
To help you focus your analysis, you can group, filter, and
sort diagnostics according to different criteria.

To.. Do this..

Group
diagnostics

Drag and drop column headers to the
grey area at the top of the list.

Filter
diagnostics out
of view

Right-click on a diagnostic and select
Filter Diagnostic. You can then Show
Filters you applied.

View applied
filters

Right-click in the Diagnostics view tab
and select Show Filters.

Sort diagnostics Click a column header to sort
diagnostics by that column within each
group.

Add a column Right-click and select Show Column.

Remove a
column

Right-click and select Hide Column.

View source
code location

Double-click on a diagnostic.

Understand
diagnostic

Right-click on a diagnostic and select
Diagnostic Help.

Understand
column

Right-click on a column and select
Column Help.

Tips for reviewing diagnostics
There are many ways to review Thread Checker’s
diagnostics. Each developer will have his or her own
methods. Here are a few ideas to get you started.

One approach for reviewing diagnostics is to group by 2nd
Access [Best] category. You can consider diagnostics that
occur on the same 2nd Access line number as the same
issue. Resolving these first may yield the greatest benefit.

You can also sort by Short Description to find Write->Write
data-races first and try to fix these. Many times these can
be resolved by making the variable private to each thread.

Once you feel comfortable with the changes you have made
to your code, you can filter out these diagnostics so they are
hidden from view. You can also re-run the Intel® Thread
Checker Activity to see if the errors have been resolved.

Access views - Typically in a diagnostic, two threads are in
conflict over a shared object. This object may be a system
object or a region of memory. The 1st Access view shows the
thread which accessed the object first. The 2nd Access view
shows the thread which later referenced the object.

Definition view - The Definition view shows the object that is
the dynamic allocation point of the object if known.

Context view - If the two threads are part of an OpenMP* team
then the Context view shows the parallel region containing
these threads.

Source view toolbar buttons

Item Name Purpose

Source only Display high-level programming

language. Viewing this mode
requires symbol information.

Mixed Display high-level programming
language together with its related
assembly instructions. Click on
the arrow to choose from the
different mixed code formats.

Disassembly
only

Display the disassembly code of
the module.

Toggle
bookmark

Add a new bookmark in this line
or delete an existing bookmark.

Clear bookmarks Delete all bookmarks.

Go to previous
bookmark

Go to the previous bookmark.

Go to next
bookmark

Go to the next bookmark.

Go to next portal Go to the next portal; enabled

only when line number
information is not available.

Go to previous
portal

Go to the previous portal; enabled
only when line number
information is not available.

Go to start of
function

Go to the current function
declaration.

Go to next
function

Go to the next function
declaration.

OpenMP*
For OpenMP* threaded programs in either a Windows* or
Linux environment, Thread Checker performs additional
checking to determine if the program's execution is
inconsistent or could possibly be inconsistent with the
execution of the corresponding sequential program.

If your program uses OpenMP* directives like pragma’s, you
must use the appropriate /Qopenmp or -openmp switch when
building your debug application for analysis using Intel®
Thread Checker. Otherwise, the Intel® Compiler ignores
OpenMP* directives in your code.

See the OpenMP* web site for simple, portable, scalable SMP
programming: http://www.openmp.org

POSIX*
Thread Checker supports the POSIX* multi-threading API
otherwise know as pthreads*. Thread Checker supports
pthreads* on Linux via Thread Checker’s remote data
collector. For more information about the POSIX* multi-
threading API, perform a web search on Posix* or pthreads*.
There are numerous resources on the internet that discuss
POSIX* threading API implementation and pthreads*.

Windows* API
For information about Windows* multi-threading APIs, consult
the MSDN* website at http://msdn.microsoft.com/library.
There you will find complete guides to the following types of
APIs:

• Process and Thread Functions
• Synchronization Functions

For product and purchase information visit the
Intel® Software Development Products site at:

www.intel.com/software/products

Intel, the Intel logo, Itanium, Pentium, Intel Centrino, Intel Xeon, Intel XScale, and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

1Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology
and a Hyper-Threading Technology enabled chipset, BIOS, and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/info/hyperthreading for more information including details
on which processors support HT Technology

Copyright © 2004-2006, Intel Corporation. All Rights Reserved.

Document coding: xxxx/xxx/xxx/xx/xxxx xxxxxx-xxx

Print Date: 02.01.2006

Diagnostics View
The Diagnostics view displays all the diagnostics that the
Intel® Thread Checker Analysis Engine generated for your
program. Diagnostics are categorized by severity and
indicate issues or events that may be non-deterministic.
These are issues that can lead to indeterminate or incorrect
results. Usually they are due to a conflict like a data race,
dead lock, or stalled thread.

