

Intel® Celeron® M Processor on 65 nm Process

Datasheet

September 2006

Document Number: 312726-003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Celeron® M processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

 $\Delta Intel \ processor \ numbers \ are not \ a \ measure \ of \ performance. \ Processor \ numbers \ differentiate \ features \ within each \ processor \ family, \ not \ across \ different \ processor \ families. \ See \ http://www.intel.com/products/processor_number \ for \ details.$

Intel, Celeron, Pentium, MMX, and the Intel logo are registered trademarks or trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.

Copyright © 2006, Intel Corporation. All rights reserved.

Contents

1	Intro	oduction	7
	1.1	Terminology	8
	1.2	References	9
2	Low	Power Features	11
	2.1	Clock Control and Low Power States	
		2.1.1 Core Low-Power States	
		2.1.2 Package Low Power States	
	2.2	FSB Low Power Enhancements	15
	2.3	Processor Power Status Indicator (PSI#) Signal	16
3	Elect	trical Specifications	17
	3.1	FSB (Front Side Bus) and GTLREF	
	3.2	Power and Ground Pins	
	3.3	Decoupling Guidelines	
		3.3.1 VCC Decoupling	
		3.3.2 FSB AGTL+ Decoupling	
		3.3.3 FSB Clock (BCLK[1:0]) and Processor Clocking	
	3.4	Voltage Identification and Power Sequencing	
	3.5	Catastrophic Thermal Protection	22
	3.6	Signal Terminations and Unused Pins	22
	3.7	FSB Frequency Select Signals (BSEL[2:0])	
	3.8	FSB Signal Groups	
	3.9	CMOS Signals	
	3.10	3	
	3.11	Processor DC Specifications	25
4	Pack	kage Mechanical Specifications and Pin Information	31
	4.1	Processor Component Keep-Out Zones	
	4.2	Package Loading Specifications	
	4.3	Processor Mass Specifications	
	4.4	Processor Pinout and Pin List	36
	4.5	Alphabetical Signals Reference	55
5	Ther	rmal Specifications and Design Considerations	63
	5.1	Thermal Specifications	
		5.1.1 Thermal Diode	
		5.1.2 Thermal Diode Offset	
		5.1.3 Intel® Thermal Monitor	68
		5.1.4 Digital Thermal Sensor	70
		5.1.5 Out of Specification Detection	70
		5.1.6 PROCHOT# Signal Pin	

Figures

1	Package-Level Low Power States	11
2	Core Low Power States	
3	Active VCC and ICC Load Line for the Celeron M Processor Standard Voltage	28
4	Active VCC and ICC Load Line for the Celeron M Processor Ultra Low Voltage	28
5	Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)	32
6	Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)	33
7	Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)	
8	Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)	35
Tabl	es	
1	Coordination of Core-Level Low Power States at the Package Level for the Celeron M	
	Processor	11
2	Voltage Identification Definition	19
3	BSEL[2:0] Encoding for BCLK Frequency	23
4	FSB Pin Groups	
5	Processor DC Absolute Maximum Ratings	
6	Voltage and Current Specifications for the Celeron M Processor Standard Voltage	
7	Voltage and Current Specifications for the Celeron M Processor Ultra Low Voltage	
8	FSB Differential BCLK Specifications	
9	AGTL+ Signal Group DC Specifications	
10	CMOS Signal Group DC Specifications	
11	Open Drain Signal Group DC Specifications	
12	The Coordinates of the Processor Pins As Viewed from the Top of the Package	
13	Pin Listing by Pin Name	39
14	Pin Listing by Pin Number	
15	Signal Description	
16	Power Specifications for the Celeron M Processor Standard Voltage	
17	Power Specifications for the Celeron M Processor Ultra Low Voltage	
18	Thermal Diode Interface	
19	Thermal Diode Parameters using Diode Model	
20	Thermal Diode Parameters using Transistor Mode	
21	Thermal Diode n _{trim} and Diode Correction Toffset	68

Revision History

Revision	Description	Date
-001	Initial release	April 2006
-002	Chapter 3, "Electrical Specifications" — Added 440 and 450 processor specifications to Table 6. Chapter 5, "Thermal Specifications and Design Considerations" — Added power specifications for the 440 and 450 processor to Table 16.	September 2006
-003	Corrected page numbering in Chapter 5	September 2006

§

1 Introduction

The Intel® Celeron® M processor based on 65 nm process technology is a high-performance, low-power mobile processor with several enhancements over previous mobile Celeron processors.

Throughout this document, the term "Celeron M processor" refers to the Intel® Celeron® M processor based on 65 nm process technology.

This document contains specifications for both the Intel® Celeron® M processor 450, 440, 430, 420, 410 and Intel® Celeron® M processor Ultra Low Voltage 423^{Δ} .

Note:

 $^{\Delta}$ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

The following list provides some of the key features on this processor:

- On-die, 1-MB second level cache with Advanced Transfer Cache Architecture
- · Supports Intel Architecture with Dynamic Execution
- On-die, primary 32-kB instruction cache and 32-kB write-back data cache
- · Data Prefetch Logic
- Streaming SIMD Extensions 2 (SSE2) and Streaming SIMD Extensions 3 (SSE3)
- The Celeron M processor and the Celeron M processor Ultra Low Voltage are offered at 533-MHz FSB
- · Digital Thermal Sensor
- The Celeron M is a single core processor offered in both Micro-FCPGA and Micro-FCBGA packages
- The Celeron M processor Ultra Low Voltage is a single core processor offered only in a Micro-FCBGA package
- Execute Disable Bit support for enhanced security

The Celeron M processor will be manufactured on Intel's 65 nanometer process technology with copper interconnect. The processor maintains support for MMX™ technology, Streaming SIMD instructions, and full compatibility with IA-32 software. The Celeron M processor features on-die, 32-kB level 1 instruction and data caches and a 1-MB level 2 cache with Advanced Transfer Cache Architecture. The processor's Data Prefetch Logic speculatively fetches data to the L2 cache before the L1 cache requests occurs, resulting in reduced bus cycle penalties. The Celeron M processor includes the Data Cache Unit Streamer which enhances the performance of the L2 prefetcher by requesting L1 warm-ups earlier. In addition, the Writer Order Buffer depth is enhanced to help with the write-back latency performance.

In addition to supporting the existing Streaming SIMD Extensions 2 (SSE2), there are 13 new instructions which further extend the capabilities of Intel processor technology. These new instructions are called Streaming SIMD Extensions 3 (SSE3). 3D graphics and other entertainment applications such as gaming will have the opportunity to take advantage of these new instructions as platforms with the Celeron M processor based on 65 nm process and SSE3 become available in the market place.

The Celeron M processor's front side bus (FSB) utilizes a split-transaction, deferred reply protocol. The FSB uses Source-Synchronous Transfer (SST) of address and data to improve performance by transferring data four times per bus clock. The 4X data bus can deliver data four times per bus clock and is referred as "quad-pumped" or 4X data

bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and the 2X address bus provide a data bus bandwidth of up to 4.26 GB/second. The FSB uses Advanced Gunning Transceiver Logic (AGTL+) signaling technology, a variant of GTL+ signaling technology with low power enhancements. The processor features the Auto Halt, Stop Grant and Deep Sleep low power C-states.

The Celeron M processor utilizes socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The Micro-FCPGA package plugs into a 479-hole, surface-mount, Zero Insertion Force (ZIF) socket, which is referred to as the mPGA479M socket.

Celeron M processor supports the Execute Disable Bit capability. This feature combined with a support operating system allows memory to be marked as executable or non executable. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system. See the *IA-32 Intel® Architecture Software Developer's Manual* for more detailed information.

1.1 Terminology

Term	Definition
#	A "#" symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the "#" symbol implies that the signal is inverted. For example, D[3:0] = "HLHL" refers to a hex 'A', and D[3:0]# = "LHLH" also refers to a hex "A" (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined.
Front Side Bus (FSB)	Refers to the interface between the processor and system core logic (also known as the chipset components).
AGTL+	Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+ signaling technology on some Intel processors.

1.2 References

Document	Document Number		
Intel® Celeron® M Processor Specification Update	300303		
Mobile Intel® 945 Express Chipset Family Datasheet	309219		
Mobile Intel® 945 Express Chipset Family Specification Update	309220		
Intel® I/O Controller Hub 7 (ICH7) Family Datasheet	307013		
Intel® I/O Controller Hub 7 (ICH7) Family Specification Update	307014		
IA-32 Intel® Architecture Software Developer's Manual			
Volume 1: Basic Architecture	http:// www.intel.com/		
Volume 2A: Instruction Set Reference, A- M	design/		
Volume 2B: Instruction Set Reference. N-Z	pentium4/ manuals/		
Volume 3A: System Programming Guide	index_new.htm		
Volume 3B: System Programming Guide			
AP-485, Intel® Processor Identification and CPUID Instruction Application Note	241618		

§

2 Low Power Features

2.1 Clock Control and Low Power States

The Celeron M processor supports the C1/AutoHALT, C1/MWAIT, Stop Grant, Sleep, and Deep Sleep for power management. See Figure 1 for a visual representation of package level low-power states for the Celeron M processor. Package low power states include Normal, Stop Grant, Stop Grant Snoop, Sleep and Deep Sleep. Refer Figure 2 for a visual representation of the core low-power states for the Celeron M processor.

The Celeron M processor implements two software interfaces for requesting low power states: MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK register block mapped in the processor's I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads on the processor FSB. The monitor address does not need to be setup before using the P_LVLx I/O read interface. The sub-state hints used for each P_LVLx read can be configured through the IA32_MISC_ENABLES model specific register (MSR).

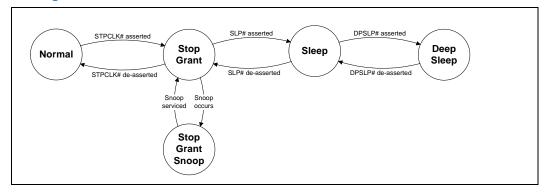

If the processor encounters a chipset break event while STPCLK# is asserted, it asserts the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system logic that the processor should return to the Normal state.

Table 1. Coordination of Core-Level Low Power States at the Package Level for the Celeron M Processor

Core States	Package States
CO	Normal
C1 ⁽¹⁾	Normal
C2	Stop Grant
C3	Deep Sleep

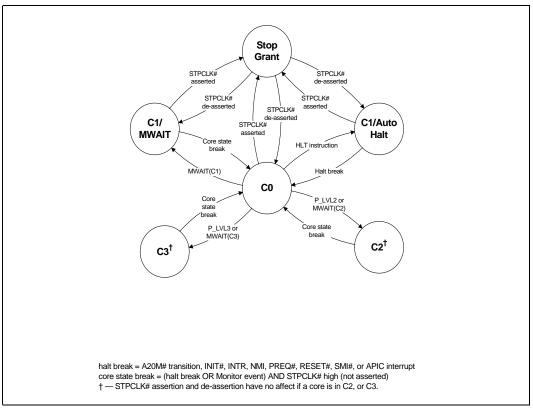

NOTE: (1) AutoHALT or MWAIT/C1

Figure 1. Package-Level Low Power States

Figure 2. Core Low Power States

2.1.1 Core Low-Power States

2.1.1.1 CO State

This is the normal operating state for the core of the Celeron M processor.

