

Intel(R) Thread Checker 3.1 for
Linux*

Getting Started Guide

Intel® Thread Checker detects data races, deadlocks, stalls, and other threading
issues. It can detect the potential for these errors even if the error does not occur
during an analysis session. Use Thread Checker to filter out specific types of
diagnostics, identify critical source locations, and get tips to improve the robustness
of your parallel software.

Overview

This guide presents a threaded code example and teaches you how to use Intel®
Thread Checker to identify and handle threading-related issues. After completing
this guide, you should be ready to analyze and repair your own code using Thread
Checker.

To quickly start using Thread Checker, print this short guide and walk through the
example provided.

Contents

Disclaimer and Legal Information..2

1 Build the Sample Code...3

2 Collect Data ...5

3 Analyze Results and Correct the Code ..6

4 Next Steps...9

Intel(R) Thread Checker 3.1 for Linux*

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

The software described in this document may contain software defects which may cause the product to deviate from published
specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or copied in accordance
with the terms of the license. The information in this manual is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided
in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the express written consent of Intel Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked reserved or undefined.
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer’s
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside, Dialogic, EtherExpress, ETOX, FlashFile,
i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core,
Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX,
MMX logo, Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your
Command, Pentium Inside, skoool, Sound Mark, The Computer Inside., The Journey Inside, VTune, Xeon, Xeon Inside and
Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2005-2006, Intel Corporation.

Revision History

Document
Number

Revision
Number

Description Revision Date

313445 US 001 Initial release. May 2006

313445 US 002 Minor edits. September
2006

2 Document Number: 313445-001 US

Build the Sample Code

1 Build the Sample Code

The primes sample code identifies and counts and records the prime numbers in the
range from one to 10,000. Using the POSIX* threads APIs, multiple threads perform
the work. However, the threads simultaneously access the same memory location,
causing potential data races. As a result, this program may generate incorrect
results.

To build the sample code:

1. Copy primes directory to a convenient workspace. By default this samples code
directory is installed in: /opt/intel/itt/tcheck/samples/primes.

2. Set up the Intel(R) Thread Checker environment

> source <path_to_tcheck_bin_directory>/tcheckvars.csh

or
> . <path_to_tcheck_bin_directory>/tcheckvars.sh

3. Build the primes executable using one of the following methods:

To build using the GNU* C/C++ compiler:

a. Go to your copy of the primes directory.

b. Enter the following command:
 > make
This command builds the executable files primes.gcc and
primesFixed.gcc using the switches -g -o0 which turn on debug
information and turn off optimization. These settings enable Thread Checker
to perform binary instrumentation. Thread Checker instruments the
executable to enable monitoring of POSIX* threads API calls and of memory
accesses.

To build using the Intel® C++ Compiler for Linux*:

a. At the shell command prompt, set up the Intel compiler environment.
Enter:
> source <path_to_compiler_bin_directory>/iccvars.csh
or
> . <path_to_compiler_bin_directory>/iccvars.sh.

b. If the Intel(R) Thread Checker was not installed in the standard location,
(/opt/intel/itt), edit the Makefile so that the variable ITT_BASE points to
the location of the installed tcheck directory.

c. Go to the primes directory and enter the command:
 > make icc

The compiler builds executable files with extensions .icc and .icc.tc. The
switches -g -o0 turn on debugging and turn off optimization to enable the
most information gathering. The files with extension .icc.tc are compiled

313445-001 US/ Getting Started Guide 3

Intel(R) Thread Checker 3.1 for Linux*

with the additional -tcheck switch which enables compile-time source
instrumentation. This switch enables Thread Checker to provide you with
even more information during analysis.

NOTE: The files with extension .icc are not compiled with the -tcheck switch, so only
binary instrumentation is available on those files.

CAUTION: Before running your code in a separate window or after a new login, you must
source iccvars.* again.