Accessing Source Code
Double-click a diagnostic in the Diagnostics view to examine
detail about an error. If source code is available, it is displayed
in any of the four source views. These consist of the Context,
Definition, 1st Access, and 2nd Access views. You can configure
the source views as individual tabs, or in a split or tiled format
via Configure > Options > Intel® Thread Checker. Use the
source view toolbar to manipulate the view and navigate your
source code.

OpenMP*, POSIX*, and Windows* API Support
Thread Checker supports analysis of threaded programs that
use OpenMP*, POSIX*, and Windows* API. Thread Checker
supports analysis of POSIX* and OpenMP* threaded
programs on IA32 and Itanium® Processor Family based
systems running Linux* via the Thread Checker remote data
collector.

Intel® Thread Checker
Quick Reference Guide

Use Intel® Thread Checker to
check your multi-threaded code
for potential threading problems.

A step by step approach to application threading
diagnostics using Intel® Thread Checker

1. Select a data set – Consider using a small
representative data set rather than a large
repetitive data set to save time. It may be
faster to run several small datasets rather
than one large dataset.

2. Create and run an Intel® Thread Checker
Activity - Create an Activity using the Intel®
Thread Checker Configuration Wizard. The
Intel® Thread Checker data collector gathers
information about threading problems found
during the specific run of your application.

3. Investigate / Review code design – Review
Thread Checker diagnostics. Drill down to the
code, if available, to see where diagnostics
occurred.

4. Implement code changes – Modify your code
to resolve race conditions and other thread
errors that Thread Checker diagnosed. Use
the filter feature to filter out benign race
conditions.

5. Re-run the Activity - Re-run the Activity until
all threading errors have been resolved.

Thread Faster

with Intel® Threading Tools

In
te

l®
 S

of
tw

ar
e

D
ev

el
op

m
en

t P
ro

du
ct

s

Build and Linker Switches
You can perform binary instrumentation on an executable
which has been compiled without the recommended build
switches. However, Intel® Thread Checker will have less
information to work with resulting in less specific
diagnostics; for example, Thread Checker may report
incorrect line numbers for optimized code. To optimize the
level of diagnostics available, use the recommended
compiler and linker switches when building your application.

Instrumentation
Intel® Thread Checker can collect data directly from your
executable binary file by making changes to its image. This
enables the binary to connect to the Intel® Thread Checker
Analysis Engine without source code. Alternatively, Thread
Checker can connect your program to the Analysis Engine
when you compile your program using the Intel® Compiler.

Linux* Remote Data Collection
The Intel® Threading Tools Remote Data Collection Server,
ittserver, enables you to collect data on a Linux* system. You
can then analyze results gathered from the remote system on
a Windows* host system running Intel® Thread Checker.

Selective Instrumentation
You can set different levels of instrumentation that Intel®
Thread Checker uses to collect data for specific modules or
specified functions. To access an Activity’s instrumentation
settings, right-click on a Thread Checker Activity and select
Modify Collectors. The About to Modify Activity with
Results dialog box may appear. Click OK. The Configure
Intel® Thread Checker dialog box appears. Click on the
Instrumentation tab to view settings.

Recommended compiler and linker switches

Windows* Linux* Description

/Od -O0 Disable optimizations. This will
enable Thread Checker source
code information (especially line
numbers) to be accurate.

/MD, /MDd
[/MT, /MTd]

n/a Dynamically linked or statically
linked thread safe runtime
libraries. Dynamically linked RTL
or /MD is recommended.

/Zi,/ZI,/Z7 -g Produce symbolic debug
information in object.

/fixed:no n/a Linker switch which prevents
compiler from stripping base
relocation information from
results.

Microsoft* Windows* Compiler example:
cl /MD /Od /Zi <source> -o <target> /link /fixed:no

Intel® Compiler specific switches:

Windows* Linux* Description

/Qtcheck -tcheck Generate Thread Checker
instrumentation to detect multi-
threading bugs.

/Qopenmp -openmp Enable the compiler to generate
multi-threaded code based on
the OpenMP directives
embedded in your code.

Intel® C/C++ Compiler Windows* example:
icl /MD /Od /Zi /Qtcheck <source> -o <target> /link /fixed:no

Intel® C/C++ Compiler Linux* example:
icc -g -O0 -tcheck <source> -o <target>

Intel® Fortran* Compiler Windows* example:
ifort /Fe<target> /MD /Zi /Od /Qtcheck <source> /link /fixed:no

Intel® Fortran* Compiler Linux* example:
ifort -o <target> -g -O0 -tcheck <source>

Binary instrumentation method
Intel® Thread Checker automatically performs binary
instrumentation when you run an Intel® Thread Checker Activity
within the VTune™ environment.