2.1.1.2 C1/AutoHALT Powerdown State

C1/AutoHALT is a low power state entered when the processor core executes the HALT instruction. The processor core will transition to the C0 state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor to immediately initialize itself.

A System Management Interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Powerdown state. See the *IA-32 Intel® Architecture Software Developer's Manual, Volume 3A/3B: System Programmer's Guide* for more information.

The system can generate a STPCLK# while the processor is in the AutoHALT Powerdown state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in AutoHALT Powerdown state the Celeron M processor will process only the bus snoops. The processor core will enter a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the AutoHALT Powerdown state.

2.1.1.3 C1/MWAIT Powerdown State

MWAIT is a low power state entered when the processor core executes the MWAIT instruction. Processor behavior in the MWAIT state is identical to the AutoHALT state except that there is an additional event that can cause the processor core to return to the CO state: the Monitor event. See the *IA-32 Intel® Architecture Software Developer's Manual, Volume 2A/2B: Instruction Set Reference* for more information.

2.1.1.4 Core C2 State

The core of the Celeron M processor can enter the C2 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor will not issue a Stop Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted.

While in C2 state, the Celeron M processor will process only the bus snoops. The processor core will enter a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C2 state.

2.1.1.5 Core C3 State

Core C3 state is a very low power state the processor core can enter while maintaining context. The core of the Celeron M processor can enter the C3 state by initiating a P_LVL3 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering the C3 state the processor core flushes the contents of its L1 caches into the processor's L2 cache. Except for the caches, the processor core maintains all its architectural state in the C3 state. The Monitor remains armed if it is configured. All of the clocks in the processor core are stopped in the C3 state.

Because the core's caches are flushed the processor keeps the core in the C3 state when the processor detects a snoop on the FSB. The processor core will transition to the C0 state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor core to immediately initialize itself.

2.1.2 Package Low Power States

The package level low power states are applicable for the Celeron M processor. All package level low power states are described as follows:

2.1.2.1 Normal State

This is the normal operating state for the processor. The Celeron M processor enters the Normal state when the core is in the CO, C1/AutoHALT, or C1/MWAIT state.

2.1.2.2 Stop-Grant State

When the STPCLK# pin is asserted the core of the Celeron M processor enters the Stop-Grant state within 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. When the STPCLK# pin is deasserted the core returns to the previous core low-power state.

Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to $V_{\rm CCP}$) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#, DPSLP#, and DPRSTP# pins must be deasserted more than 480 μ s prior to RESET#

deassertion (AC Specification T45). When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the deassertion of SLP# (AC Specification T75).

While in the Stop-Grant State, the processor will service snoops and latch interrupts delivered on the FSB. The processor will latch SMI#, INIT# and LINT[1:0] interrupts and will serviced only upon return to the Normal state.

While in Stop-Grant state, the processor will process snoops on the FSB and it will latch interrupts delivered on the FSB.

The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt or monitor event latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that the processor should return to the Normal state.

A transition to the Stop Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4) will occur with the assertion of the SLP# signal.

2.1.2.3 Stop Grant Snoop State

The processor will respond to snoop or interrupt transactions on the FSB while in Stop-Grant state by entering the Stop-Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. The processor will return to the Stop-Grant state once the snoop has been serviced or the interrupt has been latched.

2.1.2.4 Sleep State

The Sleep state is a low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Snoop events that occur while in Sleep state or during a transition into or out of Sleep state will cause unpredictable behavior. Any transition on an input signal before the processor has returned to the Stop-Grant state will result in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.

2.1.2.5 Deep Sleep State

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings on appropriate chipset based platforms with the CK410M clock chip are as follows:

- Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.
- Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK periods.

To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion as described above. A period of 15 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

2.2 FSB Low Power Enhancements

The Celeron M processor incorporates FSB low power enhancements:

- Dynamic FSB Power Down
- BPRI# control for address and control input buffers
- · Dynamic Bus Parking
- Dynamic On Die Termination disabling
- Low V_{CCP} (I/O termination voltage)

The Celeron M processor incorporates the DPWR# signal that controls the data bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. Dynamic Bus Parking allows a reciprocal power reduction in chipset address and control input buffers when the processor deasserts its BRO# pin. The On Die Termination on the processor FSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.

2.3 Processor Power Status Indicator (PSI#) Signal

The Celeron M processor incorporates the PSI# signal that is asserted when the processor is in a reduced power consumption state. PSI# can be used to improve intermediate and light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. The algorithm that the Celeron M processor uses for determining when to assert PSI# is different from the algorithm used in previous Celeron M processors. For more information, contact your Intel Representative.

§

3 Electrical Specifications

3.1 FSB (Front Side Bus) and GTLREF

Most Celeron M processor FSB signals use Advanced Gunning Transceiver Logic (AGTL+) signalling technology. This signalling technology provides improved noise margins and reduced ringing through low-voltage swings and controlled edge rates. The termination voltage level for the Celeron M processor AGTL+ signals is $V_{CCP} = 1.05 \ V$ (nominal). Due to speed improvements to data and address bus, signal integrity and platform design methods have become more critical than with previous processor families. Contact your Intel representative for more information on design guidelines for the Celeron M processor FSB.

The AGTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the system board. Termination resistors are provided on the processor silicon and are terminated to its I/O voltage (V_{CCP}). Intel® 945GMS and 940GML Express Chipsets will also provide on-die termination, thus eliminating the need to terminate the bus on the system board for most AGTL+ signals.

Refer to your Intel representative for board level termination resistor requirements.

The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the FSB, including trace lengths, is highly recommended when designing a system.

3.2 Power and Ground Pins

For clean, on-chip power distribution, the Celeron M processor will have a large number of V_{CC} (power) and V_{SS} (ground) inputs. All power pins must be connected to V_{CC} power planes while all V_{SS} pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. Please contact your Intel representative for more details. The processor V_{CC} pins must be supplied the voltage determined by the VID (Voltage ID) pins.

3.3 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large average current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate.

Caution:

Care must be taken in the board design to ensure that the voltage provided to the processor remains within the specifications listed in Table 6. Failure to do so can result in timing violations or reduced lifetime of the component. For further information and design guidelines, contact your Intel representative.

3.3.1 V_{CC} Decoupling

Regulator solutions need to provide bulk capacitance with a low effective series resistance (ESR) and keep a low interconnect resistance from the regulator to the socket. Bulk decoupling for the large current swings when the part is powering on, or entering/exiting low-power states, must be provided by the voltage regulator solution. It is strongly recommended that the layout and decoupling recommendations be followed - for more details, contact your Intel representative.

3.3.2 FSB AGTL+ Decoupling

Celeron M processors integrate signal termination on the die as well as incorporate high frequency decoupling capacitance on the processor package. Decoupling must also be provided by the system motherboard for proper AGTL+ bus operation. For more information, contact your Intel representative.

3.3.3 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the Celeron M processor core frequency is a multiple of the BCLK[1:0] frequency. The Celeron M processor bus ratio multiplier will be set at its default ratio at manufacturing. The Celeron M processor uses a differential clocking implementation. For more information on Celeron M processor clocking, contact your Intel representative.

3.4 Voltage Identification and Power Sequencing

Information regarding the VID specification for the Celeron M processor is available from your Intel representative.

The Celeron M processor uses seven voltage identification pins, VID[6:0], to support automatic selection of power supply voltages. The VID pins for Celeron M processor are CMOS outputs driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding to the state of VID[6:0]. For more details about VR design to support the Celeron M processor power supply requirements, please contact your Intel representative.

Power source characteristics must be stable whenever the supply to the voltage regulator is stable. Refer to the Figure 3 for timing details of the power-up sequence. Figure 4 shows the power-down sequencing requirements.

Table 2. Voltage Identification Definition (Sheet 1 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
0	0	0	0	0	0	0	1.5000
0	0	0	0	0	0	1	1.4875
0	0	0	0	0	1	0	1.4750
0	0	0	0	0	1	1	1.4625
0	0	0	0	1	0	0	1.4500
0	0	0	0	1	0	1	1.4375
0	0	0	0	1	1	0	1.4250
0	0	0	0	1	1	1	1.4125
0	0	0	1	0	0	0	1.4000
0	0	0	1	0	0	1	1.3875
0	0	0	1	0	1	0	1.3750
0	0	0	1	0	1	1	1.3625
0	0	0	1	1	0	0	1.3500
0	0	0	1	1	0	1	1.3375
0	0	0	1	1	1	0	1.3250
0	0	0	1	1	1	1	1.3125
0	0	1	0	0	0	0	1.3000
0	0	1	0	0	0	1	1.2875
0	0	1	0	0	1	0	1.2750
0	0	1	0	0	1	1	1.2625
0	0	1	0	1	0	0	1.2500
0	0	1	0	1	0	1	1.2375
0	0	1	0	1	1	0	1.2250
0	0	1	0	1	1	1	1.2125
0	0	1	1	0	0	0	1.2000
0	0	1	1	0	0	1	1.1875
0	0	1	1	0	1	0	1.1750
0	0	1	1	0	1	1	1.1625
0	0	1	1	1	0	0	1.1500
0	0	1	1	1	0	1	1.1375
0	0	1	1	1	1	0	1.1250
0	0	1	1	1	1	1	1.1125
0	1	0	0	0	0	0	1.1000
0	1	0	0	0	0	1	1.0875
0	1	0	0	0	1	0	1.0750
0	1	0	0	0	1	1	1.0625
0	1	0	0	1	0	0	1.0500

Table 2. Voltage Identification Definition (Sheet 2 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
0	1	0	0	1	0	1	1.0375
0	1	0	0	1	1	0	1.0250
0	1	0	0	1	1	1	1.0125
0	1	0	1	0	0	0	1.0000
0	1	0	1	0	0	1	0.9875
0	1	0	1	0	1	0	0.9750
0	1	0	1	0	1	1	0.9625
0	1	0	1	1	0	0	0.9500
0	1	0	1	1	0	1	0.9375
0	1	0	1	1	1	0	0.9250
0	1	0	1	1	1	1	0.9125
0	1	1	0	0	0	0	0.9000
0	1	1	0	0	0	1	0.8875
0	1	1	0	0	1	0	0.8750
0	1	1	0	0	1	1	0.8625
0	1	1	0	1	0	0	0.8500
0	1	1	0	1	0	1	0.8375
0	1	1	0	1	1	0	0.8250
0	1	1	0	1	1	1	0.8125
0	1	1	1	0	0	0	0.8000
0	1	1	1	0	0	1	0.7875
0	1	1	1	0	1	0	0.7750
0	1	1	1	0	1	1	0.7625
0	1	1	1	1	0	0	0.7500
0	1	1	1	1	0	1	0.7375
0	1	1	1	1	1	0	0.7250
0	1	1	1	1	1	1	0.7125
1	0	0	0	0	0	0	0.7000
1	0	0	0	0	0	1	0.6875
1	0	0	0	0	1	0	0.6750
1	0	0	0	0	1	1	0.6625
1	0	0	0	1	0	0	0.6500
1	0	0	0	1	0	1	0.6375
1	0	0	0	1	1	0	0.6250
1	0	0	0	1	1	1	0.6125
1	0	0	1	0	0	0	0.6000
1	0	0	1	0	0	1	0.5875
1	0	0	1	0	1	0	0.5750

