = 43.197ns/call = 23149574 calls/s
...
0. recording messages 0 <-> 1...
0. recording messages 0 <-> 2...
0. recording messages 0 <-> 3...
0. recording messages 1 <-> 2...
0. recording messages 1 <-> 3...
0. recording messages 2 <-> 3...
1. recording messages 0 <-> 1...
...
maximum clock offset during run:

0 <-> 1 -1.031us (latency 6.756us)

The application run in figure 5.1 shows that in general ITC managed to keep the test results inside
a range of plus/minus 1us although it did not use all the information collected with VT timesync().
The clock transformation function in figure 5.2 is non-linear for all three child processes and inter-
polates the intermediate samples well. Using a linear interpolation between start and end would
have led to deviations in the middle of more than 16us. Also, the constrained spline interpolation
is superior compared to a simple linear interpolation between the sample points (figure 5.3).
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Figure 5.1: CPU timer: application run with non-linear clock correction.
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Figure 5.2: CPU timer: clock transformation and the sample points it is based on.

5.2.1 gettimeofday/ ftime

gettimeofday is the default timer on Linux* with ftime being the equivalent on Microsoft* Win-
dows*. Its API limits the clock resolution to 1us, but depending on which timer the OS actually
uses the clock resolution may be much lower ( ftime usually shows a resolution of only 1 millisec-
ond). It is implemented as a system call, therefore it has a higher overhead than other timers.

In theory the advantage of this call is that the OS can make better use of the available hardware,
so this timer should be stable over time even if NTP is not running. However, figure 5.4 shows that
in practice at least on that system quite a high deviation between different nodes occured during
the run.

If NTP is running, then the clock of each node might be modified by the NTP daemon in a non-
linear way. NTP should not cause jumps, only accelerate or slow down the system time. However,
even decreasing system time stamps have been observed on some systems. This may or may
not have been due to NTP.

Due to the clock synchronization at runtime enabling NTP did not make the result worse than it is
without NTP (figure 5.5). However, NTP alone without the additional intermediate synchronization
would have led to deviations of nearly 70us.

So the recommendation is to enable NTP, but intermediate clock synchronization by ITC is still
needed to achieve good results.
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Figure 5.3: CPU timer: error with linear (above x-axis) and non-linear interpolation (below).

5.2.2 QueryPerformanceCounter

On Microsoft* Windows* the Intel R© Trace Collector uses QueryPerformanceCounter as the de-
fault timer. As a system function it comes with the same side-effects as ftime but has a higher
resolution of around 1 microsecond.

5.2.3 CPU Cycle Counter (TSC/ITC)

This is a high-resolution counter inside the CPU which counts CPU cycles. This counter is called
Timer Stamp Counter (TSC) on x86/Intel R©64 architectures and Interval Time Counter (ITC) on
Itanium R©. It can be read via an assembler instruction, so the overhead is much lower than get-
timeofday(). On the other hand, these counters were never meant to measure long time intervals,
so the clock speed also varies a lot, as seen earlier in figure 5.2.

Additional complications are:

multi-CPU machines The counter is CPU specific, so if threads migrate from one CPU to an-
other the clock that ITC reads might jump arbitrarily. ITC cannot compensate this as it would
have to identify the current CPU and read the register in one atomic operation, which cannot
be done from user space without considerable overhead.

CPU cycle counters might still be useful on multi-CPU systems: Linux tries to set the regis-
ters of all CPUs to the same value when it boots. If all CPUs receive their clock pulse from
the same source their counters do not drift apart later on and it does not matter on which
CPU a thread reads the CPU register, the value will be the same one each.
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Figure 5.4: getimeofday() without NTP.

This problem could be addressed by locking threads onto a specific CPU, but that could
have an adverse effect on application performance and thus is not supported by ITC itself. If
done by the application or some other component, then care has to be taken that all threads
in a process run on the same CPU, including those created by ITC itself (see MEM-FLUSH-
BLOCKS and “Recording OS Counters”, 3.10). If the application already is single-threaded,
then the additional ITC threads could be disabled to avoid this complication.

frequency scaling Power-saving mode might lead to a change in the frequency of the cycle
count register during the run and thus a non-linear clock drift. Machines meant for HPC
probably do not support frequency scaling or will not enter power-saving mode. Even then,
on Intel CPUs, TSC often continues to run at the original frequency.

5.2.4 MPI Wtime()

This timer is provided by the MPI implementation. In general this is simply a wrapper around
gettimeofday() and then using it instead of gettimeofday() only has disadvantages: with gettime-
ofday() ITC knows that processes running on the same node share the same clock and thus does
not synchronize between them. The same information cannot be obtained via the MPI API and
thus ITC is conservative and assumes that clock synchronization is needed. This can be overrid-
den with the SYNCED-HOST configuration option. Another disadvantage is increased overhead
and potentially implementation errors in MPI (as seen in some versions of MPICH*).

If the MPI has access to a better timer source (for example a global clock in the underlying com-
munication hardware), then using this timer would be advantageous.
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Figure 5.5: getimeofday() with NTP.

5.2.5 High Precision Event Timers (HPET)

This is a hardware timer source designed by Intel as replacement for the real time clock (RTC)
hardware commonly found in PC boards. Availability and support for it in BIOS and OS is still very
limited, therefore ITC does not support it yet.

5.2.6 POSIX clock gettime

This is another API specified by the Single Unix Specification and POSIX. It offers a monotonic
system clock which is not affected (for good or bad) by NTP, but the current implementation in
Linux/glibc does not provide better timing via this API than through gettimeofday(). ITC currently
does not support this API.
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Chapter 6

Tracing of Distributed Applications

Processes in non-MPI applications or systems are created and communicate using non-standard
and varying methods. The communication may be slow or unsuitable for ITC’s communication
patterns. Therefore a special version of the ITC library was developed that neither relies on MPI
nor on the application’s communication, but rather implements its own communication layer using
TCP/IP.

This chapter describes the design, implementation and usage of ITC for distributed applications.
This is work in progress, so this chapter also contains comments about possible extensions and
feedback is welcome.

6.1 Design

The following conditions have to be met by the application:

• The application handles startup and termination of all processes itself. Both startup with a
fixed number of processes and dynamic spawning of processes is supported, but spawning
processes is an expensive operation and should not be done too frequently.

• For a reliable startup, the application has to gather a short string from every process in one
place to bootstrap the TCP/IP communication in ITC. Alternatively one process is started
first and its string is passed to the others. In this case you can assume that the string is
always the same for each program run, but this is less reliable because the string encodes
a dynamically chosen port which may change.

• Map the hostname to an IP address that all processes can connect to. Note that this is not
the case if /etc/hosts lists the hostname as alias for 127.0.0.1 and processes are started
on different hosts. As a workaround for that case the hostname is sent to other processes,
which then requires a working name lookup on their host systems.

ITC for distributed applications consists of a special library (libVTcs) that is linked into the applica-
tion’s processes and the VTserver executable, which connects to all processes and coordinates
the trace file writing. Linking with libVTcs is required to keep the overhead of logging events as
small as possible, while VTserver can be run easily in a different process.

Alternatively, the functionality of the VTserver can be accomplished with another API call by one
of the processes.
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6.2 Using VTserver

This is how the application starts, collects trace data and terminates:

1. The application initializes itself and its communication.

2. The application initializes communication between VTserver and processes.

3. Trace data is collected locally by each process.

4. VT data collection is finalized, which moves the data from the processes to the VT server,
where it is written into a file.

5. The application terminates.

The application may iterate several times over points 2 till 4. Looping over 3 and the trace data
collection part of 4 are not supported at the moment, because:

• it requires a more complex communication between the application and VTserver

• the startup time for 2 is expected to be sufficiently small

• reusing the existing communication would only work well if the selection of active processes
does not change

If the startup time turns out to be unacceptably high, then the protocol between application and
ITC could be revised to support reusing the established communication channels.

6.2.1 Initialize and Finalize

The application has to bootstrap the communication between the VTserver and its clients. This is
done as follows:

1. The application server initiates its processes.

2. Each process calls VT clientinit().

3. VT clientinit() allocates a port for TCP/IP communication with the VTserver or other clients
and generates a string which identifies the machine and this port.

4. Each process gets its own string as result of VT clientinit().

5. The application collects these strings in one place and calls VTserver with all strings as soon
as all clients are ready. VT configuration is given to the VTserver as file or via command line
options.

6. Each process calls VT initialize() to actually establish communication.

7. The VTserver establishes communication with the processes, then waits for them to finalize
the trace data collection.

8. Trace data collection is finalized when all processes have called VT finalize().

9. Once the VTserver has written the trace file, it quits with a return code indicating success or
failure.
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Some of the VT API calls may block, especially VT initialize(). Execute them in a separate thread
if the process wants to continue. These pending calls can be aborted with VT abort(), for example
if another process failed to initialize trace data collection. This failure has to be communicated by
the application itself and it also has to terminate the VTserver by sending it a kill signal, because it
cannot be guaranteed that all processes and the VTserver will detect all failures that might prevent
establishing the communication.

6.3 Running without VTserver

Instead of starting VTserver as rank #0 with the contact strings of all application processes, one
application process can take over that role. It becomes rank #0 and calls VT serverinit() with the
information normally given to VTserver. This changes the application startup only slightly.

A more fundamental change is supported by first starting one process with rank #0 as server,
then taking its contact string and passing it to the other processes. These processes then give
this string as the initial value of the contact parameter in VT clientinit(). To distinguish this kind of
startup from the dynamic spawning of process described in the next section, the prefix “S” needs
to be added by the application before calling VT clientinit(). An example where this kind of startup
is useful is a process which preforks several child processes to do some work.

In both cases it may be useful to note that the command line arguments previously passed to
VTserver can be given in the argc/argv array as described in the documentation of VT initialize().

6.4 Spawning Processes

Spawning new processes is expensive, because it involves setting up TCP communication, clock
synchronization, configuration broadcasting, amongst others. It’s flexibility is also restricted be-
cause it needs to map the new processes into the model of “communicators” that provide the
context for all communication events. This model follows the one used in MPI and implies that
only processes inside the same communicator can communicate at all.

For spawned processes, the following model is currently supported: one of the existing processes
starts one or more new processes. These processes need to know the contact string of the spawn-
ing process and call VT clientinit() with that information; in contrast to the startup model from the
previous section, no prefix is used. Then while all spawned processes are inside VT clientinit(),
the spawning process calls VT attach() which does all the work required to connect with the new
processes.

The results of this operation are:

• a new VT COMM WORLD which contains all of the spawned processes, but not the spawn-
ing process

• a communicator which contains the spawning process and the spawned ones; the spawn-
ing process gets it as result from VT attach() and the spawned processes by calling
VT get parent()

The first of these communicators can be used to log communication among the spawned pro-
cesses, the second for communication with their parent. There’s currently no way to log commu-
nication with other processes, even if the parent has a communicator that includes them.
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6.5 Tracing Events

Once a process’ call to VT initialize() has completed successfully it can start calling VT API func-
tions that log events. These events will be associated with a time stamp generated by ITC and
with the thread that calls the function.

Should the need arise then VT API functions could be provided that allow one thread to log events
from several different sources instead of just itself.

Event types supported at the moment are those also provided in the normal ITC, like
state changes (VT enter(), VT leave()) and sending and receiving of data (VT log sendmsg(),
VT log recvmsg()). The resulting trace file is in a format that can be loaded and analyzed with the
standard ITA tool.

6.6 Usage

Executables in the application are linked with -lVTcs and the same additional parameters as listed
in section 3.3. It is possible to have processes implemented in different languages, as long as
they use the same version of the libVTcs.

The VTserver has the following synopsis:

VTserver <contact infos> [config options]

Each contact info is guaranteed to be one word and their order on the command line is irrelevant.
The config options can be specified on the command line by adding the prefix ”–” and listing its
arguments after the keyword. This is an example for contacting two processes and writing into
the file ”example.stf” in STF format:

VTserver <contact1> <contact2> --logfile-name example.stf

All options can be given as environment variables. The format of the config file and environment
variables are described in more detail in the chapter about VT CONFIG.

6.7 Signals

libVTcs uses the same techniques as fail-safe MPI tracing (3.1.7) to handle failures inside the
application, therefore it will generate a trace even if the application segfaults or is aborted with
CTRL-C.

When only one process runs into a problem, then libVTcs tries to notify the other processes,
which then should stop their normal work and enter trace file writing mode. If this fails and the
application hangs, then it might still be possible to generate a trace by sending a SIGINT to all
processes manually.

6.8 Examples

There are two examples using MPI as means of communication and process handling. But as
they are not linked against the normal ITC library, tracing of MPI has to be done with VT API calls.
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clientserver.c is a full-blown example that simulates and handles various error conditions. It uses
threads and fork/exec to run API functions resp. VTserver concurrently. simplecs.c is a stripped
down version that is easier to read, but does not check for errors.

The dynamic spawning of processes is demonstrated by forkcs.c. It first initializes one process as
server with no clients, then forks to create new processes and connects to them with VT attach().
This is repeated recursively. Communication is done via pipes and logged in the new communi-
cators.

forkcs2.c is a variation of the previous example which also uses fork and pipes, but creates the
additional processes at the beginning without relying on dynamic spawning.
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Chapter 7

Structured Tracefile Format

7.1 Introduction

The Structured Trace File Format (STF) is a format that stores data in several physical files by
default. This chapter explains the motivation for this change and provides the technical back-
ground to configure and work with the new format. It is safe to skip over this chapter because all
configuration options that control writing of STF have reasonable default values.

The development of STF was motivated by the observation that the conventional approach of
handling trace data in a single trace file is not suitable for large applications or systems, where
the trace file can quickly grow into the tens of Gigabytes range. On the display side, such huge
amounts of data cannot be squeezed into one display at once. Provide mechanisms to start at
a coarser level of display and then resolve the display into more detailed information. Also, the
ability to request and inspect only parts of the data becomes essential with the amount of trace
data growing.

