
Checking DLLs for Thread Safety

Introduction
There might be situation where you need to check if the DLLs provided by 3rd party is thread safe or not.
This can be done by writing a short test driver (given below) to encompass DLL calls with OpenMP
directives. The entire application is then analyzed with Intel® Thread Checker and checked to see if
there are any errors. Please note this test is not a guarantee of thread safety, but it is an excellent test
when source is available and the only test we know of when source is not available.

DLL
Let us consider the PrimesDLL which returns the number of primes within the range that are mentioned
as arguments.

Entire DLL code

extern "C" long FindPrimes(long start, long end, long skip, CALLBACK_FUNC func)
{
 gPrimesFound = 0;
 for(int i = start; i <= end; i += skip)
 {
 if(TestForPrime(i))
 gPrimesFound++;

 (*func)(i);
 }

 return gPrimesFound;

}

static bool TestForPrime(int val)
{
 int limit, factor = 3;

 limit = (long)(sqrtf((float)val)+0.5f);
 while((factor <= limit) && (val % factor))
 factor ++;

 return (factor > limit);

}

Test Driver
The test driver calls the DLL twice in each of the section. You can replace the FindPrimes with the DLL
function you are interested in.

Thread Checker Analysis
The test driver was run with the Intel Thread Checker and it points out threading issues related to data-
races, deadlocks and stalls.

If Intel® Thread Checker only reports informational issues (blue circles with an ‘i’ inside), it means
Intel® Thread Checker did not identify any issues indicating the dll is not thread safe. Intel® Thread
Checker only checks routines exercised by the data. You may want to vary the data set to exercise
additional code path and repeat.

If Intel® Thread Checker identifies issues with red (hexagon) or yellow (polygon) then this indicates the
dll is not thread safe. If source is available you can double click to go to source view. If source is not
available you can double click to see a call stack view of where issue occurred.

The output below shows Write->Write data races in the FindPrimes function in the DLL code. If you
right click on the source code, it pinpoints to the exact line in the code where there is a memory conflict.

PrimeDLL test driver:

 PrimeData test[2];

 #pragma omp parallel sections num_threads(2)
 {
 #pragma omp section
 primesFound1 = FindPrimes(test[0].start, test[0].end, ...);
 #pragma omp section

 primesFound2 = FindPrimes(test[1].start, test[1].end, ...);
 }