Table 2. Voltage Identification Definition (Sheet 3 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
1	0	0	1	0	1	1	0.5625
1	0	0	1	1	0	0	0.5500
1	0	0	1	1	0	1	0.5375
1	0	0	1	1	1	0	0.5250
1	0	0	1	1	1	1	0.5125
1	0	1	0	0	0	0	0.5000
1	0	1	0	0	0	1	0.4875
1	0	1	0	0	1	0	0.4750
1	0	1	0	0	1	1	0.4625
1	0	1	0	1	0	0	0.4500
1	0	1	0	1	0	1	0.4375
1	0	1	0	1	1	0	0.4250
1	0	1	0	1	1	1	0.4125
1	0	1	1	0	0	0	0.4000
1	0	1	1	0	0	1	0.3875
1	0	1	1	0	1	0	0.3750
1	0	1	1	0	1	1	0.3625
1	0	1	1	1	0	0	0.3500
1	0	1	1	1	0	1	0.3375
1	0	1	1	1	1	0	0.3250
1	0	1	1	1	1	1	0.3125
1	1	0	0	0	0	0	0.3000
1	1	0	0	0	0	1	0.2875
1	1	0	0	0	1	0	0.2750
1	1	0	0	0	1	1	0.2625
1	1	0	0	1	0	0	0.2500
1	1	0	0	1	0	1	0.2375
1	1	0	0	1	1	0	0.2250
1	1	0	0	1	1	1	0.2125
1	1	0	1	0	0	0	0.2000
1	1	0	1	0	0	1	0.1875
1	1	0	1	0	1	0	0.1750
1	1	0	1	0	1	1	0.1625
1	1	0	1	1	0	0	0.1500
1	1	0	1	1	0	1	0.1375
1	1	0	1	1	1	0	0.1250
1	1	0	1	1	1	1	0.1125
1	1	1	0	0	0	0	0.1000

Table 2. Voltage Identification Definition (Sheet 4 of 4)

VID6	VID5	VID4	VID3	VID2	VID1	VIDO	V _{CC} (V)
1	1	1	0	0	0	1	0.0875
1	1	1	0	0	1	0	0.0750
1	1	1	0	0	1	1	0.0625
1	1	1	0	1	0	0	0.0500
1	1	1	0	1	0	1	0.0375
1	1	1	0	1	1	0	0.0250
1	1	1	0	1	1	1	0.0125
1	1	1	1	0	0	0	0.0000

NOTE: A "1" in this table refers to a high-voltage level and a "0" refers to low-voltage level. Contact your Intel representative for further information on BIOS VID programming.

3.5 Catastrophic Thermal Protection

The Celeron M processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the $\rm V_{CC}$ supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway of the processor.

3.6 Signal Terminations and Unused Pins

All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to V_{CC} , V_{SS} , or to any other signal (including each other) can result in component malfunction or incompatibility with future Celeron M processors. See Section 4.4 for a pin listing of the processor and the location of all RSVD pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (V_{SS}). Unused outputs can be left unconnected.

Please contact your Intel representative for details on signal terminations and TAP signal termination requirements.

The TEST1 and TEST2 pins must have a stuffing option connection to V_{SS} separately via 1-k Ω , pull-down resistors. The TEST2 pin must have a 51- Ω ±5%, pull-down resistor to V_{SS} .

3.7 FSB Frequency Select Signals (BSEL[2:0])

The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). These signals should be connected to the clock chip and Intel 945GMS and 940GML Express Chipsets on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3.

Table 3. BSEL[2:0] Encoding for BCLK Frequency

BSEL[2]	BSEL[1]	BSEL[0]	BCLK Frequency
L	L	L	RESERVED
L	L	Н	133 MHz
L	Н	L	RESERVED
L	Н	Н	RESERVED

3.8 FSB Signal Groups

In order to simplify the following discussion, the FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependant upon the rising edge of BCLKO (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLKO. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 4 identifies which signals are common clock, source synchronous, and asynchronous.

Table 4. **FSB Pin Groups**

Signal Group	Туре	Signals ¹			
AGTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#, TRDY#			
AGTL+ Common Clock I/O	Synchronous to BCLK[1:0]	ADS#, BNR#, BPM[3:0]# ³ , BRO#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY# ³			
		Signals Associated Strobe			
		REQ[4:0]#, A[16:3]# ADSTB[0]#			
AGTL+ Source Synchronous	Synchronous	A[31:17]# ADSTB[1]#			
1/0	to assoc. strobe	D[15:0]#, DINVO# DSTBPO#, DSTBNO#			
		D[31:16]#, DINV1# DSTBP1#, DSTBN1#			
		D[47:32]#, DINV2# DSTBP2#, DSTBN2#			
		D[63:48]#, DINV3# DSTBP3#, DSTBN3#			
		<u>'</u>			
AGTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#			
CMOS Input	Asynchronous	A20M#, DPRSTP# (not used), DPSLP#, IGNNE#, INIT#, LINTO/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK#			
Open Drain Output	Asynchronous	FERR#, IERR#, THERMTRIP#			
Open Drain I/O	Asynchronous	PROCHOT# ⁴			
CMOS Output	Asynchronous	PSI#, VID[6:0], BSEL[2:0]			
CMOS Input	Synchronous to TCK	TCK, TDI, TMS, TRST#			
Open Drain Output	Synchronous to TCK	TDO			
FSB Clock	Clock	BCLK[1:0]			
Power/Other		COMP[3:0], DBR# ² , GTLREF, RSVD, TEST2, TEST1, THERMDA, THERMDC, V _{CC} , V _{CCA} , V _{CCP} , V _{CC_SENSE} , V _{SS_SENSE}			

NOTES:

- Refer to Chapter 4 for signal descriptions and termination requirements. 1.
- In processor systems where there is no debug port implemented on the system board, 2. these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects. BPM[2:1]# and PRDY# are AGTL+ output only signals.
- 3.
- PROCHOT# signal type is open drain output and CMOS input. 4.

3.9 CMOS Signals

CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for at least three BCLKs in order for the processor to recognize them. See Section 3.11 for the DC specifications for the CMOS signal groups.

3.10 Maximum Ratings

Table 5 specifies absolute maximum and minimum ratings. Only within specified operation limits, can functionality and long-term reliability be expected.

At condition outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from electro static discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 5.	Processor	DC Absolute N	Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
TSTORAGE	Processor storage temperature	-40	85	°C	2
V _{CC}	Any processor supply voltage with respect to V _{SS}	-0.3	1.6	V	1
$V_{inAGTL+}$	AGTL+ buffer DC input voltage with respect to V _{ss}	-0.3	1.6	V	1, 2
V _{inAsynch_CMOS}	CMOS buffer DC input voltage with respect to V _{SS}	-0.3	1.6	٧	1, 2

NOTES:

- 1. This rating applies to any processor pin.
- Contact Intel for storage requirements in excess of one year.

3.11 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and signal pin assignments. Most of the signals on the FSB are in the AGTL+ signal group. The DC specifications for these signals are listed in Table 9. DC specifications for the CMOS group are listed in Table 10.

Table 9 through Table 11 list the DC specifications for the Celeron M processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. Active mode load line specifications apply in all states except in the Deep Sleep state. $V_{CC,BOOT}$ is the default voltage driven by the voltage regulator at

power up in order to set the VID values. Unless specified otherwise, all specifications for the Celeron M processor are at Tjunction = $100\,^{\circ}$ C. Care should be taken to read all notes associated with each parameter.

Table 6. Voltage and Current Specifications for the Celeron M Processor Standard Voltage

Symbol		Min	Тур	Max	Unit	Notes	
V _{CC}	Vcc of Core	;	1.0		1.3	V	1, 2
V _{CC,BOOT}	Default V _{CC} Power Up	Voltage for Initial		1.20		V	2, 8
V _{CCP}	AGTL+ Terr	mination Voltage	0.997	1.05	1.102	V	2
V _{CCA}	PLL Supply	/ Voltage	1.425	1.5	1.575	V	
I _{CCDES}	I _{CC} for Prod Recommen	cessors ded Design Target			36	А	5
	Icc Core Pr	ocessors					
	Processor Number:	Core Frequency/ Voltage					
I _{cc}	450 440 430 420 410	2.00 GHz and Vcc 1.86 GHz and Vcc 1.73 GHz and Vcc 1.60 GHz and Vcc 1.46 GHz and Vcc			29 29 29 29 29	А	3,4
I _{AH} , I _{SGNT}	I _{CC} Auto-Ha	alt & Stop-Grant			16.5	А	3,4
I _{SLP}	I _{CC} Sleep				16.4	Α	3,4
I _{DSLP}	I _{CC} Deep S	leep			14.7	Α	3,4
dI _{CC/DT}		Supply Current Slew J Package Pin			600	A/µs	6, 7
I _{CCA}	I _{CC} for V _{CC}	_A Supply			120	mA	
I _{CCP}	Stable	P Supply before Vcc P Supply after Vcc Stable			6.0 2.5	A A	9 10

NOTES:

- Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range.
- 2. The voltage specifications are assumed to be measured across $V_{CCSENSE}$ and $V_{SSSENSE}$ pins at socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1-M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 3. Specified at 100 °C Tj.
- 4. Specified at the VID voltage.
- The I_{CCDES}(max) specification of 36 A comprehends only Celeron M processor on 65 nm process.
- 6. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal $V_{\rm CC}$. Not 100% tested.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. Vcc, boot tolerance is shown in Figure 3.

- 9. This is a steady-state Iccp current specification, which is applicable when both V_{CCP} and V_{CC} core are high.
- 10. This is a power-up peak current specification, which is applicable when V_{CCP} is high and V_{CC} core is low.
- 11. Specified at the nominal V_{CC} .

Table 7. Voltage and Current Specifications for the Celeron M Processor Ultra Low Voltage

Symbol		Min	Тур	Max	Unit	Notes	
V _{CC}	Vcc		0.85		1.10	V	1, 2
V _{CC,BOOT}	Default V _{CC} Power Up	Voltage for Initial		1.20		V	2, 8
V _{CCP}	AGTL+ Terr	mination Voltage	0.997	1.05	1.102	V	2
V _{CCA}	PLL Supply	Voltage	1.425	1.5	1.575	V	
I _{CCDES}	I _{CC} for Reco	ommended Design			8	А	5
	Icc						
I _{CC}	Processor	Core Frequency/					
	Number: 423	Voltage: 1.06 GHz at Vcc			8.2	А	3,4
I _{AH} , I _{SGNT}	I _{CC} Auto-Ha	alt & Stop-Grant			4.6	А	3,4
I _{SLP}	I _{CC} Sleep				4.5	Α	3,4
I _{DSLP}	I _{CC} Deep S	leep			3.6	Α	3,4
dI _{CC/DT}		Supply Current Slew J Package Pin			600	A/us	6, 7
I _{CCA}	I _{CC} for V _{CC}	₄ Supply			120	mA	
I _{CCP}	Stable	Supply before Vcc Supply after Vcc Stable			6.0 2.5	A A	9 10

NOTES:

- Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range.
- 2. The voltage specifications are assumed to be measured across $V_{CCSENSE}$ and $V_{SSSENSE}$ pins at socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1-M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 3. Specified at 100 °C Tj.
- 4. Specified at the VID voltage.
- 5. The I_{CCDES}(max) specification of 8 A comprehends only the Celeron M processor ULV and the value is based on pre-silicon estimates.
- 6. Based on simulations and averaged over the duration of any change in current. Specified by design/characterization at nominal $V_{\rm CC}$. Not 100% tested.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. Vcc, boot tolerance is shown in Figure 3.
- 9. This is a steady-state Iccp current specification, which is applicable when both V_{CCP} and V_{CC} core are high.
- 10. This is a power-up peak current specification, which is applicable when V_{CCP} is high and V_{CC} core is low.