These requirements necessitate a more powerful data organization than the previous ITA tracefile
format can provide. In response to this, the Structured Tracefile Format (STF) has been devel-
oped. The aim of the STF is to provide a file format which:

• can arbitrarily be partitioned into several files, each one containing a specific subset of the
data

• allows fast random access and easy extraction of data

• is extensible, portable, and upward compatible

• is clearly defined and structured

• can efficiently exploit parallelism for reading and writing

• is as compact as possible

The traditional tracefile format is only suitable for small applications, and cannot efficiently be
written in parallel. Also, it was designed for reading the entire file at once, rather than for extracting
arbitrary data. The structured tracefile implements these new requirements, with the ability to
store large amounts of data in a more compact form.
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Definitions
Declaration file
Frame file
Data/Anchor files
Statistics fileFunction declarations

Region declarations
SCL declarations
Counter declarations
...
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Thumbnail 2
Frame 2
...

Enter/Exit records Enter/exit anchors Function statistics
Message statistics
...

Message records Message anchors

... ...

Index file

Declaration file

Data files Anchor files Statistics file

Frame file

Figure 7.1: STF components

7.2 STF Components

A structured tracefile actually consists of a number of files as shown in the figure 7.1. Depending
on the organization of actual files, the following component files will be written, with <trace> being
the tracefile name that can be automatically determined or set by the LOGFILE-NAME directive:

• one index file with the name <trace>.stf

• one record declaration file with the name <trace>.stf.dcl

• one statistics file with the name <trace>.stf.sts

• one message file with the name <trace>.stf.msg

• one global operation file with the name <trace>.stf.gop

• one or more process files with the name <trace>.stf.pr.<index>

• for the above three kinds of files, one anchor file each with the added extension .anc

The records for routine entry/exit and counters are contained in the process files. The anchor files
are used by ITA to “fast-forward” within the record files; they can be deleted, but that may result in
slower operation of ITA.

Make sure that you use different names for traces from different runs; otherwise you will experi-
ence difficulties in identifying which process files belong to an index file, and which ones are left
over from a previous run. To catch all component files, use the stftool with the --remove option to
delete a STF file, or put the files into single-file STF format for transmission or archival with the
stftool --convert option (see section 7.4.1).

The number of actual process files will depend on the setting of the STF-USE-HW-STRUCTURE
and STF-PROCS-PER-FILE configuration options described below.
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7.3 Single-File STF

As a new option in ITC, the trace data can be saved in the single-file STF format. This format is
selected by specifying the LOGFILE-FORMAT STFSINGLE configuration directive, and it causes
all the component files of an STF trace to be combined into one file with the extension .single.stf.
The logical structure is preserved. The drawback of the single-file STF format is that no I/O
parallelism can be exploited when writing the tracefile.

Reading it for analysis with ITA is only marginally slower than the normal STF format, unless the
operating system imposes a performance penalty on parallel read accesses to the same file.

7.4 Configuring STF

The STF behavior which can be configured using directives in the ITC configuration file or the
equivalent environment variables are also described in section 9.

To determine the file layout, the following options can be used:

STF-USE-HW-STRUCTURE will save the local events for all processes running on the same
node into one process file

STF-PROCS-PER-FILE <number > limits the number of processes whose events can be written
in a single process file

STF-CHUNKSIZE <bytes > determines at which intervals the anchors are set

All of these options are explained in more detail in the VT CONFIG chapter.

7.4.1 Structured Trace File Manipulation

Synopsis

stftool <input file> <config options>
--help
--version

Description

The stftool utility program reads a structured trace file (STF) in normal or single-file format. It
can perform various operations with this file:

• extract all or a subset of the trace data (default)
• convert the file format without modifying the content (--convert)
• list the components of the file (--print-files)
• remove all components (--remove)
• rename or move the file (--move)
• list statistics (--print-statistics)

The output and behaviour of stftool is configured similarly to ITC: with a config file, environ-
ment variables and command line options. The environment variable VT CONFIG can be set
to the name of a ITC configuration file. If the file exists and is readable, then it is parsed first.
Its settings are overridden with environment variables, which in turn are overridden by config
options on the command line.
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All config options can be specified on the command line by adding the prefix ”--” and listing
its arguments after the keyword. The output format is derived automatically from the suffix of
the output file. You can write to stdout by using ”-” as filename; this defaults to writing ASCII
VTF.

These are examples of converting the entire file into different formats:
stftool example.stf --convert example.avt # ASCII
stftool example.stf --convert - # ASCII to stdout
stftool example.stf --convert - --logfile-format SINGLESTF |

gzip -c >example.single.stf.gz # gzipped single-file STF

Without the --convert switch one can extract certain parts, but only write VTF:
stftool example.stf --request 1s:5s

--logfile-name example_1s5s.avt # extract interval as ASCII

All options can be given as environment variables. The format of the config file and environ-
ment variables are described in more detail in the documentation for VT CONFIG.

Supported Directives

--convert
Syntax : [<filename>]
Default : off
Converts the entire file into the file format specified with --logfile-format or the filename
suffix. Options that normally select a subset of the trace data are ignored when this low-
level conversion is done. Without this flag writing is restricted to ASCII format, while this
flag can also be used to copy any kind of STF trace.

--move
Syntax : [<file/dirname>]
Default : off
Moves the given file without otherwise changing it. The target can be a directory.

--remove
Syntax :
Default : off
Removes the given file and all of its components.

--print-files
Syntax :
Default : off
List all components that are part of the given STF file, including their size. This is similar
to ”ls -l”, but also works with single-file STF.

--print-statistics
Syntax :
Default : off
Prints the precomputed statistics of the input file to stdout.

--print-threads
Syntax :
Default : off
Prints information about each native thread that was encountered by ITC when generat-
ing the trace.

--print-errors
Syntax :
Default : off
Prints the errors that were found in the application.

--dump
Syntax :
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Default : off

This is a shortcut for ”--logfile-name -” and ”--logfile-format ASCII”, that is, it prints the
trace data to stdout.

--request
Syntax : ”<type>”, <thread triplets>, <categories>, <window>

This option restricts the data that is written into the new trace to that which matches
the arguments. If a window is given (in the form <timespec>:<timespec> with at least
one unit descriptor), data is restricted to this time interval. It has the usual format of
a time value, with one exception: the unit for seconds ”s” is not optional to distinguish
it from a thread triplet;in other words, use ”10s” instead of just ”10”. The <type> can
be any kind of string in single or double quotation marks, but it has to uniquely identify
the kind of data. Valid <categories> are FUNCTIONS, SCOPES, FILEIO, COUNTERS,
MESSAGES, COLLOPS, ERRORS and REQUESTS.

All of the arguments are optional and default to all threads, all categories and the whole
time interval. They can be separated by commas or spaces and it is possible to mix them
as desired. This option can be used more than once and then data matching any request
is written.

--ticks
Syntax :

Default : off

Setting this option to ’on’ lets stftool interpret all timestamps as ticks (rather than sec-
onds, milliseconds and so on). Given time values are converted into seconds and then
truncated (floor).

The clock ticks are based on the nominal clock period specified by the CLKPERIOD
header, just as the time stamps printed by the stftool for events.

--logfile-name
Syntax : <file name>

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or
the current working directory of the process writing it.

If unspecified, then the name is the name of the program plus ”.avt” for ASCII, ”.stf” for
STF and ”.single.stf” for single STF tracefiles. If one of these suffices is used, then they
also determine the logfile format, unless the format is specified explicitly.

In the stftool the name has to be specified explicitly, either by using this option or as
argument of the --convert or --move switch.

--logfile-format
Syntax : [ASCII|STF|STFSINGLE|SINGLESTF]

Default : STF

Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all
trace data is written into one file. It is human-readable.

The Structured Trace File (STF) is a binary format which supports storage of trace data
in several files and allows ITA to analyze the data without loading all of it, so it is more
scalable. Writing it is only supported by ITC at the moment.

One trace in STF format consists of several different files which are referenced by one
index file (.stf). The advantage is that different processes can write their data in paral-
lel (see STF-PROCS-PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of
these files into one (.single.stf), which can be read without unpacking them again. How-
ever, this format does not support distributed writing, so for large program runs with many
processes the generic STF format is better.

--extended-vtf
Syntax :

Default : off in ITC, on in stftool
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Several events can only be stored in STF, but not in VTF. ITC libraries default to writing
valid VTF trace files and thus skip these events. This option enables writing of non-
standard VTF records in ASCII mode that ITA would complain about. In the stftool the
default is to write these extended records, because the output is more likely to be parsed
by scripts rather than ITA.

--matched-vtf
Syntax :
Default : off
When converting from STF to ASCII-VTF communication records are usually split up into
conventional VTF records. If this option is enabled, an extended format is written, which
puts all information about the communication into a single line.

--verbose
Syntax : [on|off|<level>]
Default : on
Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.

SEE ALSO

VT CONFIG(3)

7.4.2 Expanded ASCII output of STF files

Synopsis

xstftool <STF file> [stftool options]

Valid options are those that work together with ”stftool --dump”, the most important ones
being:

• --request: extract a subset of the data
• --matched-vtf: put information about complex events like messages and collective oper-

ations into one line

Description

The xstftool is a simple wrapper around the stftool and the expandvtlog.pl Perl script which
tells the stftool to dump a given Structured Trace Format (STF) file in ASCII format and uses
the script as a filter to make the output more readable.

It is intended to be used for doing custom analysis of trace data with scripts that parse the
output to extract information not provided by the existing tools, or for situations where a few
shell commands provide the desired information more quickly than a graphical analysis tool.

Output

The output has the format of the ASCII Vampir Trace Format (VTF), but entities like function
names are not represented by integer numbers that cannot be understood without remem-
bering their definitions, but rather inserted into each record. The CPU numbers that encode
process and thread ranks resp. groups are also expanded.
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Examples

The following examples compare the output of ”stftool --dump” with the expanded output of
”xstftool”:

• definition of a group
DEFGROUP 2147942402 "All_Processes" NMEMBS 2 2147483649 2147483650
DEFGROUP All_Processes NMEMBS 2 "Process_0" "Process_2"

• a counter sample on thread 2 of the first process
8629175798 SAMP CPU 131074 DEF 6 UINT 8 3897889661
8629175798 SAMP CPU 2:1 DEF "PERF_DATA:PAPI_TOT_INS" UINT 8 3897889661
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Chapter 8

User-level Instrumentation with the
API

8.1 The ITC API

The ITC library provides the user with a number of routines that control the profiling library
and record user-defined activities, define groups of processes, define performance counters and
record their values. Header files with the necessary parameter, macro and function declarations
are provided in the include directory: VT.h for ANSI C and C++ and VT.inc for Fortran 77 and
Fortran 90. It is strongly recommended to include these header files if any ITC API routines are
to be called.

#define VT VERSION

API version constant.

It is incremented each time the API changes, even if the change does not break compatibility with
the existing API. It can be used to determine at compile time how to call the API, like this:

#if VT VERSION > 4000
do something

#else
do something different

#endif

VT version() provides the same information at runtime.

To check whether the current revision of the API is still compatible with the revision of
the API that the application was written against, compare against both VT VERSION and
VT VERSION COMPATIBILITY, as shown below.

#define VT VERSION COMPATIBILITY

Oldest API definition which is still compatible with the current one.
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This is set to the current version each time an API change can break programs written for the
previous API. For example, a program written for VT VERSION 2090 will work with API 3000 if
VT VERSION COMPATIBILITY remained at 2090. It may even work without modifications when
VT VERSION COMPATIBILITY was increased to 3000, but this cannot be determined automati-
cally and will require a source code review.

Here is a usage example:

#define APP_VT_VERSION 1000 // API version used by APP
#ifdef VT VERSIONCOMPATIBILITY > APP_EXPECTED_VT_VERSION
# error "VT.h is no longer compatible with APP’s usage of the API"
#endif
#ifdef VT VERSION < APP_EXPECTED_VT_VERSION
# error "VT.h is not recent enough for APP"
#endif

enum VT ErrorCode

error codes returned by ITC API.
Enumeration values:

VT OK OK.

VT ERR NOLICENSE no valid license found.

VT ERR NOTIMPLEMENTED Not (yet?) implemented.

VT ERR NOTINITIALIZED Not initialised.

VT ERR BADREQUEST Invalid request type.

VT ERR BADSYMBOLID Wrong symbol id.

VT ERR BADSCLID wrong SCL id.

VT ERR BADSCL wrong SCL.

VT ERR BADFORMAT wrong format.

VT ERR BADKIND Wrong kind found.

VT ERR NOMEMORY Could not get memory.

VT ERR BADFILE Error while handling file.

VT ERR FLUSH Error while flushing.

VT ERR BADARG wrong argument.

VT ERR NOTHREADS no worker threads.

VT ERR BADINDEX wrong thread index.

VT ERR COMM communication error.

VT ERR INVT ITC API called while inside an ITC function.

VT ERR IGNORE non-fatal error code.
Suppose you instrumented your C source code for the API with VT VERSION equal to 3100.
Then you could add the following code fragment to detect incompatible changes in the API:
#include <VT.h>
#if VT VERSIONCOMPATIBILITY > 3100
# error ITC API is no longer compatible with our calls
#endif

Of course, breaking compatibility that way will be avoided at all costs. Beware of comparing
against a fixed number and not VT VERSION, because VT VERSION will always be greater or
equal VT VERSION COMPATIBILITY.
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To make the instrumentation work again after such a change, you can either just update the
instrumentation to accommodate for the change or even provide different instrumentation that is
chosen by the C preprocessor based on the value of VT VERSION.

