

Intel(R) Threading Building Blocks

Reference Manual

Copyright © 2007 Intel Corporation

All Rights Reserved

Document Number 315415-001US

Revision: 1.5

World Wide Web: http://www.intel.com

Document Number 315415-001US

Intel(R) Threading Building Blocks

 Document Number 315415-001US ii

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or
MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

The software described in this document may contain software defects which may cause the product to deviate from published
specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this
document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer’s
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386,
Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead.
logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel
vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool,
Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2005–2007 Intel Corporation.

Revision History

Document
Number

Revision
Number

Description Revision
Date

315415-001 1.5 Add Partitioner concept as a preview feature for
parallel_for, parallel_reduce and
parallel_scan. Add method
recycle_as_safe_continuation. Fix missing
“Continuation-passing style” figure.

2007-Mar-1

Overview

 iii

Contents
1 Overview ...1
2 General Conventions ...2

2.1 Notation..2
2.2 Terminology ..3

2.2.1 Concept ...3
2.2.2 Model ..3
2.2.3 CopyConstructible ...4

2.3 Identifiers ...4
2.3.1 Case..4
2.3.2 Reserved Identifier Prefixes ..4

2.4 Namespaces ..4
2.4.1 tbb Namespace ...4
2.4.2 tbb::internal Namespace ..5

2.5 Thread Safety ..5
2.6 Enabling Debugging Features ...5

2.6.1 TBB_DO_ASSERT Macro ...5
2.6.2 TBB_DO_THREADING_TOOLS Macro ..5

3 Algorithms ...7
3.1 Splittable Concept ..7

3.1.1 split Class ..8
3.2 Range concept ...8

3.2.1 blocked_range<Value> Template Class ..9
3.2.1.1 size_type...11
3.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1

) ..12
3.2.1.3 blocked_range(blocked_range& range, split)...............12
3.2.1.4 size_type size() const..12
3.2.1.5 bool empty() const ...13
3.2.1.6 size_type grainsize() const...13
3.2.1.7 bool is_divisible() const ...13
3.2.1.8 const_iterator begin() const13
3.2.1.9 const_iterator end() const..13

3.2.2 blocked_range2d Template Class ...14
3.2.2.1 row_range_type ...16
3.2.2.2 col_range_type ..16
3.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue

row_begin, RowValue row_end, typename
row_range_type::size_type row_grainsize, ColValue
col_begin, ColValue col_end, typename
col_range_type::size_type col_grainsize)16

3.2.2.4 blocked_range2d<RowValue,ColValue> (
blocked_range2d& range, split)16

3.2.2.5 bool empty() const ...17
3.2.2.6 bool is_divisible() const ...17
3.2.2.7 const row_range_type& rows() const...........................17
3.2.2.8 const col_range_type& cols() const17

Intel(R) Threading Building Blocks

 Document Number 315415-001US iv

3.3 Preview Feature: Partitioner Concept...17
3.3.1 simple_partitioner Class ...19

3.3.1.1 simple_partitioner() ..19
3.3.1.2 simple_partitioner(simple_partitioner &partitioner, split)19
3.3.1.3 template<typename Range> bool should_execute_range

(const Range &r, const task &t)19
3.3.2 auto_partitioner Class ..19

3.3.2.1 auto_partitioner() ...20
3.3.2.2 auto_partitioner(auto_partitioner &partitioner, split)20
3.3.2.3 template<typename Range> bool should_execute_range

(const Range &r, const task &t)20
3.4 parallel_for<Range,Body> Template Function ..20

3.4.1 Using the Partitioner Preview Feature ...24
3.5 parallel_reduce<Range,Body> Template Function25

3.5.1 Using the Partitioner Preview Feature ...28
3.6 parallel_scan<Range,Body> Template Function ..29

3.6.1 pre_scan_tag and final_scan_tag Classes....................................31
3.6.1.1 bool is_final_scan()...32

3.6.2 Using the Partitioner Preview Feature ...32
3.7 parallel_while Template Class...34

3.7.1 parallel_while<Body>()..35
3.7.2 ~parallel_while<Body>() ...35
3.7.3 Template <typename Stream> void run(Stream& stream, const

Body& body)..35
3.7.4 void add(const value_type& item)..35

3.8 pipeline Class ..36
3.8.1 pipeline() ...37
3.8.2 ~pipeline()...37
3.8.3 void add_filter(filter& f)..37
3.8.4 void run(size_t max_number_of_live_tokens)............................37
3.8.5 void clear() ..37
3.8.6 filter Class..38

3.8.6.1 filter(bool is_serial) ...38
3.8.6.2 ~filter()...38
3.8.6.3 bool is_serial() const ...39
3.8.6.4 virtual void* operator()(void * item)..........................39

3.9 parallel_sort<RandomAccessIterator, Compare> Template Function39
4 Containers ...41

4.1 concurrent_hash_map<Key,T,HashCompare> Template Class41
4.1.1 Whole Table Operations ...43

4.1.1.1 concurrent_hash_map() ..43
4.1.1.2 concurrent_hash_map(const concurrent_hash_map&

table)...43
4.1.1.3 ~concurrent_hash_map() ..43
4.1.1.4 concurrent_hash_map& operator= (

concurrent_hash_map& source).................................43
4.1.1.5 void clear() ..43

4.1.2 Concurrent Access...44
4.1.2.1 const_accessor...44
4.1.2.2 accessor..46

4.1.3 Concurrent Operations ...46
4.1.3.1 bool find(const_accessor& result, const Key& key) const47
4.1.3.2 bool find(accessor& result, const Key& key)................47

Overview

 v

4.1.3.3 bool insert(const_accessor& result, const Key& key)47
4.1.3.4 bool insert(accessor& result, const Key& key)48
4.1.3.5 bool erase(const Key& key).......................................48

4.1.4 Parallel Iteration ...48
4.1.4.1 const_range_type range(size_t grainsize) const48
4.1.4.2 range_type range(size_t grainsize)............................49

4.1.5 Capacity ..49
4.1.5.1 size_type size() const..49
4.1.5.2 bool empty() const ...49
4.1.5.3 size_type max_size() const ..49

4.1.6 Iterators ..49
4.1.6.1 iterator begin()...49
4.1.6.2 iterator end() ...49
4.1.6.3 const_iterator begin() const50
4.1.6.4 const_iterator end() const..50

4.2 concurrent_queue<T> Template Class ..50
4.2.1 concurrent_queue()...52
4.2.2 ~concurrent_queue()...52
4.2.3 void push(const T& source)...52
4.2.4 void pop(T& destination) ..52
4.2.5 bool pop_if_present(T& destination)...52
4.2.6 size_type size() const ..52
4.2.7 bool empty() const ..53
4.2.8 size_type capacity() ..53
4.2.9 void set_capacity(size_type capacity).......................................53
4.2.10 Iterators ..53

4.2.10.1 iterator begin()...54
4.2.10.2 iterator end() ...54
4.2.10.3 const_iterator begin() const54
4.2.10.4 const_iterator end() const..54

4.3 concurrent_vector ..54
4.3.1 Whole Vector Operations ..55

4.3.1.1 concurrent_vector() ..56
4.3.1.2 concurrent_vector(const concurrent_vector& src)56
4.3.1.3 concurrent_vector& operator=(const concurrent_vector&

src) ...56
4.3.1.4 ~concurrent_vector() ..56
4.3.1.5 void clear() ..56

4.3.2 Concurrent Operations ...56
4.3.2.1 size_type grow_by(size_type delta)...........................56
4.3.2.2 void grow_to_at_least(size_type n)57
4.3.2.3 size_t push_back(const_reference value);57
4.3.2.4 reference operator[](size_type index)........................57
4.3.2.5 const_reference operator[](size_type index) const;57

4.3.3 Parallel Iteration ...57
4.3.3.1 range_type range(size_t grainsize)............................58
4.3.3.2 const_range_type range(size_t grainsize) const58

4.3.4 Capacity ..58
4.3.4.1 size_type size() const..58
4.3.4.2 bool empty() const ...58
4.3.4.3 size_type capacity() const..58
4.3.4.4 void reserve(size_type n)...58
4.3.4.5 size_type max_size() const ..59

4.3.5 Iterators ..59

Intel(R) Threading Building Blocks

 Document Number 315415-001US vi

4.3.5.1 iterator begin()...59
4.3.5.2 iterator end() ...59
4.3.5.3 const_iterator begin() const59
4.3.5.4 const_iterator end() const..59
4.3.5.5 iterator rbegin() ...59
4.3.5.6 iterator rend()..59
4.3.5.7 const_reverse_iterator rbegin() const60
4.3.5.8 const_ reverse_iterator rend() const............................60

5 Memory Allocation...61
5.1 Allocator Concept ...61
5.2 scalable_allocator<T> Template Class...62
5.3 cache_aligned_allocator<T> Template Class ..63

5.3.1 pointer allocate(size_type n, void* hint=0)64
5.3.2 void deallocate(pointer p, size_type n)65
5.3.3 char* _Charalloc(size_type size)..65

5.4 aligned_space Template Class ..65
5.4.1 aligned_space() ..66
5.4.2 ~aligned_space() ..66
5.4.3 T* begin()..66
5.4.4 T* end() ..66

6 Synchronization..67
6.1 Mutexes..67

6.1.1 Mutex Concept..67
6.1.2 mutex Class ...68
6.1.3 spin_mutex Class ..69
6.1.4 queuing_mutex Class...69
6.1.5 ReaderWriterMutex Concept..70

6.1.5.1 ReaderWriterMutex()...71
6.1.5.2 ~ReaderWriterMutex() ..71
6.1.5.3 ReaderWriterMutex::scoped_lock()..............................71
6.1.5.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex&

rw, bool write =true)...71
6.1.5.5 ReaderWriterMutex::~scoped_lock()71
6.1.5.6 void ReaderWriterMutex:: scoped_lock:: acquire(

ReaderWriterMutex& rw, bool write=true)71
6.1.5.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(

ReaderWriterMutex& rw, bool write=true)72
6.1.5.8 void ReaderWriterMutex:: scoped_lock::release()..........72
6.1.5.9 bool ReaderWriterMutex::

scoped_lock::upgrade_to_writer()...............................72
6.1.5.10 bool ReaderWriterMutex::

scoped_lock::downgrade_to_reader()..........................72
6.1.6 spin_rw_mutex Class ...72
6.1.7 queuing_rw_mutex Class..73

6.2 atomic<T> Template Class ..74
6.2.1 enum memory_semantics...75
6.2.2 value_type fetch_and_add(value_type addend)76
6.2.3 value_type fetch_and_increment()...76
6.2.4 value_type fetch_and_decrement()..76
6.2.5 value_type compare_and_swap...76
6.2.6 Effect ..76
6.2.7 value_type fetch_and_store(value_type new_value)...................77

Overview

 vii

7 Timing...78
7.1 tick_count Class ...78

7.1.1 static tick_count tick_count::now() ..79
7.1.2 tick_count::interval_t operator−(const tick_count& t1, const

tick_count& t0) ..79
7.1.3 tick_count::interval_t Class ..79

7.1.3.1 interval_t() ..80
7.1.3.2 double seconds() const..80
7.1.3.3 interval_t operator+=(const interval_t& i)80
7.1.3.4 interval_t operator−=(const interval_t& i)...................80
7.1.3.5 interval_t operator+ (const interval_t& i, const

interval_t& j) ..80
7.1.3.6 interval_t operator− (const interval_t& i, const interval_t&

j) ..80
8 Task Scheduling ...81

8.1 Scheduling Algorithm..82
8.2 task_scheduler_init Class ..82

8.2.1 task_scheduler_init(int number_of_threads=automatic)..............84
8.2.2 ~task_scheduler_init()...84
8.2.3 void initialize(int number_of_threads=automatic)85
8.2.4 void terminate()..85
8.2.5 Mixing with OpenMP ..85

8.3 task Class ...86
8.3.1 task Derivation ...88

8.3.1.1 Processing of execute() ...89
8.3.2 task Allocation ..89

8.3.2.1 new(task::allocate_root()) T89
8.3.2.2 new(this. allocate_continuation()) T90
8.3.2.3 new(this. allocate_child()) T90
8.3.2.4 new(this.task::allocate_child_of(parent))91

8.3.3 Explicit task Destruction ...92
8.3.3.1 void destroy(task& victim)92

8.3.4 Recycling Tasks...93
8.3.4.1 void recycle_as_continuation()93
8.3.4.2 Preview Feature: void recycle_as_safe_continuation()....93
8.3.4.3 void recycle_as_child_of(task& parent)94
8.3.4.4 void recycle _to_reexecute()94

8.3.5 task Depth ...94
8.3.5.1 depth_type ..94
8.3.5.2 depth_type depth() const...95
8.3.5.3 void set_depth(depth_type new_depth)95
8.3.5.4 void add_to_depth(int delta)95

8.3.6 Synchronization ..95
8.3.6.1 void set_ref_count(int count)96
8.3.6.2 void wait_for_all() ..96
8.3.6.3 void spawn(task& child)...97
8.3.6.4 void spawn (task_list& list)97
8.3.6.5 void spawn_and_wait_for_all(task& child)98
8.3.6.6 void spawn_and_wait_for_all(task_list& list)...............98
8.3.6.7 static void spawn_root_and_wait(task& root)..............98
8.3.6.8 static void spawn_root_and_wait(task_list& root_list) ..99

8.3.7 task Context...99
8.3.7.1 static task& self() ...99

Intel(R) Threading Building Blocks

 Document Number 315415-001US viii

8.3.7.2 task* parent() const..99
8.3.7.3 bool is_stolen_task() const...99

8.3.8 task Debugging...99
8.3.8.1 state_type state() const .. 100
8.3.8.2 int ref_count() const ... 101

8.4 empty_task Class ... 102
8.5 task_list Class.. 102

8.5.1 task_list() .. 103
8.5.2 ~task_list() .. 103
8.5.3 bool empty() const .. 103
8.5.4 push_back(task& task)... 103
8.5.5 task& task pop_front() ... 103
8.5.6 void clear() .. 104

8.6 Catalog of Recommended task Recurrence Patterns................................. 104
8.6.1 Blocking Style With k Children... 104
8.6.2 Continuation-Passing Style With k Children 105

8.6.2.1 Recycling Parent as Continuation 105
8.6.2.2 Recycling Parent as a Child 105

9 References... 107

Overview

 1

1 Overview
Intel® Threading Building Blocks is a library that supports scalable parallel
programming using standard ISO C++ code. It does not require special languages or
compilers. It is designed to promote scalable data parallel programming. Additionally,
it fully supports nested parallelism, so you can build larger parallel components from
smaller parallel components. To use the library, you specify tasks, not threads, and let
the library map tasks onto threads in an efficient manner.

Many of the library interfaces employ generic programming, in which interfaces are
defined by requirements on types and not specific types. The C++ Standard Template
Library (STL) is an example of generic programming. Generic programming enables
Intel® Threading Building Blocks to be flexible yet efficient. The generic interfaces
enable you to customize components to your specific needs.

The net result is that Intel® Threading Building Blocks enables you to specify
parallelism far more conveniently than using raw threads, and at the same time can
improve performance.

This document is a reference manual. It is organized for looking up details about
syntax and semantics. You should first read the Intel® Threading Building Blocks
Getting Started Guide and the Intel® Threading Building Blocks Tutorial to learn how
to use the library effectively.

TIP: Even experienced parallel programmers should read the Intel® Threading Building
Blocks Tutorial before using this reference guide because Intel® Threading Building
Blocks uses a surprising recursive model of parallelism and generic algorithms.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 2

2 General Conventions
This section describes conventions used in this document.

2.1 Notation
Literal program text appears in Courier font. Algebraic placeholders are in
monospace italics. For example, the notation blocked_range<Type> indicates that
blocked_range is literal, but Type is a notational placeholder. Real program text
replaces Type with a real type, such as in blocked_range<int>.

Class members are summarized by informal class declarations that describe the class
as it seems to clients, not how it is actually implemented. For example, here is an
informal declaration of class Foo:
class Foo {
public:
 int x();
 int y;
 ~Foo();
};

The actual implementation might look like:
class FooBase {
protected:
 int x();
};

class Foo {
private:
 int internal_stuff;
public:
 using x;
 int y;
};

The example shows two cases where the actual implementation departs from the
informal declaration:

• Method x() is inherited from a protected base class

• The destructor is an implicitly method generated by the compiler.

The informal declarations are intended to show you what you need to know to use the
class without the distraction of irrelevant clutter particular to the implementation.

General Conventions

 3

2.2 Terminology
This section describes terminology specific to Intel® Threading Building Blocks.

2.2.1 Concept
A concept is a set of requirements on a type. The requirements may be syntactic or
semantic. For example, the concept of “sortable” could be defined as a set of
requirements that enable an array to be sorted. A type T would be sortable if:

• x < y returns a boolean value, and represents a total order on items of type T.

• swap(x,y) swaps items x and y

You can write a sorting template function in C++ that sorts an array of any type that
is sortable.

Two approaches for defining concepts are valid expressions and pseudo-signatures 0

1.
The ISO C++ standard follows the valid expressions approach, which shows what the
usage pattern looks like for a concept. It has the drawback of relegating important
details to notational conventions. This document uses pseudo-signatures, because
they are concise, and can be cut-and-pasted for an initial implementation.

For example, 449H515HTable 1 shows pseudo-signatures for a sortable type T:

Table 1: Pseudo-Signatures for Example Concept “sortable”

Pseudo-Signature Semantics

bool operator<(const T& x, const T& y) Compare x and y

void swap(T& x, T& y) Swap x and y

A real signature may differ from the pseudo-signature that it implements in ways
where implicit conversions would deal with the difference. For an example type U, the
real signature that implements operator< in 450H516HTable 1 can be expressed as int
operator<(U x, U y), because C++ permits implicit conversion from int to bool,
and implicit conversion from U to (const U&). Similarly, the real signature bool
operator<(U& x, U& y) is acceptable because C++ permits implicit addition of a
const qualifier to a reference type.

2.2.2 Model
A type models a concept if it meets the requirements of the concept. For example,
type int models the sortable concept in 451H517HTable 1 if there exists a function swap(x,y)

1 See Section 3.3.2 of Concepts for C++0x available at
http://www.osl.iu.edu/publications/prints/2005/siek05:_concepts_cpp0x.pdf for
further discussion of valid expressions versus pseudo-signatures.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 4

that swaps two int values x and y. The other requirement for sortable, specifically
x<y, is already met by the built-in operator< on type int.

2.2.3 CopyConstructible
The library sometimes requires that a type model the CopyConstructible concept,
which is defined by the ISO C++ standard. 452H518HTable 2 shows the requirements for
CopyConstructible in pseudo-signature form.

Table 2: CopyConstructible Requirements

Pseudo-Signature Semantics

T(const T&) Construct copy of const T

~T() Destructor

T* operator&() Take address

const T* operator&() const Take address of const T

2.3 Identifiers
This section describes the identifier conventions used by Intel® Threading Building
Blocks.

2.3.1 Case
The identifier convention in the library follows the style in the ISO C++ standard
library. Identifiers are written in underscore_style, and concepts in PascalCase.

2.3.2 Reserved Identifier Prefixes
The library reserves the prefix __TBB for internal identifiers and macros that should
never be directly referenced by your code.

2.4 Namespaces
This section describes reserved namespaces used by Intel® Threading Building Blocks.

2.4.1 tbb Namespace
The library puts all public classes and functions into the namespace tbb.