Figure 3. Active VCC and ICC Load Line for the Celeron M Processor Standard Voltage

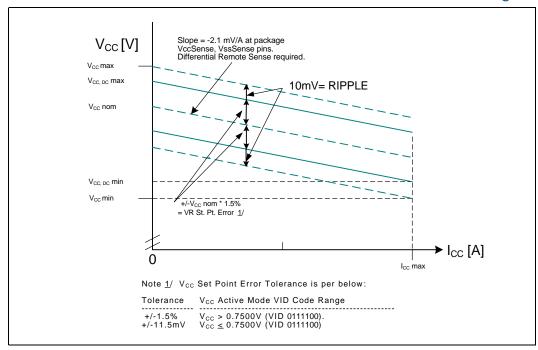


Figure 4. Active VCC and ICC Load Line for the Celeron M Processor Ultra Low Voltage

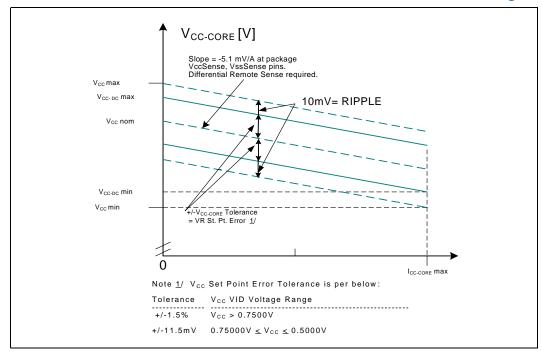


Table 8. FSB Differential BCLK Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
V _L	Input Low Voltage		0		V	
V _H	Input High Voltage	0.660	0.710	0.85	V	
V _{CROSS}	Crossing Voltage	0.25	0.35	0.55	V	2
ΔV _{CROSS}	Range of Crossing Points			0.14	V	6
V _{TH}	Threshold Region	V _{CROSS} -0.100		V _{CROSS} +0.100	V	3
ILI	Input Leakage Current			± 100	μΑ	4
Cpad	Pad Capacitance	0.95	1.2	1.45	pF	5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
- 3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver switches. It includes input threshold hysteresis.
- 4. For Vin between 0 V and V_H.
- 5. Cpad includes die capacitance only. No package parasitics are included.
- ΔV_{CROSS} is defined as the total variation of all crossing voltages as defined in note 2.

Table 9. AGTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Min Typ		Unit	Notes ¹
V _{CCP}	I/O Voltage	0.997	1.05	1.102	V	
GTLREF	Reference Voltage		2/3 V _{CCP}		V	6
ViH	Input High Voltage	GTLREF+0.1		V _{CCP} +0.1	V	3,6
VIL	Input Low Voltage	-0.1	0	GTLREF-0.1	V	2,4
Vон	Output High Voltage		V _{CCP}			6
R _{TT}	Termination Resistance	50	55	61	Ω	7,10
Ron	Buffer on Resistance	22.3	25.5	28.7	W	5
ILI	Input Leakage Current			± 100	μΑ	8
Cpad1	Pad Capacitance	1.8	2.3	2.75	pF	9

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. V_{1L} is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- V_{IH} is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.
- 4. V_{IH} and V_{OH} may experience excursions above V_{CCP} . However, input signal drivers must comply with the signal quality specifications.
- 5. This is the pull down driver resistance. Refer to processor I/O Buffer Models for I/V characteristics. Measured at $0.31*V_{CCP}$ R_{ON} (min) = $0.38*R_{TT}$, R_{ON} (typ) = $0.45*R_{TT}$, R_{ON} (max) = $0.52*R_{TT}$.
- GTLREF should be generated from V_{CCP} with a 1% tolerance resistor divider. Tolerance of resistor divider decides the tolerance of GTLREF. The V_{CCP} referred to in these specifications is the instantaneous V_{CCP}
- 7. R_{TT} is the on-die termination resistance measured at V_{OL} of the AGTL+ output driver. Measured at $0.31*V_{CCP}$ R_{TT} is connected to V_{CCP} on die. Refer to processor I/O buffer models for I/V characteristics.
- 8. Specified with on die R_{TT} and R_{ON} are turned off.
- 9. Cpad includes die capacitance only. No package parasitics are included.
- 10. This spec applies to all AGTL+ signals except for PREQ#. R_{TT} for PREQ# is between 1.5 k Ω to 6.0 k Ω .

Table 10. CMOS Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
V _{CCP}	I/O Voltage	1.0	1.05	1.10	V	
V _{IL}	Input Low Voltage - CMOS	-0.1	0.0	0.33	V	2, 3
V _{IH}	Input High Voltage	0.7	1.05	1.20	V	2
V _{OL}	Output Low Voltage	-0.1	0	0.11	V	2
V _{OH}	Output High Voltage	0.9	V _{CCP}	1.20	V	2
I _{OL}	Output Low Current	1.3		4.1	mA	4
I _{OH}	Output High Current	1.3		4.1	mA	5
I _{LI}	Leakage Current			± 100	μΑ	6
Cpad1	Pad Capacitance	1.8	2.3	2.75	pF	7
Cpad2	Pad Capacitance for CMOS Input	0.95	1.2	1.45	pF	8

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. The V_{CCP} referred to in these specifications refers to instantaneous V_{CCP}
- 3. Refer to the processor I/O Buffer Models for I/V characteristics.
- 4. Measured at 0.1*V_{CCP}.
- Measured at 0.9*V_{CCP}.
- 6. For Vin between 0 V and V_{CCP} . Measured when the driver is tristated.
- 7. Cpad1 includes die capacitance only for DPSLP#,PWRGOOD. No package parasitics are included.
- 8. Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included.

Table 11. Open Drain Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
V _{OH}	Output High Voltage	1.0	1.05	1.10	V	3
V _{OL}	Output Low Voltage	0		0.20	V	
I _{OL}	Output Low Current	11.40		50	mA	2
I _{Leak}	Leakage Current			±200	μΑ	4
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Measured at 0.2*V_{CCP}.
- 3. V_{OH} is determined by value of the external pull-up resistor to V_{CCP} . Please contact your Intel representative for details.
- 4. For Vin between 0 V and V_{OH} .
- 5. Cpad includes die capacitance only. No package parasitics are included.

§

4 Package Mechanical Specifications and Pin Information

The Celeron M processor is available in 478-pin Micro-FCPGA and 479-ball Micro-FCBGA packages. The package mechanical dimensions, keep-out zones, loading specifications, and mass specifications are shown in Figure 5 through Figure 8. Table 12 shows a topview of package pinout with their functionalities.

Caution:

The Micro-FCBGA package incorporates land-side capacitors. Avoid contacting the capacitors with other electrically conductive materials on the motherboard. Doing so may short the capacitors, and possibly damage the device or render it inactive.

4.1 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keepout zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. The location and quantity of capacitors may change, but will remain within the component keep-in.

4.2 Package Loading Specifications

Maximum package loading specifications are static compressive loading in the direction normal to the processor. This maximum load limit should not be exceeded during shipping conditions, standard use condition, or by thermal solution. In addition, there are additional load limitations against transient bend, shock, and tensile loading, all of which can be obtained by contacting your field support. Moreover, the processor package substrate should not be used as a mechanical reference or load-bearing surface for thermal and mechanical solution.

4.3 Processor Mass Specifications

The typical mass of the processor is given in Figure 5 and Figure 8. This mass includes all the components that are included in the package.

Figure 5. Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)

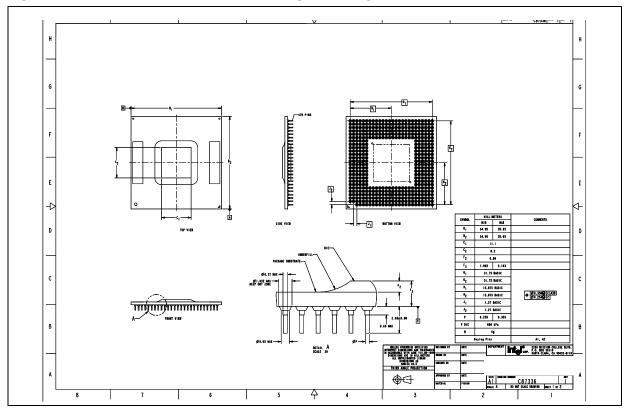


Figure 6. Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)

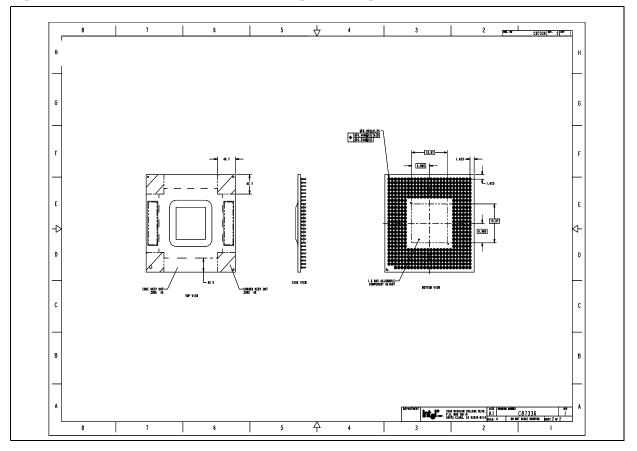


Figure 7. Micro-FCBGA Processor Package Drawing (Sheet 1 of 2)

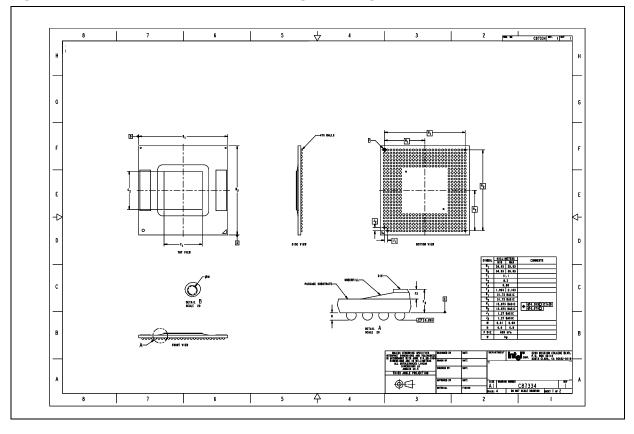
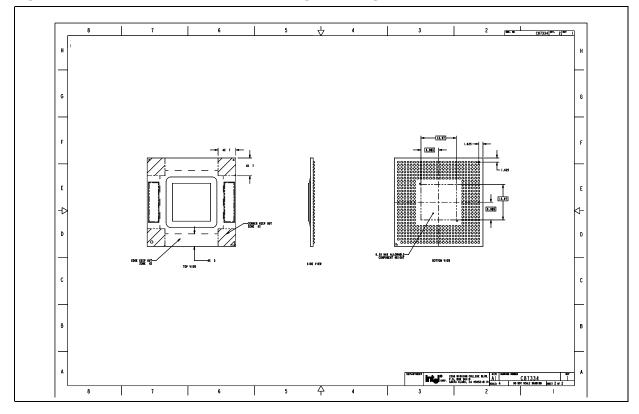



Figure 8. Micro-FCBGA Processor Package Drawing (Sheet 2 of 2)

4.4 Processor Pinout and Pin List

Table 12 shows the top view pinout of the Celeron M processor. The pin list arranged in two different formats is shown in the following pages.