8.2 Initialization, Termination and Control

ITC is automatically initialized within the execution of the MPI Init() routine. During the execution of
the MPI Finalize() routine, the trace data collected in memory or in temporary files is consolidated
and written into the permanent trace file(s), and ITC is terminated. Thus, it is an error to call ITC
API functions before MPI Init() has been executed or after MPI Finalize() has returned.

In non-MPI applications it may be necessary to start and stop ITC explicitly. These calls also help
to write programs and libraries that use VT without depending on MPI.

int VT initialize (int ∗ argc , char ∗∗∗ argv )

Initialize ITC and underlying communication.

VT initialize(), VT getrank(), VT finalize() can be used to write applications or libraries which work
both with and without MPI, depending on whether they are linked with libVT.a plus MPI or with
libVTcs.a (distributed tracing) and no MPI.

If the MPI that ITC was compiled for provides MPI Init thread(), then VT init() will call MPI Init -
thread() with the parameter required set to MPI THREAD FUNNELED. This is sufficient to initial-
ize multithreaded applications where only the main thread calls MPI. If your application requires
a higher thread level, then either use MPI Init thread() instead of VT init() or (if VT init() is called
e.g. by your runtime environment) set the environment variable VT THREAD LEVEL to a value of
0 till 3 to choose thread levels MPI THREAD SINGLE till MPI THREAD MULTIPLE.

It is not an error to call VT initialize() twice or after a MPI Init().

In a MPI application written in C the program’s parameters must be passed, because the underly-
ing MPI might require them. Otherwise they are optional and 0 resp. a NULL pointer may be used.
If parameters are passed, then the number of parameters and the array itself may be modified,
either by MPI or ITC itself.

ITC assumes that (∗argv)[0] is the executable’s name and uses this string to find the executable
and as the basename for the default logfile name. Other parameters are ignored unless there
is the special ”–tracecollector-args” parameters: then all following parameters are interpreted as
configuration options, written with a double hyphen as prefix and a hyphen instead of underscores
(e.g. –tracecollector-args –logfile-format BINARY –logfile-prefix /tmp). These parameters are then
removed from the argv array, but not freed. To continue with the program’s normal parameters,
–tracecollector-args-end may be used. There may be more than one block of ITC arguments on
the command line.

Fortran
VTINIT( ierr )

Parameters:
argc a pointer to the number of command line arguments

argv a pointer to the program’s command line arguments

Returns:
error code
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int VT finalize (void)

Finalize ITC and underlying communication.

It is not an error to call VT finalize() twice or after a MPI Finalize().
Fortran

VTFINI( ierr )
Returns:

error code

int VT getrank (int ∗ rank )

Get process index (same as MPI rank within MPI COMM WORLD).

Beware that this number is not unique in applications with dynamic process spawning.
Fortran

VTGETRANK( rank, ierr )
Return values:

rank process index is stored here
Returns:

error code
The following functions control the tracing of threads in a multithreaded application.

int VT registerthread (int thindex )

Registers a new thread with ITC under the given number.

Threads are numbered starting from 0, which is always the thread that has called VT initialize()
resp. MPI Init(). The call to VT registerthread() is optional: a thread that uses ITC without having
called VT registerthread() is automatically assigned the lowest free index. If a thread terminates,
then its index becomes available again and might be reused for another thread.

Calling VT registerthread() when the thread has been assigned an index already is an error,
unless the argument of VT registerthread() is equal to this index. The thread is not (re)registered
in case of an error.

Fortran
VTREGISTERTHREAD( thindex, ierr )

Parameters:
thindex thread number, only used if >= 0

Returns:
error code:

• VT ERR BADINDEX - thread index is currently assigned to another thread
• VT ERR BADARG - thread has been assigned a different index already
• VT ERR NOTINITIALIZED - ITC wasn’t initialized yet

int VT registernamed (const char ∗ threadname , int thindex )

Registers a new thread with ITC under the given number and name.

Threads with the same number cannot have different names. If you try that, the thread uses the
number, but not the new name.
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Trying to register a thread twice with different names or numbers is an error. One can add a name
to an already registered thread with VT registerthread( ”new name”, -1 ) if no name has been set
before.

Parameters:
threadname desired name of the thread, or NULL/empty string if no name wanted

thindex desired thread number, pass negative number to let ITC pick a number
Returns:

error code, see VT registerthread()

int VT getthrank (int ∗ thrank )

Get thread index within process.

Either assigned automatically by ITC or manually with VT registerthread().
Fortran

VTGETTHRANK( thrank, ierr )
Return values:

thrank thread index within current thread is stored here
Returns:

error code
The recording of performance data can be controlled on a per-process basis by calls to the
VT traceon() and VT traceoff() routines: a thread calling VT traceoff() will no longer record any
state changes, MPI communication or counter events. Tracing can be re-enabled by calling the
VT traceon() routine. The collection of statistics data is not affected by calls to these routines.
With the API routine VT tracestate() a process can query whether events are currently being
recorded.

void VT traceoff (void)

Turn tracing off for thread if it was enabled, does nothing otherwise.
Fortran

VTTRACEOFF( )

void VT traceon (void)

Turn tracing on for thread if it was disabled, otherwise do nothing.

Cannot enable tracing if ”PROCESS/CLUSTER NO” was applied to the process in the configura-
tion.

Fortran
VTTRACEON( )

int VT tracestate (int ∗ state )

Get logging state of current thread.

Set by config options PROCESS/CLUSTER, modified by VT traceon/off().

There are three states:
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• 0 = thread is logging

• 1 = thread is currently not logging

• 2 = logging has been turned off completely

Note that different threads within one process may be in state 0 and 1 at the same time because
VT traceon/off() sets the state of the calling thread, but not for the whole process.

State 2 is set via config option ”PROCESS/CLUSTER NO” for the whole process and cannot be
changed.

Fortran
VTTRACESTATE( state, ierr )

Return values:
state is set to current state

Returns:
error code

With the ITC configuration mechanisms described in chapter VT CONFIG, the recording of state
changes can be controlled per symbol or activity. For any defined symbol, the VT symstate()
routine returns whether data recording for that symbol has been disabled.

int VT symstate (int statehandle , int ∗ on )

Get filter state of one state.

Set by config options SYMBOL, ACTIVITY.

Note that a state may be active even if the thread’s logging state is ”off”.
Fortran

VTSYMSTATE( statehandle, on, ierr )
Parameters:

statehandle result of VT funcdef() or VT symdef()
Return values:

on set to 1 if symbol is active
Returns:

error code
ITC minimizes the instrumentation overhead by first storing the recorded trace data locally in each
processor’s memory and saving it to disk only when the memory buffers are filled up. Calling the
VT flush() routine forces a process to save the in-memory trace data to disk, and mark the duration
of this in the trace. After returning, ITC continues normally.

int VT flush (void)

Flushes all trace records from memory into the flush file.

The location of the flush file is controlled by options in the config file. Flushing will be recorded
in the trace file as entering and leaving the state VT API:TRACE FLUSH with time stamps that
indicate the duration of the flushing. Automatic flushing is recorded as VT API:AUTO FLUSH.

Fortran
VTFLUSH( ierr )

Returns:
error code

76



8.3. DEFINING AND RECORDING SOURCE LOCATIONS

Refer to section 9 to learn about the MEM-BLOCKSIZE and MEM-MAXBLOCKS configuration
directives that control ITC’s memory usage.

ITC makes its internal clock available to applications, which can be useful to write instrumentation
code that works with MPI and non-MPI applications:

double VT timestamp (void)

Returns an opaque time stamp, or VT ERR NOTINITIALIZED.

In contrast to previous versions this time stamp no longer represents seconds. Use
VT timeofday() for that instead. The result of VT timestamp() can be copied verbatim and given
to other API calls, but nothing else.

Fortran
DOUBLE PRECISION VTSTAMP( )

double VT timestart (void)

Returns point in time in seconds when process started, or VT ERR NOTINITIALIZED.
Fortran

DOUBLE PRECISION VTTIMESTART( )

8.3 Defining and Recording Source Locations

Source locations can be specified and recorded in two different contexts:

State changes, associating a source location with the state change. This is useful to record
where a routine has been called, or where a code region begins and ends.

Communication events, associating a source location with calls to MPI routines, for example,
calls to the send/receive or collective communication and I/O routines.

To minimize instrumentation overhead, locations for the state changes and communication events
are referred to by integer location handles that can be defined by calling the new API routine
VT scldef(), which will automatically assign a handle. The old API routine VT locdef() which
required the user to assign a handle value has been removed. A source location is a pair of a
filename and a line number within that file.

int VT scldef (const char ∗ file , int line nr , int ∗ sclhandle )

Allocates a handle for a source code location (SCL).
Fortran

VTSCLDEF( file, line nr, sclhandle, ierr )
Parameters:

file file name

line nr line number in this file, counting from 1

77



CHAPTER 8. USER-LEVEL INSTRUMENTATION WITH THE API

Return values:
sclhandle the int it points to is set by ITC

Returns:
error code

Some functions require a location handle, but they all accept VT NOSCL instead of a real handle:

#define VT NOSCL

special SCL handle: no location available.

int VT sclstack (void ∗ pc , void ∗ stackframe , int skip , int trace , int ∗ sclhandle )

Allocates a handle for a source code location (SCL) handle which refers to the current call stack.

This SCL can then be used in several API calls without having to repeat the stack unwinding each
time. Which stack frames are preserved and which are skipped is determined by the PCTRACE
configuration option, but can be overridden with function parameters.

Special support is available for recording source code locations from inside signal handlers by
calling this function with the pc and stackframe parameters different from NULL. Other usages of
these special parameters include:

• remembering the stack frame in those API calls of a library that are invoked directly by the
application, then at arbitrary points in the library do stack unwinding based on that stack
frame to catch just the application code

• defining a source code location ID for a specific program counter value

Here is an example of the usage of this call inside a library which implements a message send:

78



8.3. DEFINING AND RECORDING SOURCE LOCATIONS

void MySend( struct *msg ) {
int sclhandle;
VT sclstack ( NULL, NULL, // we use the default stack unwinding

1, // MySend() is called directly by the
// application code we want to trace:
// skip our own source code, but not
// more

-1, // default PCTRACEsetting for size
// of recorded stack

&sclhandle );
// if an error occurs, we continue with the sclhandle == VT NOSCL
// that VT sclstack () sets
VT enter ( funchandle,

sclhandle );
VT log sendmsg ( msg->receiver,

msg->count,
msg->tag,
msg->commid,
sclhandle );

// do the send here
VT leave ( sclhandle );

}

Parameters:
pc record the source code of this program counter value as the innermost call location, then

continue with normal stack unwinding; NULL if only stack unwinding is to be used

stackframe start unwinding at this stack frame, NULL for starting with the stack frame of
VT sclstack() itself: on IA32 the stack frame is found in the EBP register, on Intel(R) 64
in the RBP register, on Itanium(R) in the BSP register

skip -1: get the number of stack frames to skip from the PCTRACE configuration option 0:
first recorded program counter value after the (optional) pc address is the return address
of the initial stack frame >0: skip the given number of return addresses

trace -1: get the number of stack frames to record from the PCTRACE configuration option
0: do not record any source code locations for the call stack: returns an SCL ID for the
pc address if one is given, otherwise returns VT NOSCL immediately >0: the number
of stack frames to record

Return values:
sclhandle the int it points to is set by ITC to a valid SCL handle in case of success and

VT NOSCL otherwise
Returns:

error code
ITC automatically records all available information about MPI calls. On some systems, the source
location of these calls is automatically recorded. On the remaining systems, the source location
of MPI calls can be recorded by calling the VT thisloc() routine immediately before the call to the
MPI routine, with no intervening MPI or ITC API calls.

int VT thisloc (int sclhandle )

Set source code location for next activity that is logged by ITC.

After being logged it is reset to the default behaviour again: automatic PC tracing if enabled in the
config file and supported or no SCL otherwise.
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Fortran
VTTHISL( sclhandle, ierr )

Parameters:
sclhandle handle defined either with VT scldef()

Returns:
error code

8.4 Defining and Recording Functions or Regions

ITA can display and analyze general (properly nested) state changes, relating to subroutine calls,
entry/exit to/from code regions and other activities occurring in a process. ITA implements a two-
level model of states: a state is referred to by an activity name that identifies a group of states, and
the state (or symbol) name that references a particular state in that group. For instance, all MPI
routines are part of the activity MPI, and each one is identified by its routine name, for instance
MPI Send for C and MPI SEND for Fortran.

The ITC API allows the user to define arbitrary activities and symbols and to record entry and exit
to/from them. In order to reduce the instrumentation overhead, symbols are referred to by integer
handles that can be managed automatically (using the VT funcdef() interface) or assigned by the
user (using the old VT symdef() routine). All activities and symbols are defined by each process
that uses them, but it is no longer necessary to define them consistently on all processes (see
UNIFY-SYMBOLS).

Optionally, information about source locations can be recorded for state enter and exit events by
passing a non-null location handle to the VT enter()/VT leave() or VT beginl()/VT endl() routines.

8.4.1 New Interface

To simplify the use of user-defined states, a new interface has been introduced for ITC. It manages
the symbol handles automatically, freeing the user from the task of assigning and keeping track of
symbol handles, and has a reduced number of arguments. Furthermore, the performance of the
new routines has been optimized, reducing the overhead of recording state changes.

To define a new symbol, first the respective activity needs to have been created by a call to the
VT classdef() routine. A handle for that activity is returned, and with it the symbol can be defined
by calling VT funcdef(). The returned symbol handle is passed f.i. to VT enter() to record a state
entry event.

int VT classdef (const char ∗ classname , int ∗ classhandle )

Allocates a handle for a class name.

The classname may consist of several components separated by a colon (:). Leading and trailing
colons are ignored. Several colons in a row are treated as just one separator.

Fortran
VTCLASSDEF( classname, classhandle, ierr )

Parameters:
classname name of the class

Return values:
classhandle the int it points to is set by ITC
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Returns:
error code

int VT funcdef (const char ∗ symname , int classhandle , int ∗ statehandle )

Allocates a handle for a state.