General Conventions

 5

2.4.2 tbb::internal Namespace
The library uses the namespace tbb::internal for internal identifiers. Client code
should never directly reference the namespace tbb::internal or the identifiers inside
it. Indirect reference via a public typedef provided by the header files is permitted.

An example of the distinction between direct and indirect use is type
concurrent_vector<T>::iterator. This type is a typedef for an internal class
internal::vector_iterator<Container,Value>. Your source code should use the
iterator typedef.

2.5 Thread Safety
Unless otherwise stated, the thread safety rules for the library are as follows:

• Two threads can invoke a method or function concurrently on different objects, but
not the same object.

• It is unsafe for two threads to invoke concurrently methods or functions on the
same object.

Descriptions of the classes note departures from this convention. For example, the
concurrent containers are more liberal. By their nature, they do permit concurrent
operations on the same container object.

2.6 Enabling Debugging Features
The headers have two macros that control certain debugging features. In general, it is
useful to compile with these features on for development code, and off for production
code.

2.6.1 TBB_DO_ASSERT Macro
The macro TBB_DO_ASSERT controls whether error checking is enabled in the header
files. Define TBB_DO_ASSERT as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the
standard C routine abort. To stop a program when internal error checking detects a
failure, place a breakpoint on tbb::assertion_failure.

TIP: On Windows* systems, debug builds implicitly set TBB_DO_ASSERT to 1.

2.6.2 TBB_DO_THREADING_TOOLS Macro
The macro TBB_DO_THREADING_TOOLS controls support for Intel® Threading Tools:

• Intel® Thread Profiler

• Intel® Thread Checker.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 6

Define TBB_DO_THREADING_TOOLS as 1 to enable full support for these tools. The
debug version of the library always has full support enabled.

Leave TBB_DO_THREADING_TOOLS undefined or zero to enable top performance, at the
expense of turning off some support for tools. In the current implementation, the only
features affected are spin_mutex (519H6.1.3) and spin_rw_mutex (520H6.1.6).

Algorithms

 7

3 Algorithms
Most algorithms provided by the library are generic. They operate on all types that
model the necessary concepts.

3.1 Splittable Concept

Summary
Requirements for type whose instances can be split into two pieces.

Requirements
454H521HTable 3 lists the requirements for a splittable type X with instance x.

Table 3: Splittable Concept

Pseudo-Signature Semantics

X::X(X& x, Split) Split x into x and newly constructed object.

Description
A type is splittable if it has a splitting constructor that allows an instance to be split
into two pieces. The splitting constructor takes as arguments a reference to the
original object, and a dummy argument of type Split, which is defined by the library.
The dummy argument distinguishes the splitting constructor from a copy constructor.
After the constructor runs, x and the newly constructed object should represent the
two pieces of the original x. The library uses splitting constructors in two contexts:

• Partition a range into two subranges that can be processed concurrently.

• Forking a body (function object) into two bodies that can run concurrently.

The following model types provide examples.

Model Types
blocked_range (522H3.2.1) and blocked_range2d (523H3.2.2) represent splittable ranges. For
each of these, splitting partitions the range into two subranges. See the example in
Section 524H3.2.1.3 for the splitting constructor of blocked_range<Value>.

The bodies for parallel_reduce (525H3.5) and parallel_scan (526H3.6) must be splittable.
For each of these, splitting results in two bodies that can be run concurrently.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 8

3.1.1 split Class

Summary
Type for dummy argument of a splitting constructor

Syntax
class split;

Header
#include "tbb/tbb_stddef.h"

Description
An argument of type split is used to distinguish a splitting constructor from a copy
constructor.

Members
namespace tbb {
 class split {
 };
}

3.2 Range concept

Summary
Requirements for type representing a recursively divisible set of values.

Requirements
455H527HTable 4 lists the requirements for a Range type R.

Table 4: Range Concept

Pseudo-Signature Semantics

R::R(const R&) Copy constructor

R::~R() Destructor

bool R::empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned into two
subranges.

R::R(R& r, split) Split r into two subranges.

Algorithms

 9

Description
A Range can be recursively subdivided into two parts. It is recommended that the
division be into nearly equal parts, but it is not required. Splitting as evenly as
possible typically yields the best parallelism. Ideally, a range is recursively splittable
until the parts represent portions of work that are more efficient to execute serially
rather than split further. The amount of work represented by a Range typically
depends upon higher level context, hence a typical type that models a Range should
provide a way to control the degree of splitting. For example, the template class
blocked_range (528H3.2.1) has a grainsize parameter that specifies the biggest range
considered indivisible.
The constructor that implements splitting is called a splitting constructor. If the set of
values has a sense of direction, then by convention the splitting constructor should
construct the second part of the range, and update the argument to be the first half.
Following this convention causes the parallel_for (456H529H3.4), parallel_reduce (457H530H3.5),
and parallel_scan (531H3.6) algorithms, when running sequentially, to work across a
range in the increasing order typical of an ordinary sequential loop.

Example
The following code defines a type TrivialIntegerRange that models the Range
concept. It represents a half-open interval [lower,upper) that is divisible down to a
single integer.
struct TrivialIntegerRange {
 int lower;
 int upper;
 bool empty() const {return lower==upper;}
 bool is_divisible() const {return upper>lower+1;}
 TrivialIntegerRange(TrivialIntegerRange& r, split) {
 int m = (r.lower+r.upper)/2;
 lower = m;
 upper = r.upper;
 r.upper = m;
 }
};

TrivialIntegerRange is for demonstration and not very practical, because it lacks a
grainsize parameter. Use the library class blocked_range instead.

Model Types
blocked_range (532H3.2.1) models a one-dimensional range.

blocked_range2d (533H3.2.2) models a two-dimensional range.

3.2.1 blocked_range<Value> Template Class

Summary
Template class for a recursively divisible half-open interval.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 10

Syntax
template<typename Value> class blocked_range;

Header
#include "tbb/blocked_range.h"

Description
A blocked_range<Value> represents a half-open range [i,j) that can be recursively
split. The types of i and j must model the requirements in 461H534HTable 5. Because the
requirements are pseudo-signatures, signatures that differ by implicit conversions are
allowed. For example, a blocked_range<int> is allowed, because the difference of
two int values can be implicitly converted to a size_t. Examples that model the Value
requirements are integral types, pointers, and STL random-access iterators whose
difference can be implicitly converted to a size_t.
A blocked_range models the Range concept (462H535H3.2).

Table 5: Value Concept for blocked_range

Pseudo-Signature Semantics

Value::Value(const Value&) Copy constructor

Value::~Value() Destructor

bool operator<(const Value& i, const Value& j) Value i precedes value j

size_t operator−(const Value& i, const Value& j) Number of values in
range [i,j).

Value operator+(const Value& i, size_t k) kth value after i

A blocked_range<Value> specifies a grain size of type size_t. A blocked_range is
splittable into two subranges if the size of the range exceeds grain size. The ideal
grain size depends upon the context of the blocked_range<Value>, which is typically
as the range argument to the loop templates parallel_for, parallel_reduce, or
parallel_scan. A too small grainsize may cause scheduling overhead within the loop
templates to swamp speedup gained from parallelism. A too large grainsize may
unnecessarily limit parallelism. For example, if the grain size is so large that the range
can be split only once, then the maximum possible parallelism is two.

Here is a suggested procedure for choosing grainsize:

1. Set the grainsize parameter to 10,000. This value is high enough to amortize
scheduler overhead sufficiently for practically all loop bodies, but may be
unnecessarily limit parallelism.

2. Run your algorithm on one processor.

3. Start halving the grainsize parameter and see how much the algorithm slows
down as the value decreases.

A slowdown of about 5-10% is a good setting for most purposes.

Algorithms

 11

TIP: For a blocked_range [i,j) where j<i, not all methods have specified behavior.
However, enough methods do have specified behavior that parallel_for (536H3.4),
parallel_reduce (537H3.5), and parallel_scan (538H3.6) iterate over the same iteration space as
the serial loop for(Value index=i; index<j; ++index)... , even when j<i. If
TBB_DO_ASSERT (539H2.6.1) is nonzero, methods with unspecified behavior raise an
assertion failure.

Examples
A blocked_range<Value> typically appears as a range argument to a loop template.
See the examples for parallel_for (540H3.4), parallel_reduce (541H3.5), and
parallel_scan (542H3.6).

Members
namespace tbb {
 template<typename Value>
 class blocked_range {
 public:
 // types
 typedef size_t size_type;
 typedef Value const_iterator;

 // constructors
 blocked_range(Value begin, Value end, size_type grainsize=1);
 blocked_range(blocked_range& r, split);

 // capacity
 size_type size() const;
 bool empty() const;

 // access
 size_type grainsize() const;
 bool is_divisible() const;

 // iterators
 const_iterator begin() const;
 const_iterator end() const;
 };
}

3.2.1.1 size_type

Description
The type for measuring the size of a blocked_range. The type is always a size_t.
const_iterator

Description
The type of a value in the range. Despite its name, the type const_iterator is not
necessarily an STL iterator; it merely needs to meet the Value requirements in 543HTable

Intel(R) Threading Building Blocks

 Document Number 315415-001US 12

5. However, it is convenient to call it const_iterator so that if it is a const_iterator,
then the blocked_range behaves like a read-only STL container.

3.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1)

Effects
Constructs a blocked_range representing the half-open interval [begin,end) with the
given grainsize.

Example
The statement “blocked_range<int> r(5, 14, 2);” constructs a range of int that
contains the values 5 through 13 inclusive, with a grainsize of 2. Afterwards,
r.begin()==5 and r.end()==14.

3.2.1.3 blocked_range(blocked_range& range, split)

Requirements
is_divisible() is true.

Effects
Partitions range into two subranges. The newly constructed blocked_range is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grainsize as the original range.

Example
Let i and j be integers that define a half-open interval [i,j) and let g specifiy a grain
size. The statement blocked_range<int> r(i,j,g) constructs a
blocked_range<int> that represents [i,j) with grain size g. Running the statement
blocked_range<int> s(r,split); subsequently causes r to represent [i, i +(j
−i)/2) and s to represent [i +(j −i)/2, j), both with grain size g.

3.2.1.4 size_type size() const

Requirements
end()<begin() is false.

Effects
Determine size of range.

Algorithms

 13

Returns
 end()−begin()

3.2.1.5 bool empty() const

Effects
Determine if range is empty.

Returns
!(begin()<end())

3.2.1.6 size_type grainsize() const

Returns
Grain size of range.

3.2.1.7 bool is_divisible() const

Requirements
!(end()<begin())

Effects
Determine if range can be split into subranges.

Returns
True if size()>grainsize(); false otherwise.

3.2.1.8 const_iterator begin() const

Returns
Inclusive lower bound on range.

3.2.1.9 const_iterator end() const

Returns
Exclusive upper bound on range.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 14

3.2.2 blocked_range2d Template Class

Summary
Template class that represents recursively divisible two-dimensional half-open
interval.

Syntax
template<typename RowValue, typename ColValue> class blocked_range2d;

Header
#include "tbb/blocked_range2d.h"

Description
A blocked_range2d<RowValue,ColValue> represents a half-open two dimensional
range [i0,j0)×[i1,j1). Each axis of the range has its own splitting threshold. The
RowValue and ColValue must meet the requirements in 463H544HTable 5. A blocked_range is
splittable if either axis is splittable. A blocked_range models the Range concept (464H545H3.2).

Members
namespace tbb {
template<typename RowValue, typename ColValue=RowValue>
 class blocked_range2d {
 public:
 // Types
 typedef blocked_range<RowValue> row_range_type;
 typedef blocked_range<ColValue> col_range_type;

 // Constructors
 blocked_range2d(RowValue row_begin, RowValue row_end,
 typename row_range_type::size_type row_grainsize,
 ColValue col_begin, ColValue col_end,
 typename col_range_type::size_type col_grainsize);
 blocked_range2d(blocked_range2d& r, split);

 // Capacity
 bool empty() const;

 // Access
 bool is_divisible() const;
 const row_range_type& rows() const;
 const col_range_type& cols() const;
 };
}

Example
The code that follows shows a serial matrix multiply, and the corresponding parallel
matrix multiply that uses a blocked_range2d to specify the iteration space.
const size_t L = 150;
const size_t M = 225;

Algorithms

 15

const size_t N = 300;

void SerialMatrixMultiply(float c[M][N], float a[M][L], float b[L][N])
{
 for(size_t i=0; i<M; ++i) {
 for(size_t j=0; j<N; ++j) {
 float sum = 0;
 for(size_t k=0; k<L; ++k)
 sum += a[i][k]*b[k][j];
 c[i][j] = sum;
 }
 }
}

#include "tbb/parallel_for.h"
#include "tbb/blocked_range2d.h"

using namespace tbb;

const size_t L = 150;
const size_t M = 225;
const size_t N = 300;

class MatrixMultiplyBody2D {
 float (*my_a)[L];
 float (*my_b)[N];
 float (*my_c)[N];
public:
 void operator()(const blocked_range2d<size_t>& r) const {
 float (*a)[L] = my_a;
 float (*b)[N] = my_b;
 float (*c)[N] = my_c;
 for(size_t i=r.rows().begin(); i!=r.rows().end(); ++i){
 for(size_t j=r.cols().begin(); j!=r.cols().end(); ++j) {
 float sum = 0;
 for(size_t k=0; k<L; ++k)
 sum += a[i][k]*b[k][j];
 c[i][j] = sum;
 }
 }
 }
 MatrixMultiplyBody2D(float c[M][N], float a[M][L], float b[L][N]) :
 my_a(a), my_b(b), my_c(c)
 {}
};

void ParallelMatrixMultiply(float c[M][N], float a[M][L], float b[L][N]){
 parallel_for(blocked_range2d<size_t>(0, M, 16, 0, N, 32),
 MatrixMultiplyBody2D(c,a,b));
}

The blocked_range2d enables the two outermost loops of the serial version to
become parallel loops. The parallel_for recursively splits the blocked_range2d until

Intel(R) Threading Building Blocks

 Document Number 315415-001US 16

the pieces are no larger than 16×32. It invokes
MatrixMultiplyBody2D::operator() on each piece.

3.2.2.1 row_range_type

Description
A blocked_range<RowValue>. That is, the type of the row values.

3.2.2.2 col_range_type

Description
A blocked_range<ColValue>. That is, the type of the column values.

3.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue
row_end, typename row_range_type::size_type row_grainsize, ColValue
col_begin, ColValue col_end, typename col_range_type::size_type
col_grainsize)

Effects
Constructs a blocked_range2d representing a two dimensional space of values. The
space is the half-open Cartesian product [row_begin,row_end)× [col_begin,col_end),
with the given grain sizes for the rows and columns.

Example
The statement “blocked_range2d<char,int> r(’a’, ’z’+1, 3, 0, 10, 2);”
constructs a two-dimensional space that contains all value pairs of the form (i, j),
where i ranges from ’a’ to ’z’ with a grain size of 3, and j ranges from 0 to 9 with a
grain size of 2.

3.2.2.4 blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)

Effects
Partitions range into two subranges. The newly constructed blocked_range2d is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grain size as the original range. The split is
either by rows or columns. The choice of which axis to split is intended to cause, after
repeated splitting, the subranges to approach the aspect ratio of the respective row
and column grain sizes. For example, if the row_grainsize is twice col_grainsize,
the subranges will tend towards having twice as many rows as columns.

Algorithms

 17

3.2.2.5 bool empty() const

Effects
Determines if range is empty.

Returns
rows().empty()||cols().empty()

3.2.2.6 bool is_divisible() const

Effects
Determine if range can be split into subranges.

Returns
rows().is_divisible()||cols().is_divisible()

3.2.2.7 const row_range_type& rows() const

Returns
Range containing the rows of the value space.

3.2.2.8 const col_range_type& cols() const

Returns
Range containing the columns of the value space.

3.3 Preview Feature: Partitioner Concept

Summary
Requirements for a type that decides if a range (546H3.2) should be operated over by a
task body or if the range should be further split.

Requirements
455 547HTable 6 lists the requirements for a Partitioner type P.

Table 6: Partitioner Concept

Pseudo-Signature Semantics

P::~P() Destructor

template <typename Range>

bool P::should_execute_range(const Range

True if r should be passed to the
body of t. False if r should instead

Intel(R) Threading Building Blocks

 Document Number 315415-001US 18

&r, const task &t) be split.

P::P(P& p, split) Split p into two partitioners.

Description
The Partitioner concept implements rules for deciding when a given range should no
longer be subdivided, but should be operated over as a whole by a task’s body.

The default behavior of the algorithms parallel_for (3.4), parallel_reduce (3.5)
and parallel_scan (3.6) is to recursively split a range until no subrange remains
that is divisible, as decided by the function is_divisible of the Range concept (3.2).
The Partitioner concept models rules for the early termination of the recursive splitting
of a range, providing ability to change the default behavior. A Partitioner object’s
decision making is implemented using two functions, a splitting constructor and the
function should_execute_range.

Within the parallel algorithms, each Range object is now associated with a Partitioner
object. Whenever a Range object is split using its splitting constructor to create two
subranges, the associated Partitioner object is likewise split to create two matching
Partitioner objects.

When a parallel_for, parallel_reduce or parallel_scan algorithm needs to
decide whether to further subdivide a range, it invokes the function
should_execute_range for the Partitioner object associated with the range. If the
function should_execute_range returns true for the given range and task, then no
further splits are performed on the range and the current task applies its body over
the entire range.

Example
The following code defines a type simple_partitioner that models the Partitioner
concept. It returns true from its function should_execute_range if the range function
is_divisible returns false.
class simple_partitioner {
public:
 simple_partitioner() {}
 simple_partitioner(simple_partitioner &partitioner,
 split) {}

 template <typename Range>
 inline bool should_execute_range(const Range &r, const task &t) {
 return (!r.is_divisible());
 }
};

This class encodes the default behavior, where a range is recursively split until it
cannot be further subdivided.

Model Types
simple_partitioner (548H3.3.1) models the default behavior of splitting a range until it
cannot be further subdivided.

Algorithms

 19

auto_partitioner (549H3.3.2) models an adaptive behavior that monitors the work-
stealing actions of the task_scheduler (550H8) to reduce the number of splits performed.

3.3.1 simple_partitioner Class

Summary
A class that models that default range splitting behavior of the parallel_for (551H3.4),
parallel_reduce (552H3.5) and parallel_scan (553H3.6) algorithms, where a range is
recursively split until it cannot be further subdivided.

Syntax
class simple_partitioner;

Header
#include "tbb/partitioner.h"

Description
The class simple_partitioner models the default range splitting behavior of the
parallel_for, parallel_reduce and parallel_scan algorithms.

3.3.1.1 simple_partitioner()

An empty default constructor.

3.3.1.2 simple_partitioner(simple_partitioner &partitioner, split)

An empty splitting constructor.

3.3.1.3 template<typename Range> bool should_execute_range (const Range &r,
const task &t)
A function that returns true when the provided range should be executed to
completion by the given task. It returns !range.is_divisible().

3.3.2 auto_partitioner Class

Summary
A class that models an adaptive partitioner that monitors the work-stealing actions of
the task_scheduler to manage the number of splits performed.

Syntax
class auto_partitioner;

Intel(R) Threading Building Blocks

 Document Number 315415-001US 20

Header
#include "tbb/partitioner.h"

Description
The class auto_partitioner models an adaptive partitioner that limits the number of
splits needed for load balancing by reacting to work-stealing events.