If you run the primes executable several times, you might see the output such as
the following:
 > ./primes.gcc
 Determining primes from 1 - 10000
 Found 1228 primes

 > ./primes.gcc
 Determining primes from 1 - 10000
 Found 1229 primes

 > ./primes.gcc
 Determining primes from 1 - 10000
 Found 1229 primes

 > ./primes.gcc
 Determining primes from 1 - 10000
 Found 1227 primes

What do you see? Different runs of the same program produce inconsistent results!

The correct number of primes between one and 10,000 is 1,229. In this case, it is
relatively easy to see that there is a threading inconsistency. In larger programs, a
threading inconsistency can be much more difficult to discern.

Thread Checker can help you locate the threading inconsistency even though it does
not appear in every run.

4 Document Number: 313445-001 US

Collect Data

2 Collect Data

As in section 1, set up the Intel(R) Thread Checker command line tool environment
by sourcing <path_to_tcheck_bin_directory>/tcheckvars.csh or
tcheckvars.sh.

Now, start the command line tool by entering:
 > tcheck_cl ./primes.gcc

You should see the following output:
 Intel(R) Thread Checker 3.1 command line instrumentation driver
 Copyright (c) 2006 Intel Corporation. All rights reserved.
 Building project
 Instrumenting
 25% primes.gcc (All Functions):..
 75% libc-2.3.2.so (Minimal):....
 100% libpthread-0.60.so (Minimal):..

 Running: <path>/primes/primes.gcc

 Determining primes from 1 - 10000
 Found 1229 primes

 Application finished

The command line tool begins by performing binary instrumentation of the
executable primes.gcc and its associated modules. It shows an estimate of the
instrumentation completion time along with the modules being instrumented. For
large applications, this process can take many minutes. The level of instrumentation
is also given.

Since debug information is enabled in primes.gcc, Thread Checker uses the highest
instrumentation level, All Functions, for this file.

Since the pre-compiled libraries do not have debug information, Thread Checker
uses only the Minimal instrumentation level which only notes calls to the library
functions.

Intel(R) Thread Checker creates a directory to store temporary data. By default, the
name of the directory is /tmp/<login_name>_tc_cl_cache. You can specify an
alternate directory with a short or long form of a command line switch by entering:
> tcheck_cl -d /home/sample_data primes.gcc

 or
> tcheck_cl --cache_dir /home/sample_data primes.gcc

313445-001 US/ Getting Started Guide 5

Intel(R) Thread Checker 3.1 for Linux*

3 Analyze Results and Correct the
Code
After the run, Intel® Thread Checker collects instrumentation data, analyzes it and
ties it to any available symbol information. It displays results in a table of
diagnostics that should look like this:

ID	Short	Severity	Count	Context	Description	1st Acc	2nd Acc
	Descri	Name		[Best]		ess[Bes	ess[Bes
	ption					t]	t]

1	Write	Error	941	primes	Memory read at primes.c:41	primes	primes
	-> Rea			.c:27	conflicts with a prior memo	.c:42	.c:41
	d data				ry write at primes.c:42 (f		
	-race				low dependence)		

2	Write	Error	941	primes	Memory read at primes.c:42	primes	primes
	-> Rea			.c:27	conflicts with a prior memo	.c:42	.c:42
	d data				ry write at primes.c:42 (f		
	-race				low dependence)		
 __
3	Write	Error	941	primes	Memory write at primes.c:4	primes	primes
	-> Wri			.c:27	2 conflicts with a prior mem	.c:42	.c:42
	te dat				ory write at primes.c:42 (
	a-race				output dependence)		

4	Write	Error	1	primes	Memory write at primes.c:4	primes	primes
	-> Wri			.c:27	1 conflicts with a prior mem	.c:41	.c:41
	te dat				ory write at primes.c:41 (
	a-race				output dependence)		

5	Thread	Informat	1	Whole P	Thread termination at prime	primes	primes
	termi	ion		rogram	s.c:61 - includes stack all	.c:61	.c:61
	nation			1	ocation of 10489856 and use		
					of 2332 bytes		

You are now ready to analyze diagnostics and correct threading inconsistencies in
the application.