The symname may consist of several components separated by a colon (:). If that’s the case, then
these become the parent class(es). Leading and trailing colons are ignored. Several colons in a
row are treated as just one separator.

This is a replacement for VT symdef() which doesn’t require the application to provide a unique
numeric handle.

Fortran
VTFUNCDEF( symname, classhandle, statehandle, ierr )

Parameters:
symname name of the symbol

classhandle handle for the class this symbol belongs to, created with VT classdef(), or
VT NOCLASS, which is an alias for ”Application” if the symname doesn’t contain a class
name and ignored otherwise

Return values:
statehandle the int it points to is set by ITC

Returns:
error code

#define VT NOCLASS

special value for VT funcdef(): put function into the default class ”Application”.

8.4.2 Old Interface

To define a new symbol, first determine which value has to be used for the symbol handle, and
then call the VT symdef() routine, passing the symbol and activity names, plus the handle value.
It is not necessary to define the activity itself. Take care not to use the same handle value for
different symbols.

int VT symdef (int statehandle , const char ∗ symname , const char ∗ activity )

Defines the numeric statehandle as shortcut for a state.

This function will become obsolete and should not be used for new code. Both symname and
activity may consist of more than one component, separated by a colon (:).

Leading and trailing colons are ignored. Several colons in a row are treated as just one separa-
tor.

Fortran
VTSYMDEF( code, symname, activity, ierr )

Parameters:
statehandle numeric value chosen by the application
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symname name of the symbol

activity name of activity this symbol belongs to
Returns:

error code

8.4.3 State Changes

The following routines take a state handle defined with either the new or old interface. Handles
defined with the old interface incur a higher overhead in these functions, because they need to be
mapped to the real internal handles. Therefore it is better to use the new interface, so that support
for the old interface may eventually be removed.

ITC distinguishes between code regions (marked with VT begin()/VT end()) and functions
(marked with VT enter()/VT leave()). The difference is only relevant when passing source code
locations:

int VT begin (int statehandle )

Marks the beginning of a region with the name that was assigned to the symbol.

Regions should be used to subdivide a function into different parts or to mark the location where
a function is called.

Notes:
If automatic tracing of source code locations (aka PC tracing) is supported, then ITC will
log the location where VT begin() is called as source code location for this region and the
location where VT end() is called as SCL for the next part of the calling symbol (which may
be a function or another, larger region).

If a SCL has been set with VT thisloc(), then this SCL will be used even if PC tracing is supported.

The functions VT enter() and VT leave() have been added that can be used to mark the beginning
and end of a function call within the function itself. The difference is that a manual source code
location which is given to VT leave() cannot specify where the function call took place, but rather
were the function is left. So currently it has to be ignored until the trace file format can store this
additional information.

If PC tracing is enabled, then the VT leave routine stores the SCL where the instrumented function
was called as SCL for the next part of the calling symbol. In other words, it skips the location where
the function is left, which would be recorded if VT end() were used instead.

VT begin() adds an entry to a stack which can be removed with (and only with) VT end().
Fortran

VTBEGIN( statehandle, ierr )
Parameters:

statehandle handle defined either with VT symdef() or VT funcdef()
Returns:

error code

int VT beginl (int statehandle , int sclhandle )

Shortcut for VT thisloc( sclhandle ); VT begin( statehandle ).
Fortran

VTBEGINL( statehandle, sclhandle, ierr )
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int VT end (int statehandle )

Marks the end of a region.

Has to match a VT begin(). The parameter was used to check this, but this is no longer done to
simplify instrumentation; now it is safe to pass a 0 instead of the original state handle.

Fortran
VTEND( statehandle, ierr )

Parameters:
statehandle obsolete, pass anything you want

Returns:
error code

int VT endl (int statehandle , int sclhandle )

Shortcut for VT thisloc( sclhandle ); VT end( statehandle ).
Fortran

VTENDL( statehandle, sclhandle, ierr )

int VT enter (int statehandle , int sclhandle )

Mark the beginning of a function.

Usage similar to VT beginl(). See also VT begin().
Fortran

VTENTER( statehandle, sclhandle, ierr )
Parameters:

statehandle handle defined either with VT symdef() or VT funcdef()

sclhandle handle, defined by VT scldef. Use VT NOSCL if you don’t have a specific value.
Returns:

error code

int VT leave (int sclhandle )

Mark the end of a function.

See also VT begin().
Fortran

VTLEAVE( sclhandle, ierr )
Parameters:

sclhandle handle, defined by VT scldef. Currently ignored, but is meant to specify the loca-
tion of exactly where the function was left in the future. Use VT NOSCL if you don’t have
a specific value.

Returns:
error code

int VT enterstate (const char ∗ name , int ∗ statehandle , int ∗ truncated )

Defines a state (when invoked the first time) and enters it.
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It relies on the caller to provide persistent storage for state handles.

The corresponding call to leave the state again is the normal VT leave(). VT leave() must be
called if and only if VT enterstate() returns a zero return code.

static int bsend_handle, bsend_truncated;
int bsend_retval;
bsend_retval = VT enterstate ( "MPI:TRANSFER:BSEND",

&bsend_handle, &bsend_truncated );
...
if( !bsend_retval) VT leave ( VT NOSCL );

As demonstrated in this example, one or more colons (:) may be used to specify parent classes
of the state, just as in VT funcdef() et.al.

But in contrast to those, VT enterstate() also treats a slash (/) as special and uses it to log states
at a varying degree of detail: depending on the value of DETAILED-STATES (0 = OFF, 1 = ON, 2,
3...), only the part of the name before the first slash is used (DETAILED-STATES 0). For higher
values of DETAILED-STATES more components of the name are used and the slashes in the part
of the name which is used is treated like the class separator (:).

Examples:

• ”MPI:TRANSFER/SEND/COPY” + DETAILED-STATES 0: ”MPI:TRANSFER”
• ”MPI:TRANSFER/SEND/COPY” + DETAILED-STATES 1: ”MPI:TRANSFER:SEND”
• ”MPI:TRANSFER/SEND/COPY” + DETAILED-STATES >= 2:

”MPI:TRANSFER:SEND:COPY”
• ”/MPI:INTERNAL” + DETAILED-STATES 0: ”” = not logged
• ”/MPI:INTERNAL” + DETAILED-STATES 1: ”:MPI:INTERNAL” = ”MPI:INTERNAL”

If (and only if) the configuration option DETAILED-STATES causes the truncation of a certain state
name, then entering that state is ignored if the process already is in that state.

Example of trace with DETAILED-STATES 0:

• enter ”MPI:TRANSFER/WAIT” = enter ”MPI:TRANSFER”
• enter ”MPI:TRANSFER/COPY” = ”MPI:TRANSFER” = ignored by ITC, return code != 0
• leave ”MPI:TRANSFER/COPY” = ignored by application
• enter ”MPI:TRANSFER/WAIT” = recursive call; ignored, too
• leave ”MPI:TRANSFER/WAIT” = ignored by application
• leave ”MPI:TRANSFER/WAIT” = leave ”MPI:TRANSFER”

Same trace with DETAILED-STATES 1:

• enter ”MPI:TRANSFER/WAIT” = enter ”MPI:TRANSFER:WAIT”
• enter ”MPI:TRANSFER/COPY” = enter ”MPI:TRANSFER:COPY”
• leave ”MPI:TRANSFER/COPY” = leave ”MPI:TRANSFER:COPY”
• enter ”MPI:TRANSFER/WAIT” = enter ”MPI:TRANSFER:WAIT”
• leave ”MPI:TRANSFER/WAIT” = leave ”MPI:TRANSFER:WAIT”
• leave ”MPI:TRANSFER/WAIT” = leave ”MPI:TRANSFER:WAIT”

Fortran
VTENTERSTATE( name, statehandle, truncated, ierr )

Parameters:
name the name of the state, with colons and/or slashes as separators as described above
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Return values:
statehandle must be initialized to zero before calling this funtion for the first time, then is set

inside the function to the state handle which corresponds to the function which is logged

truncated set when calling the function for the first time: zero iff the full name is logged
Returns:

zero iff state was entered and VT leave() needs to be called

int VT wakeup (void)

Triggers the same additional actions as logging a function call, but without actually logging a call.

When ITC logs a function entry or exit it might also execute other actions, like sampling and
logging counter data. If a function runs for a very long time, then ITC has no chance to execute
these actions. To avoid that, the programmer can insert calls to this function into the source code
of the long-running function.

Fortran
VTWAKEUP( ierr )

Returns:
error code

8.5 Defining and Recording Overlapping Scopes

int VT scopedef (const char ∗ scopename , int classhandle , int scl1 , int scl2 , int ∗ scope-
handle )

In contrast to a state, which is entered and left with VT begin/VT end() resp.

VT enter/VT leave(), a scope does not follow a stack based approach. It is possible to start a
scope ”a”, then start scope ”b” and stop ”a” before ”b”:

|---- a -----|
|------ b -----|

A scope is identified by its name and class, just like functions. The source code locations that
can be associated with it are just additional and optional attributes; they could be used to mark a
static start and end of the scope in the source.

As functions, the scopename may consist of several components separated by a colon (:).
Fortran

VTSCOPEDEF( scopename, classhandle, scl1, scl2, scopehandle, ierr )
Parameters:

scopename the name of the scope

classhandle the class this scope belongs to (defined with VT classdef())

scl1 any kind of SCL as defined with VT scldef(), or VT NOSCL

scl2 any kind of SCL as defined with VT scldef(), or VT NOSCL
Return values:

scopehandle set to a numeric handle for the scope, needed by VT scopebegin()
Returns:

error code
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int VT scopebegin (int scopehandle , int scl , int ∗ seqnr )

Starts a new instance of the scope previously defined with VT scopedef().

There can be more than one instance of a scope at the same time. In order to have the flexibility
to stop an arbitrary instance, ITC assigns an intermediate identifier to it which can (but does not
have to) be passed to VT scopeend(). If the application does not need this flexibility, then it can
simply pass 0 to VT scopeend().

Fortran
VTSCOPEBEGIN( scopehandle, scl, seqnr, ierr )

Parameters:
scopehandle the scope as defined by VT scopedef()

scl in contrast to the static SCL given in the scope definition this you can vary with each
instance; pass VT NOSCL if not needed

Return values:
seqnr is set to a number that together with the handle identifies the scope instance; pointer

may be NULL
Returns:

error code

int VT scopeend (int scopehandle , int seqnr , int scl )

Stops a scope that was previously started with VT scopebegin().
Fortran

VTSCOPEEND( scopehandle, seqnr, scl )
Parameters:

scopehandle identifies the scope that is to be terminated

seqnr 0 terminates the most recent scope with the given handle, passing the seqnr returned
from VT scopebegin() terminates exactly that instance

scl a dynamic SCL for leaving the scope

8.6 Defining Groups of Processes

ITC makes it possible to define an arbitrary, recursive group structure over the processes of an
MPI application, and ITA is able to display profiling and communication statistics for these groups.
Thus, a user can start with the top-level groups and walk down the hierarchy, “unfolding” interest-
ing groups into ever more detail until he arrives at the level of processes or threads.

Groups are defined recursively with a simple bottom-up scheme: the VT groupdef() routine builds
a new group from a list of already defined groups or processes, returning an integer group handle
to identify the newly defined group. The following handles are predefined:

enum VT Group
Enumeration values:

VT ME the calling thread/process.

VT GROUP THREAD Group of all threads.

VT GROUP PROCESS Group of all processes.
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VT GROUP CLUSTER Group of all clusters.
To refer to non-local processes, the lookup routine VT getprocid() translates between ranks in
MPI COMM WORLD and handles that can be used for VT groupdef():

int VT getprocid (int procindex , int ∗ procid )

Get global id for process which is identified by process index.

If threads are supported, then this id refers to the group of all threads within the process, otherwise
the result is identical to VT getthreadid( procindex, 0, procid ).

Fortran
VTGETPROCID( procindex, procid, ierr )

Parameters:
procindex index of process (0 <= procindex < N )

Return values:
procidpointer to mem place where id is written to

Returns:
error code

The same works for threads:

int VT getthreadid (int procindex , int thindex , int ∗ threadid )

Get global id for the thread which is identified by the pair of process and thread index.
Fortran

VTGETTHREADID( procindex, thindex, threadid, ierr )
Parameters:

procindex index of process (0 <= procindex < N )

thindex index of thread
Return values:

threadid pointer to mem place where id is written to
Returns:

error code

int VT groupdef (const char ∗ name , int n members , int ∗ ids , int ∗ grouphandle )

Defines a new group and returns a handle for it.

Groups are distinguished by their name and their members. The order of group members is
preserved, which can lead to groups with the same name and same set of members, but different
order of these members.

Fortran
VTGROUPDEF( name, n members, ids[], grouphandle, ierr )

Parameters:
name the name of the group

n members number of entries in the ids array

ids array where each entry is either:

• VT ME
• VT GROUP THREAD
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• VT GROUP PROCESS
• VT GROUP CLUSTER
• result of VT getthreadid(), VT getprocid() or VT groupdef()

Return values:
grouphandle handle for the new group, or old handle if the group was defined already

Returns:
error code

To generate a new group that includes the processes with even ranks in MPI COMM WORLD,
you can code:

int *IDS = malloc(sizeof(*IDS)*(number_procs/2));
int i, even_group;
for( i = 0; i < number_procs; i += 2 )

VT getprocid (i, IDS + i/2);
VT groupdef (‘‘Even Group’’, number_procs/2, IDS, &even_group);

If threads are used, then they automatically become part of a group that is formed by all threads
inside the same process. The numbering of threads inside this group depends on the order in
which threads call VT because they are registered the first time they invoke VT. The order can be
controlled by calling VT registerthread() as the first API function with a positive parameter.