The range is first divided into SI subranges, where SI is proportional to the number of
threads created by the task scheduler. These subranges are executed to completion
by tasks unless they are stolen. If a subrange is stolen by an idle thread, the
auto_partitioner further subdivides the range to create additional subranges.

The auto_partitioner creates additional subranges only if threads are actively stealing
work. If the load is well balanced, the use of only a few large initial subranges
reduces the overheads incurred when splitting and joining ranges. However, if there
is a load imbalance that results in work-stealing, the auto_partitioner creates
additional subranges that can be stolen to more finely balance the load.

The auto_partitioner therefore attempts to minimize the number of range splits, while
providing ample opportunities for work-stealing.

3.3.2.1 auto_partitioner()

An empty default constructor.

3.3.2.2 auto_partitioner(auto_partitioner &partitioner, split)

A splitting constructor that divides the auto_partitioner partitioner into two
partitioners.

3.3.2.3 template<typename Range> bool should_execute_range (const Range &r,
const task &t)
A function that returns true when the provided range should be operated over as a
whole by the given task’s body. This function may return true even if
range.is_divisible() == true and always returns true if range.is_divisible()
== false. That is, this function may decide that t should process an r that can be
further subdivided, but it always decides that t should process an r that cannot be
further subdivided.

3.4 parallel_for<Range,Body> Template Function
Summary
Template function performs parallel iteration over a range of values.

Syntax
template<typename Range, typename Body>

Algorithms

 21

void parallel_for (const Range& range, const Body& body);

Header
#include "tbb/parallel_for.h"

Description
A parallel_for<Range,Body> represents parallel execution of Body over each value
in Range. Type Range must model the Range concept (465H554H3.2). The body must model the
requirements in 466H555HTable 7.

Table 7: Requirements for parallel_for Body

Pseudo-Signature Semantics

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator()(Range& range) const Apply body to range

A parallel_for recursively splits the range into subranges to the point such that
is_divisible() is false for each subrange, and makes copies of the body for each of
these subranges. For each such body/subrange pair, it invokes Body::operator().
The invocations are interleaved with the recursive splitting, in order to minimize space
overhead and efficiently use cache.

Some of the copies of the range and body may be destroyed after parallel_for
returns. This late destruction is not an issue in typical usage, but is something to be
aware of when looking at execution traces or writing range or body objects with
complex side effects.

When worker threads are available (556H8.2), parallel_for executes iterations is non-
deterministic order. Do not rely upon any particular execution order for correctness.
However, for efficiency, do expect parallel_for to tend towards operating on
consecutive runs of values.

When no worker threads are available, parallel_for executes iterations from left to
right in the following sense. Imagine drawing a binary tree that represents the
recursive splitting. Each non-leaf node represents splitting a subrange r by invoking
the splitting constructor Range(r,split()). The left child represents the updated
value of r. The right child represents the newly constructed object. Each leaf in the
tree represents an indivisible subrange. The method Body::operator() is invoked on
each leaf subrange, from left to right.

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 22

Example
This example defines a routine ParallelAverage that sets output[i] to the average
of input[i-1], input[i], and input[i+1], for 0≤i<n..
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Average {
 float* input;
 float* output;
 void operator()(const blocked_range<int>& range) const {
 for(int i=range.begin(); i!=range.end(); ++i)
 output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.0f);
 }
};

// Note: The input must be padded such that input[-1] and input[n]
// can be used to calculate the first and last output values.
void ParallelAverage(float* output, float* input, size_t n) {
 Average avg;
 avg.input = input;
 avg.output = output;
 parallel_for(blocked_range<int>(0, n, 1000), avg);
}

Example
This example is more complex and requires familiarity with STL. It shows the power of
parallel_for beyond flat iteration spaces. The code performs a parallel merge of two
sorted sequences. It works for any sequence with a random-access iterator. The
algorithm works recursively as follows:

1. If the sequences are too short for effective use of parallelism, do a sequential
merge. Otherwise perform steps 2-6.

2. Swap the sequences if necessary, so that the first sequence [begin1,end1) is at
least as long as the second sequence [begin2,end2).

3. Set m1 to the middle position in [begin1,end1). Call the item at that location key.

4. Set m2 to where key would fall in [begin2,end2).

5. Merge [begin1,m1) and [begin2,m2) to create the first part of the merged
sequence.

6. Merge [m1,end1) and [m2,end2) to create the second part of the merged
sequence.

The Intel® Threading Building Blocks implementation of this algorithm uses the range
object to perform most of the steps. Predicate is_divisible performs the test in step
1, and step 2. The splitting constructor does steps 3-6. The body object does the
sequential merges.
#include "tbb/parallel_for.h"
#include <algorithm>

Algorithms

 23

using namespace tbb;

template<typename Iterator>
struct ParallelMergeRange {
 static size_t grainsize;
 Iterator begin1, end1; // [begin1,end1) is first sequence to be
merged
 Iterator begin2, end2; // [begin2,end2) is first sequence to be
merged
 Iterator out; // where to put merged sequence
 bool empty() const {return (end1-begin1)+(end2-begin2)==0;}
 bool is_divisible() {
 if(end1-begin1 < end2-begin2) {
 std::swap(begin1,begin2);
 std::swap(end1,end2);
 }
 // [begin2,end2) is now at least as short as [begin1,end1)
 return end2-begin2 > grainsize;
 }
 ParallelMergeRange(ParallelMergeRange& r, split) {
 Iterator m1 = r.begin1 + (r.end1-r.begin1)/2;
 Iterator m2 = std::lower_bound(r.begin2, r.end2, *m1);
 begin1 = m1;
 begin2 = m2;
 end1 = r.end1;
 end2 = r.end2;
 out = r.out + (m1-r.begin1) + (m2-r.begin2);
 r.end1 = m1;
 r.end2 = m2;
 }
 ParallelMergeRange(Iterator begin1_, Iterator end1_,
 Iterator begin2_, Iterator end2_, Iterator out_)
:
 begin1(begin1_), end1(end1_), begin2(begin2_), end2(end2_),
out(out_)
 {}
};

template<typename Iterator>
size_t ParallelMergeRange<Iterator>::grainsize = 1000;

template<typename Iterator>
struct ParallelMergeBody {
 void operator()(ParallelMergeRange<Iterator>& r) const {
 std::merge(r.begin1, r.end1, r.begin2, r.end2, r.out);
 }
};

template<typename Iterator>
void ParallelMerge(Iterator begin1, Iterator end1, Iterator begin2,
Iterator end2, Iterator out) {
 parallel_for(
ParallelMergeRange<Iterator>(begin1,end1,begin2,end2,out),
 ParallelMergeBody<Iterator>());
}

Intel(R) Threading Building Blocks

 Document Number 315415-001US 24

Because the algorithm moves many locations, it tends to be bandwidth limited.
Speedup varies, depending upon the system.

3.4.1 Using the Partitioner Preview Feature

Summary
Template function performs parallel iteration over a range of values, with the splitting
of the range guided by the Partitioner parameter.

Syntax
template<typename Range, typename Body, typename Partitioner>
void parallel_for (const Range& range, const Body& body, const
Partitioner &partitioner);

Header
#include "tbb/parallel_for.h"

Description
A parallel_for<Range,Body,Partitioner> represents parallel execution of Body
over each value in Range. Type Range must model the Range concept (465H557H3.2). The body
must model the requirements in 466H558HTable 7. Type Partitioner must model the
Partitioner concept (559H3.3).

Example
This example shows a simple use of the Partitioner concept with a parallel_for. The
code shown below is an extension of the simple example presented in the previous
subsection. An auto_partitioner is used to guide the splitting of the range.
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Average {
 float* input;
 float* output;
 void operator()(const blocked_range<int>& range) const {
 for(int i=range.begin(); i!=range.end(); ++i)
 output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.0f);
 }
};

// Note: The input must be padded such that input[-1] and input[n]
// can be used to calculate the first and last output values.
void ParallelAverage(float* output, float* input, size_t n) {
 Average avg;
 avg.input = input;
 avg.output = output;

Algorithms

 25

 parallel_for(blocked_range<int>(0, n), avg, auto_partitioner());

Two important changes should be noted: (1) the call to parallel_for takes a third
argument, an auto_partitioner object, and (2) the blocked_range constructor is
not provided with a grainsize parameter.

In addition to the constructors described in Sections 560H3.2.1 and 561H3.2.2, the
blocked_range and blocked_range2d template classes now define additional
constructors that initialize all grainsize parameters to 1. In both of these classes, the
grainsize is used to designate a size above which a range is considered to be divisible.

562HTable 8 provides guidance for selecting between the simple_partitioner and
auto_partitioner classes.

 Table 8: Guidance for Selecting a Partitioner

Partitioner Type Discussion

simple_partitioner Recursively splits a range until it is no longer divisible.
The Range::is_divisible function is wholly
responsible for deciding when recursive splitting halts.
When used with classes such as blocked_range and
blocked_range2d, the selection of an appropriate
grainsize is therefore critical to allow concurrency while
limiting overheads (see the discussion in Section 563H3.2.1).

auto_partitioner Guides splitting decisions based on the work stealing
behavior of the task scheduler. When used with classes
such as blocked_range and blocked_range2d, the
selection of an appropriate grainsize is less important.
Subranges that are larger than the grain size are used
unless load imbalances are detected. Therefore
acceptable performance may often be achieved by
simply using the default grain size of 1.

TIP: Ranges larger than grain size may be passed to the body when using an
auto_partitioner. The body should not therefore use the value of grain size as an
upper bound on the size of the range (for allocating temporary storage for example).

3.5 parallel_reduce<Range,Body> Template
Function
Summary
Computes reduction over a range.

Syntax
template<typename Range, typename Body>
 void parallel_reduce(const Range& range, Body& body);

Intel(R) Threading Building Blocks

 Document Number 315415-001US 26

Header
#include "tbb/parallel_reduce.h"

Description
A parallel_reduce<Range,Body> performs parallel reduction of Body over each value
in Range. Type Range must model the Range concept (468H564H3.2). The body must model the
requirements in 469H565HTable 9.

Table 9: Requirements for parallel_reduce Body

Pseudo-Signature Semantics

Body::Body(Body&, split); Splitting constructor (470H566H3.1). Must be
able to run concurrently with
operator() and method join.

Body::~Body() Destructor

void Body::operator()(Range& range); Accumulate result for subrange

void Body::join(Body& rhs); Join results. The result in rhs should be
merged into the result of this.

A parallel_reduce recursively splits the range into subranges to the point such that
is_divisible() is false for each subrange. A parallel_reduce uses the splitting
constructor to make one or more copies of the body for each thread. It may copy a
body while the body’s operator() or method join runs concurrently. You are
responsible for ensuring the safety of such concurrency. In typical usage, the safety
requires no extra effort.

When worker threads are available (471H567H8.2.1), parallel_reduce invokes the splitting
constructor for the body. For each such split of the body, it invokes method join in
order to merge the results from the bodies. Define join to update this to represent
the accumulated result for this and rhs. The reduction operation should be associative,
but does not have to be commutative. For a noncommutative operation op,
“left.join(right)” should update left to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily so. 472H568HFigure 1
diagrams a sample execution of parallel_reduce. The root represents the original
body b0 being applied to the half-open interval [0,20). The range is recursively split at
each level into two subranges. The grain size for the example is 5, which yields four
leaf ranges. The slash marks (/) denote where copies (b1 and b2) of the body were
created by the body splitting constructor. Bodies b0 and b1 each evaluate one leaf.
Body b2 evaluates leaf [10,15) and [15,20), in that order. On the way back up the
tree, parallel_reduce invokes b0.join(b1) and b0.join(b2) to merge the results of the
leaves.

Algorithms

 27

b0 [0,20)

b0 [0,10) b2 [10,20)

b0 [0,5) b1 [5,10) b2 [10,15) b2 [15,20)

Figure 1: Example execution of parallel_reduce over blocked_range<int>(0,20,5)

473H569HFigure 1 shows only one possible execution. Other valid executions include splitting b2
into b2 and b3, or doing no splitting at all. With no splitting, b0 evaluates each leaf in
left to right order, with no calls to join. A given body always evaluates one or more
consecutive subranges in left to right order. For example, in Figure 1, body b2 is
guaranteed to evaluate [10,15) before [15,20). You may rely on the consecutive left
to right property for a given instance of a body, but must not rely on a particular
choice of body splitting. parallel_reduce makes the choice of body splitting
nondeterministically.

When no worker threads are available, parallel_reduce executes sequentially from
left to right in the same sense as for parallel_for (474H570H3.4). Sequential execution never
invokes the splitting constructor or method join.

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces,
then the space complexity is O(P log(N)), where N is the size of the range and P is the
number of threads.

Example
The following code sums the values in an array.
#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Sum {
 float value;
 Sum() : value(0) {}
 Sum(Sum& s, split) {value = 0;}
 void operator()(const blocked_range<float*>& range) {
 float temp = value;
 for(float* a=range.begin(); a!=range.end(); ++a) {
 temp += *a;
 }
 value = temp;
 }
 void join(Sum& rhs) {value += rhs.value;}
};

Intel(R) Threading Building Blocks

 Document Number 315415-001US 28

float ParallelSum(float array[], size_t n) {
 Sum total;
 parallel_reduce(blocked_range<float*>(array, array+n, 1000),
 total);
 return total.value;
}

The example generalizes to reduction for any associative operation op as follows:

• Replace occurrences of 0 with the identity element for op

• Replace occurrences of += with op= or its logical equivalent.

• Change the name Sum to something more appropriate for op.

The operation may be noncommutative. For example, op could be matrix
multiplication.

3.5.1 Using the Partitioner Preview Feature

Summary
Computes reduction over a range, with the splitting of the range guided by the
Partitioner parameter.

Syntax
template<typename Range, typename Body, typename Partitioner>
 void parallel_reduce(const Range& range, Body& body,
 Partitioner &partitioner);

Header
#include "tbb/parallel_reduce.h"

Description
A parallel_reduce<Range,Body> performs parallel reduction of Body over each value
in Range. Type Range must model the Range concept (468H571H3.2). The body must model the
requirements in 469H572HTable 9. Type Partitioner must model the Partitioner concept (573H3.3).

Example
The following code extends the example the previous section by using an
auto_partitioner.
#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Sum {
 float value;
 Sum() : value(0) {}
 Sum(Sum& s, split) {value = 0;}
 void operator()(const blocked_range<float*>& range) {

Algorithms

 29

 float temp = value;
 for(float* a=range.begin(); a!=range.end(); ++a) {
 temp += *a;
 }
 value = temp;
 }
 void join(Sum& rhs) {value += rhs.value;}
};

float ParallelSum(float array[], size_t n) {
 Sum total;
 parallel_reduce(blocked_range<float*>(array, array+n),
 total, auto_partitioner());
 return total.value;
}

Two important changes should be noted: (1) the call to parallel_reduce takes a
third argument, an auto_partitioner object, and (2) the blocked_range constructor
is not provided with a grainsize parameter. As discussed in Section 574H3.4.1, the
blocked_range supports an additional constructor that sets the grainsize to 1 by
default.

575HTable 8 provides guidance for selecting between the simple_partitioner and
auto_partitioner classes.

3.6 parallel_scan<Range,Body> Template
Function
Summary
Template function that computes parallel prefix.

Syntax
template<typename Range, typename Body>
 void parallel_scan(const Range& range, Body& body);

Header
#include "tbb/parallel_scan.h"

Description
A parallel_scan<Range,Body> computes a parallel prefix, also known as parallel
scan. This computation is an advanced concept in parallel computing that is
sometimes useful in scenarios that appear to have inherently serial dependences.

A mathematical definition of the parallel prefix is as follows. Let ⊕ be an associative
operation ⊕ with left-identity element id⊕. The parallel prefix of ⊕ over a sequence x0,
x1, ...xn-1 is a sequence y0, y1, y2, ...yn-1 where:

• y0 = id⊕ ⊕ x0

Intel(R) Threading Building Blocks

 Document Number 315415-001US 30

• yi = yi−1 ⊕ xi

For example, if ⊕ is addition, the parallel prefix corresponds a running sum. A serial
implementation of parallel prefix is:

T temp = id⊕;
for(int i=1; i<=n; ++i) {

 temp = temp ⊕ x[i];
 y[i] = temp;
}

Parallel prefix performs this in parallel by reassociating the application of ⊕ and using
two passes. It may invoke ⊕ up to twice as many times as the serial prefix algorithm.
Given the right grain size and sufficient hardware threads, it can out perform the
serial prefix because even though it does more work, it can distribute the work across
more than one hardware thread.

TIP: Because parallel_scan needs two passes, systems with only two hardware threads
tend to exhibit small speedup. parallel_scan is best considered a glimpse of a
technique for future systems with more than two cores. It is nonetheless of interest
because it shows how a problem that appears inherently sequential can be
parallelized.

The template parallel_scan<Range,Body> implements parallel prefix generically. It
requires the signatures described in 475H576HTable 10.

Table 10: parallel_scan Requirements

Pseudo-Signature Semantics

void Body::operator()(const Range& r, pre_scan_tag) Preprocess iterations for range r.

void Body::operator()(const Range& r, final_scan_tag) Do final processing for iterations
of range r.

Body::Body(Body& b, split) Split b so that this and b can
accumulate separately.

void Body::reverse_join(Body& a) Merge preprocessing state of a
into this, where a was created
earlier from b by b's splitting
constructor.

void Body::assign(Body& b) Assign state of b to this.

The following code demonstrates how these signatures must be implemented to use
parallel_scan in a way similar to the sequential example.

using namespace tbb;

class Body {
 T sum;
 T* const y;
 const T* const x;

Algorithms

 31

public:
 Body(T y_[], const T x_[]) : sum(0), x(x_), y(y_) {}
 T get_sum() const {return sum;}

 template<typename Tag>
 void operator()(const blocked_range<int>& r, Tag) {
 T temp = sum;
 for(int i=r.begin(); i<r.end(); ++i) {

 temp = temp ⊕ x[i];
 if(Tag::is_final_scan())
 y[i] = temp;
 }
 sum = temp;
 }

 Body(Body& b, split) : x(b.x), y(b.y), sum(id⊕) {}

 void reverse_join(Body& a) { sum = a.sum ⊕ sum;}
 void assign(Body& b) {sum = b.sum;}
};

float DoParallelScan(T y[], const T x[], int n) {
 Body body(y,x);
 parallel_scan(blocked_range<int>(0,n,1000), body);
 return body.get_sum();
}

The definition of operator() demonstrates typical patterns when using
parallel_scan.

• A single template defines both versions. Doing so is not required, but usually saves
coding effort, because the two versions are usually similar. The library defines static
method is_final_scan() to enable differentiation between the versions.

• The prescan variant computes the ⊕ reduction, but does not update y. The prescan
is used by parallel_scan to generate look-ahead partial reductions.

• The final scan variant computes the ⊕ reduction and updates y.

The operation reverse_join is similar to the operation join used by
parallel_reduce, except that the arguments are reversed. That is, this is the right
argument of ⊕. Template function parallel_scan decides if and when to generate
parallel work. It is thus crucial that ⊕ is associative and that the methods of Body
faithfully represent it. Operations such as floating-point addition that are somewhat
associative can be used, with the understanding that the results may be rounded
differently depending upon the association used by parallel_scan. The reassociation
may differ between runs even on the same machine. However, if there are no worker
threads available, execution associates identically to the serial form shown at the
beginning of this section.