Table 12. The Coordinates of the Processor Pins As Viewed from the Top of the Package (Sheet 1 of 2)

	1	2	3	4	5	6	7	8	9	10	11	12	13	
Α			SMI#	VSS	FERR#	A20M#	VCC	VSS	VCC	VCC	VSS	VCC	VCC	Α
В	RESET#	RSVD	INIT#	LINT1	DPSLP#	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VSS	В
С	RSVD	VSS	RSVD	IGNNE #	VSS	LINTO	THERM TRIP#	VSS	VCC	VCC	VSS	VCC	VCC	С
D	VSS	RSVD	RSVD	VSS	STPCLK #	PWRGO OD	SLP#	VSS	VCC	VCC	VSS	VCC	VSS	D
E	DBSY#	BNR#	VSS	HITM#	DPRSTP #	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VCC	Е
F	BRO#	VSS	RS[0]#	RS[1]#	VSS	RSVD	VCC	VSS	VCC	VCC	VSS	VCC	VSS	F
G	VSS	TRDY#	RS[2]#	VSS	BPRI#	HIT#								G
н	ADS#	REQ[1] #	VSS	LOCK#	DEFER#	VSS								н
J	A[9]#	VSS	REQ[3] #	A[3]#	VSS	VCCP								J
K	VSS	REQ[2] #	REQ[0] #	VSS	A[6]#	VCCP								К
L	A[13]#	ADSTB[0]#	VSS	A[4]#	REQ[4] #	VSS								L
M	A[7]#	VSS	A[5]#	RSVD	VSS	VCCP								М
N	VSS	A[8]#	A[10]#	VSS	RSVD	VCCP								N
P	A[15]#	A[12]#	VSS	A[14]#	A[11]#	VSS								Р
R	A[16]#	VSS	A[19]#	A[24]#	VSS	VCCP								R
Т	VSS	RSVD	A[26]#	VSS	A[25]#	VCCP								т
U	COMP[2]	A[23]#	VSS	A[21]#	A[18]#	VSS								U
V	COMP[3]	VSS	RSVD	ADSTB [1]#	VSS	VCCP								v
W	VSS	A[30]#	A[27]#	VSS	A[28]#	A[20]#								w
Υ	A[31]#	A[17]#	VSS	A[29]#	A[22]#	VSS								Υ
AA	RSVD	VSS	RSVD	RSVD	VSS	TDI	VCC	VSS	VCC	VCC	VSS	VCC	VCC	AA
AB	VSS	RSVD	TDO	VSS	TMS	TRST#	VCC	VSS	VCC	VCC	VSS	VCC	VSS	AB
AC	PREQ#	PRDY#	VSS	BPM[3] #	TCK	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VCC	AC
AD	BPM[2]#	VSS	BPM[1] #	BPM[0] #	VSS	VID[0]	VCC	VSS	VCC	VCC	VSS	VCC	VSS	AD
AE	VSS	VID[6]	VID[4]	VSS	VID[2]	PSI#	VSS SENSE	VSS	VCC	VCC	VSS	VCC	VCC	AE
AF	RSVD	VID[5]	VSS	VID[3]	VID[1]	VSS	VCC SENSE	VSS	VCC	VCC	VSS	VCC	VSS	AF
	1	2	3	4	5	6	7	8	9	10	11	12	13	-

Table 12. The Coordinates of the Processor Pins As Viewed from the Top of the Package (Sheet 2 of 2)

	14	15	16	17	18	19	20	21	22	23	24	25	26	
Α	VSS	VCC	VSS	VCC	VCC	VSS	VCC	BCLK[1]	BCLK[0]	VSS	THRMDA	THRMDC	VSS	Α
В	VCC	VCC	VSS	VCC	VCC	VSS	VCC	VSS	BSEL[0]	BSEL[1]	VSS	RSVD	VCCA	В
С	VSS	VCC	VSS	VCC	VCC	VSS	DBR#	BSEL[2]	VSS	RSVD	RSVD	VSS	TEST1	С
D	VCC	VCC	VSS	VCC	VCC	VSS	IERR#	PROC HOT#	RSVD	VSS	DPWR#	TEST2	VSS	D
E	VSS	VCC	VSS	VCC	VCC	VSS	VCC	VSS	D[0]#	D[7]#	VSS	D[6]#	D[2]#	E
F	VCC	VCC	VSS	VCC	VCC	VSS	VCC	DRDY#	VSS	D[4]#	D[1]#	VSS	D[13]#	F
G								VCCP	DSTBP[0] #	VSS	D[9]#	D[5]#	VSS	G
н								VSS	D[3]#	DSTBN[0] #	VSS	D[15]#	D[12]#	н
J								VCCP	VSS	D[11]#	D[10]#	VSS	DINV[0]#	J
K								VCCP	D[14]#	VSS	D[8]#	D[17]#	VSS	K
L								VSS	D[21]#	D[22]#	VSS	D[20]#	D[29]#	L
M								VCCP	VSS	D[23]#	DSTBN[1] #	VSS	DINV[1]#	M
N								VCCP	D[16]#	VSS	D[31]#	DSTBP[1] #	VSS	N
Р								VSS	D[25]#	D[26]#	VSS	D[24]#	D[18]#	Р
R								VCCP	VSS	D[19]#	D[28]#	VSS	COMP [0]	R
Т								VCCP	RSVD	VSS	D[27]#	D[30]#	VSS	т
U								VSS	D[39]#	D[37]#	VSS	D[38]#	COMP [1]	U
V								VCCP	VSS	DINV[2]#	D[34]#	VSS	D[35]#	V
W								VCCP	D[41]#	VSS	DSTBN[2] #	D[36]#	VSS	W
Υ								VSS	D[45]#	D[42]#	VSS	DSTBP[2] #	D[44]#	Υ
AA	VSS	VCC	VSS	VCC	VCC	VSS	VCC	D[51]#	VSS	D[32]#	D[47]#	VSS	D[43]#	A
AB	VCC	VCC	VSS	VCC	VCC	VSS	VCC	D[52]#	D[50]#	VSS	D[33]#	D[40]#	VSS	A B
AC	VSS	VCC	VSS	VCC	VCC	VSS	DINV[3]#	VSS	D[48]#	D[49]#	VSS	D[53]#	D[46]#	AC
A D	VCC	VCC	VSS	VCC	VCC	VSS	D[54]#	D[59]#	VSS	DSTBN[3] #	D[57]#	VSS	GTLREF	A D
AE	VSS	VCC	VSS	VCC	VCC	VSS	VCC	D[58]#	D[55]#	VSS	DSTBP[3] #	D[60]#	VSS	AE
AF	VCC	VCC	VSS	VCC	VCC	VSS	VCC	VSS	D[62]#	D[56]#	VSS	D[61]#	D[63]#	AF
	14	15	16	17	18	19	20	21	22	23	24	25	26	-

This page intentionally left blank.

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
A[3]#	J4	Source Synch	Input/ Output
A[4]#	L4	Source Synch	Input/ Output
A[5]#	M3	Source Synch	Input/ Output
A[6]#	K5	Source Synch	Input/ Output
A[7]#	M1	Source Synch	Input/ Output
A[8]#	N2	Source Synch	Input/ Output
A[9]#	J1	Source Synch	Input/ Output
A[10]#	N3	Source Synch	Input/ Output
A[11]#	P5	Source Synch	Input/ Output
A[12]#	P2	Source Synch	Input/ Output
A[13]#	L1	Source Synch	Input/ Output
A[14]#	P4	Source Synch	Input/ Output
A[15]#	P1	Source Synch	Input/ Output
A[16]#	R1	Source Synch	Input/ Output
A[17]#	Y2	Source Synch	Input/ Output
A[18]#	U5	Source Synch	Input/ Output
A[19]#	R3	Source Synch	Input/ Output
A[20]#	W6	Source Synch	Input/ Output
A[21]#	U4	Source Synch	Input/ Output
A[22]#	Y5	Source Synch	Input/ Output
A[23]#	U2	Source Synch	Input/ Output
A[24]#	R4	Source Synch	Input/ Output

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
A[25]#	T5	Source Synch	Input/ Output
A[26]#	Т3	Source Synch	Input/ Output
A[27]#	W3	Source Synch	Input/ Output
A[28]#	W5	Source Synch	Input/ Output
A[29]#	Y4	Source Synch	Input/ Output
A[30]#	W2	Source Synch	Input/ Output
A[31]#	Y1	Source Synch	Input/ Output
A20M#	A6	CMOS	Input
ADS#	H1	Common Clock	Input/ Output
ADSTB[0]#	L2	Source Synch	Input/ Output
ADSTB[1]#	V4	Source Synch	Input/ Output
BCLK[0]	A22	Bus Clock	Input
BCLK[1]	A21	Bus Clock	Input
BNR#	E2	Common Clock	Input/ Output
BPM[0]#	AD4	Common Clock	Input/ Output
BPM[1]#	AD3	Common Clock	Output
BPM[2]#	AD1	Common Clock	Output
BPM[3]#	AC4	Common Clock	Input/ Output
BPRI#	G5	Common Clock	Input
BRO#	F1	Common Clock	Input/ Output
BSEL[0]	B22	CMOS	Output
BSEL[1]	B23	CMOS	Output
BSEL[2]	C21	CMOS	Output
COMP[0]	R26	Power/Other	Input/ Output

Table 13. Pin Listing by Pin Name

Pin Signal Pin Name **Direction** Number **Buffer Type** Input/ COMP[1] U26 Power/Other Output Input/ U1 COMP[2] Power/Other Output Input/ COMP[3] V1 Power/Other Output Input/ D[0]# E22 Source Synch Output Input/ D[1]# F24 Source Synch Output Input/ D[2]# E26 Source Synch Output Input/ D[3]# H22 Source Synch Output Input/ D[4]# F23 Source Synch Output Input/ D[5]# G25 Source Synch Output Input/ D[6]# E25 Source Synch Output Input/ D[7]# E23 Source Synch Output Input/ D[8]# K24 Source Synch Output Input/ D[9]# G24 Source Synch Output Input/ D[10]# J24 Source Synch Output Input/ J23 D[11]# Source Synch Output Input/ D[12]# H26 Source Synch Output Input/ D[13]# F26 Source Synch Output Input/ D[14]# K22 Source Synch Output Input/ D[15]# H25 Source Synch Output Input/ D[16]# N22 Source Synch Output Input/ D[17]# K25 Source Synch Output Input/ D[18]# P26 Source Synch Output