8.7 Defining and Recording Counters

ITC introduces the concept of counters to model numeric performance data that changes over the
execution time. Counters can be used to capture the values of hardware performance counters,
or of program variables (iteration counts, convergence rate, . . . ) or any other numerical quantity.
An ITC counter is identified by its name, the counter class it belongs to (similar to the two-level
symbol naming), and the type of its values (integer or floating-point) and the units that the values
are quoted in (Example: MFlop/sec).

A counter can be attached to MPI processes to record process-local data, or to arbitrary groups.
When using a group, then each member of the group will have its own instance of the counter
and when a process logs a value it will only update the counter value of the instance the process
belongs to.

Similar to other ITC objects, counters are referred to by integer counter handles that are managed
automatically by the library.

To define a counter, the class it belongs to needs to be defined by calling VT classdef(). Then,
call VT countdef(), and pass the following information:

• the counter name

• the data type

enum VT CountData
Enumeration values:

VT COUNT INTEGER Counter measures 64 bit integer value, passed to ITC API as
a pair of high and low 32 bit integers.

VT COUNT FLOAT Counter measures 64 bit floating point value (native format).
VT COUNT INTEGER64 Counter measures 64 bit integer value (native format).
VT COUNT DATA mask to extract the data format.
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• the kind of data

enum VT CountDisplay
Enumeration values:

VT COUNT ABSVAL counter shall be displayed with absolute values.
VT COUNT RATE first derivative of counter values shall be displayed.
VT COUNT DISPLAY mask to extract the display type.

• the semantic associated with a sample value

enum VT CountScope
Enumeration values:

VT COUNT VALID BEFORE the value is valid until and at the current time.
VT COUNT VALID POINT the value is valid exactly at the current time, and no value

is available before or or after it.
VT COUNT VALID AFTER the value is valid at and after the current time.
VT COUNT VALID SAMPLE the value is valid at the current time and samples a

curve, so e.g.
linear interpolation between sample values is possible

VT COUNT SCOPE mask to extract the scope.

• the counter’s target, that is the process or group of processes it belongs to
(VT GROUP THREAD for a thread-local counter, VT GROUP PROCESS for a process-
local counter, or an arbitrary previously defined group handle)

• the lower and upper bounds

• the counter’s unit (an arbitrary string like FLOP, Mbytes)

int VT countdef (const char ∗ name , int classhandle , int genre , int target , const void ∗
bounds , const char ∗ unit , int ∗ counterhandle )

Define a counter and get handle for it.

Counters are identified by their name (string) alone.
Fortran

VTCOUNTDEF( name, classhandle, genre, target, bounds[], unit, counterhandle, ierr )
Parameters:

name string identifying the counter

classhandle class to group counters, handle must have been retrieved by VT classdef

genre bitwise or of one value from VT CountScope, VT CountDisplay and VT CountData

target target which the counter refers to (VT ME, VT GROUP THREAD,
VT GROUP PROCESS, VT GROUP CLUSTER or thread/process-id or user-defined
group handle ).
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bounds array of lower and upper bounds (2x 64 bit float, 2x2 32 bit integer, 2x 64 bit integer
-> 16 byte)

unit string identifying the unit for the counter (like Volt, pints etc.)

Return values:
counterhandle handle identifying the defined counter

Returns:
error code

The integer counters have 64-bit integer values, while the floating-point counters have
a value domain of 64-bit IEEE floating point numbers. On systems that have no
64-bit int type in C, and for Fortran, the 64-bit values are specified using two 32-
bit integers. Integers and floats are passed in the native byte order, but for
VT COUNT INTEGER the integer with the higher 32 bits needs to be given first on all platforms:

VT COUNT INTEGER 32 bit integer (high) 32 bit integer (low)

VT COUNT INTEGER64 64 bit integer

VT COUNT FLOAT 64 bit float

At any time during execution, a process can record a new value for any of the defined counters
by calling one of the ITC API routines described below. To minimize the overhead, it is possible
to set the values of several counters with one call by passing an integer array of counter handles
and a corresponding array of values. In C, it is possible to mix 64-bit integers and 64-bit floating
point values in one value array; in Fortran, the language requires that the value array contains
either all integer or all floating point values.

int VT countval (int ncounters , int ∗ handles , void ∗ values )

Record counter values.

Values are expected as two 4-byte integers, one 8-byte integer or one 8-byte double, according
to the counter it refers to.

Fortran
VTCOUNTVAL( ncounters, handles[], values[], ierr )

Parameters:
ncounters number of counters to be recorded

handles array of ncounters many handles (previously defined by VT countdef)

values array of ncounters many values, value[i] corresponds to handles[i].

Returns:
error code

The examples directory contains counterscopec.c , which demonstrates all of these facilities.

8.8 Recording Communication Events

These are API calls that allow logging of message send and receive and MPI-style collective oper-
ations. Because they are modelled after MPI operations, they use the same kind of communicator
to define the context for the operation:
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enum VT CommIDs

Logging send/receive events evaluates process rank local within the active communicator, and
matches events only if they are taking place in the same communicator (in other words, it is the
same behaviour as in MPI).

Defining new communicators is currently not supported, but the predefined ones can be used.
Enumeration values:

VT COMM INVALID invalid ID, do not pass to ITC.

VT COMM WORLD global ranks are the same as local ones.

VT COMM SELF communicator that only contains the active process.

int VT log sendmsg (int other rank , int count , int tag , int commid , int sclhandle )

Logs sending of a message.
Fortran

VTLOGSENDMSG( other rank, count, tag, commid, sclhandle, ierr )
Parameters:

my rank rank of the sending process

other rank rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD, VT COMM SELF, or see
VT commdef())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code

int VT log recvmsg (int other rank , int count , int tag , int commid , int sclhandle )

Logs receiving of a message.
Fortran

VTLOGRECVMSG( other rank, count, tag, commid, sclhandle, ierr )
Parameters:

my rank rank of the receiving process

other rank rank of the source process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD, VT COMM SELF, or see
VT commdef())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code
The next three calls require a little extra care, because they generate events that not only have a
time stamp, but also a duration. This means that you need to take a time stamp first, then do the
operation and finally log the event.
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int VT log msgevent (int sender , int receiver , int count , int tag , int commid , double sendts ,
int sendscl , int recvscl )

Logs sending and receiving of a message.
Fortran

VTLOGMSGEVENT( sender, receiver, count, tag, commid, sendts, sendscl, recvscl, ierr )
Parameters:

sender rank of the sending process

receiver rank of the target process

count number of bytes sent

tag tag of the message

commid numeric ID for the communicator (VT COMM WORLD, VT COMM SELF, or see
VT commdef())

sendts time stamp obtained with VT timestamp()

sendscl handle as defined by VT scldef() for the source code location where the message
was sent, or VT NOSCL

recvscl the same for the receive location
Returns:

error code

int VT log op (int opid , int commid , int root , int bsend , int brecv , double startts , int sclhan-
dle )

Logs the duration and amount of transfered data of an operation for one process.
Fortran

VTLOGOP( opid, commid, root, bsend, brecv, startts, sclhandle, ierr )
Parameters:

opid id of the operation; must be one of the predefined constants in enum VT OpTypes

commid numeric ID for the communicator; see VT log sendmsg() for valid numbers

root rank of the root process in the communicator (ignored for operations without root, must
still be valid, though)

bsend bytes sent by process (ignored for operations that send no data)

brecv bytes received by process (ignored for operations that receive no data)

startts the start time of the operation (as returned by VT timestamp())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code

int VT log opevent (int opid , int commid , int root , int numprocs , int ∗ bsend , int ∗ brecv ,
double ∗ startts , int sclhandle )

Logs the duration and amount of transfered data of an operation for all involved processes at
once.

ITC knows which processes send and receive data in each operation. Unused byte counts are
ignored when writing the trace, so they can be left uninitialized, but NULL is not allowed as array
address even if no entry is used at all.
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Fortran
VTLOGOPEVENT( opid, commid, root, numprocs, bsend, brecv, startts, sclhandle, ierr )

Parameters:
opid id of the operation; must be one of the predefined constants in enum VT OpTypes

commid numeric ID for the communicator; see VT log sendmsg() for valid numbers

root rank of the root process in the communicator (ignored for operations without root, must
still be valid, though)

numprocs the number of processes in the communicator

bsend bytes sent by process

brecv bytes received by process

startts the start time of the operation (as returned by VT timestamp())

sclhandle handle as defined by VT scldef, or VT NOSCL
Returns:

error code

enum VT OpTypes

These are operation ids that can be passed to VT log op().

Their representation in the trace file matches that of the equivalent MPI operation.

User-defined operations are currently not supported.
Enumeration values:

VT OP INVALID undefined operation, should not be passed to ITC.

VT OP BARRIER

VT OP BCAST

VT OP GATHER

VT OP GATHERV

VT OP SCATTER

VT OP SCATTERV

VT OP ALLGATHER

VT OP ALLGATHERV

VT OP ALLTOALL

VT OP ALLTOALLV

VT OP REDUCE

VT OP ALLREDUCE

VT OP REDUCE SCATTER

VT OP SCAN

VT OP COUNT number of predefined operations.
Having a duration also introduces the problem of (possibly) having overlapping operations, which
has to be taken care of with the following two calls:

int VT begin unordered (void)
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Starts a period with out-of-order events.

Most API functions log events with just one time stamp which is taken when the event is logged.
That guarantees strict chronological order of the events.

VT log msgevent() and VT log opevent() are logged when the event has finished with a start time
taken earlier with VT timestamp(). This can break the chronological order, e.g. like in the following
two examples:

t1: VT timestamp () "start message"
t2: VT end() "leave function"
t3: VT log msgevent ( t1 ) "finish message"
t1: VT timestamp () "start first message"
t2: VT timestamp () "start second message"
t3: VT log msgevent ( t1 ) "finish first message"
t4: VT log msgevent ( t2 ) "finish second message"

In other words, it is okay to just log a complex event if and only if no other event is logged between
its start and end in this thread. ”logged” in this context includes other complex events that are
logged later, but with a start time between the other events start and end time.

In all other cases you have to alert ITC of the fact that out-of-order events will follow by call-
ing VT begin unordered() before and VT end unordered() after these events. When writing the
events into the trace file ITC increases a counter per thread when it sees a VT begin unordered()
and decrease it at a VT end unordered(). Events are remembered and sorted until the counter
reaches zero, or till the end of the data.

This means that:

• unordered periods can be nested,
• it is not necessary to close each unordered period at the end of the trace,
• but not closing them properly in the middle of a trace will force ITC to use a lot more memory

when writing the trace (proportional to the number of events till the end of the trace).

Fortran
VTBEGINUNORDERED( ierr )

int VT end unordered (void)

Close a period with out-of-order events that was started with VT begin unordered().
Fortran

VTENDUNORDERED( ierr )

8.9 Additional API Calls in libVTcs

int VT abort (void)

Abort a VT initialize() or VT finalize() call running concurrently in a different thread.

This call will not block, but it might still take a while before the aborted calls actually return. They
will return either successfully (if they have completed without aborting) or with an error code.
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Returns:
0 if abort request was sent successfully, else error code

int VT clientinit (int procid , const char ∗ clientname , const char ∗∗ contact )

Initializes communication in a client/server application.

Must be called before VT initialize() in the client of the application. There are three possibilities:

1. client is initialized first, which produces a contact string that must be passed to the server
(∗contact == NULL)

2. the server was started first, its contact string is passed to the clients (∗contact == result of
VT serverinit() with the prefix ”S” - this prefix must be added by the application)

3. a process spawns children dynamically, its contact string is given to its children (∗contact ==
result of VT serverinit() or VT clientinit())

Parameters:
procid All clients must be enumerated by the application. This will become the process id of

the local client inside its VT COMM WORLD. If the VTserver is used, then enumeration
must start at 1 because VTserver always gets rank 0. Threads can be enumerated
automatically by ITC or by the client by calling VT registerthread().

clientname The name of the client. Currently only used for error messages. Copied by ITC.
Return values:

contact Will be set to a string which tells other processes how to contact this process. Guar-
anteed not to contain spaces. The client may copy this string, but doesn’t have to,
because ITC will not free this string until VT finalize() is called.

Returns:
error code

int VT serverinit (const char ∗ servername , int numcontacts , const char ∗ contacts [ ],
const char ∗∗ contact )

Initializes one process as the server that contacts the other processes and coordinates trace file
writing.

The calling process always gets rank #0.

There are two possibilities:

1. collect all infos from the clients and pass them here (numcontacts >= 0, contacts != NULL)

2. start the server first, pass its contact string to the clients (numcontacts >= 0, contacts ==
NULL)

This call replaces starting the VTserver executable in a separate process. Parameters that used
to be passed to the VTserver to control tracing and trace writing can be passed to VT initialize()
instead.

Parameters:
servername similar to clientname in VT clientinit(): the name of the server. Currently only

used for error messages. Copied by ITC.

numcontacts number of client processes
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contacts contact string for each client process (order is irrelevant); copied by ITC

Return values:
contact Will be set to a string which tells spawned children how to contact this server. Guar-

anteed not to contain spaces. The server may copy this string, but doesn’t have to,
because ITC will not free this string until VT finalize() is called. ∗contact must have
been set to NULL before calling this function.

Returns:
error code

int VT attach (int root , int comm , int numchildren , int ∗ childcomm )

Connect to several new processes.

These processes must have been spawned already and need to know the contact string of the
root process when calling VT clientinit().

comm == VT COMM WORLD is currently not implemented. It has some design problems: if sev-
eral children want to use VT COMM WORLD to recursively spawn more processes, then their
parents must also call VT attach(), because they are part of this communicator. If the VTserver is
part of the initial VT COMM WORLD, then VT attach() with VT COMM WORLD won’t work, be-
cause the VTserver does not know about the spawned processes and never calls VT attach().