3.6.1 pre_scan_tag and final_scan_tag Classes

Summary
Types that distinguish the phases of parallel_scan..

Intel(R) Threading Building Blocks

 Document Number 315415-001US 32

Syntax
 struct pre_scan_tag;
 struct final_scan_tag;

Header
#include "tbb/parallel_scan.h"

Description
Types pre_scan_tag and final_scan_tag are dummy types used in conjunction with
parallel_scan. See the example in Section 577H3.6 for how they are used in the
signature of operator().

Members
namespace tbb {

 struct pre_scan_tag {
 static bool is_final_scan();
 };

 struct final_scan_tag {
 static bool is_final_scan();
 };

}

3.6.1.1 bool is_final_scan()

Returns
True for a final_scan_tag, otherwise false.

3.6.2 Using the Partitioner Preview Feature

Summary
Template function that computes parallel prefix, with the splitting of the range guided
by the Partitioner parameter.

Syntax
template<typename Range, typename Body, typename Partitioner>
 void parallel_scan(const Range& range, Body& body,
 Partitioner &partitioner);

Header
#include "tbb/parallel_scan.h"

Algorithms

 33

Description
A parallel_scan<Range,Body,Partitioner> computes a parallel prefix, also known
as parallel scan (see Section 578H3.6 for a general description of parallel prefix).

Example
The following code extends the example the previous section by using an
auto_partitioner.
using namespace tbb;

class Body {
 T sum;
 T* const y;
 const T* const x;
public:
 Body(T y_[], const T x_[]) : sum(0), x(x_), y(y_) {}
 T get_sum() const {return sum;}

 template<typename Tag>
 void operator()(const blocked_range<int>& r, Tag) {
 T temp = sum;
 for(int i=r.begin(); i<r.end(); ++i) {

 temp = temp ⊕ x[i];
 if(Tag::is_final_scan())
 y[i] = temp;
 }
 sum = temp;
 }

 Body(Body& b, split) : x(b.x), y(b.y), sum(id⊕) {}

 void reverse_join(Body& a) { sum = a.sum ⊕ sum;}
 void assign(Body& b) {sum = b.sum;}
};

float DoParallelScan(T y[], const T x[], int n) {
 Body body(y,x);
 parallel_scan(blocked_range<int>(0,n), body, auto_partitioner());
 return body.get_sum();
}

Two important changes should be noted: (1) the call to parallel_scan takes a third
argument, an auto_partitioner object, and (2) the blocked_range constructor is
not provided with a grainsize parameter. As discussed in Section 579H3.4.1, the
blocked_range supports an additional constructor that sets the grainsize to 1 by
default.

580HTable 8 provides guidance for selecting between the simple_partitioner and
auto_partitioner classes.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 34

3.7 parallel_while Template Class
Summary
Template class that processes work items.

Syntax
template<typename Body>
class parallel_while;

Header
#include "tbb/parallel_while.h"

Description
A parallel_while<Body> performs parallel iteration over items. The processing to be
performed on each item is defined by a function object of type Body. The items are
specified in two ways:

1. A stream of items.

2. Additional items that are added while the stream is being processed.

477H581HTable 11 shows the requirements on the stream and body.

Table 11: parallel_while Requirements for Stream S and Body B

Pseudo-Signature Semantics

bool S::pop_if_present(B::argument_type& item) Get next stream item.
parallel_while does not concurrently
invoke the method on the same this.

B::operator()(B::argument_type& item) const Process item. parallel_while may
concurrently invoke the operator for the
same this but different item.

B::argument_type() Default constructor

B::argument_type(const B::argument_type&) Copy constructor

~B::argument_type() Destructor

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B. A concurrent_queue (582H4.2) models the requirements
for S.

TIP: To achieve speedup, the grain size of B::operator() needs to be on the order of at
least ~10,000 instructions. Otherwise, the internal overheads of parallel_while
swamp the useful work. The parallelism in parallel_while is not scalable if all the
items come from the input stream. To achieve scaling, design your algorithm such
that method add often adds more than one piece of work.

Algorithms

 35

Members
namespace tbb {
 template<typename Body>
 class parallel_while {
 public:
 parallel_while();
 ~parallel_while();

 typedef typename Body::argument_type value_type;

 template<typename Stream>
 void run(Stream& stream, const Body& body);

 void add(const value_type& item);
 };
}

3.7.1 parallel_while<Body>()

Effects
Construct a parallel_while that is not yet running.

3.7.2 ~parallel_while<Body>()

Effects
Destroy a parallel_while.

3.7.3 Template <typename Stream> void run(
Stream& stream, const Body& body)

Effects
Apply body to each item in stream and any other items that are added by method add.
Terminates when both of the following conditions become true:

1. stream.pop_if_present returned false

2. body(x) returned for all items x generated from the stream or method add.

3.7.4 void add(const value_type& item)

Requirements
Must be called from a call to body.operator() created by parallel_while.
Otherwise, the termination semantics of method run are undefined.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 36

Effects
Add item to collection of items to be processed.

3.8 pipeline Class
Summary
Abstract base class that performs pipelined execution.

Syntax
class pipeline;

Header
#include "tbb/pipeline.h"

Description
A pipeline represents pipelined application of a series of filters to a stream of items.
Each filter is parallel or serial. See class filter (583H3.8.6) for details.

A pipeline contains one or more filters, denoted here as fi , where i denotes the
position of the filter in the pipeline. The pipeline starts with filter f0, followed by f1, f2,
etc. The following steps describe how to use class pipeline.

1. Derive classes fi from filter. The constructor for fi specifies whether it is serial or
not via the boolean parameter to the constructor for base class filter (480H584H3.8.6.1).

2. Override virtual method filter::operator() to perform the filter’s action on the
item, and return a pointer to the item to be processed by the next filter. The first
filter f0 generates the stream. It should return NULL if there are no more items in
the stream. The return value for the last filter is ignored.

3. Create an instance of class pipeline.

4. Create instances of the filters fi and add them to the pipeline, in order from first
to last. An instance of a filter can be added at most once to a pipeline. A filter
should never be a member of more than one pipeline at a time.

5. Call method pipeline::run. The parameter max_number_of_live_tokens puts an
upper bound on the number of stages that will be run concurrently. Higher values
may increase concurrency at the expense of more memory consumption from
having more items in flight. See the Tutorial, in the section on class pipeline, for
more about effective use of max_number_of_live_tokens.

Given sufficient processors and tokens, the throughput of the pipeline is limited to the
throughput of the slowest serial filter.

A filter must be removed from the pipeline before destroying it. You can
accomplish this by destroying the pipeline first, or calling pipeline::clear().

Members
namespace tbb {

Algorithms

 37

 class pipeline {
 public:
 pipeline();
 virtual ~pipeline();
 void add_filter(filter& f);
 void run(size_t max_number_of_live_tokens);
 void clear();
 };
}

3.8.1 pipeline()

Effects
Constructs pipeline with no filters.

3.8.2 ~pipeline()

Effects
Remove all filters from the pipeline and destroy the pipeline

3.8.3 void add_filter(filter& f)

Effects
Append filter f to sequence of filters in the pipeline. The filter f must not already be in
a pipeline.

3.8.4 void run(size_t max_number_of_live_tokens)

Effects
Run the pipeline until the first filter returns NULL and each subsequent filter has
processed all items from its predecessor. The number of items processed in parallel
depends upon the structure of the pipeline and number of available threads. At most
max_number_of_live_tokens are in flight at any given time.

3.8.5 void clear()

Effects
Remove all filters from the pipeline.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 38

3.8.6 filter Class

Summary
 Abstract base class that represents a filter in a pipeline.

Syntax
class filter;

Header
#include "tbb/pipeline.h"

Description
A filter represents a filter in a pipeline (585H3.8). A filter is parallel or serial. A parallel
filter can process multiple items in parallel and possibly out of order. A serial filter
processes items one at a time in the original stream order. Parallel filters are preferred
when practical because they permit parallel speedup. Whether the filter is serial or
parallel is specified by an argument to the constructor.

Class filter should only be used in conjunction with class pipeline (586H3.8).

Members
namespace tbb {
 class filter {
 protected:
 filter(bool is_serial);
 public:
 bool is_serial() const;
 virtual void* operator()(void* item) = 0;
 virtual ~filter();
 };
}

Example
See the example filters MyInputFilter, MyTransformFilter, and MyOutputFilter in
the tutorial (doc/Tutorial.pdf).

3.8.6.1 filter(bool is_serial)

Effects
Constructs a serial filter if is_serial is true, or a parallel filter if is_serial is false.

3.8.6.2 ~filter()

Effects
Destroys the filter. The filter must not be in a pipeline, otherwise memory might be
corrupted. The debug version of the library raises an assertion failure if the filter is in

Algorithms

 39

a pipeline. Always clear or destroy the containing pipeline first. A way to remember
this is that a pipeline acts like a container of Filters, and a C++ container usually
does not allow destroying an item while it is in the container.

3.8.6.3 bool is_serial() const

Returns
True if filter is serial; false if filter is parallel.

3.8.6.4 virtual void* operator()(void * item)

Effects
The derived filter should override this method to process an item and return pointer to
item to be processed by the next filter. The item parameter is NULL for the first
filter in the pipeline.

Returns
The first filter in a pipeline should return NULL if there are no more items to process.
The result of the last filter in a pipeline is ignored.

3.9 parallel_sort<RandomAccessIterator,
Compare> Template Function
Summary
Sort a sequence.

Syntax
template<typename RandomAccessIterator>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end);

template<typename RandomAccessIterator, typename Compare>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end,
 const Compare& comp);

Header
#include "tbb/parallel_sort.h"

Description
Performs an unstable sort of sequence [begin1, end1). An unstable sort might not
preserve the relative ordering of elements with equal keys. The sort is deterministic;
sorting the same sequence will produce the same result each time. The requirements
on the iterator and sequence are the same as for std::sort. Specifically,

Intel(R) Threading Building Blocks

 Document Number 315415-001US 40

RandomAccessIterator must be a random access iterator, and its value type T must
model the requirements in 483H587HTable 12.

Table 12: Requirements on value type T of RandomAccessIterator of for parallel_sort

Pseudo-Signature Semantics

void swap(T& x, T& y) Swaps x and y

bool Compare::operator()(const T& x, const T& y) True if x comes before y;
false otherwise

A call parallel_sort(i,j,comp) sorts the sequence [i,j) using the second
argument comp to determine relative orderings. If comp(x,y) returns true then x
appears before y in the sorted sequence.

A call parallel_sort(i,j) is equivalent to parallel_sort(i,j,std::less<T>).

Complexity
parallel_sort is comparison sort with an average time complexity of O(N log (N)),
where N is the number of elements in the sequence. When worker threads are
available (484H588H8.2.1), parallel_sort creates subtasks that may be executed
concurrently, leading to improved execution times.

Example
The following example shows two sorts. The sort of array a uses the default
comparison, which sorts in ascending order. The sort of array b sorts in descending
order by using std::greater<float> for comparison.
#include "tbb/parallel_sort.h"
#include <math.h>

using namespace tbb;

const int N = 100000;
float a[N];
float b[N];

void SortExample() {
 for(int i = 0; i < N; i++) {
 a[i] = sin((double)i);
 b[i] = cos((double)i);
 }
 parallel_sort(a, a + N);
 parallel_sort(b, b + N, std::greater<float>());
}

Containers

 41

4 Containers
The container classes permit multiple threads to simultaneously invoke certain
methods on the same container.

Unlike STL, the Intel® Threading Building Blocks containers are not templated with
respect to an allocator argument. The library retains control over memory
allocation.

4.1 concurrent_hash_map<Key,T,HashCompare>
Template Class
Summary
Template class for associative container with concurrent access.

Syntax
template<typename Key, typename T, typename HashCompare> class
concurrent_hash_map;

Header
#include "tbb/concurrent_hash_map.h"

Description
A concurrent_hash_map maps keys to values in a way that permits multiple threads
to concurrently access values. The keys are unordered. The interface resembles
typical STL associative containers, but with some differences critical to supporting
concurrent access.

Types Key and T must model the CopyConstructible concept (485H589H2.2.3).

Type HashCompare specifies how keys are hashed and compared for equality. It must
model the HashCompare concept in 590HTable 13.

Table 13: HashCompare Concept

Pseudo-Signature Semantics

HashCompare::HashCompare(const HashCompare &) Copy constructor

HashCompare::~HashCompare () Destructor

bool HashCompare::equal(const Key& j, const Key& k) const True if keys are equal

size_t HashCompare::hash(const Key& k) Hashcode for key

Intel(R) Threading Building Blocks

 Document Number 315415-001US 42

CAUTION: As for most hash tables, if two keys are equal, they must hash to the
same hash code. That is for a given HashCompare h and any two keys j and k, the
following assertion must hold: “!h.equal(j,k) || h.hash(j)==h.hash(k)”. The
importance of this property is the reason that concurrent_hash_map makes key
equality and hashing travel together in a single object instead of being separate
objects.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map {
 public:
 // types
 typedef Key key_type;
 typedef T mapped_type;
 typedef std::pair<const Key,T> value_type;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 // whole-table operations
 concurrent_hash_map();
 concurrent_hash_map(const concurrent_hash_map&);
 ~concurrent_hash_map();
 concurrent_hash_map operator=(const concurrent_hash_map&);
 void clear();

 // concurrent access
 class const_accessor;
 class accessor;

 // concurrent operations on a table
 bool find(const_accessor& result, const Key& key) const;
 bool find(accessor& result, const Key& key);
 bool insert(const_accessor& result, const Key& key);
 bool insert(accessor& result, const Key& key);
 bool erase(const Key& key);

 // parallel iteration
 typedef implementation defined range_type;
 typedef implementation defined const_range_type;
 range_type range(size_t grainsize);
 const_range_type range(size_t grainsize) const;

 // Capacity
 size_type size() const;
 bool empty() const;
 size_type max_size() const;

 // Iterators
 typedef implementation defined iterator;
 typedef implementation defined const_iterator;
 iterator begin();
 iterator end();

Containers

 43

 const_iterator begin() const;
 const_iterator end() const;
 };
}

4.1.1 Whole Table Operations
These operations affect an entire table. Do not concurrently invoke them on the same
table.

4.1.1.1 concurrent_hash_map()

Effects
Construct empty table.

4.1.1.2 concurrent_hash_map(const concurrent_hash_map& table)

Effects
Copy a table. The table being copied may have map operations running on it
concurrently.

4.1.1.3 ~concurrent_hash_map()

Effects
Remove all items from the table and destroy it. This method is not safe to execute
concurrently with other methods on the same concurrent_hash_map.

4.1.1.4 concurrent_hash_map& operator= (concurrent_hash_map& source)

Effects
If source and destination (this) table are distinct, clear the destination table and copy
all key-value pairs from the source table to the destination table. Otherwise, do
nothing.

Returns
Reference to the destination table.

4.1.1.5 void clear()

Effects
Erase all key-value pairs from the table.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 44

4.1.2 Concurrent Access
Member classes const_accessor and accessor are called accessors. Accessors allow
multiple threads to concurrently access pairs in a shared concurrent_hash_map. An
accessor acts as a smart pointer to a pair in a concurrent_hash_map. It holds an
implicit lock on a pair until the instance is destroyed or method release is called on
the accessor.

Classes const_accessor and accessor differ in the kind of access that they permit.

Table 14: Differences Between const_accessor and accessor

Class value_type Implied Lock on pair

const_accessor const std::pair<const Key,T> Reader lock – permits shared
access with other readers

accessor std::pair<const Key,T> Writer lock – blocks access
by other threads

Accessors cannot be assigned or copy-constructed, because allowing such would
greatly complicate the locking semantics.

4.1.2.1 const_accessor

Summary
Provides read-only access to a pair in a concurrent_hash_map.

Syntax
 template<typename Key, typename T, typename HashCompare> class
concurrent_hash_map<Key,T,HashCompare>::const_accessor;

Header
#include "tbb/concurrent_hash_map.h"

Description
A const_accessor permits read-only access to a key-value pair in a
concurrent_hash_map.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map<Key,T,HashCompare>::const_accessor {
 public:
 // types
 typedef const std::pair<const Key,T> value_type;

 // construction and destruction
 const_accessor();
 ~const_accessor();

Containers

 45

 // inspection
 bool empty() const;
 const value_type& operator*() const;
 const value_type* operator->() const;

 // early release
 void release();
 };
}

4.1.2.1.1 bool empty() const

Returns
True if instance points to nothing; false if instance points to a key-value pair.

4.1.2.1.2 void release()

Effects
If !empty(), release the implied lock on the pair, and set instance to point to nothing.
Otherwise do nothing.

4.1.2.1.3 const value_type& operator*() const

Effects
Raise assertion failure if TBB_DO_ASSERT (487H591H2.6.1) is defined as nonzero.

Returns
Const reference to key-value pair.

4.1.2.1.4 const value_type* operator->() const

Returns
&operator*()

4.1.2.1.5 const_accessor()

Effects
Construct const_accessor that points to nothing.

4.1.2.1.6 ~const_accessor

Effects
If pointing to key-value pair, release the implied lock on the pair.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 46

4.1.2.2 accessor

Summary
 Class that provides read and write access to a pair in a concurrent_hash_map.

Syntax
template<typename Key, typename T, typename HashCompare>
class concurrent_hash_map<Key,T,HashCompare>::accessor;

Header
#include "tbb/concurrent_hash_map.h"

Description
An accessor permits read and write access to a key-value pair in a
concurrent_hash_map. It is derived from a const_accessor, and thus can be
implicitly cast to a const_accessor.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map<Key,T,HashCompare>::accessor:
 concurrent_hash_map<Key,T,HashCompare>::const_accessor {
 public:
 typedef std::pair<const Key,T> value_type;
 value_type& operator*() const;
 value_type* operator->() const;
 };
}

4.1.2.2.1 value_type& operator*() const

Effects
Raise assertion failure if TBB_DO_ASSERT (488H592H2.6.1) is defined as nonzero.

Returns
Reference to key-value pair.

4.1.2.2.2 value_type* operator->() const

Returns
&operator*()

4.1.3 Concurrent Operations
The operations find, insert, and erase are the only operations that may be
concurrently invoked on the same concurrent_hash_map. These operations search the

Containers

 47

table for a key-value pair that matches a given key. The find and insert methods each
have two variants. One takes a const_accessor argument and provides read-only
access to the desired key-value pair. The other takes an accessor argument and
provides write access.

TIP: If the nonconst variant succeeds in finding the key, the consequent write access
blocks any other thread from accessing the key until the accessor object is destroyed.
Where possible, use the const variant to improve concurrency.

The result of the map operations is true if the operation succeeds.

4.1.3.1 bool find(const_accessor& result, const Key& key) const

Effects
Search table for pair with given key. If key is found, set result to provide read-only
access to the matching pair.

Returns
True if key was found; false if key was not found.

4.1.3.2 bool find(accessor& result, const Key& key)

Effects
Search table for pair with given key. If key is found, set result to provide write access
to the matching pair

Returns
True if key was found; false if key was not found.

4.1.3.3 bool insert(const_accessor& result, const Key& key)

Effects
Search table for pair with given key. If not present, insert new pair into table. The
new pair is initialized with pair(key,T()). Set result to provide read-only access to
the matching pair.

Returns
True if new pair was inserted; false if key is already in the map.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 48

4.1.3.4 bool insert(accessor& result, const Key& key)

Effects
Search table for pair with given key. If not present, insert new pair into table. The
new pair is initialized with pair(key,T()). Set result to provide write access to the
matching pair.