Table 13. Pin Listing by Pin Name

	Pin	Signal	5
Pin Name	Number	Buffer Type	Direction
D[19]#	R23	Source Synch	Input/ Output
D[20]#	L25	Source Synch	Input/ Output
D[21]#	L22	Source Synch	Input/ Output
D[22]#	L23	Source Synch	Input/ Output
D[23]#	M23	Source Synch	Input/ Output
D[24]#	P25	Source Synch	Input/ Output
D[25]#	P22	Source Synch	Input/ Output
D[26]#	P23	Source Synch	Input/ Output
D[27]#	T24	Source Synch	Input/ Output
D[28]#	R24	Source Synch	Input/ Output
D[29]#	L26	Source Synch	Input/ Output
D[30]#	T25	Source Synch	Input/ Output
D[31]#	N24	Source Synch	Input/ Output
D[32]#	AA23	Source Synch	Input/ Output
D[33]#	AB24	Source Synch	Input/ Output
D[34]#	V24	Source Synch	Input/ Output
D[35]#	V26	Source Synch	Input/ Output
D[36]#	W25	Source Synch	Input/ Output
D[37]#	U23	Source Synch	Input/ Output
D[38]#	U25	Source Synch	Input/ Output
D[39]#	U22	Source Synch	Input/ Output
D[40]#	AB25	Source Synch	Input/ Output

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
D[41]#	W22	Source Synch	Input/ Output
D[42]#	Y23	Source Synch	Input/ Output
D[43]#	AA26	Source Synch	Input/ Output
D[44]#	Y26	Source Synch	Input/ Output
D[45]#	Y22	Source Synch	Input/ Output
D[46]#	AC26	Source Synch	Input/ Output
D[47]#	AA24	Source Synch	Input/ Output
D[48]#	AC22	Source Synch	Input/ Output
D[49]#	AC23	Source Synch	Input/ Output
D[50]#	AB22	Source Synch	Input/ Output
D[51]#	AA21	Source Synch	Input/ Output
D[52]#	AB21	Source Synch	Input/ Output
D[53]#	AC25	Source Synch	Input/ Output
D[54]#	AD20	Source Synch	Input/ Output
D[55]#	AE22	Source Synch	Input/ Output
D[56]#	AF23	Source Synch	Input/ Output
D[57]#	AD24	Source Synch	Input/ Output
D[58]#	AE21	Source Synch	Input/ Output
D[59]#	AD21	Source Synch	Input/ Output
D[60]#	AE25	Source Synch	Input/ Output
D[61]#	AF25	Source Synch	Input/ Output
D[62]#	AF22	Source Synch	Input/ Output
		•	

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
D[63]#	AF26	Source Synch	Input/ Output
DBR#	C20	CMOS	Output
DBSY#	E1	Common Clock	Input/ Output
DEFER#	H5	Common Clock	Input
DINV[0]#	J26	Source Synch	Input/ Output
DINV[1]#	M26	Source Synch	Input/ Output
DINV[2]#	V23	Source Synch	Input/ Output
DINV[3]#	AC20	Source Synch	Input/ Output
DPRSTP#	E5	CMOS	Not used
DPSLP#	B5	CMOS	Input
DPWR#	D24	Common Clock	Input
DRDY#	F21	Common Clock	Input/ Output
DSTBN[0]#	H23	Source Synch	Input/ Output
DSTBN[1]#	M24	Source Synch	Input/ Output
DSTBN[2]#	W24	Source Synch	Input/ Output
DSTBN[3]#	AD23	Source Synch	Input/ Output
DSTBP[0]#	G22	Source Synch	Input/ Output
DSTBP[1]#	N25	Source Synch	Input/ Output
DSTBP[2]#	Y25	Source Synch	Input/ Output
DSTBP[3]#	AE24	Source Synch	Input/ Output
FERR#	A 5	Open Drain	Output
GTLREF	AD26	Power/Other	Input
HIT#	G6	Common Clock	Input/ Output
HITM#	E4	Common Clock	Input/ Output

Table 13. Pin Listing by Pin Name

Pin Number	Signal Buffer Type	Direction
D20	Open Drain	Output
C4	CMOS	Input
В3	CMOS	Input
C6	CMOS	Input
B4	CMOS	Input
H4	Common Clock	Input/ Output
AC2	Common Clock	Output
AC1	Common Clock	Input
D21	Open Drain	Input/ Output
AE6	CMOS	Output
D6	CMOS	Input
K3	Source Synch	Input/ Output
H2	Source Synch	Input/ Output
K2	Source Synch	Input/ Output
J3	Source Synch	Input/ Output
L5	Source Synch	Input/ Output
B1	Common Clock	Input
F3	Common Clock	Input
F4	Common Clock	Input
G3	Common Clock	Input
D2	Reserved	
F6	Reserved	
D3	Reserved	
C1	Reserved	
AF1	Reserved	
D22	Reserved	
C23	Reserved	
C24	Reserved	
	D20 C4 B3 C6 B4 H4 AC2 AC1 D21 AE6 D6 K3 H2 K2 J3 L5 B1 F3 F4 G3 D2 F6 D3 C1 AF1 D22 C23	NumberBuffer TypeD20Open DrainC4CMOSB3CMOSC6CMOSB4CMOSH4Common ClockAC2Common ClockAC1Common ClockD21Open DrainAE6CMOSD6CMOSK3Source SynchK2Source SynchJ3Source SynchL5Source SynchB1Common ClockF3Common ClockF4Common ClockD2ReservedF6ReservedD3ReservedC1ReservedD2ReservedReservedReservedD22ReservedReservedReservedD22ReservedReservedReservedD22ReservedReservedReservedD22ReservedReservedReserved

Table 13. Pin Listing by Pin Name

Table 13.	FIII LIS	ting by Fin Na	arrie
Pin Name	Pin Number	Signal Buffer Type	Direction
RSVD	AA1	Reserved	
RSVD	AA4	Reserved	
RSVD	AB2	Reserved	
RSVD	AA3	Reserved	
RSVD	M4	Reserved	
RSVD	N5	Reserved	
RSVD	T2	Reserved	
RSVD	V3	Reserved	
RSVD	B2	Reserved	
RSVD	C3	Reserved	
RSVD	T22	Reserved	
RSVD	B25	Reserved	
SLP#	D7	CMOS	Input
SMI#	A3	CMOS	Input
STPCLK#	D5	CMOS	Input
TCK	AC5	CMOS	Input
TDI	AA6	CMOS	Input
TDO	AB3	Open Drain	Output
TEST1	C26	Test	
TEST2	D25	Test	
THERMDA	A24	Power/Other	
THERMDC	A25	Power/Other	
THERMTRIP #	C7	Open Drain	Output
TMS	AB5	CMOS	Input
TRDY#	G2	Common Clock	Input
TRST#	AB6	CMOS	Input
VCC	AB20	Power/Other	
VCC	AA20	Power/Other	
VCC	AF20	Power/Other	
VCC	AE20	Power/Other	
VCC	AB18	Power/Other	
VCC	AB17	Power/Other	
VCC	AA18	Power/Other	
VCC	AA17	Power/Other	
VCC	AD18	Power/Other	
VCC	AD17	Power/Other	

Table 13. Pin Listing by Pin Name

Table 13.	PIII LIS	ting by Fin Na	anne
Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	AC18	Power/Other	
VCC	AC17	Power/Other	
VCC	AF18	Power/Other	
VCC	AF17	Power/Other	
VCC	AE18	Power/Other	
VCC	AE17	Power/Other	
VCC	AB15	Power/Other	
VCC	AA15	Power/Other	
VCC	AD15	Power/Other	
VCC	AC15	Power/Other	
VCC	AF15	Power/Other	
VCC	AE15	Power/Other	
VCC	AB14	Power/Other	
VCC	AA13	Power/Other	
VCC	AD14	Power/Other	
VCC	AC13	Power/Other	
VCC	AF14	Power/Other	
VCC	AE13	Power/Other	
VCC	AB12	Power/Other	
VCC	AA12	Power/Other	
VCC	AD12	Power/Other	
VCC	AC12	Power/Other	
VCC	AF12	Power/Other	
VCC	AE12	Power/Other	
VCC	AB10	Power/Other	
VCC	AB9	Power/Other	
VCC	AA10	Power/Other	
VCC	AA9	Power/Other	
VCC	AD10	Power/Other	
VCC	AD9	Power/Other	
VCC	AC10	Power/Other	
VCC	AC9	Power/Other	
VCC	AF10	Power/Other	
VCC	AF9	Power/Other	
VCC	AE10	Power/Other	
VCC	AE9	Power/Other	
VCC	AB7	Power/Other	

Table 13. Pin Listing by Pin Name

VCC AA7 Power/Other VCC AD7 Power/Other VCC AC7 Power/Other VCC B20 Power/Other VCC A20 Power/Other VCC F20 Power/Other VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC B18 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC F18 Power/Other VCC F18 Power/Other VCC E18 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC C15 Power/Other VCC B14 P	Pin Name	Pin Number	Signal Buffer Type	Direction
VCC AC7 Power/Other VCC B20 Power/Other VCC A20 Power/Other VCC F20 Power/Other VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC B14 P	VCC	AA7	Power/Other	
VCC B20 Power/Other VCC A20 Power/Other VCC F20 Power/Other VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC D15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC D14 P	VCC	AD7	Power/Other	
VCC A20 Power/Other VCC F20 Power/Other VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C18 Power/Other VCC F18 Power/Other VCC F18 Power/Other VCC F18 Power/Other VCC E18 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC D15 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC B12 P	VCC	AC7	Power/Other	
VCC F20 Power/Other VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC E15 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC E13 P	VCC	B20	Power/Other	
VCC E20 Power/Other VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC C13 Power/Other VCC E13 Power/Other VCC B12 P	VCC	A20	Power/Other	
VCC B18 Power/Other VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C18 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC D15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC F14 Power/Other VCC B12 Power/Other VCC B12 P	VCC	F20	Power/Other	
VCC B17 Power/Other VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C18 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC D12 P	VCC	E20	Power/Other	
VCC A18 Power/Other VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC B12 Power/Other VCC D12 P	VCC	B18	Power/Other	
VCC A17 Power/Other VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC D15 Power/Other VCC F15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC D14 Power/Other VCC F14 Power/Other VCC B12 Power/Other VCC B12 Power/Other VCC D12 Power/Other VCC F12 P	VCC	B17	Power/Other	
VCC D18 Power/Other VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC B15 Power/Other VCC B15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC F14 Power/Other VCC B12 Power/Other VCC B12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	A18	Power/Other	
VCC D17 Power/Other VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC B12 Power/Other VCC B12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	A17	Power/Other	
VCC C18 Power/Other VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC D14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC B12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	D18	Power/Other	
VCC C17 Power/Other VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC D14 Power/Other VCC E13 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	D17	Power/Other	
VCC F18 Power/Other VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC D14 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	C18	Power/Other	
VCC F17 Power/Other VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	C17	Power/Other	
VCC E18 Power/Other VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	F18	Power/Other	
VCC E17 Power/Other VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	F17	Power/Other	
VCC B15 Power/Other VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	E18	Power/Other	
VCC A15 Power/Other VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC B14 Power/Other VCC B14 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC F13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	E17	Power/Other	
VCC D15 Power/Other VCC C15 Power/Other VCC F15 Power/Other VCC E15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	B15	Power/Other	
VCC C15 Power/Other VCC F15 Power/Other VCC E15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	A15	Power/Other	
VCC F15 Power/Other VCC E15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	D15	Power/Other	
VCC E15 Power/Other VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	C15	Power/Other	
VCC B14 Power/Other VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	F15	Power/Other	
VCC A13 Power/Other VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	E15	Power/Other	
VCC D14 Power/Other VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	B14	Power/Other	
VCC C13 Power/Other VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	A13	Power/Other	
VCC F14 Power/Other VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	D14	Power/Other	
VCC E13 Power/Other VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	C13	Power/Other	
VCC B12 Power/Other VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	F14	Power/Other	
VCC A12 Power/Other VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	E13	Power/Other	
VCC D12 Power/Other VCC C12 Power/Other VCC F12 Power/Other	VCC	B12	Power/Other	
VCC C12 Power/Other VCC F12 Power/Other	VCC	A12	Power/Other	
VCC F12 Power/Other	VCC	D12	Power/Other	
	VCC	C12	Power/Other	
VCC E12 Power/Other	VCC	F12	Power/Other	
	VCC	E12	Power/Other	