Parameters:
root rank of the process that the spawned processes will contact

comm either VT COMM SELF or VT COMM WORLD: in the first case root must be 0 and
the spawned processes are connected to just the calling process. In the latter case all
processes that share this VT COMM WORLD must call VT attach() and are included
in the new communicator. root then indicates whose contact infos were given to the
children.

numchildren number of children that the spawning processes will wait for

Return values:
childcomm an identifier for a new communicator that includes the parent processes in the

same order as in their VT COMM WORLD, followed by the child processes in the order
specified by their procid argument in VT clientinit(). The spawned processes will have
access to this communicator via VT get parent().

Returns:
error code

int VT get parent (int ∗ parentcomm )

Returns the communicator that connects the process with its parent, or VT COMM INVALID if not
spawned.

Return values:
parentcomm set to the communicator number that can be used to log communication with

parents

Returns:
error code
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8.10 C++ API

These are wrappers around the C API calls which simplify instrumentation of C++ source code
and ensure correct tracing if exceptions are used. Because all the member functions are provided
as inline functions it is sufficient to include VT.h to use these classes with every C++ compiler.

Here are some examples how the C++ API can be used. nohandles() uses the simpler interface
without storing handles, while handles() saves these handles in static instances of the definition
classes for later reuse when the function is called again:

void nohandles()
{

VT_Function func( "nohandles", "C++ API", __FILE__, __LINE__ );
}
void handles()
{

static VT_SclDef scldef( __FILE__, __LINE__ );
// VT SCL DEF CXX( scldef ) could be used instead

static VT_FuncDef funcdef( "handles", "C++ API" );
VT_Function func( funcdef, scldef );

}
int main( int argc, char **argv )
{

VT_Region region( "call nohandles()", "main" );
nohandles();
region.end();
handles();
handles();
return 0;

}

8.10.1 VT FuncDef Class Reference

Defines a function on request and then remembers the handle.

Public Methods

• VT FuncDef (const char ∗symname, const char ∗classname)

• int GetHandle ()

8.10.1.1 Detailed Description

Defines a function on request and then remembers the handle.

Can be used to avoid the overhead of defining the function several times in VT Function.
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8.10.1.2 Constructor & Destructor Documentation

8.10.1.3 VT FuncDef::VT FuncDef (const char ∗ symname , const char ∗ classname )

8.10.1.4 Member Function Documentation

8.10.1.5 int VT FuncDef::GetHandle ()

Checks whether the function is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because ITC was not initialized or ran out of memory.

8.10.2 VT SclDef Class Reference

Defines a source code location on request and then remembers the handle.

Public Methods

• VT SclDef (const char ∗file, int line)
• int GetHandle ()

8.10.2.1 Detailed Description

Defines a source code location on request and then remembers the handle.

Can be used to avoid the overhead of defining the location several times in VT Function. Best
used together with the define VT SCL DEF CXX().

8.10.2.2 Constructor & Destructor Documentation

8.10.2.3 VT SclDef::VT SclDef (const char ∗ file , int line )

8.10.2.4 Member Function Documentation

8.10.2.5 int VT SclDef::GetHandle ()

Checks whether the scl is defined already or not.

Returns handle as soon as it is available, else 0. Defining the function may be impossible e.g.
because ITC was not initialized or ran out of memory.

#define VT SCL DEF CXX( sclvar)

This preprocessor macro creates a static source code location definition for the current file and
line in C++.

Parameters:
sclvar name of the static variable which is created
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8.10.3 VT Function Class Reference

In C++ an instance of this class should be created at the beginning of a function.

Public Methods

• VT Function (const char ∗symname, const char ∗classname)
• VT Function (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Function (VT FuncDef &funcdef)
• VT Function (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Function ()

8.10.3.1 Detailed Description

In C++ an instance of this class should be created at the beginning of a function.

The constructor will then log the function entry, and the destructor the function exit.

Providing a source code location for the function exit manually is not supported, because this
source code location would have to define where the function returns to. This cannot be deter-
mined at compile time.

8.10.3.2 Constructor & Destructor Documentation

8.10.3.3 VT Function::VT Function (const char ∗ symname , const char ∗ classname )

Defines the function with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the function once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized ITC.

Parameters:
symname the name of the function

classname the class this function belongs to

8.10.3.4 VT Function::VT Function (const char ∗ symname , const char ∗ classname ,
const char ∗ file , int line )

Same as previous constructor, but also stores information about where the function is located in
the source code.

Parameters:
symname the name of the function

classname the class this function belongs to

file name of source file, may but does not have to include path

line line in this file where function starts

8.10.3.5 VT Function::VT Function ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the function only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
function handle
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8.10.3.6 VT Function::VT Function ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the function and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

function handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

8.10.3.7 VT Function:: ∼VT Function ()

the destructor marks the function exit.

8.10.4 VT Region Class Reference

This is similar to VT Function, but should be used to mark regions within a function.

Public Methods

• void begin (const char ∗symname, const char ∗classname)
• void begin (const char ∗symname, const char ∗classname, const char ∗file, int line)
• void begin (VT FuncDef &funcdef)
• void begin (VT FuncDef &funcdef, VT SclDef &scldef)
• void end ()
• void end (const char ∗file, int line)
• void end (VT SclDef &scldef)
• VT Region ()
• VT Region (const char ∗symname, const char ∗classname)
• VT Region (const char ∗symname, const char ∗classname, const char ∗file, int line)
• VT Region (VT FuncDef &funcdef)
• VT Region (VT FuncDef &funcdef, VT SclDef &scldef)
• ∼VT Region ()

8.10.4.1 Detailed Description

This is similar to VT Function, but should be used to mark regions within a function.

The difference is that source code locations can be provided for the beginning and end of the
region, and one instance of this class can be used to mark several regions in one function.

8.10.4.2 Constructor & Destructor Documentation

8.10.4.3 VT Region::VT Region ()

The default constructor does not start the region yet.
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8.10.4.4 VT Region::VT Region (const char ∗ symname , const char ∗ classname )

Enter region when it is created.

8.10.4.5 VT Region::VT Region (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line )

Same as previous constructor, but also stores information about where the region is located in the
source code.

8.10.4.6 VT Region::VT Region ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the region only once.

8.10.4.7 VT Region::VT Region ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the region and source code location only
once.

8.10.4.8 VT Region:: ∼VT Region ()

the destructor marks the region exit.

8.10.4.9 Member Function Documentation

8.10.4.10 void VT Region::begin (const char ∗ symname , const char ∗ classname )

Defines the region with VT classdef() and VT funcdef(), then enters it.

This is less efficient than defining the region once and then reusing the handle. Silently ignores
errors, like e.g. uninitialized ITC.

Parameters:
symname the name of the region

classname the class this region belongs to

8.10.4.11 void VT Region::begin (const char ∗ symname , const char ∗ classname , const
char ∗ file , int line )

Same as previous begin(), but also stores information about where the region is located in the
source code.

Parameters:
symname the name of the region

classname the class this region belongs to

file name of source file, may but does not have to include path

line line in this file where region starts
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8.10.4.12 void VT Region::begin ( VT FuncDef & funcdef )

This is a more efficient version which supports defining the region only once.
Parameters:

funcdef this is a reference to the (usually static) instance that defines and remembers the
region handle

8.10.4.13 void VT Region::begin ( VT FuncDef & funcdef , VT SclDef & scldef )

This is a more efficient version which supports defining the region and source code location only
once.

Parameters:
funcdef this is a reference to the (usually static) instance that defines and remembers the

region handle

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle

8.10.4.14 void VT Region::end ()

Leaves the region.

8.10.4.15 void VT Region::end (const char ∗ file , int line )

Same as previous end(), but also stores information about where the region ends in the source
code.

Parameters:
file name of source file, may but does not have to include path

line line in this file where region starts

8.10.4.16 void VT Region::end ( VT SclDef & scldef )

This is a more efficient version which supports defining the source code location only once.
Parameters:

scldef this is a reference to the (usually static) instance that defines and remembers the scl
handle
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Chapter 9

ITC Configuration

9.1 Configuring Intel(R) Trace Collector

With a configuration file, the user can customize various aspects of ITC’s operation and define
trace data filters.

9.2 Specifying Configuration Options

The environment variable VT CONFIG can be set to the name of an ITC configuration file. If
this file exists, it is read and parsed by the process specified with VT CONFIG RANK (or 0 as
default). The values of VT CONFIG have to be consistent over all processes, although it need not
be set for all of them. A relative path is interpreted as starting from the current working directory;
an absolute path is safer, because mpirun may start your processes in a different directory than
you’d expect!

In addition to specifying options in a config file, all options have an equivalent environment vari-
able. These variables are checked by the process that reads the config file after it has parsed the
file, so the variables override the config file options. Some options like ”SYMBOL” may appear
several times in the config file. A variable may contain line breaks to achieve the same effect.

The environment variable names are listed below in square brackets [] in front of the config option.
Their names are always the same as the options, but with the prefix ”VT ” and hyphens replaced
with underscores.

Finally, it is also possible to specify configuration options on the command line of a program. The
only exception are Fortran programs (because ITC’s access to command line parameters is lim-
ited there). To avoid conflicts between ITC’s parameters and normal application parameters, only
parameters following the special –itc-args are interpreted by ITC. To continue with the applica-
tion’s normal parameters, –itc-args-end may be used. There may be more than one block of ITC
arguments on the command line.

9.3 Configuration Format

The configuration file is a plain ASCII file containing a number of directives, one per line; any line
starting with the # character is ignored. Within a line, whitespace separates fields, and double
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quotation marks have to be used to quote fields containing whitespace. Each directive consists of
an identifier followed by arguments. With the exception of filenames, all text is case-insensitive. In
the following discussion, items within angle brackets (< and >) denote arbitrary case-insensitive
field values, and alternatives are put within square brackets ([ and ]) and separated by a vertical
bar |.

Default values are given in round brackets after the argument template, unless the default is too
complex to be given in a few words. In this case the text explains the default value. In general
the default values are chosen so that features that increase the amount of trace data have to be
enabled explicitly. Memory handling options default to keeping all trace records in memory until
the application is finalized.

9.4 Syntax of Parameters

9.4.1 Time Value

Time values are usually specified as a pair of one floating point value and one character that
represents the unit: c for microseconds, l for milliseconds, s for seconds, m for minutes, h for
hours, d for days and w for weeks. These elementary times are added with a + sign. For instance,
the string 1m+30s refers to one minute and 30 seconds of execution time.

9.4.2 Boolean Value

Boolean values are set to ”on/true” to turn something on and ”off/false” to turn it off. Just using
the name of the option without the ”on/off” argument is the same as ”on”.

9.4.3 Number of Bytes

The amount of bytes can be specified with optional suffices B/KB/MB/GB, which multiply the
amount in front of them with 1/1024/1024∧2/1024∧3. If no suffix is given the number specifies
bytes.

9.5 Supported Directives

LOGFILE-NAME
Syntax : <file name>

Variable : VT LOGFILE NAME

Specifies the name for the tracefile containing all the trace data. Can be an absolute or
relative pathname; in the latter case, it is interpreted relative to the log prefix (if set) or the
current working directory of the process writing it.

If unspecified, then the name is the name of the program plus ”.avt” for ASCII, ”.stf” for STF
and ”.single.stf” for single STF tracefiles. If one of these suffices is used, then they also
determine the logfile format, unless the format is specified explicitly.

In the stftool the name has to be specified explicitly, either by using this option or as argument
of the –convert or –move switch.
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PROGNAME
Syntax : <file name>

Variable : VT PROGNAME

This option can be used to provide a fallback for the executable name in case of ITC not being
able to determine this name from the program arguments. It is also the base name for the
trace file.

In Fortran it may be technically impossible to determine the name of the executable auto-
matically and ITC may need to read the executable to find source code information (see
PCTRACE config option). ”UNKNOWN” is used if the file name is unknown and not specified
explicitly.

LOGFILE-FORMAT
Syntax : [ASCII|STF|STFSINGLE|SINGLESTF]

Variable : VT LOGFILE FORMAT

Default : STF

Specifies the format of the tracefile. ASCII is the traditional Vampir file format where all trace
data is written into one file. It is human-readable.

The Structured Trace File (STF) is a binary format which supports storage of trace data in
several files and allows ITA to analyze the data without loading all of it, so it is more scalable.
Writing it is only supported by ITC at the moment.

One trace in STF format consists of several different files which are referenced by one index
file (.stf). The advantage is that different processes can write their data in parallel (see STF-
PROCS-PER-FILE, STF-USE-HW-STRUCTURE). SINGLESTF rolls all of these files into one
(.single.stf), which can be read without unpacking them again. However, this format does not
support distributed writing, so for large program runs with many processes the generic STF
format is better.

EXTENDED-VTF
Syntax :

Variable : VT EXTENDED VTF

Default : off in ITC, on in stftool

Several events can only be stored in STF, but not in VTF. ITC libraries default to writing valid
VTF trace files and thus skip these events. This option enables writing of non-standard VTF
records in ASCII mode that ITA would complain about. In the stftool the default is to write
these extended records, because the output is more likely to be parsed by scripts rather than
ITA.

PROTOFILE-NAME
Syntax : <file name>

Variable : VT PROTOFILE NAME

Specifies the name for the protocol file containing the config options and (optionally) summary
statistics for a program run. Can be an absolute or relative pathname; in the latter case, it is
interpreted relative to the current working directory of the process writing it.

If unspecified, then the name is the name of the tracefile with the suffix ”.prot”.
LOGFILE-PREFIX

Syntax : <directory name>

Variable : VT LOGFILE PREFIX

Specifies the directory of the trace or log file. Can be an absolute or relative pathname; in the
latter case, it is interpreted relative to the current working directory of the process writing it.

CURRENT-DIR
Syntax : <directory name>

Variable : VT CURRENT DIR
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ITC will use the current working directory of the process that reads the configuration on all
processes to resolve relative path names. You can override the current working directory with
this option.