Returns
True if new pair was inserted; false if key is already in the map.

4.1.3.5 bool erase(const Key& key)

Effects
Search table for pair with given key. Remove the matching pair if it exists.

Returns
True if pair was removed; false if key was not in the map.

4.1.4 Parallel Iteration
Types const_range_type and range_type model the Range concept (489H593H3.2) and provide
methods to access the bounds of the range as shown in 490H594HTable 15. The types differ only
in that the bounds for a const_range_type are of type const_iterator, whereas the
bounds for a range_type are of type iterator.

Use the range types in conjunction with parallel_for (491H595H3.4), parallel_reduce (492H596H3.5),
and parallel_scan (597H3.6) to iterate over pairs in a concurrent_hash_map.

Table 15: Concept for concurrent_hash_map Range R (In Addition to 598HTable 4)

Pseudo-Signature Semantics

R::iterator R::begin() const First item in range

R::iterator R::end() const One past last item in range

4.1.4.1 const_range_type range(size_t grainsize) const

Effects
Construct a const_range_type representing all keys in the table. The parameter
grainsize is in units of hash table slots. Each slot typically has on average about one
key-value pair.

Returns
const_range_type object for the table.

Containers

 49

4.1.4.2 range_type range(size_t grainsize)

Returns
range_type object for the table.

4.1.5 Capacity

4.1.5.1 size_type size() const

Returns
Number of key-value pairs in the table.

NOTE: This method takes constant time, but is slower than for most STL containers.

4.1.5.2 bool empty() const

Returns
size()==0.

NOTE: This method takes constant time, but is slower than for most STL containers.

4.1.5.3 size_type max_size() const

Returns
Inclusive upper bound on number of key-value pairs that the table can hold.

4.1.6 Iterators
Template class concurrent_hash_map supports forward iterators; that is, iterators
that can advance only forwards across the table. Reverse iterators are not supported.

4.1.6.1 iterator begin()

Returns
iterator pointing to beginning of key-value sequence.

4.1.6.2 iterator end()

Returns
iterator pointing to end of key-value sequence.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 50

4.1.6.3 const_iterator begin() const

Returns
const_iterator with pointing to beginning of key-value sequence.

4.1.6.4 const_iterator end() const

Returns
const_iterator pointing to end of key-value sequence.

4.2 concurrent_queue<T> Template Class
Summary
Template class for queue with concurrent operations.

Syntax
template<typename T> class concurrent_queue;

Header
#include "tbb/concurrent_queue.h"

Description
A concurrent_queue is a bounded first-in first-out data structure that permits
multiple threads to concurrently push and pop items. The default bounds are large
enough to make the queue practically unbounded, subject to memory limitations on
the target machine.

The interface is different than for an STL std::queue because concurrent_queue is
designed for concurrent operations.

Table 16: Differences Between STL queue and Intel® Threading Building Blocks
concurrent_queue

Feature STL std::queue concurrent_queue

Access to front and
back

Methods front and back Not present. They would be unsafe
while concurrent operations are in
progress.

size_type unsigned integral type signed integral type

size() Returns number of items in
queue

Returns number of pushes minus
the number of pops. Waiting push
or pop operations are included in
the difference. The size() is
negative if there are pops waiting
for corresponding pushes.

Containers

 51

Copy and pop item
from queue q.

x=q.front(); q.pop() q.pop(x)

Copy and pop item
unless queue q is
empty.

bool b=!q.empty();
if(b) {
 x=q.front();
 q.pop();
}

bool b = q.pop_if_present(x)

pop of empty queue not allowed waits until item becomes available

CAUTION: If the push or pop operations block, they block using user-space locks, which can
waste processor resources when the blocking time is long. Class concurrent_queue is
designed for situations where the blocking time is typically short relative to the rest of
the application time.

Members
namespace tbb {
 template<typename T>
 class concurrent_queue {
 public:
 // types
 typedef T value_type;
 typedef T& reference;
 typedef const T& const_reference;
 typedef std::ptrdiff_t size_type;
 typedef std::ptrdiff_t difference_type;

 concurrent_queue() {}
 ~concurrent_queue();

 void push(const T& source);
 void pop(T& destination);
 bool pop_if_present(T& destination);
 size_type size() const {return internal_size();}
 bool empty() const;
 size_t capacity();
 void set_capacity(size_type capacity);

 typedef implementation-defined iterator;
 typedef implementation-defined const_iterator;

 // iterators (these are slow an intended only for debugging)
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;
 };
}

Intel(R) Threading Building Blocks

 Document Number 315415-001US 52

4.2.1 concurrent_queue()

Effects
Construct empty queue.

4.2.2 ~concurrent_queue()

Effects
Destroy all items in the queue.

4.2.3 void push(const T& source)

Effects
Wait until size()<capacity, and then push copy of source onto back of the queue.

4.2.4 void pop(T& destination)

Effects
Wait until a value becomes available and pop it from the queue. Assign it to
destination. Destroy the original value.

4.2.5 bool pop_if_present(T& destination)

Effects
If value is available, pop it from the queue, assign it to destination, and destroy the
original value. Otherwise do nothing.

Returns
True if value was popped; false otherwise.

4.2.6 size_type size() const

Returns
Number pushes minus number of pops. The result is negative if there are pop
operations waiting for corresponding pushes.

Containers

 53

4.2.7 bool empty() const

Returns
size()==0

4.2.8 size_type capacity()

Returns
Maximum number of values that the queue can hold.

4.2.9 void set_capacity(size_type capacity)

Effects
Set the maximum number of values that the queue can hold.

4.2.10 Iterators
A concurrent_queue provides limited iterator support that is intended solely to allow
programmers to inspect a queue during debugging. It provides iterator and
const_iterator types. Both follow the usual STL conventions for forward iterators. The
iteration order is from least recently pushed to most recently pushed. Modifying a
concurrent_queue invalidates any iterators that reference it.

CAUTION: The iterators are relatively slow. They should be used only for debugging.

Example
The following program builds a queue with the integers 0..9, and then dumps the
queue to standard output. Its overall effect is to print 0 1 2 3 4 5 6 7 8 9.
#include "tbb/concurrent_queue.h"
#include <iostream>

using namespace std;
using namespace tbb;

int main() {
 concurrent_queue<int> queue;
 for(int i=0; i<10; ++i)
 queue.push(i);
 for(concurrent_queue<int>::const_iterator i(queue.begin());
i!=queue.end(); ++i)
 cout << *i << " ";
 cout << endl;
 return 0;

}

Intel(R) Threading Building Blocks

 Document Number 315415-001US 54

4.2.10.1 iterator begin()

Returns
iterator pointing to beginning of the queue.

4.2.10.2 iterator end()

Returns
iterator pointing to end of the queue.

4.2.10.3 const_iterator begin() const

Returns
const_iterator with pointing to beginning of the queue.

4.2.10.4 const_iterator end() const

Returns
const_iterator pointing to end of the queue.

4.3 concurrent_vector
Summary
Template class for vector that can be concurrently grown and accessed.

Syntax
template<typename T> class concurrent_vector;

Header
#include "tbb/concurrent_vector.h"

Description
A concurrent_vector is a dynamically growable array for which it is safe to
simultaneously access elements in the vector while growing it. The index of the first
element is 0.

Members
namespace tbb {
 template<typename T>
 class concurrent_vector {
 public:
 typedef size_t size_type;

Containers

 55

 typedef T value_type;
 typedef ptrdiff_t difference_type;
 typedef T& reference;
 typedef const T& const_reference;

 // whole vector operations
 concurrent_vector() {}
 concurrent_vector(const concurrent_vector&);
 concurrent_vector& operator=(const concurrent_vector&);
 ~concurrent_vector();
 void clear();

 // concurrent operations
 size_type grow_by(size_type delta);
 void grow_to_at_least(size_type new_size);
 size_type push_back(const_reference value);
 reference operator[](size_type index);
 const_reference operator[](size_type index) const;

 // parallel iteration
 typedef implementation-defined iterator;
 typedef implementation-defined const_iterator;
 typedef generic_range_type<iterator> range_type;
 typedef generic_range_type<const_iterator> const_range_type;

 range_type range(size_t grainsize);
 const_range_type range(size_t grainsize) const;

 // capacity
 size_type size() const;
 bool empty() const;
 size_type capacity() const;
 void reserve(size_type n);
 size_type max_size() const;

 // STL support
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;

 typedef implementation-defined reverse_iterator;
 typedef implementation-defined const_reverse_iterator;
 iterator rbegin();
 iterator rend();
 const_iterator rbegin() const;
 const_iterator rend() const;
 };
}

4.3.1 Whole Vector Operations
These operations are not thread safe on the same instance.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 56

4.3.1.1 concurrent_vector()

Effects
Construct empty vector.

4.3.1.2 concurrent_vector(const concurrent_vector& src)

Effects
Construct copy of src.

4.3.1.3 concurrent_vector& operator=(const concurrent_vector& src)

Effects
Assign contents of src to *this.

Returns
Reference to left hand side.

4.3.1.4 ~concurrent_vector()

Effects
Erase all elements and destroy the vector.

4.3.1.5 void clear()

Effects
Erase all elements. Afterwards, size()==0.

4.3.2 Concurrent Operations
The methods described in this section safely execute on the same instance of a
concurrent_vector<T>.

4.3.2.1 size_type grow_by(size_type delta)

Effects
Atomically append delta elements to the end of the vector. The new elements are
initialized with T(), where T is the value_type of the vector.

Returns
Old size of the vector. If it returns k, then the new elements are at the half-open
index range [k..k+delta).

Containers

 57

4.3.2.2 void grow_to_at_least(size_type n)

Effects
Grow the vector until it has at least n elements. The new elements are initialized with
T(), where T is the value_type of the vector.

4.3.2.3 size_t push_back(const_reference value);

Effects
Atomically append copy of value to the end of the vector.

Returns
Index of the copy.

4.3.2.4 reference operator[](size_type index)

Returns
Reference to element with the specified index.

4.3.2.5 const_reference operator[](size_type index) const;

Returns
Const reference to element with the specified index.

4.3.3 Parallel Iteration
Types const_range_type and range_type model the Range concept (495H599H3.2) and provide
methods to access the bounds of the range as shown in 496H600HTable 15. The types differ only
in that the bounds for a const_range_type are of type const_iterator, whereas the
bounds for a range_type are of type iterator.

Use the range types in conjunction with parallel_for (497H601H3.4), parallel_reduce (498H602H3.5),
and parallel_scan (499H603H.3 6604H3.6) to iterate over pairs in a concurrent_vector.

Table 17: Concept for concurrent_vector Range R

Pseudo-Signature Semantics

R::iterator R::begin() const First item in range

R::iterator R::end() const One past last item in range

Intel(R) Threading Building Blocks

 Document Number 315415-001US 58

4.3.3.1 range_type range(size_t grainsize)

Returns
Range over entire concurrent_vector that permits read-write access.

4.3.3.2 const_range_type range(size_t grainsize) const

Returns
Range over entire concurrent_vector that permits read-only access.

4.3.4 Capacity

4.3.4.1 size_type size() const

Returns
Number of elements in the vector. The result may include elements that are under
construction by concurrent calls to methods grow_by (605H4.3.2.1) or grow_to_at_least
(606H4.3.2.2).

4.3.4.2 bool empty() const

Returns
size()==0.

4.3.4.3 size_type capacity() const

Returns
Maximum size to which vector can grow without having to allocate more memory.

NOTE: Unlike an STL vector, a concurrent_vector does not move existing elements if it has
to allocate more memory.

4.3.4.4 void reserve(size_type n)

Returns
Reserve space for at least n elements.

Throws
std::length_error if n>max_size().

Containers

 59

4.3.4.5 size_type max_size() const

Returns
Highest size vector that might be representable.

4.3.5 Iterators
Template class concurrent_vector<T> supports random access iterators as defined in
Section 24.1.4 of the ISO C++ Standard. Unlike a std::vector, the iterators are not
raw pointers. A concurrent_vector<T> meets the reversible container requirements
in Table 66 of the ISO C++ Standard.

4.3.5.1 iterator begin()

Returns
iterator pointing to beginning of the vector.

4.3.5.2 iterator end()

Returns
iterator pointing to end of the vector.

4.3.5.3 const_iterator begin() const

Returns
const_iterator with pointing to beginning of the vector.

4.3.5.4 const_iterator end() const

Returns
const_iterator pointing to end of the vector.

4.3.5.5 iterator rbegin()

Returns
const_reverse_iterator(end())

4.3.5.6 iterator rend()

Returns
const_reverse_iterator(begin())

Intel(R) Threading Building Blocks

 Document Number 315415-001US 60

4.3.5.7 const_reverse_iterator rbegin() const

Returns
const_reverse_iterator(end())

4.3.5.8 const_ reverse_iterator rend() const

Returns
const_reverse_iterator(begin())

Memory Allocation

 61

5 Memory Allocation
This section describes classes related to memory allocation.

5.1 Allocator Concept
The allocator concept for allocators in Intel® Threading Building Blocks is similar to
the "Allocator requirements" in Table 32 of the ISO C++ Standard, but with further
guarantees required by the ISO C++ Standard (Section 20.1.5 paragraph 4) for use
with ISO C++ containers. 500H607HTable 18 summarizes the allocator concept. Here, A and B
represent instances of the allocator class.

Table 18: Allocator Concept

Pseudo-Signature Semantics

typedef T* A::pointer Pointer to T

typedef const T* A::const_pointer Pointer to const T

typedef T& A::reference Reference to T

typedef const T& A::const_reference Reference to const T

typedef T A::value_type Type of value to be allocated

typedef size_t A::size_type Type for representing number of
values

typedef ptrdiff_t A::difference_type Type for representing pointer
difference

template<typename U> struct rebind {

 typedef A<U> A::other;

};

Rebind to a different type U

A() throw() Default constructor

A(const A&) throw() Copy constructor

template<typename U> A(const A&) Rebinding constructor

~A() throw() Destructor

T* A::address(T& x) const Take address

const T* A::const_address(const T& x)
const

Take const address

T* A::allocate(size_type n, void* hint=0) Allocate space for n values

void A::deallocate(T* p, size_t n) Deallocate n values

Intel(R) Threading Building Blocks

 Document Number 315415-001US 62

size_type A::max_size() const throw() Maximum plausible argument to
method allocate

void A::construct(T* p, const T& value) new(p) T(value)

void A::destroy(T* p) p->T::~T()

bool operator==(const A&, const B&) Return true

bool operator!=(const A&, const B&) Return false

Model Types
Template classes scalable_allocator (608H5.2) and cached_aligned_allocator (609H5.3)
model the Allocator concept.

5.2 scalable_allocator<T> Template Class
Summary
Template class for scalable memory allocation.

Syntax
template<typename T> class scalable_allocator;

Header
#include "tbb/scalable_allocator.h"

Description
A scalable_allocator allocates and frees memory in a way that scales with the
number of processors. A scalable_allocator models the allocator requirements
described in 501H610HTable 18. Using a scalable_allocator in place of std::allocator may
improve program performance. Memory allocated by a scalable_allocator should
be freed by a scalable_allocator, not by a std::allocator.

Members
See Allocator concept (611H5.1).

Acknowledgement
The scalable memory allocator incorporates McRT technology developed by Intel’s PSL
CTG team.

Memory Allocation

 63

5.3 cache_aligned_allocator<T> Template Class
Summary
Template class for allocating memory in way that avoids false sharing.

Syntax
template<typename T> class cache_aligned_allocator;

Header
#include "tbb/cache_aligned_allocator.h"

Description
A cache_aligned_allocator allocates memory on cache line boundaries, in order to
avoid false sharing. False sharing is when logically distinct items occupy the same
cache line, which can hurt performance if multiple threads attempt to access the
different items simultaneously. Even though the items are logically separate, the
processor hardware may have to transfer the cache line between the processors as if
they were sharing a location. The net result can be much more memory traffic than if
the logically distinct items were on different cache lines.

A cache_aligned_allocator models the allocator requirements described in 501H612HTable
18. It can be used to replace a std::allocator. Used judiciously,
cache_aligned_allocator can improve performance by reducing false sharing.
However, it is sometimes an inappropriate replacement, because the benefit of
allocating on a cache line comes at the price that cache_aligned_allocator implicitly
adds pad memory. The padding is typically 128 bytes. Hence allocating many small
objects with cache_aligned_allocator may increase memory usage.

Members
namespace tbb {

 template<typename T>
 class NFS_Allocator {
 public:
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 template<typename U> struct rebind {
 typedef cache_aligned_allocator<U> other;
 };

 #if _WIN64
 char* _Charalloc(size_type size);
 #endif /* _WIN64 */

Intel(R) Threading Building Blocks

 Document Number 315415-001US 64

 cache_aligned_allocator() throw();
 cache_aligned_allocator(const cache_aligned_allocator&)
throw();
 template<typename U>
 cache_aligned_allocator(const cache_aligned_allocator<U>&)
throw();
 ~cache_aligned_allocator();

 pointer address(reference x) const;
 const_pointer address(const_reference x) const;

 pointer allocate(size_type n, void* hint=0);
 void deallocate(pointer p, size_type);
 size_type max_size() const throw();

 void construct(pointer p, const T& value);
 void destroy(pointer p);
 };

 template<>
 class cache_aligned_allocator<void> {
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template<typename U> struct rebind {
 typedef cache_aligned_allocator<U> other;
 };
 };

 template<typename T, typename U>
 bool operator==(const cache_aligned_allocator<T>&,
 const cache_aligned_allocator<U>&);

 template<typename T, typename U>
 bool operator!=(const cache_aligned_allocator<T>&,
 const cache_aligned_allocator<U>&);

}

For sake of brevity, the following subsections describe only those methods that differ
significantly from the corresponding methods of std::allocator.

5.3.1 pointer allocate(size_type n, void* hint=0)

Effects
Allocate size bytes of memory on a cache-line boundary. The allocation may include
extra hidden padding.

Memory Allocation

 65

Returns
Pointer to the allocated memory.

5.3.2 void deallocate(pointer p, size_type n)

Requirements
Pointer p must be result of method allocate(n). The memory must not have been
already deallocated.

Effects
Deallocate memory pointed to by p. The deallocation also deallocates any extra hidden
padding.

5.3.3 char* _Charalloc(size_type size)

NOTE: This method is provided only on 64-bit Windows* platforms. It is a non-ISO method
that exists for backwards compatibility with versions of Window's containers that seem
to require it. Please do not use it directly.

5.4 aligned_space Template Class
Summary
Uninitialized memory space.

Syntax
template<typename T, size_t N> class aligned_space;

Header
#include "tbb/aligned_space.h"

Description
An aligned_space occupies enough memory to hold an array T[N]. The client is
responsible for initializing or destroying the objects. An aligned_space is typically
used as a local variable or field in scenarios where a block of fixed-length uninitialized
memory is needed.

Members
namespace tbb {
 template<typename T, size_t N>
 class aligned_space {
 public:

Intel(R) Threading Building Blocks

 Document Number 315415-001US 66

 aligned_space();
 ~aligned_space();
 T* begin();
 T* end();
 };
}

5.4.1 aligned_space()

Effects
None. Does not invoke constructors.

5.4.2 ~aligned_space()

Effects
None. Does not invoke destructors.

5.4.3 T* begin()

Returns
Pointer to beginning of storage.