The first diagnostic in the list is identified by ID 1. Here Thread Checker identified a
Write -> Read data-race error. The Severity Name indicates the class of the
diagnostic, in this case an Error. The Count field shows how many times this
particular event occurred during the course of the run. The actual count may vary
from run to run based on the scheduling of threads.

The Context[Best] field presents the context of the diagnostic. The Best
designation indicates that Thread Checker attempts to display the most complete
information. Because debug information was present, the context can be given as
the function that begins at line 27 of the source file primes.c.

6 Document Number: 313445-001 US

Analyze Results and Correct the Code

The Description field shows a more complete description of the diagnostic. The
data dependence error (flow dependence) was caused by one thread writing a
variable in line 42 of primes.c, the 1st Access[Best], and then another thread
reading that same unprotected variable at line 41, the 2nd Access[Best].

If you do a similar run using the source instrumented version primes.icc.tc, you
would see the following first diagnostic:

ID	Short	Severity	Count	Context	Description	1st Acc	2nd Acc
	Descri	Name		[Best]		ess[Bes	ess[Bes
	ption					t]	t]

1	Write	Error	737	primes	Memory read of primeCount at	primes	primes
	-> Rea			.c:27	primes.c:41 conflicts wit	.c:42	.c:41
	d data				h a prior memory write of pr		
	-race				imeCount at primes.c:42 (f		
					low dependence)		

Notice two differences in the results. The Count field value is different due to
different scheduling. The Description field names the global variable involved,
primeCount. This extra information is available due to source instrumentation. With
binary instrumentation, the names of global objects are not available. Now look at
the source lines involved:
 38 while ((number % factor) != 0) factor += 2;
 39 if (factor == number)
 40 {
 41 primes[primeCount] = number;
 42 primeCount++;
 43 }

The global variable primeCount and the global array primes[] are unprotected but
are accessed by all four worker threads. By adding a synchronization object to
serialize the use of the variables, you can protect shared variables from
unpredictable concurrent modifications.

To correct the code and eliminate the inconsistency:

1. Add a global mutex and initialize it in the main program.

2. Make each thread acquire the mutex before reading or writing the variables, as
follows:

 pthread_mutex_t cs;
 ...

 void * findPrimes (void * arg)
 {

 while ((number % factor) != 0) factor += 2;
 if (factor == number)
 {

pthread_mutex_lock(&cs);
primes[primeCount] = number;
primeCount++;
pthread_mutex_unlock(&cs);

 }
 }

313445-001 US/ Getting Started Guide 7

Intel(R) Thread Checker 3.1 for Linux*

The sample code primesFixed.c contains the modification. The executable
primesFixed.gcc is ready for analysis by Thread Checker. If built with the Intel
C/C++ Compiler for Linux, primesFixed.icc is ready for analysis using binary
instrumentation and primesFixed.icc.tc is already instrumented by the compiler.

8 Document Number: 313445-001 US

Next Steps

4 Next Steps

The following additional resources are available to help you make the most of this
version of Intel® Thread Checker:

•

•

•

•

•

Online Help. A full listing of available Thread Checker command-line options
are available in the help. To access the help, run:

 > tcheck_cl --help

Diagnostics. Detailed descriptions of diagnostics, their causes, and possible
solutions are provided in DiagnosticsGuide.pdf in tcheck/doc.

Samples. Additional code examples are available for you to explore. Use them
to learn to identify and resolve other types of threading errors.
Code Samples are in the tcheck/samples directory.

Release Notes. Key product details, updated information on requirements,
technical support, and known limitations is available in the product
Release_Notes.txt in tcheck/doc.

Intel® Thread Profiler. After you check your code with Intel® Thread
Checker, use the Intel® Thread Profiler to help you improve its performance.
Find details about Thread Profiler and other Intel software development products
at: http://www.intel.com/software/products/.

313445-001 US/ Getting Started Guide 9

http://www.intel.com/software/products/

	Overview
	Contents
	 Disclaimer and Legal Information
	Revision History
	1 Build the Sample Code
	2 Collect Data
	3 Analyze Results and Correct the Code
	4 Next Steps