VERBOSE
Syntax : [on|off|<level>]

Variable : VT VERBOSE

Default : on

Enables or disables additional output on stderr. <level> is a positive number, with larger
numbers enabling more output:

• 0 (= off) disables all output
• 1 (= on) enables only one final message about generating the result
• 2 enables general progress reports by the main process
• 3 enables detailed progress reports by the main process
• 4 the same, but for all processes (if multiple processes are used at all)

Levels larger than 2 may contain output that only makes sense to the developers of ITC.
LOGFILE-RANK

Syntax : <rank>

Variable : VT LOGFILE RANK

Default : 0

Determines which process creates and writes the tracefile in MPI Finalize(). Default value is
the process reading the configuration file, or the process with rank 0 in MPI COMM WORLD.

STOPFILE-NAME
Syntax : <file name>

Variable : VT STOPFILE NAME

Specifies the name of a file which indicates that ITC should stop the application prematurely
and write a tracefile. This works only with the fail-safe ITC libraries. On Linux∗ systems
the same behaviour can be achieved by sending the signal SIGINT to one of the application
processes, but this is not possible on Microsoft∗ Windows∗.

If specified, ITC checks for the existence of such a file from time to time. If detected, the stop
file is removed again and the shutdown is initiated.

PLUGIN
Syntax : <plugin name>

Variable : VT PLUGIN

If this option is used, then ITC activates the given plugin after initialization. The plugin takes
over responsibility for all function wrappers and normal tracing will be disabled. Most of the
normal configuration options will have no effect. Refer to the documentation of the plugin that
you want to use for further information.

CHECK
Syntax : <pattern> <on|off>

Variable : VT CHECK

Default : on

Enables or disables error checks matching the pattern.
CHECK-MAX-ERRORS

Syntax : <number>

Variable : VT CHECK MAX ERRORS

Default : 1
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Number of errors that has to be reached by a process before aborting the application. 0
disables the limit. Some errors are fatal and always cause an abort. Errors are counted per-
process to avoid the need for communication among processes, as that has several draw-
backs which outweigh the advantage of a global counter.

Errors usually should not be ignored because they change the behavior of the application,
thus the default value stops immediately when the first such error is found.

CHECK-MAX-REPORTS
Syntax : <number>

Variable : VT CHECK MAX REPORTS

Default : 0

Number of reports (regardless whether they contain warnings or errors) that has to be
reached by a process before aborting the application. 0 disables the limit. Just as with
CHECK-MAX-ERRORS this is a per-process counter.

It is disabled by default because the CHECK-SUPPRESSION-LIMIT setting already ensures
that each type of error or warning is only reported a limited number of times. Setting CHECK-
MAX-REPORTS would help to also automatically shut down the application, if that is desired.

CHECK-SUPPRESSION-LIMIT
Syntax : <number>

Variable : VT CHECK SUPPRESSION LIMIT

Default : 10

Maximum number of times a specific error or warning is reported before suppressing further
reports about it. The application continues to run and other problems will still be reported.
Just as with CHECK-MAX-ERRORS these are a per-process counters.

Note that this only counts per error check and does not distinguish between different incar-
nations of the error in different parts of the application.

CHECK-TIMEOUT
Syntax : <time>

Variable : VT CHECK TIMEOUT

Default : 5s

After stopping one process because it cannot or is not allowed to continue, the other pro-
cesses are allowed to continue for this amount of time to see whether they run into other
errors.

CHECK-MAX-PENDING
Syntax : <number>

Variable : VT CHECK MAX PENDING

Default : 20

Upper limit of pending messages that are reported per GLOBAL:MSG:PENDING error.
CHECK-MAX-REQUESTS

Syntax : <number>

Variable : VT CHECK MAX REQUESTS

Default : 100

Each time the total number of active requests or inactive persistent requests exceeds a mul-
tiple of this threshold a LOCAL:REQUEST:NOT FREED warning is printed with a summary
of the calls where those requests were created.

Set this to 0 to disable just the warning at runtime without also disabling the warnings at the
end of the application run. Disable the LOCAL:REQUEST:NOT FREED check to suppress
all warnings.
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CHECK-MAX-DATATYPES
Syntax : <number>

Variable : VT CHECK MAX DATATYPES

Default : 1000

Each time the total number of currently defined datatypes exceeds a multiple of this threshold
a LOCAL:DATATYPE:NOT FREED warning is printed with a summary of the calls where
those requests were created.

Set this to 0 to disable the warning.
CHECK-LEAK-REPORT-SIZE

Syntax : <number>

Variable : VT CHECK LEAK REPORT SIZE

Default : 10

Determines the number of call locations to include in a summary of leaked requests or
datatypes. By default only the ”top ten” of the calls which have no matching free call are
printed.

DETAILED-STATES
Syntax : [on|off|<level>]

Variable : VT DETAILED STATES

Default : off

Enables or disables logging of more information in calls to VT enterstate(). That function
might be used by certain MPI implementations, runtime systems or applications to log internal
states. If that is the case, it will be mentioned in the documentation of those components.

<level> is a positive number, with larger numbers enabling more details:

• 0 (= off) suppresses all additional states
• 1 (= on) enables one level of additional states
• 2, 3, ... enables even more details

ENTER-USERCODE
Syntax : [on|off]

Variable : VT ENTER USERCODE

Default : on in most cases, off for Java function tracing

Usually ITC enters the Application:User Code state automatically when registering a new
thread. This make little sense when function profiling is enabled, because then the user can
choose whether he wants the main() function or the entry function of a child thread to be
logged or not. Therefore it is always turned off for Java function tracing. In all other cases it
can be turned off manually with this configuration option.

However, without automatically entering this state and without instrumenting functions
threads might be outside of any state and thus not visible in the trace although they exist.
This may or may not be intended.

COUNTER
Syntax : <pattern> [on|off]

Variable : VT COUNTER

Enables or disables a counter whose name matches the pattern. By default all counters
defined manually are enabled, whereas counters defined and sampled automatically by ITC
are disabled. Those automatic counters are not supported for every platform.

INTERNAL-MPI
Syntax : [on|off]

Variable : VT INTERNAL MPI
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Default : on

Allows tracing of events inside the MPI implementation. This is enabled by default, but even
then it still requires an MPI implementation which actually records events. The ITC documen-
tation describes in more detail how an MPI implementation might do that.

PCTRACE
Syntax : [on|off|<trace levels>|<skip levels>:<trace levels>]

Variable : VT PCTRACE

Default : off for performance analysis, enabled otherwise

Some platforms support the automatic stack sampling for MPI calls and user-defined events.
ITC then remembers the Program Counter (PC) values on the call stack and translates them
to source code locations based on debug information in the executable. It can sample a
certain number of levels (<trace levels>) and skip the initial levels (<skip levels>). Both
values can be in the range of 0 to 15.

Skipping levels is useful when a function is called from within another library and the source
code locations within this library shall be ignored. ON is equivalent to 0:1 (no skip levels, one
trace level).

The value specified with PCTRACE applies to all symbols that are not matched by any filter
rule or where the relevant filter rule sets the logging state to ON. In other words, an explicit
logging state in a filter rule overrides the value given with PCTRACE.

PCTRACE-FAST
Syntax : [on|off]

Variable : VT PCTRACE FAST

Default : on for performance tracing, off for correctness checking

Controls whether the fast, but less reliable stack unwinding is used or the slower, but less
error-prone unwinding via libunwind. On Itanium libunwind is always used. The fast unwind-
ing relies on frame pointers, therefore all code must be compiled accordingly for it to work
correctly.

PCTRACE-CACHE
Syntax : [on|off]

Variable : VT PCTRACE CACHE

Default : on

When the reliable stack unwinding via libunwind is used, caching the previous stack back
trace can reduce the number of times libunwind has to be called later on. When unwinding
only a few levels this caching can negatively affect performance, therefore it can be turned
off with this option.

PROCESS
Syntax : <triplets> [on|off|no|discard]

Variable : VT PROCESS

Default : 0:N on

Specifies for which processes tracing is to be enabled. This option accepts a comma sep-
arated list of triplets, each of the form <start>:<stop>:<incr> specifying the minimum and
maximum rank and the increment to determine a set of processes (similar to the Fortran 90
notation). Ranks are interpreted relative to MPI COMM WORLD, which means that they start
with 0. The letter N can be used as maximum rank and is replaced by the current number of
processes. F.i. to enable tracing only on odd process ranks, specify ”PROCESS 0:N OFF”
and ”PROCESS 1:N:2 ON”.

A process that is turned off can later turn logging on by calling VT traceon() (and vice versa).
Using ”no” disables ITC for a process completely to reduce the overhead even further, but
also so that even VT traceon() cannot enable tracing.
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”discard” is the same as ”no”, so data is collected and trace statistics will be calculated, but
the collected data is not actually written into the trace file. This mode is useful if looking at
the statistics is sufficient: in this case there is no need to write the trace data.

CLUSTER
Syntax : <triplets> [on|off|no|discard]

Variable : VT CLUSTER

Same as PROCESS, but filters based on the host number of each process. Hosts are distin-
guished by their name as returned by MPI Get processor name() and enumerated according
to the lowest rank of the MPI processes running on them.

MEM-BLOCKSIZE
Syntax : <number of bytes>

Variable : VT MEM BLOCKSIZE

Default : 64KB

ITC keeps trace data in chunks of main memory that have this size.
MEM-MAXBLOCKS

Syntax : <maximum number of blocks>

Variable : VT MEM MAXBLOCKS

Default : 4096

ITC will never allocate more than this number of blocks in main memory. If the maximum
number of blocks is filled or allocating new blocks fails, then ITC will either flush some of them
onto disk (AUTOFLUSH), overwrite the oldest blocks (MEM-OVERWRITE) or stop recording
further trace data.

MEM-MINBLOCKS
Syntax : <minimum number of blocks after flush>

Variable : VT MEM MINBLOCKS

Default : 0

When ITC starts to flush some blocks automatically, then it can flush all (the default) or keep
some in memory. The latter may be useful to avoid long delays or to avoid unnecessary disk
activity.

MEM-INFO
Syntax : <threshold in bytes>

Variable : VT MEM INFO

Default : 500MB

If larger than zero, than ITC will print a message to stderr each time more than this amount of
new data has been recorded. These messages tell how much data was stored in RAM and
in the flush file, and can serve as a warning when too much data is recorded.

AUTOFLUSH
Syntax : [on|off]

Variable : VT AUTOFLUSH

Default : on

If enabled (which it is by default), then ITC will append blocks that are currently in main
memory to one flush file per process. During trace file generation this data is taken from the
flush file, so no data is lost. The number of blocks remaining in memory can be controlled
with MEM-MINBLOCKS.

MEM-FLUSHBLOCKS
Syntax : <number of blocks>

Variable : VT MEM FLUSHBLOCKS

Default : 1024
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This option controls when a background thread flushes trace data into the flush file without
blocking the application. It has no effect if AUTOFLUSH is disabled. Setting this option to a
negative value also disables the background flushing.

Flushing is started whenever the number of blocks in memory exceeds this threshold or when
a thread needs a new block, but cannot get it without flushing.

If the number of blocks also exceeds MEM-MAXBLOCKS, then the application is stopped
until the background thread has flushed enough data.

MEM-OVERWRITE
Syntax : [on|off]

Variable : VT MEM OVERWRITE

Default : off

If auto flushing is disabled, then enabling this lets ITC overwrite the oldest blocks of trace
data with more recent data.

FLUSH-PREFIX
Syntax : <directory name>

Variable : VT FLUSH PREFIX

Default : content of env variables or ”/tmp”

Specifies the directory of the flush file. Can be an absolute or relative pathname; in the latter
case, it is interpreted relative to the current working directory of the process writing it.

On Unix systems, the flush file of each process will be created and immediately removed
while the processes keep their file open. This has two effects:

• flush files do not clutter the file system if processes get killed prematurely
• during flushing, the remaining space on the file systems gets less although the file which

grows is not visible any more
The file name is ”VT-flush-<program name> <rank>-<pid>.dat”, with rank being the rank of the
process in MPI COMM WORLD and <pid> the Unix process id.

A good default directory is searched for among the candidates listed below in this order:

• first directory with more than 512MB
• failing that, directory with most available space

Candidates (in this order) are the directories refered to with these environment variables and
hard-coded directory names:

• BIGTEMP
• FASTTEMP
• TMPDIR
• TMP
• TMPVAR
• ”/work”
• ”/scratch”
• ”/tmp”

FLUSH-PID
Syntax : [on|off]

Variable : VT FLUSH PID

Default : on

The ”-<pid>” part in the flush file name is optional and can be disabled with ”FLUSH-PID
off”.
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ENVIRONMENT
Syntax : [on|off]

Variable : VT ENVIRONMENT

Default : on

Enables or disables logging of atttributes of the runtime environment.
STATISTICS

Syntax : [on|off|<hash size>]

Variable : VT STATISTICS

Default : off

Enables or disables statistics about messages and symbols. These statistics are gathered
by ITC independently from logging them and stored in the tracefile. Apart from on and off it
allows specifying the hash size used on each collecting thread. For extensivly instrumented
codes or for codes with a volatile commication pattern this might be usefull to control its
performance.

STF-USE-HW-STRUCTURE
Syntax : [on|off]

Variable : VT STF USE HW STRUCTURE

Default : usually on

If the STF format is used, then trace information can be stored in different files. If this option
is enabled, then trace data of processes running on the same node are combined in one file
for that node. This is enabled by default on most machines because it both reduces inter-
node communication during trace file generation and resembles the access pattern during
analysis. It is not enabled if each process is running on its own node.

This option can be combined with STF-PROCS-PER-FILE to reduce the number of processes
whose data is writen into the same file even further.