5.4.4 T* end()

Returns
begin()+N

Synchronization

 67

6 Synchronization
The library supports mutual exclusion and atomic operations.

6.1 Mutexes
Mutexes provide MUTual EXclusion of threads from sections of code.

In general, strive for designs that minimize the use of explicit locking, because it can
lead to serial bottlenecks. If explicitly locking is necessary, try to spread it out so that
multiple threads usually do not contend to lock the same mutex.

6.1.1 Mutex Concept
The mutexes and locks here have relatively spartan interfaces that are designed for
high performance. The interfaces enforce the scoped locking pattern, which is widely
used in C++ libraries because:

1. Does not require the programmer to remember to release the lock

2. Releases the lock if an exception is thrown out of the mutual exclusion region
protected by the lock

There are two parts to the pattern: a mutex object, for which construction of a lock
object acquires a lock on the mutex and destruction of the lock object releases the
lock. Here’s an example:
{
 // Construction of myLock acquires lock on myMutex
 M::scoped_lock myLock(myMutex);
 ... actions to be performed while holding the lock ...
 // Destruction of myLock releases lock on myMutex
}

If the actions throw an exception, the lock is automatically released as the block is
exited.

502H613HTable 19 shows the requirements for the Mutex concept for a mutex type M

Intel(R) Threading Building Blocks

 Document Number 315415-001US 68

Table 19: Mutex Concept

614HTable 20 summarizes the classes that model the Mutex concept.

Table 20: Mutexes that model the Mutex concept

 Scalable Fair Reentrant Sleeps Size

mutex OS
dependent

OS
dependent

no yes ≥ 3
words

spin_mutex no no no no 1 byte

queuing_mutex no no 1 word

spin_rw_mutex no no no no 1 word

queuing_rw_mutex no no 1 word

See the tutorial for a discussion of the mutex properties.

6.1.2 mutex Class

Summary
Class that models Mutex Concept using underlying OS locks.

Syntax
class mutex;

Header
#include "tbb/mutex.h"

Pseudo-Signature Semantics

M() Construct unlocked mutex

~M() Destroy unlocked mutex.

typename M::scoped_lock Corresponding scoped-lock type

M::scoped_lock() Construct lock without acquiring mutex

M::scoped_lock(M&) Construct lock and acquire lock on mutex

M::~scoped_lock() Release lock (if acquired)

M::scoped_lock::acquire(M&) Acquire lock on mutex

bool
M::scoped_lock::try_acquire(M&)

Try to acquire lock on mutex. Return true if
lock acquired, false otherwise.

M::scoped_lock::release() Release lock

Synchronization

 69

Description
A mutex models the Mutex Concept (504H615H6.1.1). It is a wrapper around OS calls that
provide mutual exclusion. The advantages of using mutex instead of the OS calls are:

• Portable across all operating systems supported by Intel® Threading Building
Blocks.

• Releases the lock if an exception is thrown from the protected region of code.

Members
See Mutex Concept (505H616H6.1.1).

6.1.3 spin_mutex Class

Summary
Class that models Mutex Concept using a spin lock.

Syntax
class spin_mutex;

Header
#include "tbb/spin_mutex.h"

Description
A spin_mutex models the Mutex Concept (506H617H6.1.1). A spin_mutex is not scalable, fair,
or reentrant. It is ideal when the lock is lightly contended and is held for only a few
machine instructions. If a thread has to wait to acquire a spin_mutex, it busy waits,
which can degrade system performance if the wait is long. However, if the wait is
typically short, a spin_mutex significantly improve performance compared to other
mutexes.

Members
See Mutex Concept (507H618H6.1.1).

6.1.4 queuing_mutex Class

Summary
Class that models Mutex Concept that is fair and scalable.

Syntax
class queuing_mutex;

Intel(R) Threading Building Blocks

 Document Number 315415-001US 70

Header
#include "tbb/queuing_mutex.h"

Description
A queuing_mutex models the Mutex Concept (508H619H6.1.1). A queuing_mutex is scalable, in
the sense that if a thread has to wait to acquire the mutex, it spins on its own local
cache line. A queuing_mutex is fair. Threads acquire a lock on a mutex in the order
that they request it. A queuing_mutex is not reentrant.

The current implementation does busy-waiting, so using a queuing_mutex may
degrade system performance if the wait is long.

Members
See Mutex Concept (509H620H6.1.1).

6.1.5 ReaderWriterMutex Concept
The ReaderWriterMutex concept extends the Mutex concept to include the notion of
reader-writer locks. It introduces a boolean parameter write that specifies whether a
writer lock (write =true) or reader lock (write =false) is being requested. Multiple
reader locks can be held simultaneously on a ReaderWriterMutex if it does not have a
writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from
holding a lock on the mutex at the same time.

621HTable 21 shows the requirements for ReaderWriterMutex RW.

Table 21: ReaderWriterMutex Concept

Pseudo-Signature Semantics

RW() Construct unlocked mutex

~RW() Destroy unlocked mutex

typename RW::scoped_lock Corresponding scoped-lock type

RW::scoped_lock() Construct lock without acquiring mutex

RW::scoped_lock(RW&, bool write=true) Construct lock and acquire lock on
mutex

RW::~scoped_lock() Release lock (if acquired)

RW::scoped_lock::acquire(RW&, bool
write=true)

Acquire lock on mutex

bool RW::scoped_lock::try_acquire(RW&, bool
write=true)

Try to acquire lock on mutex. Return
true if lock acquired, false otherwise.

RW::scoped_lock::release() Release lock

bool RW::scoped_lock::upgrade_to_writer() Change reader lock to writer lock

bool RW::scoped_lock::downgrade_to_reader() Change writer lock to reader lock

Synchronization

 71

The following subsections explain the semantics of the ReaderWriterMutex concept in
detail.

Model Types
spin_rw_mutex (622H6.1.6) and queuing_rw_mutex (623H6.1.7) model the ReaderWriterMutex
concept.

6.1.5.1 ReaderWriterMutex()

Effect
Construct unlocked ReaderWriterMutex.

6.1.5.2 ~ReaderWriterMutex()

Effect
Destroy unlocked ReaderWriterMutex. The effect of destroying a locked
ReaderWriterMutex is undefined.

6.1.5.3 ReaderWriterMutex::scoped_lock()

Effect
Construct a scoped_lock object that does not hold a lock on any mutex.

6.1.5.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw, bool write =true)

Effect
Construct a scoped_lock object that acquires a lock on mutex rw. The lock is a writer
lock if write is true; a reader lock otherwise.

6.1.5.5 ReaderWriterMutex::~scoped_lock()

Effect
If the object holds a lock on a ReaderWriterMutex, release the lock.

6.1.5.6 void ReaderWriterMutex:: scoped_lock:: acquire(ReaderWriterMutex& rw,
bool write=true)

Effect
Acquires a lock on mutex rw. The lock is a writer lock if write is true; a reader lock
otherwise.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 72

6.1.5.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(ReaderWriterMutex& rw,
bool write=true)

Effect
Attempts to acquire a lock on mutex rw. The lock is a writer lock if write is true; a
reader lock otherwise.

Returns
true if the lock is acquired, false otherwise.

6.1.5.8 void ReaderWriterMutex:: scoped_lock::release()

Effect
Release lock. The effect is undefined if no lock is held.

6.1.5.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()

Effect
Change reader lock to a writer lock. The effect is undefined if the object does not
already hold a reader lock.

Returns
false if lock was released and reacquired; true otherwise.

6.1.5.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()

Effect
Change writer lock to a reader lock. The effect is undefined if the object does not
already hold a writer lock.

Returns
false if lock was released and reacquired; true otherwise.

NOTE: Intel's current implementations for spin_rw_mutex and queuing_rw_mutex always
return true. Different implementations might sometimes return false.

6.1.6 spin_rw_mutex Class

Summary
Class that models ReaderWriterMutex Concept that is unfair and not scalable.

Synchronization

 73

Syntax
class spin_rw_mutex;

Header
#include "tbb/spin_rw_mutex.h"

Description
A spin_rw_mutex models the ReaderWriterMutex Concept (510H624H6.1.1). A spin_rw_mutex is
not scalable, fair, or reentrant. It is ideal when the lock is lightly contended and is held
for only a few machine instructions. If a thread has to wait to acquire a
spin_rw_mutex, it busy waits, which can degrade system performance if the wait is
long. However, if the wait is typically short, a spin_rw_mutex significantly improve
performance compared to other mutexes..

Members
See ReaderWriterMutex concept (625H6.1.5).

6.1.7 queuing_rw_mutex Class

Summary
Class that models ReaderWriterMutex Concept that is fair and scalable.

Syntax
class queuing_rw_mutex;

Header
#include "tbb/queuing_rw_mutex.h"

Description
A queuing_rw_mutex models the ReaderWriterMutex Concept (510H626H6.1.1). A
queuing_rw_mutex is scalable, in the sense that if a thread has to wait to acquire the
mutex, it spins on its own local cache line. A queuing_rw_mutex is fair. Threads
acquire a lock on a queuing_rw_mutex in the order that they request it. A
queuing_rw_mutex is not reentrant.

Members
See ReaderWriterMutex concept (627H6.1.5).

Intel(R) Threading Building Blocks

 Document Number 315415-001US 74

6.2 atomic<T> Template Class
Summary
Template class for atomic operations.

Syntax
template<typename T> atomic;

Header
#include "tbb/atomic.h"

Description
An atomic<T> supports atomic read, write, fetch-and-add, fetch-and-store, and
compare-and-swap. Type T may be an integral type or a pointer type. When T is a
pointer type, arithmetic operations are interpreted as pointer arithmetic. For example,
if x has type atomic<float*> and a float occupies four bytes, then ++x advances x by
four bytes. The specialization atomic<void*> does not allow pointer arithmetic.

Some of the methods have template method variants that permit more selective
memory fencing. On IA-32 and EM64T processors, they have the same effect as the
non-templated variants. On Itanium processors, they may improve performance by
allowing the memory subsystem more latitude on the orders of reads and write. Using
them may improve performance. 511H628HTable 22 shows the fencing for the non-template
form.

Table 22: Memory Fences Implied by Non-Template Methods

Kind Description Default For

acquire Operations after the fence never move over it. read

release Operations before the fence never move over it. write

full Operations on either side never move over it. fetch_and_store,

fetch_and_add,

compare_and_swap

TIP: Template class atomic<T> does not have any non-trivial constructors, because such
constructors could lead to accidental introduction of compiler temporaries that would
subvert the purpose of atomic<T>. To create an atomic<T> with a specific value,
default-construct it first, and afterwards assign a value to it.

Members
namespace tbb {
 enum memory_semantics {
 acquire,
 release
 };

Synchronization

 75

 struct atomic<T> {
 typedef T value_type;

 template<memory_semantics M>
 value_type fetch_and_add(value_type addend);

 value_type fetch_and_add(value_type addend);

 template<memory_semantics M>
 value_type fetch_and_increment();

 value_type fetch_and_increment();

 template<memory_semantics M>
 value_type fetch_and_decrement();

 value_type fetch_and_decrement();

 template<memory_semantics M>
 value_type compare_and_swap(value_type new_value,
 value_type comparand);

 value_type compare_and_swap(value_type new_value,
 value_type comparand);

 template<memory_semantics M>
 value_type fetch_and_store(value_type new_value);

 value_type fetch_and_store(value_type new_value);

 operator value_type() const;

 value_type operator=(value_type new_value);

 value_type operator+=(value_type);
 value_type operator-=(value_type);
 value_type operator++();
 value_type operator++(int);
 value_type operator--();
 value_type operator--(int);
 };
}

6.2.1 enum memory_semantics

Description
Defines values used to select the template variants that permit more selective
memory fencing (see 629HTable 22).

Intel(R) Threading Building Blocks

 Document Number 315415-001US 76

6.2.2 value_type fetch_and_add(value_type addend)

Effect
Let x be the value of *this. Atomically updates x = x + addend.

Returns
Original value of x.

6.2.3 value_type fetch_and_increment()

Effect
Let x be the value of *this. Atomically updates x = x + 1.

Returns
Original value of x.

6.2.4 value_type fetch_and_decrement()

Effect
Let x be the value of *this. Atomically updates x = x − 1.

Returns
Original value of x.

6.2.5 value_type compare_and_swap
value_type compare_and_swap(value_type new_value, value_type comparand)

6.2.6 Effect
Let x be the value of *this. Atomically compares x with comparand, and if they are
equal, sets x=new_value.

Returns
Original value of x.

Synchronization

 77

6.2.7 value_type fetch_and_store(value_type
new_value)

Effect
Let x be the value of *this. Atomically exchanges old value of x with new_value.

Returns
Original value of x.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 78

7 Timing
Parallel programming is about speeding up wall clock time, which is the real time that
it takes a program to run. Unfortunately, some of the obvious wall clock timing
routines provided by operating systems do not always work reliably across threads,
because the hardware thread clocks are not synchronized. The library provides
support for timing across threads. The routines are wrappers around operating
services that we have verified as safe to use across threads.

7.1 tick_count Class
Summary
Class for computing wall-clock times.

Syntax
class tick_count;

Header
#include "tbb/tick_count.h"

Description
A tick_count is an absolute timestamp. Two tick_count objects may be subtracted
to compute a relative time tick_count::interval_t, which can be converted to
seconds.

Example
using namespace tbb;

void Foo() {
 tick_count t0 = tick_count::now();
 ...action being timed...
 tick_count t1 = tick_count::now();
 printf("time for action = %g seconds\n", (t1-t0).seconds());
}

Members
namespace tbb {

 class tick_count {
 public:
 class interval_t;
 static tick_count now();

Timing

 79

 };

 tick_count::interval_t operator-(const tick_count& t1, const
tick_count& t0);
} // tbb
}

7.1.1 static tick_count tick_count::now()

Returns
Current wall clock timestamp.

7.1.2 tick_count::interval_t operator−(const
tick_count& t1, const tick_count& t0)

Returns
Relative time that t1 occurred after t0.

7.1.3 tick_count::interval_t Class

Summary
Class for relative wall-clock time.

Syntax
class tick_count::interval_t;

Header
#include "tbb/tick_count.h"

Description
A tick_count::interval_t represents relative wall clock time or duration. duration.

Members
namespace tbb {

 class tick_count::interval_t {
 public:
 interval_t();
 double seconds() const;
 interval_t operator+=(const interval_t& i);
 interval_t operator-=(const interval_t& i);
 };

 tick_count::interval_t operator+(const tick_count::interval_t& i,

Intel(R) Threading Building Blocks

 Document Number 315415-001US 80

 const tick_count::interval_t& j);
 tick_count::interval_t operator-(const tick_count::interval_t& i,
 const tick_count::interval_t& j);

} // tbb

7.1.3.1 interval_t()

Effects
Construct interval_t representing zero time duration.

7.1.3.2 double seconds() const

Returns
Time interval measured in seconds.

7.1.3.3 interval_t operator+=(const interval_t& i)

Effects
*this = *this + i

Returns
Reference to *this.

7.1.3.4 interval_t operator−=(const interval_t& i)

Effects
*this = *this − i

Returns

Reference to *this.

7.1.3.5 interval_t operator+ (const interval_t& i, const interval_t& j)

Returns
Interval_t representing sum of intervals i and j.

7.1.3.6 interval_t operator− (const interval_t& i, const interval_t& j)

Returns
Interval_t representing difference of intervals i and j.

Task Scheduling

 81

8 Task Scheduling
The library provides a task scheduler, which is the engine that drives the algorithm
templates (512H630H3). You may also call it directly. Using tasks is often simpler and more
efficient than using threads, because the task scheduler takes care of a lot of details.

The tasks are logical units of computation. The scheduler maps these onto physical
threads. The mapping is non-preemptive. Each thread has a method execute().
Once a thread starts running execute(), the task is bound to that thread until
execute() returns. During that time, the thread services other tasks only when it
waits on child tasks, at which time it may run the child tasks, or if there are no
pending child tasks, service tasks created by other threads.

The task scheduler is intended for parallelizing computationally intensive work.
Because task objects are not scheduled preemptively, they should not make calls that
might block for long periods, because meanwhile that thread is precluded from
servicing other tasks.

CAUTION: There is no guarantee that potentially parallel tasks actually execute in parallel,
because the scheduler adjusts actual parallelism to fit available worker threads. For
example, given a single worker thread, the scheduler creates no actual parallelism.
For example, it is generally unsafe to use tasks in a producer consumer relationship,
because there is no guarantee that the consumer runs at all while the producer is
running.

Potential parallelism is typically generated by a split/join pattern. Two basic patterns
of split/join are supported. The most efficient is continuation-passing form, in which
the programmer constructs an explicit “continuation” task. The parent task splits child
tasks and specifies a continuation task to be executed when the children complete.
The continuation inherits the parent’s ancestor. The parent task then exits; i.e., it
does not block on its children. The children subsequently run, and after they (or their
continuations) finish, the continuation task starts running. 513H631HFigure 2 shows the steps.
The running tasks at each step are shaded.

continuation continuationcontinuation parent parent

child child child child

Figure 2: Continuation-passing style

Intel(R) Threading Building Blocks

 Document Number 315415-001US 82

Explicit continuation passing is efficient, because it decouples the thread’s stack from
the tasks. However, it is more difficult to program. A second pattern is "blocking
style", which uses implicit continuations. It is sometimes less efficient in performance,
but more convenient to program. In this pattern, the parent task blocks until its
children complete, as shown in 514H632HFigure 3.

Figure 3: Blocking style

The convenience comes with a price. Because the parent blocks, its thread’s stack
cannot be popped yet. The thread must be careful about what work it takes on,
because continually stealing and blocking could cause the stack to grow without
bound. To solve this problem, the scheduler constrains a blocked thread such that it
never executes a task that is less deep than its deepest blocked task. This constraint
may impact performance because it limits available parallelism, and tends to cause
threads to select smaller (deeper) subtrees than they would otherwise choose.

8.1 Scheduling Algorithm
The scheduler employs task stealing. Each thread keeps a "ready pool" of tasks that
are ready to run. The ready pool is structured as an array of lists of task, where the
list for the ith element corresponds to tasks at level i in the tree. The lists are
manipulated in last-in first-out order. A task at level i spawns child tasks at level i+1.
A thread pulls tasks from the deepest non-empty list in the array. If there are no non-
empty lists, the thread randomly steals a task from the shallowest list of another
thread. A thread also implicitly steals if it completes the last child, in which case it
starts executing the task that was waiting on the children.

The task scheduler tends to strike a good balance between locality of reference, space
efficiency, and parallelism. The scheduling technique is similar to that used by Cilk
(224H257HBlumofe 1995).

8.2 task_scheduler_init Class

Summary
Class that represents thread's interest in task scheduling services.

parent parent

child child child child

parent parent

Task Scheduling

 83

Syntax
class task_scheduler_init;

Header
#include "tbb/task_scheduler_init.h"

Description
A task_scheduler_init is either "active" or "inactive". Each thread that uses a task
should have one active task_scheduler_init object that stays active over the
duration that the thread uses task objects. A thread may have more than one active
task_scheduler_init at any given moment.

The default constructor for a task_scheduler_init activates it, and the destructor
uninitializes it. To defer initialization, pass the value
task_scheduler_init::deferred to the constructor. Such a task_scheduler_init
may be initialized later by calling method initialize. Destruction of an initialized
task_scheduler_init implicitly deactivates it. To deactivate it earlier, call method
terminate.

An optional parameter to the constructor and method initialize allow you to specify
the number of threads to be used for task execution. This parameter is useful for
scaling studies during development, but should not be set for production use. The
Tutorial document says more about this topic.