Table 13. Pin Listing by Pin Name

Signal Pin Name **Direction** Number **Buffer Type** VCC B10 Power/Other VCC В9 Power/Other VCC A10 Power/Other VCC Α9 Power/Other VCC D10 Power/Other VCC D9 Power/Other VCC C10 Power/Other VCC С9 Power/Other VCC F10 Power/Other VCC F9 Power/Other VCC E10 Power/Other VCC E9 Power/Other VCC В7 Power/Other VCC Α7 Power/Other VCC F7 Power/Other VCC E7 Power/Other **VCCA** B26 Power/Other VCCP Κ6 Power/Other VCCP J6 Power/Other **VCCP** M6 Power/Other **VCCP** Ν6 Power/Other VCCP Т6 Power/Other VCCP R6 Power/Other **VCCP** K21 Power/Other VCCP J21 Power/Other VCCP M21 Power/Other **VCCP** N21 Power/Other VCCP T21 Power/Other VCCP R21 Power/Other **VCCP** V21 Power/Other VCCP W21 Power/Other VCCP V6 Power/Other **VCCP** G21 Power/Other **VCCSENSE** AF7 Power/Other VID[0] AD6 **CMOS** Output VID[1] AF5 CMOS Output VID[2] AE5 CMOS Output

Table 13. Pin Listing by Pin Name

	2.0	ting by i mile	
Pin Name	Pin Number	Signal Buffer Type	Direction
VID[3]	AF4	CMOS	Output
VID[4]	AE3	CMOS	Output
VID[5]	AF2	CMOS	Output
VID[6]	AE2	CMOS	Output
VSS	AB26	Power/Other	
VSS	AA25	Power/Other	
VSS	AD25	Power/Other	
VSS	AE26	Power/Other	
VSS	AB23	Power/Other	
VSS	AC24	Power/Other	
VSS	AF24	Power/Other	
VSS	AE23	Power/Other	
VSS	AA22	Power/Other	
VSS	AD22	Power/Other	
VSS	AC21	Power/Other	
VSS	AF21	Power/Other	
VSS	AB19	Power/Other	
VSS	AA19	Power/Other	
VSS	AD19	Power/Other	
VSS	AC19	Power/Other	
VSS	AF19	Power/Other	
VSS	AE19	Power/Other	
VSS	AB16	Power/Other	
VSS	AA16	Power/Other	
VSS	AD16	Power/Other	
VSS	AC16	Power/Other	
VSS	AF16	Power/Other	
VSS	AE16	Power/Other	
VSS	AB13	Power/Other	
VSS	AA14	Power/Other	
VSS	AD13	Power/Other	
VSS	AC14	Power/Other	
VSS	AF13	Power/Other	
VSS	AE14	Power/Other	
VSS	AB11	Power/Other	
VSS	AA11	Power/Other	
VSS	AD11	Power/Other	

Table 13. Pin Listing by Pin Name

Table 13.	Pin Lis	ting by Pin Na	ame
Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AC11	Power/Other	
VSS	AF11	Power/Other	
VSS	AE11	Power/Other	
VSS	AB8	Power/Other	
VSS	AA8	Power/Other	
VSS	AD8	Power/Other	
VSS	AC8	Power/Other	
VSS	AF8	Power/Other	
VSS	AE8	Power/Other	
VSS	AA5	Power/Other	
VSS	AD5	Power/Other	
VSS	AC6	Power/Other	
VSS	AF6	Power/Other	
VSS	AB4	Power/Other	
VSS	AC3	Power/Other	
VSS	AF3	Power/Other	
VSS	AE4	Power/Other	
VSS	AB1	Power/Other	
VSS	AA2	Power/Other	
VSS	AD2	Power/Other	
VSS	AE1	Power/Other	
VSS	В6	Power/Other	
VSS	C5	Power/Other	
VSS	F5	Power/Other	
VSS	E6	Power/Other	
VSS	Н6	Power/Other	
VSS	J5	Power/Other	
VSS	M5	Power/Other	
VSS	L6	Power/Other	
VSS	P6	Power/Other	
VSS	R5	Power/Other	
VSS	V5	Power/Other	
VSS	U6	Power/Other	
VSS	Y6	Power/Other	
VSS	A4	Power/Other	
VSS	D4	Power/Other	
VSS	E3	Power/Other	

Table 13. Pin Listing by Pin Name

		g by 1 111 14	-
Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	H3	Power/Other	
VSS	G4	Power/Other	
VSS	K4	Power/Other	
VSS	L3	Power/Other	
VSS	P3	Power/Other	
VSS	N4	Power/Other	
VSS	T4	Power/Other	
VSS	U3	Power/Other	
VSS	Y3	Power/Other	
VSS	W4	Power/Other	
VSS	D1	Power/Other	
VSS	C2	Power/Other	
VSS	F2	Power/Other	
VSS	G1	Power/Other	
VSS	K1	Power/Other	
VSS	J2	Power/Other	
VSS	M2	Power/Other	
VSS	N1	Power/Other	
VSS	T1	Power/Other	
VSS	R2	Power/Other	
VSS	V2	Power/Other	
VSS	W1	Power/Other	
VSS	A26	Power/Other	
VSS	D26	Power/Other	
VSS	C25	Power/Other	
VSS	F25	Power/Other	
VSS	B24	Power/Other	
VSS	A23	Power/Other	
VSS	D23	Power/Other	
VSS	E24	Power/Other	
VSS	B21	Power/Other	
VSS	C22	Power/Other	
VSS	F22	Power/Other	
VSS	E21	Power/Other	
VSS	B19	Power/Other	
VSS	A19	Power/Other	
VSS	D19	Power/Other	

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	C19	Power/Other	
VSS	F19	Power/Other	
VSS	E19	Power/Other	
VSS	B16	Power/Other	
VSS	A16	Power/Other	
VSS	D16	Power/Other	
VSS	C16	Power/Other	
VSS	F16	Power/Other	
VSS	E16	Power/Other	
VSS	B13	Power/Other	
VSS	A14	Power/Other	
VSS	D13	Power/Other	
VSS	C14	Power/Other	
VSS	F13	Power/Other	
VSS	E14	Power/Other	
VSS	B11	Power/Other	
VSS	A11	Power/Other	
VSS	D11	Power/Other	
VSS	C11	Power/Other	
VSS	F11	Power/Other	
VSS	E11	Power/Other	
VSS	B8	Power/Other	
VSS	A8	Power/Other	
VSS	D8	Power/Other	
VSS	C8	Power/Other	
VSS	F8	Power/Other	
VSS	E8	Power/Other	
VSS	G26	Power/Other	
VSS	K26	Power/Other	
VSS	J25	Power/Other	
VSS	M25	Power/Other	
VSS	N26	Power/Other	
VSS	T26	Power/Other	
VSS	R25	Power/Other	
VSS	V25	Power/Other	
VSS	W26	Power/Other	
VSS	H24	Power/Other	

Table 13. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	G23	Power/Other	
VSS	K23	Power/Other	
VSS	L24	Power/Other	
VSS	P24	Power/Other	
VSS	N23	Power/Other	
VSS	T23	Power/Other	
VSS	U24	Power/Other	
VSS	Y24	Power/Other	
VSS	W23	Power/Other	
VSS	H21	Power/Other	
VSS	J22	Power/Other	
VSS	M22	Power/Other	
VSS	L21	Power/Other	
VSS	P21	Power/Other	
VSS	R22	Power/Other	
VSS	V22	Power/Other	
VSS	U21	Power/Other	
VSS	Y21	Power/Other	
VSSSENSE	AE7	Power/Other	Output

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
А3	SMI#	CMOS	Input
A4	VSS	Power/Other	
A 5	FERR#	Open Drain	Output
A6	A20M#	CMOS	Input
A7	VCC	Power/Other	
A8	VSS	Power/Other	
A9	VCC	Power/Other	
A10	VCC	Power/Other	
A11	VSS	Power/Other	
A12	VCC	Power/Other	
A13	VCC	Power/Other	
A14	VSS	Power/Other	
A15	VCC	Power/Other	
A16	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
A17	VCC	Power/Other	
A18	VCC	Power/Other	
A19	VSS	Power/Other	
A20	VCC	Power/Other	
A21	BCLK[1]	Bus Clock	Input
A22	BCLK[0]	Bus Clock	Input
A23	VSS	Power/Other	
A24	THERMDA	Power/Other	
A25	THERMDC	Power/Other	
A26	VSS	Power/Other	
AA1	RSVD	Reserved	
AA2	VSS	Power/Other	
AA3	RSVD	Reserved	
AA4	RSVD	Reserved	
AA5	VSS	Power/Other	
AA6	TDI	CMOS	Input
AA7	VCC	Power/Other	
AA8	VSS	Power/other	
AA9	VCC	Power/Other	
AA10	VCC	Power/Other	
AA11	VSS	Power/Other	
AA12	VCC	Power/Other	
AA13	VCC	Power/Other	
AA14	VSS	Power/Other	
AA15	VCC	Power/Other	
AA16	VSS	Power/Other	
AA17	VCC	Power/Other	
AA18	VCC	Power/Other	
AA19	VSS	Power/Other	
AA20	VCC	Power/Other	
AA21	D[51]#	Source Synch	Input/ Output
AA22	VSS	Power/Other	
AA23	D[32]#	Source Synch	Input/ Output
AA24	D[47]#	Source Synch	Input/ Output
AA25	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AA26	D[43]#	Source Synch	Input/ Output
AB1	VSS	Power/Other	
AB2	RSVD	Reserved	
AB3	TDO	Open Drain	Output
AB4	VSS	Power/Other	
AB5	TMS	CMOS	Input
AB6	TRST#	CMOS	Input
AB7	VCC	Power/Other	
AB8	VSS	Power/Other	
AB9	VCC	Power/Other	
AB10	VCC	Power/Other	
AB11	VSS	Power/Other	
AB12	VCC	Power/Other	
AB13	VSS	Power/Other	
AB14	VCC	Power/Other	
AB15	VCC	Power/Other	
AB16	VSS	Power/Other	
AB17	VCC	Power/Other	
AB18	VCC	Power/Other	
AB19	VSS	Power/Other	
AB20	VCC	Power/Other	
AB21	D[52]#	Source Synch	Input/ Output
AB22	D[50]#	Source Synch	Input/ Output
AB23	VSS	Power/Other	
AB24	D[33]#	Source Synch	Input/ Output
AB25	D[40]#	Source Synch	Input/ Output
AB26	VSS	Power/Other	
AC1	PREQ#	Common Clock	Input
AC2	PRDY#	Common Clock	Output
AC3	VSS	Power/Other	
AC4	BPM[3]#	Common Clock	Input/ Output
AC5	TCK	CMOS	Input