STF-PROCS-PER-FILE
Syntax : <number of processes>

Variable : VT STF PROCS PER FILE

Default : 16

In addition to or instead of combining trace data per node, the number of processes per file
can be limited. This helps to restrict the amount of data that has to be loaded when analysing
a sub-set of the processes.

If STF-USE-HW-STRUCTURE is enabled, then STF-PROCS-PER-FILE has no effect unless
it is set to a value smaller than the number of processes running on a node. To get files that
each contain exactly the data of <n> processes, set STF-USE-HW-STRUCTURE to OFF
and STF-PROCS-PER-FILE to <n>.

In a single-process, multithreaded application trace this configuration option is used to deter-
mine the number of threads per file.

STF-CHUNKSIZE
Syntax : <number of bytes>

Variable : VT STF CHUNKSIZE

Default : 64KB

ITC uses so called anchors to navigate in STF files. This value determines how many bytes
of trace data are written into a file before setting the next anchor. Using a low number allows
more accurate access during analysis, but increases the overhead for storing and handling
anchors.
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GROUP
Syntax : <name> <name>|<triplet>[, ...]

Variable : VT GROUP

This option defines a new group. The members of the group can be other groups or pro-
cesses enumerated with triplets. Groups are identified by their name. It is possible to refer
to automatically generated groups (Example: those for the nodes in the machine), however,
groups generated with API functions have to be defined on the process which reads the config
to be usable in config groups.

Example:

GROUPodd 1:N:2
GROUPeven 0:N:2
GROUP"odd even" odd,even

OS-COUNTER-DELAY
Syntax : <delay>

Variable : VT OS COUNTER DELAY

Default : 1 second

If OS counters have been enabled with the COUNTER configuration option, then these coun-
ters will be sampled every <delay> seconds. As usual, the value may also be specified with
units, 1m for one minute, for example.

DEADLOCK-TIMEOUT
Syntax : <delay>

Variable : VT DEADLOCK TIMEOUT

Default : 1 minute

If ITC observes no progress for this amount of time in any process, then it assumes that a
deadlock has occurred, stops the application and writes a trace file.

As usual, the value may also be specified with units, 1m for one minute, for example.
DEADLOCK-WARNING

Syntax : <delay>

Variable : VT DEADLOCK WARNING

Default : 5 minutes

If on average the MPI processes are stuck in their last MPI call for more than this threshold,
then a GLOBAL:DEADLOCK:NO PROGRESS warning is generated. This is a sign of a load
imbalance or a deadlock which cannot be detected because at least one process polls for
progress instead of blocking inside an MPI call.

As usual, the value may also be specified with units, 1m for one minute, for example.
HANDLE-SIGNALS

Syntax : <triplets of signal numbers>

Variable : VT HANDLE SIGNALS

Default : none in libVTcs, all in other fail-safe libs

This option controls whether ITC replaces a signal handler previously set my the application
or runtime system with its own handler. libVTcs by default does not override handlers, while
the fail-safe MPI tracing libraries do: otherwise they would not be able to log the reason for
an abort by MPI.

Using the standard triplet notation you can both list individual signals (Example: ”3”) as well
as a whole range of signals (”3,10:100”).
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ALTSTACK
Syntax : [on|off]

Variable : VT ALTSTACK

Handling segfaults due to a stack overflow requires that the signal handler runs on an alter-
native stack, otherwise it will just segfault again, causing the process to be terminated.

Because installing an alternative signal handler affects application behavior, it is normally not
done. Only for MPI correctness checking it is enabled if it is known to work.

TIMER
Syntax : <timer name or LIST>

Variable : VT TIMER

Default : gettimeofday

ITC can use different sources for time stamps. The availability of the different timers may
depend on the actual machine configuration.

To get a full list, link an application against ITC, then run it with this configuration option set
to ”LIST”. By setting the verbosity to 2 or higher you get output for each node in a cluster.
In this mode no error messages are printed if initialization of a certain timer fails, it is simply
listed as unavailable. To see error messages run the program with TIMER set to the name of
the timer that you want to use.

TIMER-SKIP
Syntax : <number> 0

Variable : VT TIMER SKIP

number of intermediate clock sample points which are to be skipped when running the
timertest program: they then serve as check that the interpolation makes sense

SYNC-MAX-DURATION
Syntax : <duration>

Variable : VT SYNC MAX DURATION

Default : 1 minute

ITC can use either a barrier at the beginning and the end of the program run to take synchro-
nized time stamps on processes or it can use a more advanced algorithm based on statistical
analysis of message round-trip times.

This options enables this algorithm by setting the maximum number of seconds that ITC
exchanges messages among processes. A value less or equal zero disables the statistical
algorithm.

The default duration is much longer than actually needed, because usually the maximum
number of messages (set via SYNC-MAX-MESSAGES) will be reached first. This setting
mostly acts as a safe-guard against excessive synchronization times, at the cost of poten-
tially reducing the quality of clock synchronization when reaching it and then sending less
messages.

SYNC-MAX-MESSAGES
Syntax : <message number>

Variable : VT SYNC MAX MESSAGES

Default : 100

If SYNC-MAX-DURATION is larger than zero and thus statistical analysis of message round-
trip times is done, then this option limits the number of message exchanges.

SYNC-PERIOD
Syntax : <duration>

Variable : VT SYNC PERIOD

Default : -1 seconds = disabled
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If clock synchronization via message exchanges is enabled (the default), then ITC can be told
to do message exchanges during the application run automatically. By default this is disabled
and needs to be enabled by setting this option to a positive time value.

The message exchange is done by a background thread and thus needs a means of commu-
nication which can execute in parallel to the application’s communication, therefore it is not
supported by the normal MPI tracing library libVT.

SYNCED-CLUSTER
Syntax : [on|off]

Variable : VT SYNCED CLUSTER

Default : off

Use this setting to override whether ITC treats the clock of all processes anywhere in the
cluster as synchronized or not. Whether ITC makes that assumption depends on the selected
time source.

SYNCED-HOST
Syntax : [on|off]

Variable : VT SYNCED HOST

Default : off

Use this setting to override whether ITC treats the clock of all processes one the same node
as synchronized or not. Whether ITC makes that assumption depends on the selected time
source.

If SYNCED-CLUSTER is on, then this option is ignored.
NMCMD

Syntax : <command + args> ”nm -P”

Variable : VT NMCMD

If function tracing with GCC 2.95.2+’s -finstrument-function is used, then ITC will be called at
function entry/exit. Before logging these events it has to map from the function’s address in
the executable to its name.

This is done with the help of an external program, usually nm. You can override the default if it
is not appropriate on your system. The executable’s filename (including the path) is appended
at the end of the command, and the command is expected to print the result to stdout in the
format defined for POSIX.2 nm.

UNIFY-SYMBOLS
Syntax : [on|off]

Variable : VT UNIFY SYMBOLS

Default : on

During post-processing ITC unifies the ids assigned to symbols on different processes. This
step is redundant if (and only if) all processes define all symbols in exactly the same order
with exactly the same names. As ITC cannot recognize that automatically this unification can
be disabled by the user to reduce the time required for trace file generation. Make sure that
your program really defines symbols consistently when using this option!

UNIFY-SCLS
Syntax : [on|off]

Variable : VT UNIFY SCLS

Default : on

Same as UNIFY-SYMBOLS for SCLs.
UNIFY-GROUPS

Syntax : [on|off]

Variable : VT UNIFY GROUPS
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Default : on

Same as UNIFY-SYMBOLS for groups.
UNIFY-COUNTERS

Syntax : [on|off]

Variable : VT UNIFY COUNTERS

Default : on

Same as UNIFY-SYMBOLS for counters.

9.6 How to Use the Filtering Facility
A single configuration file can contain an arbitrary number of filter directives that are evaluated
whenever a state is defined. Since they are evaluated in the same order as specified in the
configuration file, the last filter matching a state determines whether it is traced or not. This
scheme makes it easily possible to focus on a small set of activities without having to specify
complex matching patterns. Being able to turn entire activities (groups of states) on or off helps
to limit the number of filter directives. All matching is case-insensitive.

Example:

# disable all MPI activities
ACTIVITY MPI OFF
# enable all send routines in MPI
STATE MPI:*send ON
# except MPI_Bsend
SYMBOL MPI_bsend OFF
# enable receives
SYMBOL MPI_recv ON
# and all test routines
SYMBOL MPI_test* ON
# and all wait routines, recording locations of four calling levels
SYMBOL MPI_wait* 4
# enable all activities in the Application class, without locations
ACTIVITY Application 0

In effect, all activities in the class Application, all MPI send routines except MPI Bsend(), and all
receive, test and wait routines will be traced. All other MPI routines will not be traced.

Because inserting line break into environment variables can be difficult, the SYM-
BOL/STATE/ACTIVITY rules also support multiple entries per line or environment variable, as
in:

SYMBOL MPI_* off MPI_Barrier on

Beside filtering specific activities or states it is also possible to filter by process ranks in MPI -
COMM WORLD. This can be done with the configuration file directive PROCESS. The value of
this option is a comma separated list of Fortran 90-style triplets. The formal definition is as follows:

<PARAMETER-LIST> := <TRIPLET>[,<TRIPLET>,...]
<TRIPLET> := <LOWER-BOUND>[:<UPPER-BOUND>[:<INCREMENT>] ]

The default value for <UPPER-BOUND> is N (equals size of MPI COMM WORLD) and the de-
fault value for <INCREMENT> is 1.

For instance changing tracing only on even process ranks and on process 1 the triplet list is:
0:N:2,1:1:1, where N is the total number of processes. All processes are enabled by default, so
you have to disable all of them first (”PROCESS 0:N OFF”) before enabling a certain subset again.
For SMP clusters, the ”CLUSTER” filter option can be used to filter for particular SMP nodes.
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The STATE/ACTIVITY/SYMBOL rule body may offer even finer control over tracing depending on
the features available on the current platform:

• Special filter rules make it possible to turn tracing on and off during runtime when certain
states (aka functions) are entered or left. In contrast to VT traceon/off() no changes in the
source code are required for this. So called ”actions” are ”triggered” by entering or leaving
a state and executed before the state is logged.

• If folding is enabled for a function, then this function is traced, but not any of those that it
calls. If you want to see one of these functions, then unfold it.

• Counter sampling can be disabled for states.

Here’s the formal specification:

<SCLRANGE> := on|off|<trace>|<skip>:<trace>
<PATTERN> := <state or function wild-card as defined for STATE>
<SCOPE_NAME> := [<class name as string>:]<scope name as string>

<ACTION> := traceon|traceoff|restore|none|
begin_scope <SCOPE_NAME>|end_scope <SCOPE_NAME>

<TRIGGER> := [<TRIPLET>] <ACTION> [<ACTION>]
<ENTRYTRIGGER> := entry <TRIGGER>
<EXITTRIGGER> := exit <TRIGGER>
<COUNTERSTATE> := counteron|counteroff
<FOLDING> := fold|unfold
<CALLER> := caller <PATTERN>
<RULEENTRY> := <SCLRANGE>|<ENTRYTRIGGER>|<EXITTRIGGER>|

<COUNTERSTATE>|<FOLDING>|<CALLER>

The filter body of a filter may still consist of a <SCLRANGE> which is valid for every instance of
the state (as described above), but also of a counter state specification, an <ENTRYTRIGGER>
which is checked each time the state is entered and an <EXITTRIGGER> for leaving it. The
caller pattern, if given, is an additional criteria for the calling function that hat to match before the
entry, exit or folding actions are executed. The body may have any combination of these entries,
separated by commas, as long as no entry is given more than once per rule.

Counter sampling can generate a lot of data, and some of it may not be relevant for every func-
tion. By default all enabled counters are sampled whenever a state change occurs. The ”COUN-
TERON/OFF” rule entry modifies this for those states that match the pattern. There is no control
over which counters are sampled on a per-state basis, though, you can only enable or disable
sampling completely per state. This example disables counter sampling in any state, then en-
ables it again for MPI functions:

SYMBOL * COUNTEROFF
ACTIVITY MPI COUNTERON

9.7 The Protocol File

The protocol file has the same syntax and entries as a ITC configuration file. Its extension is
.prot, with the basename being the same as the tracefile. It lists all options with their values used
when the program was started, thus it can be used to restart an application with exactly the same
options.

All options are listed, even if they were not present in the original configuration. This way you can
find about f.i. the default value of SYNCED-HOST/CLUSTER on your machine. Comments tell
where the value came from (default, modified by user, default value set explicitly by the user).
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CHAPTER 9. ITC CONFIGURATION

Besides the configuration entries, the protocol file contains some entries that are only informa-
tive. They are all introduced by the keyword INFO. The following information entries are currently
supported:

INFO NUMPROCS
Syntax : <num>

Number of processes in MPI COMM WORLD.
INFO CLUSTERDEF

Syntax : <name> [<rank>:<pid>]+

For clustered systems, the processes with Unix process id <pid> and rank in MPI COMM -
WORLD <rank> are running on the cluster node <name>. There will be one line per cluster
node.

INFO PROCESS
Syntax : <rank> ”<hostname>” ”<IP>” <pid>

For each process identified by its MPI <rank>, the <hostname> as returned by gethost-
name(), the <pid> from getpid() and all <IP> addresses that <hostname> translates into
with gethostbyname() are given. IP addresses are converted to string with ntoa() and sepa-
rated with commas. Both hostname and IP string might be empty, if the information was not
available.

INFO BINMODE
Syntax : <mode>

Records the floating-point and integer-length execution mode used by the application.
There may be other INFO entries that represent statistical data about the program run. Their
syntax is explained in the file itself.
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Appendix A

Copyright and Licenses

The MPI datatype hash code was developed by Julien Langou and George Bosilca, University of
Tennessee, and is used with permission under the following license:

Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
$COPYRIGHT$
Additional copyrights may follow
$HEADER$
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer listed
in this license in the documentation and/or other materials
provided with the distribution.

- Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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