To minimize time overhead, it is best to have a thread create a single
task_scheduler_init object whose activation spans all uses of the library's task
scheduler. A task_scheduler_init is not assignable or copy-constructible.

Important
The template algorithms (515H633H3) implicitly use class task. Hence creating a
task_scheduler_init is a prerequisite to using the template algorithms. The debug
version of the library reports failure to create the task_scheduler_init.

Example
#include "tbb/task_scheduler_init"

int main() {
 task_scheduler_init init;
 ... use task or template algorithms here...
 return 0;
}

Members
namespace tbb {

 class task_scheduler_init {
 public:
 static const int automatic = implementation-defined;
 static const int deferred = implementation-defined;

Intel(R) Threading Building Blocks

 Document Number 315415-001US 84

 task_scheduler_init(int number_of_threads=automatic);
 ~task_scheduler_init();
 void initialize(int number_of_threads=automatic);
 void terminate();
 };
} // namespace tbb

8.2.1 task_scheduler_init(int
number_of_threads=automatic)

Requirements
The value number_of_threads shall be one of the values in 516H634HTable 23.

Effects
If number_of_threads==task_scheduler_init::deferred, nothing happens, and the
task_scheduler_init remains inactive. Otherwise, the task_scheduler_init is
activated as follows. If the thread has no other active task_scheduler_init objects,
the thread allocates internal thread-specific resources required for scheduling task
objects. If there were no threads with active task_scheduler_init objects yet, then
internal worker threads are created as described in 517H635HTable 23. These workers sleep
until needed by the task scheduler.

Table 23: Values for number_of_threads

number_of_threads Semantics

task_scheduler_init::automatic Let library determine number_of_threads based on
hardware configuration.

task_scheduler_init::deferred Defer activation actions.

positive integer If no worker threads exist yet, create
number_of_threads−1 worker threads. If worker
threads exist, do not change the number of worker
threads.

8.2.2 ~task_scheduler_init()

Effects
If the task_scheduler_init is inactive, nothing happens. Otherwise, the
task_scheduler_init is deactivated as follows. If the thread has no other active
task_scheduler_init objects, the thread deallocates internal thread-specific
resources required for scheduling task objects. If no existing thread has any active
task_scheduler_init objects, then the internal worker threads are terminated.

Task Scheduling

 85

8.2.3 void initialize(int number_of_threads=automatic
)

Requirements
The task_scheduler_init shall be inactive.

Effects
Similar to constructor (518H636H8.2.1).

8.2.4 void terminate()

Requirements
The task_scheduler_init shall be active.

Effects
Deactivates the task_scheduler_init without destroying it. The description of the
destructor (519H637H8.2.2) specifies what deactivation entails.

8.2.5 Mixing with OpenMP
Mixing OpenMP with Intel® Threading Building Blocks is supported. Performance may
be less than a pure OpenMP or pure Intel® Threading Building Blocks solution if the
two forms of parallelism are nested.

An OpenMP parallel region that plans to use the task scheduler should create a
task_scheduler_init inside the parallel region, because the parallel region may
create new threads unknown to Intel® Threading Building Blocks. Each of these new
OpenMP threads, like native threads, must create a task_scheduler_init object
before using Intel® Threading Building Blocks algorithms. The following example
demonstrates how to do this.
void OpenMP_Calls_TBB(int n) {
#pragma omp parallel
 {
 task_scheduler_init init;
#pragma omp for
 for(int i=0; i<n; ++i) {
 ...can use class task or
 Intel® Threading Building Blocks algorithms here ...
 }
 }
}

Intel(R) Threading Building Blocks

 Document Number 315415-001US 86

8.3 task Class
Summary
Base class for tasks.

Syntax
class task;

Header
#include "tbb/task.h"

Description
Class task is the base class for tasks. Programmers are expected to derive classes
from task, and override the virtual method task* task::execute().

Each instance of task has associated attributes, that while not directly visible, must
be understood to fully grasp how task objects are used. The attributes are described
in 520H638HTable 24.

Table 24: Task Attributes

Attribute Description

owner the worker thread that is currently in charge of the task.

parent either null, or the parent/continuation task that allocated this task.

depth the depth of the task in the task tree.

refcount the number of Tasks that have this is their parent. Increments and
decrement of refcount are always atomic.

TIP: Always allocate memory for task objects using special overloaded new operators
(521H639H8.3.2) provided by the library, otherwise the results are undefined. Destruction of a
task is normally implicit. The copy constructor and assignment operators for task are
not accessible. This prevents accidental copying of a task, which would be ill-defined
and corrupt internal data structures.

Notation
Some member descriptions illustrate effects by diagrams such as 522H640HFigure 4.

Task Scheduling

 87

depth depth depth

parent parent null

this this result

0 refcount refcount

Figure 4: Example Effect Diagram

Conventions in these diagrams are as follows:

• The big arrow denotes the transition from the old state to the new state.

• Each task's state is shown as a box divided into parent, depth, and refcount sub-
boxes.

• Gray denotes state that is ignored. Sometimes ignored state is simply left blank..

• Black denotes state that is read.

• Blue denotes state that is written.

Members
In the description below, types proxy1...proxy4 are internal types. Methods returning
such types should only be used in conjunction with the special overloaded new
operators, as described in Section (523H641H8.3.2).
namespace tbb {
 class task {
 protected:
 task();

 public:
 virtual ~task() {}

 virtual task* execute() = 0;

 // task allocation and destruction
 static proxy1 allocate_root();
 proxy2 allocate_continuation();
 proxy3 allocate_child();
 proxy4 allocate_additional_child_of(task& t);

 // Explicit task destruction
 void destroy(task& victim);

 // Recycling
 void recycle_as_continuation();
 void recycle_as_child_of(task& parent);
 void recycle_to_reexecute();

 // task depth
 typedef implementation-defined-signed-integral-type depth_type;
 depth_type depth() const;
 void set_depth(depth_type new_depth);
 void add_to_depth(int delta);

Intel(R) Threading Building Blocks

 Document Number 315415-001US 88

 // Synchronization
 void set_ref_count(int count);
 void wait_for_all();
 void spawn(task& child);
 void spawn(task_list& list);
 void spawn_and_wait_for_all(task& child);
 void spawn_and_wait_for_all(task_list& list);
 static void spawn_root_and_wait(task& root);
 static void spawn_root_and_wait(task_list& root);

 // task context
 static task& self();
 task* parent() const;
 bool is_stolen_task() const;

 // task debugging
 enum state_type {
 executing,
 reexecute,
 ready,
 allocated,
 freed
 };
 int ref_count() const;
 state_type state() const;
 };
} // namespace tbb

void *operator new(size_t bytes, const proxy1& p);
void operator delete(void* task, const proxy1& p);
void *operator new(size_t bytes, const proxy2& p);
void operator delete(void* task, const proxy2& p);
void *operator new(size_t bytes, const proxy3& p);
void operator delete(void* task, const proxy3& p);
void *operator new(size_t bytes, proxy4& p);
void operator delete(void* task, proxy4& p);

8.3.1 task Derivation
Class task is an abstract base class. You must override method task::execute.
Method execute should perform the necessary actions for running the task, and then
return the next task to execute, or NULL if the scheduler should choose the next task
to execute. Typically, if non-NULL, the returned task is one of the children of this.
Unless one of the recycle/reschedule methods described in Section (524H642H8.3.4) is called
while method execute() is running, the this object will be implicitly destroyed after
method execute returns.

The derived class should override the virtual destructor if necessary to release
resources allocated by the constructor.

Task Scheduling

 89

8.3.1.1 Processing of execute()
When the scheduler decides that a thread should begin executing a task, it performs
the following steps:

1. Invoke execute() and wait for it to return.

2. If the task has not been marked by a method recycle_∗:

a. If the task's parent is not null, then atomically decrement parent->refcount,
and if becomes zero, put the parent into the ready pool.

b. Call the task's destructor

c. Free the memory for task for reuse.

3. If the task has been marked for recycling:

a. If marked by recycle_to_reexecute, put the task back into the ready pool.

b. Otherwise it was marked by recycle_as_child or
recycle_as_continuation.

8.3.2 task Allocation
Always allocate memory for task objects using one of the special overloaded new
operators. The allocation methods do not construct the task. Instead, they return a
proxy object that can be used as an argument to an overloaded version of operator
new provided by the library.

In general, the allocation methods must be called before any of the tasks allocated are
spawned. The exception to this rule is allocate_additional_child_of(t), which can
be called even if task t is already running. The proxy types are defined by the
implementation. The only guarantee is that the phrase “new(proxy) T(...)”allocates
and constructs a task of type T. Because these methods are used idiomatically, the
headings in the subsection show the idiom, not the declaration. The argument this is
typically implicit, but shown explicitly in the headings to distinguish instance methods
from static methods.

TIP: Allocating tasks larger than 216 bytes might be significantly slower than allocating
smaller tasks. In general, task objects should be small lightweight entities.

8.3.2.1 new(task::allocate_root()) T
Allocates a task of type T with a depth of one more than the depth of the innermost
task currently being executed by the current native thread. 525H643HFigure 5 summarizes the
state transition.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 90

depth

null

result

0

Figure 5: Effect of task::allocate_root()

Use method spawn_root_and_wait (526H644H8.3.6.7) to execute the task.

8.3.2.2 new(this. allocate_continuation()) T
Allocate and construct a task of type T at the same depth as this, and transfers the
parent from this to the new task. No reference counts change. 527H645HFigure 6 summarizes
the state transition.

depth depth depth

parent parent null

this this result

0 refcount refcount

Figure 6: Effect of allocate_continuation()

8.3.2.3 new(this. allocate_child()) T

Effect
Allocates a task with a depth one more than this, with this as its parent. 528H646HFigure 7
summarizes the state transition.

Task Scheduling

 91

depth depth

depth+1

this this

result

refcount refcount

0

parent parent

Figure 7: Effect of allocate_child()

If using explicit continuation passing, then the continuation, not the parent, should call
the allocation method, so that parent is set correctly. The task this must be owned
by the current thread.

If the number of tasks is not a small fixed number, consider building a task_list
(647H8.5) of the children first, and spawning them with a single call to task::spawn
(530H648H8.3.6.3). If a task must spawn some children before all are constructed, it
should use task::allocate_additional_child_of(*this) instead, because that
method atomically increments refcount, so that the additional child is properly
accounted. However, if doing so, the task must protect against premature zeroing of
refcount by using a blocking-style task pattern.

8.3.2.4 new(this.task::allocate_child_of(parent))

Effect
Allocates a task as a child of another task parent. The result becomes a child of
parent, not this. The parent may be owned by another thread, and may be already
running or have other children running. The task object this must be owned by the
current thread, and the result has the same owner as the current thread, not the
parent. 531H649HFigure 8 summarizes the state transition.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 92

depth

depth+1

parent

result

refcount+1

0

grandparent

depth

parent

refcount

grandparent

(result.owner=this. owner)

this

this

Figure 8: Effect of allocate_child_of(parent)

Because parent may already have running children, the increment of parent.refcount
is thread safe (unlike the other allocation methods, where the increment is not thread
safe). When adding a child to a parent with other children running, it is up to the
programmer to ensure that the parent’s refcount does not prematurely reach 0 and
trigger execution of the parent before the child is added.

8.3.3 Explicit task Destruction
Usually, a task is automatically destroyed by the scheduler after its method execute
returns. But sometimes task objects are used idiomatically (e.g. for reference
counting) without ever running execute. Such tasks should be disposed of with
method destroy.

8.3.3.1 void destroy(task& victim)

Requirements
The reference count of victim should be 0. This requirement is checked in the debug
version of the library. The calling thread must own this.

Effects
Calls destructor and deallocates memory for victim. If this has non-null parent,
atomically decrements parent->refcount. The parent is not put into the ready pool if
parent->refcount becomes zero. 532H650HFigure 9 summarizes the state transition.

The implicit argument this is used internally, but not visibly affected. A task is
allowed to destroy itself; e.g., “this->destroy(*this)” is permitted as long as the
task is not running.

Task Scheduling

 93

depth

victim

0

this

parent

refcount

this

parent

refcount-1

refcount adjustment skipped if if parent is null

(can be null)

Figure 9: Effect of destroy(victim)

8.3.4 Recycling Tasks
It is often more efficient to recycle a task object rather than reallocate one from
scratch. Often the parent can become the continuation, or one of the children.

8.3.4.1 void recycle_as_continuation()

Requirements
Must be called while method execute() is running.

The refcount for the recycled task should be set to n, where n is the number of
children of the continuation task.

NOTE: The caller must guarantee that the task’s refcount does not become zero until after
the method execute() returns. If this is not possible, use the method
recycle_as_safe_continuation() instead, and set refcount to n+1.

Effects
Causes this to not be destroyed when method execute() returns.

8.3.4.2 Preview Feature: void recycle_as_safe_continuation()

Requirements
Must be called while method execute() is running.

The refcount for the recycled task should be set to n+1, where n is the number of
children of the continuation task. The additional +1 represents the task to be
recycled.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 94

Effects
Causes this to not be destroyed when method execute() returns.

This method avoids race conditions that can arise from using the method
recycle_as_continuation. The race occurs when:

1. The method execute() recycles this as a continuation.

2. The continuation creates children.

3. All the children finish before method execute() completes, so the continuation
executes before the scheduler is done running this, which corrupts the scheduler.

Method recycle_as_safe_continuation avoids this race because the additional +1 in
the refcount prevents the continuation from executing until the task completes.

8.3.4.3 void recycle_as_child_of(task& parent)

Requirements
Must be called while method execute() is running.

Effects
Causes this to become a child of parent, and not be destroyed when method
execute() returns.

8.3.4.4 void recycle _to_reexecute()

Requirements
Must be called while method execute() is running. Method execute() must return a
pointer to another task.

Effects
Causes this to be automatically spawned after execute() returns.

8.3.5 task Depth
For general fork-join parallelism, there is no need to explicitly set the depth of a task.
However, in specialized task patterns that do not follow the fork-join pattern, it may
be useful to explicitly set or adjust the depth of a task.

8.3.5.1 depth_type
The type task::depth_type is an implementation-defined signed integral type.

Task Scheduling

 95

8.3.5.2 depth_type depth() const

Returns
Current depth attribute for the task.

8.3.5.3 void set_depth(depth_type new_depth)

Requirements
The value new_depth must be non-negative.

Effects
Set the depth attribute of the task to new_depth. 533H651HFigure 10 shows the update.

new_depth depth

this this

refcount refcount

parent parent

Figure 10: Effect of set_depth

8.3.5.4 void add_to_depth(int delta)

Requirements
The task must not be in the ready pool. The sum depth+delta must be non-negative.

Effects
Set the depth attribute of the task to depth+delta. 534H652HFigure 11 illustrates the effect. The
update is not atomic.

depth+delta depth

this this

refcount refcount

parent parent

Figure 11: Effect of add_to_depth(delta)

8.3.6 Synchronization
Spawning a task task either causes the calling thread to invoke task.execute(), or
causes task to be put into the ready pool. Any thread participating in task scheduling
may then acquire the task and invoke task.execute(). Section 535H653H8.1 describes the
structure of the ready pool.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 96

The calls that spawn come in two forms:

1. Spawn a single task

2. Spawn multiple task objects specified by a task_list and clear task_list.

The calls distinguish between spawning root tasks and child tasks. A root task is one
that was created using method allocate_root.

Important
A task should not spawn any child until it has called method set_ref_count to
indicate both the number of children and whether it intends to use one of the
"wait_for_all" methods.

8.3.6.1 void set_ref_count(int count)

Requirements
count>0. If the intent is to subsequently spawn n children and wait, then count should
be n+1. Otherwise count should be n.

Effects
Sets the refcount attribute to count.

8.3.6.2 v
oid wait_for_all()

Requirements
refcount=n+1, where n is the number of children who are still running.

Effects
Executes tasks in ready pool until refcount is 1. Afterwards sets refcount to 0. 536H654HFigure
12 summarizes the state transitions.

Task Scheduling

 97

depth depth

this this

0 n+1

dependent dependent

n = previously spawned
children who are still running

Figure 12: Effect of wait_for_all

8.3.6.3 void spawn(task& child)

Requirements
child.refcount>0

The calling thread must own this and child.

Effects

Puts the task into the ready pool and immediately returns. The this task that does
the spawning must be owned by the caller thread. A task may spawn itself if it is
owned by the caller thread. If no convenient task owned by the current thread is
handy, use task::self().spawn(task) to spawn task.

The parent must call set_ref_count before spawning any child tasks, because once
the child tasks are going, their completion will cause refcount to be decremented
asynchronously. The debug version of the library detects when a required call to
set_ref_count is not made, or is made too late.

8.3.6.4 void spawn (task_list& list)

Requirements

For each task in list, refcount>0. The calling thread must own this and each task in
list. Each task in list must be the same value for its depth attribute.

Effects

Equivalent to executing spawn on each task in list and clearing list, but more efficient.
If list is empty, there is no effect.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 98

8.3.6.5 void spawn_and_wait_for_all(task& child)

Requirements

Any other children of this must already be spawned. The task child must have a non-
null attribute parent. There must be a chain of parent links from the child to the
calling task. Typically, this chain contains a single link. That is, child is typically a
child of this.

Effects

Similar to {spawn(task); wait_for_all();}, but often more efficient. Furthermore,
it guarantees that task is executed by the current thread. This constraint can
sometimes simplify synchronization. 537H655HFigure 13 illustrates the state transitions.

depth depth

this this

0 refcount

depth+1

child

0

dependent dependent

previously spawned children
who have not completed.

Figure 13: Effect of spawn_and_wait_for_all

8.3.6.6 void spawn_and_wait_for_all(task_list& list)

Effects

Similar to {spawn(list); wait_for_all();}, but often more efficient.

8.3.6.7 static void spawn_root_and_wait(task& root)

Requirements

The memory for task root was allocated by task::allocate_root(). The calling
thread must own root.

Effects

Sets parent attribute of root to an undefined value and execute root as described in
Section 538H656H8.3.1.1. Destroys root afterwards unless root was recycled.

Task Scheduling

 99

8.3.6.8 static void spawn_root_and_wait(task_list& root_list)

Requirements

each task object t in root_list must meet the requirements in Section 539H657H8.3.6.7..

Effects

For each task object t in root_list, performs spawn_root_and_wait(t), possibly in
parallel. Section 540H658H8.3.6.7 describes the actions of spawn_root_and_wait(t).

8.3.7 task Context
These methods expose relationships between task objects, and between task objects
and the underlying physical threads.

8.3.7.1 static task& self()

Returns

 Reference to innermost task that calling thread is executing.

8.3.7.2 task* parent() const

Returns
Value of the attribute parent. The result is an undefined value if the task was allocated
by allocate_root and is currently running under control of spawn_root_and_wait.

8.3.7.3 bool is_stolen_task() const

Requirements

The attribute parent is not null and this.execute() is running. The calling task must
not have been allocated with allocate_root.

Returns

true if the attribute owner of this is unequal to owner of parent.

8.3.8 task Debugging
Methods in this subsection are useful for debugging. They may change in future
implementations.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 100

8.3.8.1 state_type state() const

CAUTION: This method is intended for debugging only. Its behavior or performance may change
in future implementations. The definition of task::state_type may change in future
implementations. This information is being provided because it can be useful for
diagnosing problems during debugging.

Returns

Current state of the task. 541H659HTable 25 describes valid states. Any other value is the result
of memory corruption, such as using a task whose memory has been deallocated.