• Binary instrumentation only works if you can execute your
program from within the VTune™ environment.

• If you have debug information in your source code, Thread
Checker can display source code, if available, even when
using binary instrumentation.

• If source code is not available, Thread Checker disassembles
the binary and provides disassembly information.

Source instrumentation method
Intel® Thread Checker can connect your program to the
Analysis Engine at compile time using the Intel® Compiler.

• To perform source instrumentation, use the /Qtcheck or
-tcheck switches.

• Source instrumentation can provide additional symbolic
information specifying the symbolic expressions performing
the memory references in the reported diagnostics.

• Use source instrumentation when you want to run the
instrumented program outside of the VTune™ environment.
For example, to instrument a server application.

Data Collection
You can run an analysis on a binary or source instrumented
application from within Thread Checker by creating a Thread
Checker Activity. You can also compile your source using
source instrumentation then execute the resulting instrumented
binary. This will create a Thread Checker results file for your
binary. The results file can be manually opened in Thread
Checker for analysis.

To create an Intel® Thread Checker results file:
1. Compile your application using the source instrumentation

method. Use the appropriate Thread Checker compiler
switch for your environment. Use /Qtcheck in Windows or
-tcheck in Linux environments.

2. Execute your application natively, outside the VTune™
environment. The Analysis Engine records data about
diagnostics found. The data is stored in a file with a .thr
extension in the current directory.

3. Once your program's run is complete, start the VTune™
environment and import the .thr results file. To import a .thr
file, go to File > Open File. Select Thread Checker [*.thr]
from the drop-down list. Browse to your .thr results file.
Click OK.

To use the Remote Data Collector to analyze an application on
a Linux* system, do the following:

1. Install the Thread Checker Remote Agent on your Linux*
system. Instructions for installing the Remote Agent, which
includes the Thread Checker Collector and ittserver, are
included in the product release notes.

2. If needed, set Thread Checker environment variables by
sourcing tcvars.sh or tcvars.csh. Set environment
variables for Intel® Compiler by sourcing iccvars.sh or
iccvars.csh.

3. Start ittserver. By default, ittserver is installed in
/opt/intel/itt/bin/32/. Launch ittserver from your home
directory or a directory where ittserver can write its remote
files. Once ittserver is launched, information related to
ittserver appears:

• If “Intel® Thread Checker Collector” is displayed, then
this indicates a good install of the Thread Checker
Collector library component on your Linux* system.

• If “Server is ready...” is displayed, then this indicates
that the ittserver is active and ready for signals from
the Windows* host system.

• To stop ittserver press Ctrl-C.
4. In Windows*, create and run a Thread Checker Activity

using the Intel® Thread Checker Configuration Wizard.
Click the Remote... button to select and set options
specific to the remote Linux* system. Enter the path to the
executable as it is seen on the system running ittserver.
For example, enter “/home/myhome/a.out.” Click Next
then click Finish. When the remote collector finishes, it
notifies ittserver, which in turn notifies Thread Checker on
Windows*. The analysis results are sent back to Thread
Checker and displayed in the GUI.

5. Analyze your Activity results on the Windows* host
system. You can analyze the diagnostics using all of the
features available in Intel® Thread Checker.

Mapping source files for remote analysis
When viewing Activity results originating from a Linux system,
you may be prompted for the location of source files that
cannot be automatically determined.

If your Linux machine has the Samba service running, then
when prompted by Thread Checker for files that cannot be
located, you can click the ellipse button to browse the file
system on your remote machine.

The following table shows instrumentation settings, from the
highest (most expensive and most detailed analysis) to the
lowest level (least expensive and least detailed analysis):

Level Description

Full Image

Enables each instruction to be checked.
This level instruments modules with or
without symbolic information.

Custom Image Same as “Full Image” except that you
can select specific functions within a
module to instrument.

All Functions
(default)

Enables instrumentation for modules
that were compiled with symbolic
debugging information.

Custom
Functions

Same as “All Functions” except that you
can select specific functions within a
module to instrument.

API Imports Only system API functions that are
needed to be instrumented by the tool
are instrumented. No user code is
instrumented. The specific set of API
functions is tool dependent.

Module Imports Disables instrumentation. Enables
Thread Checker to continue performing
diagnostic detection in modules that are
loaded from a parent module.

Selective instrumentation tips:
• If you want to disable diagnostic detection for a specific

module, use the “Module Imports” level.

• System images and images without base relocations can
only be instrumented with the “Module Imports” option. To
produce base relocations for an image, use /fixed:no linker
option while building the image.

• You may wish to adjust the instrumentation level based on
response time, system resources, or to control the amount
of information gathered.