Table 25: Values returned by task::state()

Value Description

allocated task is freshly allocated or recycled.

ready task is in ready pool, or is in process of being transferred to/from there.

executing task is running, and will be destroyed after method execute() returns.

freed task is on internal free list, or is in process of being transferred to/from there.

reexecute task is running, and will be respawned after method execute() returns.

542H660HFigure 14 summarizes possible state transitions for a task.

Task Scheduling

 101

freed

allocated

reexecute

allocate_...(t)

(implicit)

spawn(t)
s
p
a
w
n
_
a
n
d
_
w
a
i
t
_
f
o
r
_
a
l
l
(

t
)

return from t.execute()

return from
t.execute()

t.recycle_to_reexecute

ready

executing
t.recycle_as...

(implicit)

storage returned to heap

d
e
s
t
r
o
y
(

t
)

allocate_...(t)

storage from heap

Figure 14: Typical task::state() transitions

8.3.8.2 int ref_count() const

CAUTION: This method is intended for debugging only. Its behavior or performance may change
in future implementations.

Returns
The value of the attribute refcount.

Intel(R) Threading Building Blocks

 Document Number 315415-001US 102

8.4 empty_task Class
Summary

Subclass of task that represents doing nothing.

Syntax
class empty_task;

Header
#include "tbb/task.h"

Description
An empty_task is a task that does nothing. It is useful as a continuation of a parent
task when the continuation should do nothing except wait for its children to complete.

Members
namespace tbb {
 class empty_task: public task {
 /*override*/ task* execute() {return NULL;}
 };
}

8.5 task_list Class

Summary

List of task objects.

Syntax
class task_list;

Header
#include "tbb/task.h"

Description

A task_list is a list of references to task objects. The purpose of task_list is to
allow a task to create a list of child tasks and spawn them all at once via the method
task::spawn(task_list&), as described in 543H661H8.3.6.4.

A task can belong to at most one task_list at a time, and on that task_list at
most once. A task that has been spawned, but not started running, must not belong
to a task_list. A task_list cannot be copy-constructed or assigned.

Task Scheduling

 103

Members
namespace tbb {
 class task_list {
 public:
 task_list();
 ~task_list();
 bool empty() const;
 void push_back(task& task);
 task& pop_front();
 void clear();
 };
}

8.5.1 task_list()

Effects

Constructs an empty list.

8.5.2 ~task_list()

Effects

Destroys the list. Does not destroy the task objects.

8.5.3 bool empty() const

Returns

True if list is empty; false otherwise.

8.5.4 push_back(task& task)

Effects

Inserts a reference to task at back of the list.

8.5.5 task& task pop_front()

Effects

Removes a task reference from front of list.

Returns

Intel(R) Threading Building Blocks

 Document Number 315415-001US 104

The reference that was removed.

8.5.6 void clear()

Effects

Removes all task references from the list. Does not destroy the task objects.

8.6 Catalog of Recommended task Recurrence
Patterns
This section catalogues three recommended task recurrence patterns. In each pattern,
class T is assumed to derive from class task. Subtasks are labeled t1, t2, ... tk.
The subscripts indicate the order in which the subtasks execute if no parallelism is
available. If parallelism is available, the subtask execution order is non-deterministic,
except that t1 is guaranteed to be executed by the spawning thread.

8.6.1 Blocking Style With k Children
The following shows the recommended style for a recursive task of type T where each
level spawns k children.
task* T::execute() {
 if(not recursing any further) {
 ...
 } else {
 set_ref_count(k+1);
 task& t

k
 = new(allocate_child()) T(...); t

k
.spawn();

 task& t
k-1
= new(allocate_child()) T(...); t

k-1
.spawn();

 ...
 task& t

1
= new(allocate_child()) T(...); t

1
.spawn_and_wait(t

1
);

 }
 return NULL;
}

Child construction and spawning may be reordered if convenient, as long as a task is
constructed before it is spawned.

The key points of the pattern are:

• The call to set_ref_count uses k+1 as its argument. The extra 1 is critical.

• Each task is allocated by allocate_child.

Task Scheduling

 105

8.6.2 Continuation-Passing Style With k Children
There are two recommended styles. They differ in whether it is more convenient to
recycle the parent as the continuation or as a child. The decision should be based
upon whether the continuation or child acts more like the parent.

8.6.2.1 Recycling Parent as Continuation
This style is useful when the continuation needs to inherit much of the state of the
parent and the child does not need the state. The continuation must have the same
type as the parent.
task* T::execute() {
 if(not recursing any further) {
 ...
 return NULL;
 } else {
 set_ref_count(k);
 recycle_as_continuation();
 task& t

k
 = new(allocate_child()) T(...); t

k
.spawn();

 task& t
k−1 = new(allocate_child()) T(...); tk−1.spawn();

 ...
 task& t

1
 = new(c.allocate_child()) T(...); t

1
.spawn();

 return &t
1
;

 }
}

The key points of the pattern are:

• The call to set_ref_count uses k as its argument. There is no extra 1 as there is in
blocking style discussed in Section 544H662H8.6.1.

• Each child task is allocated by allocate_child.

• The continuation is recycled from the parent, and hence gets the parent's state
without doing copy operations.

8.6.2.2 Recycling Parent as a Child
This style is useful when the child inherits much of its state from a parent and the
continuation does not need the state of the parent. The child must have the same type
as the parent. In the example, C is the type of the continuation, and must derive from
class task. If C does nothing except wait for all children to complete, then C can be
the class empty_task (545H663H8.4).
task* T::execute() {
 if(not recursing any further) {
 ...
 return NULL;
 } else {
 set_ref_count(k);
 // Construct continuation
 C& c = allocate_continuation();
 // Recycle self as first child
 task& t

k
 = new(c.allocate_child()) T(...); t

k
.spawn();

 task& t
k−1 = new(c.allocate_child()) T(...); tk−1.spawn();

Intel(R) Threading Building Blocks

 Document Number 315415-001US 106

 ...
 task& t

2
 = new(c.allocate_child()) T(...); t

2
.spawn();

 // task t
1
 is our recycled self.

 recycle_as_child_of(c);
 ... update fields of *this to state subproblem to be solved by t

1

 return this;
 }
}

The key points of the pattern are:

• The call to set_ref_count uses k as its argument. There is no extra 1 as there is
in blocking style discussed in Section 546H664H8.6.1.

• Each child task except for t1 is allocated by c.allocate_child. It is critical to use
c.allocate_child, and not (*this).allocate_child; otherwise the task graph
will be wrong.

• Task t1 is recycled from the parent, and hence gets the parent's state without
performing copy operations. Do not forget to update the state to represent a child
subproblem; otherwise infinite recursion will occur.

References

 107

9 References
Robert D.Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System.
Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (July 1995):207–216.

ISO/IEC 14882, Programming Languages – C++

Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase, Nathan
Thomas, Nancy Amato, Lawrence Rauchwerger. STAPL: An Adaptive, Generic Parallel
C++ Library. Workshop on Language and Compilers for Parallel Computing (LCPC
2001), Cumberland Falls, Kentucky Aug 2001. Lecture Notes in Computer Science
2624 (2003): 193-208.

	Disclaimer and Legal Information
	Contents
	2.1 Notation
	2.2 Terminology
	2.2.1 Concept
	2.2.2 Model
	2.2.3 CopyConstructible

	2.3 Identifiers
	2.3.1 Case
	2.3.2 Reserved Identifier Prefixes

	2.4 Namespaces
	2.4.1 tbb Namespace
	2.4.2 tbb::internal Namespace

	2.5 Thread Safety
	2.6 Enabling Debugging Features
	2.6.1 TBB_DO_ASSERT Macro
	2.6.2 TBB_DO_THREADING_TOOLS Macro

	3.1 Splittable Concept
	3.1.1 split Class

	3.2 Range concept
	3.2.1 blocked_range<Value> Template Class
	3.2.1.1 size_type
	3.2.1.2 blocked_range(Value begin, Value end, size_t grainsize=1)
	3.2.1.3 blocked_range(blocked_range& range, split)
	3.2.1.4 size_type size() const
	3.2.1.5 bool empty() const
	3.2.1.6 size_type grainsize() const
	3.2.1.7 bool is_divisible() const
	3.2.1.8 const_iterator begin() const
	3.2.1.9 const_iterator end() const

	3.2.2 blocked_range2d Template Class
	3.2.2.1 row_range_type
	3.2.2.2 col_range_type
	3.2.2.3 blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, typename row_range_type::size_type row_grainsize, ColValue col_begin, ColValue col_end, typename col_range_type::size_type col_grainsize)
	3.2.2.4 blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)
	3.2.2.5 bool empty() const
	3.2.2.6 bool is_divisible() const
	3.2.2.7 const row_range_type& rows() const
	3.2.2.8 const col_range_type& cols() const

	3.3 Preview Feature: Partitioner Concept
	3.3.1 simple_partitioner Class
	3.3.1.1 simple_partitioner()
	3.3.1.2 simple_partitioner(simple_partitioner &partitioner, split)
	3.3.1.3 template<typename Range> bool should_execute_range (const Range &r, const task &t)

	3.3.2 auto_partitioner Class
	3.3.2.1 auto_partitioner()
	3.3.2.2 auto_partitioner(auto_partitioner &partitioner, split)
	3.3.2.3 template<typename Range> bool should_execute_range (const Range &r, const task &t)

	3.4 parallel_for<Range,Body> Template Function
	3.4.1 Using the Partitioner Preview Feature

	3.5 parallel_reduce<Range,Body> Template Function
	3.5.1 Using the Partitioner Preview Feature

	3.6 parallel_scan<Range,Body> Template Function
	3.6.1 pre_scan_tag and final_scan_tag Classes
	3.6.1.1 bool is_final_scan()

	3.6.2 Using the Partitioner Preview Feature

	3.7 parallel_while Template Class
	3.7.1 parallel_while<Body>()
	3.7.2 ~parallel_while<Body>()
	3.7.3 Template <typename Stream> void run(Stream& stream, const Body& body)
	3.7.4 void add(const value_type& item)

	3.8 pipeline Class
	3.8.1 pipeline()
	3.8.2 ~pipeline()
	3.8.3 void add_filter(filter& f)
	3.8.4 void run(size_t max_number_of_live_tokens)
	3.8.5 void clear()
	3.8.6 filter Class
	3.8.6.1 filter(bool is_serial)
	3.8.6.2 ~filter()
	3.8.6.3 bool is_serial() const
	3.8.6.4 virtual void* operator()(void * item)

	3.9 parallel_sort<RandomAccessIterator, Compare> Template Function
	4.1 concurrent_hash_map<Key,T,HashCompare> Template Class
	4.1.1 Whole Table Operations
	4.1.1.1 concurrent_hash_map()
	4.1.1.2 concurrent_hash_map(const concurrent_hash_map& table)
	4.1.1.3 ~concurrent_hash_map()
	4.1.1.4 concurrent_hash_map& operator= (concurrent_hash_map& source)
	4.1.1.5 void clear()

	4.1.2 Concurrent Access
	4.1.2.1 const_accessor
	4.1.2.1.1 bool empty() const
	4.1.2.1.2 void release()
	4.1.2.1.3 const value_type& operator*() const
	4.1.2.1.4 const value_type* operator->() const
	4.1.2.1.5 const_accessor()
	4.1.2.1.6 ~const_accessor

	4.1.2.2 accessor
	4.1.2.2.1 value_type& operator*() const
	4.1.2.2.2 value_type* operator->() const

	4.1.3 Concurrent Operations
	4.1.3.1 bool find(const_accessor& result, const Key& key) const
	4.1.3.2 bool find(accessor& result, const Key& key)
	4.1.3.3 bool insert(const_accessor& result, const Key& key)
	4.1.3.4 bool insert(accessor& result, const Key& key)
	4.1.3.5 bool erase(const Key& key)

	4.1.4 Parallel Iteration
	4.1.4.1 const_range_type range(size_t grainsize) const
	4.1.4.2 range_type range(size_t grainsize)

	4.1.5 Capacity
	4.1.5.1 size_type size() const
	4.1.5.2 bool empty() const
	4.1.5.3 size_type max_size() const

	4.1.6 Iterators
	4.1.6.1 iterator begin()
	4.1.6.2 iterator end()
	4.1.6.3 const_iterator begin() const
	4.1.6.4 const_iterator end() const

	4.2 concurrent_queue<T> Template Class
	4.2.1 concurrent_queue()
	4.2.2 ~concurrent_queue()
	4.2.3 void push(const T& source)
	4.2.4 void pop(T& destination)
	4.2.5 bool pop_if_present(T& destination)
	4.2.6 size_type size() const
	4.2.7 bool empty() const
	4.2.8 size_type capacity()
	4.2.9 void set_capacity(size_type capacity)
	4.2.10 Iterators
	4.2.10.1 iterator begin()
	4.2.10.2 iterator end()
	4.2.10.3 const_iterator begin() const
	4.2.10.4 const_iterator end() const

	4.3 concurrent_vector
	4.3.1 Whole Vector Operations
	4.3.1.1 concurrent_vector()
	4.3.1.2 concurrent_vector(const concurrent_vector& src)
	4.3.1.3 concurrent_vector& operator=(const concurrent_vector& src)
	4.3.1.4 ~concurrent_vector()
	4.3.1.5 void clear()

	4.3.2 Concurrent Operations
	4.3.2.1 size_type grow_by(size_type delta)
	4.3.2.2 void grow_to_at_least(size_type n)
	4.3.2.3 size_t push_back(const_reference value);
	4.3.2.4 reference operator[](size_type index)
	4.3.2.5 const_reference operator[](size_type index) const;

	4.3.3 Parallel Iteration
	4.3.3.1 range_type range(size_t grainsize)
	4.3.3.2 const_range_type range(size_t grainsize) const

	4.3.4 Capacity
	4.3.4.1 size_type size() const
	4.3.4.2 bool empty() const
	4.3.4.3 size_type capacity() const
	4.3.4.4 void reserve(size_type n)
	4.3.4.5 size_type max_size() const

	4.3.5 Iterators
	4.3.5.1 iterator begin()
	4.3.5.2 iterator end()
	4.3.5.3 const_iterator begin() const
	4.3.5.4 const_iterator end() const
	4.3.5.5 iterator rbegin()
	4.3.5.6 iterator rend()
	4.3.5.7 const_reverse_iterator rbegin() const
	4.3.5.8 const_ reverse_iterator rend() const

	5.1 Allocator Concept
	5.2 scalable_allocator<T> Template Class
	5.3 cache_aligned_allocator<T> Template Class
	5.3.1 pointer allocate(size_type n, void* hint=0)
	5.3.2 void deallocate(pointer p, size_type n)
	5.3.3 char* _Charalloc(size_type size)

	5.4 aligned_space Template Class
	5.4.1 aligned_space()
	5.4.2 ~aligned_space()
	5.4.3 T* begin()
	5.4.4 T* end()

	6.1 Mutexes
	6.1.1 Mutex Concept
	6.1.2 mutex Class
	6.1.3 spin_mutex Class
	6.1.4 queuing_mutex Class
	6.1.5 ReaderWriterMutex Concept
	6.1.5.1 ReaderWriterMutex()
	6.1.5.2 ~ReaderWriterMutex()
	6.1.5.3 ReaderWriterMutex::scoped_lock()
	6.1.5.4 ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw, bool write =true)
	6.1.5.5 ReaderWriterMutex::~scoped_lock()
	6.1.5.6 void ReaderWriterMutex:: scoped_lock:: acquire(ReaderWriterMutex& rw, bool write=true)
	6.1.5.7 bool ReaderWriterMutex:: scoped_lock::try_acquire(ReaderWriterMutex& rw, bool write=true)
	6.1.5.8 void ReaderWriterMutex:: scoped_lock::release()
	6.1.5.9 bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()
	6.1.5.10 bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()

	6.1.6 spin_rw_mutex Class
	6.1.7 queuing_rw_mutex Class

	6.2 atomic<T> Template Class
	6.2.1 enum memory_semantics
	6.2.2 value_type fetch_and_add(value_type addend)
	6.2.3 value_type fetch_and_increment()
	6.2.4 value_type fetch_and_decrement()
	6.2.5 value_type compare_and_swap
	6.2.6 Effect
	6.2.7 value_type fetch_and_store(value_type new_value)

	7.1 tick_count Class
	7.1.1 static tick_count tick_count::now()
	7.1.2 tick_count::interval_t operator((const tick_count& t1, const tick_count& t0)
	7.1.3 tick_count::interval_t Class
	7.1.3.1 interval_t()
	7.1.3.2 double seconds() const
	7.1.3.3 interval_t operator+=(const interval_t& i)
	7.1.3.4 interval_t operator(=(const interval_t& i)
	7.1.3.5 interval_t operator+ (const interval_t& i, const interval_t& j)
	7.1.3.6 interval_t operator((const interval_t& i, const interval_t& j)

	8.1 Scheduling Algorithm
	8.2 task_scheduler_init Class
	8.2.1 task_scheduler_init(int number_of_threads=automatic)
	8.2.2 ~task_scheduler_init()
	8.2.3 void initialize(int number_of_threads=automatic)
	8.2.4 void terminate()
	8.2.5 Mixing with OpenMP

	8.3 task Class
	8.3.1 task Derivation
	8.3.1.1 Processing of execute()

	8.3.2 task Allocation
	8.3.2.1 new(task::allocate_root()) T
	8.3.2.2 new(this. allocate_continuation()) T
	8.3.2.3 new(this. allocate_child()) T
	8.3.2.4 new(this.task::allocate_child_of(parent))

	8.3.3 Explicit task Destruction
	8.3.3.1 void destroy(task& victim)

	8.3.4 Recycling Tasks
	8.3.4.1 void recycle_as_continuation()
	8.3.4.2 Preview Feature: void recycle_as_safe_continuation()
	8.3.4.3 void recycle_as_child_of(task& parent)
	8.3.4.4 void recycle _to_reexecute()

	8.3.5 task Depth
	8.3.5.1 depth_type
	8.3.5.2 depth_type depth() const
	8.3.5.3 void set_depth(depth_type new_depth)
	8.3.5.4 void add_to_depth(int delta)

	8.3.6 Synchronization
	8.3.6.1 void set_ref_count(int count)
	8.3.6.2 void wait_for_all()
	8.3.6.3 void spawn(task& child)
	8.3.6.4 void spawn (task_list& list)
	8.3.6.5 void spawn_and_wait_for_all(task& child)
	8.3.6.6 void spawn_and_wait_for_all(task_list& list)
	8.3.6.7 static void spawn_root_and_wait(task& root)
	8.3.6.8 static void spawn_root_and_wait(task_list& root_list)

	8.3.7 task Context
	8.3.7.1 static task& self()
	8.3.7.2 task* parent() const
	8.3.7.3 bool is_stolen_task() const

	8.3.8 task Debugging
	8.3.8.1 state_type state() const
	8.3.8.2 int ref_count() const

	8.4 empty_task Class
	8.5 task_list Class
	8.5.1 task_list()
	8.5.2 ~task_list()
	8.5.3 bool empty() const
	8.5.4 push_back(task& task)
	8.5.5 task& task pop_front()
	8.5.6 void clear()

	8.6 Catalog of Recommended task Recurrence Patterns
	8.6.1 Blocking Style With k Children
	8.6.2 Continuation-Passing Style With k Children
	8.6.2.1 Recycling Parent as Continuation
	8.6.2.2 Recycling Parent as a Child