Table 14. Pin Listing by Pin Number

	1		1
Pin Number	Pin Name	Signal Buffer Type	Direction
AC6	VSS	Power/Other	
AC7	VCC	Power/Other	
AC8	VSS	Power/Other	
AC9	VCC	Power/Other	
AC10	VCC	Power/Other	
AC11	VSS	Power/Other	
AC12	VCC	Power/Other	
AC13	VCC	Power/Other	
AC14	VSS	Power/Other	
AC15	VCC	Power/Other	
AC16	VSS	Power/Other	
AC17	VCC	Power/Other	
AC18	VCC	Power/Other	
AC19	VSS	Power/Other	
AC20	DINV[3]#	Source Synch	Input/ Output
AC21	VSS	Power/Other	
AC22	D[48]#	Source Synch	Input/ Output
AC23	D[49]#	Source Synch	Input/ Output
AC24	VSS	Power/Other	
AC25	D[53]#	Source Synch	Input/ Output
AC26	D[46]#	Source Synch	Input/ Output
AD1	BPM[2]#	Common Clock	Output
AD2	VSS	Power/Other	
AD3	BPM[1]#	Common Clock	Output
AD4	BPM[0]#	Common Clock	Input/ Output
AD5	VSS	Power/Other	
AD6	VID[0]	CMOS	Output
AD7	VCC	Power/Other	
AD8	VSS	Power/Other	
AD9	VCC	Power/Other	
AD10	VCC	Power/Other	
AD11	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AD12	VCC	Power/Other	
AD13	VSS	Power/Other	
AD14	VCC	Power/Other	
AD15	VCC	Power/Other	
AD16	VSS	Power/Other	
AD17	VCC	Power/Other	
AD18	VCC	Power/Other	
AD19	VSS	Power/Other	
AD20	D[54]#	Source Synch	Input/ Output
AD21	D[59]#	Source Synch	Input/ Output
AD22	VSS	Power/Other	
AD23	DSTBN[3]#	Source Synch	Input/ Output
AD24	D[57]#	Source Synch	Input/ Output
AD25	VSS	Power/Other	
AD26	GTLREF	Power/Other	Input
AE1	VSS	Power/Other	
AE2	VID[6]	CMOS	Output
AE3	VID[4]	CMOS	Output
AE4	VSS	Power/Other	
AE5	VID[2]	CMOS	Output
AE6	PSI#	CMOS	Output
AE7	VSSSENSE	Power/Other	Output
AE8	VSS	Power/Other	
AE9	VCC	Power/Other	
AE10	VCC	Power/Other	
AE11	VSS	Power/Other	
AE12	VCC	Power/Other	
AE13	VCC	Power/Other	
AE14	VSS	Power/Other	
AE15	VCC	Power/Other	
AE16	VSS	Power/Other	
AE17	VCC	Power/Other	
AE18	VCC	Power/Other	
AE19	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

		3 3	
Pin Number	Pin Name	Signal Buffer Type	Direction
AE20	VCC	Power/Other	
AE21	D[58]#	Source Synch	Input/ Output
AE22	D[55]#	Source Synch	Input/ Output
AE23	VSS	Power/Other	
AE24	DSTBP[3]#	Source Synch	Input/ Output
AE25	D[60]#	Source Synch	Input/ Output
AE26	VSS	Power/Other	
AF1	RSVD	Reserved	
AF2	VID[5]	CMOS	Output
AF3	VSS	Power/Other	
AF4	VID[3]	CMOS	Output
AF5	VID[1]	CMOS	Output
AF6	VSS	Power/Other	
AF7	VCCSENSE	Power/Other	
AF8	VSS	Power/Other	
AF9	VCC	Power/Other	
AF10	VCC	Power/Other	
AF11	VSS	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VCC	Power/Other	
AF16	VSS	Power/Other	
AF17	VCC	Power/Other	
AF18	VCC	Power/Other	
AF19	VSS	Power/Other	
AF20	VCC	Power/Other	
AF21	VSS	Power/Other	
AF22	D[62]#	Source Synch	Input/ Output
AF23	D[56]#	Source Synch	Input/ Output
AF24	VSS	Power/Other	
AF25	D[61]#	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Number

	1		1
Pin Number	Pin Name	Signal Buffer Type	Direction
AF26	D[63]#	Source Synch	Input/ Output
B1	RESET#	Common Clock	Input
B2	RSVD	Reserved	
В3	INIT#	CMOS	Input
B4	LINT1	CMOS	Input
B5	DPSLP#	CMOS	Input
B6	VSS	Power/Other	
B7	VCC	Power/Other	
B8	VSS	Power/Other	
В9	VCC	Power/Other	
B10	VCC	Power/Other	
B11	VSS	Power/Other	
B12	VCC	Power/Other	
B13	VSS	Power/Other	
B14	VCC	Power/Other	
B15	VCC	Power/Other	
B16	VSS	Power/Other	
B17	VCC	Power/Other	
B18	VCC	Power/Other	
B19	VSS	Power/Other	
B20	VCC	Power/Other	
B21	VSS	Power/Other	
B22	BSEL[0]	CMOS	Output
B23	BSEL[1]	CMOS	Output
B24	VSS	Power/Other	
B25	RSVD	Reserved	
B26	VCCA	Power/Other	
C1	RSVD	Reserved	
C2	VSS	Power/Other	
C3	RSVD	Reserved	
C4	IGNNE#	CMOS	Input
C5	VSS	Power/Other	
C6	LINTO	CMOS	Input
C7	THERMTRIP #	Open Drain	Output
C8	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
C9	VCC	Power/Other	
C10	VCC	Power/Other	
C11	VSS	Power/Other	
C12	VCC	Power/Other	
C13	VCC	Power/Other	
C14	VSS	Power/Other	
C15	VCC	Power/Other	
C16	VSS	Power/Other	
C17	VCC	Power/Other	
C18	VCC	Power/Other	
C19	VSS	Power/Other	
C20	DBR#	CMOS	Output
C21	BSEL[2]	CMOS	Output
C22	VSS	Power/Other	
C23	RSVD	Reserved	
C24	RSVD	Reserved	
C25	VSS	Power/Other	
C26	TEST1	Test	
D1	VSS	Power/Other	
D2	RSVD	Reserved	
D3	RSVD	Reserved	
D4	VSS	Power/Other	
D5	STPCLK#	CMOS	Input
D6	PWRGOOD	CMOS	Input
D7	SLP#	CMOS	Input
D8	VSS	Power/Other	
D9	VCC	Power/Other	
D10	VCC	Power/Other	
D11	VSS	Power/Other	
D12	VCC	Power/Other	
D13	VSS	Power/Other	
D14	VCC	Power/Other	
D15	VCC	Power/Other	
D16	VSS	Power/Other	
D17	VCC	Power/Other	
D18	VCC	Power/Other	
D19	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
D20	IERR#	Open Drain	Output
D21	PROCHOT#	Open Drain	Input/ Output
D22	RSVD	Reserved	
D23	VSS	Power/Other	
D24	DPWR#	Common Clock	Input
D25	TEST2	Test	
D26	VSS	Power/Other	
E1	DBSY#	Common Clock	Input/ Output
E2	BNR#	Common Clock	Input/ Output
E3	VSS	Power/Other	_
E4	HITM#	Common Clock	Input/ Output
E5	DPRSTP#	CMOS	Not used
E6	VSS	Power/Other	
E7	VCC	Power/Other	
E8	VSS	Power/Other	
E9	VCC	Power/Other	
E10	VCC	Power/Other	
E11	VSS	Power/Other	
E12	VCC	Power/Other	
E13	VCC	Power/Other	
E14	VSS	Power/Other	
E15	VCC	Power/Other	
E16	VSS	Power/Other	
E17	VCC	Power/Other	
E18	VCC	Power/Other	
E19	VSS	Power/Other	
E20	VCC	Power/Other	
E21	VSS	Power/Other	
E22	D[0]#	Source Synch	Input/ Output
E23	D[7]#	Source Synch	Input/ Output
E24	VSS	Power/Other	
E25	D[6]#	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Number

Table 14. Fill Listing by Fill Number				
Pin Number	Pin Name	Signal Buffer Type	Direction	
E26	D[2]#	Source Synch	Input/ Output	
F1	BRO#	Common Clock	Input/ Output	
F2	VSS	Power/Other		
F3	RS[0]#	Common Clock	Input	
F4	RS[1]#	Common Clock	Input	
F5	VSS	Power/Other		
F6	RSVD	Reserved		
F7	VCC	Power/Other		
F8	VSS	Power/Other		
F9	VCC	Power/Other		
F10	VCC	Power/Other		
F11	VSS	Power/Other		
F12	VCC	Power/Other		
F13	VSS	Power/Other		
F14	VCC	Power/Other		
F15	VCC	Power/Other		
F16	VSS	Power/Other		
F17	VCC	Power/Other		
F18	VCC	Power/Other		
F19	VSS	Power/Other		
F20	VCC	Power/Other		
F21	DRDY#	Common Clock	Input/ Output	
F22	VSS	Power/Other		
F23	D[4]#	Source Synch	Input/ Output	
F24	D[1]#	Source Synch	Input/ Output	
F25	VSS	Power/Other		
F26	D[13]#	Source Synch	Input/ Output	
G1	VSS	Power/Other		
G2	TRDY#	Common Clock	Input	
G3	RS[2]#	Common Clock	Input	

Table 14. Pin Listing by Pin Number

			T
Pin Number	Pin Name	Signal Buffer Type	Direction
G4	VSS	Power/Other	
G5	BPRI#	Common Clock	Input
G6	HIT#	Common Clock	Input/ Output
G21	VCCP	Power/Other	
G22	DSTBP[0]#	Source Synch	Input/ Output
G23	VSS	Power/Other	
G24	D[9]#	Source Synch	Input/ Output
G25	D[5]#	Source Synch	Input/ Output
G26	VSS	Power/Other	
H1	ADS#	Common Clock	Input/ Output
H2	REQ[1]#	Source Synch	Input/ Output
Н3	VSS	Power/Other	
H4	LOCK#	Common Clock	Input/ Output
H5	DEFER#	Common Clock	Input
H6	VSS	Power/Other	
H21	VSS	Power/Other	
H22	D[3]#	Source Synch	Input/ Output
H23	DSTBN[0]#	Source Synch	Input/ Output
H24	VSS	Power/Other	
H25	D[15]#	Source Synch	Input/ Output
H26	D[12]#	Source Synch	Input/ Output
J1	A[9]#	Source Synch	Input/ Output
J2	VSS	Power/Other	
J3	REQ[3]#	Source Synch	Input/ Output
J4	A[3]#	Source Synch	Input/ Output
J5	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
J6	VCCP	Power/Other	
J21	VCCP	Power/Other	
J22	VSS	Power/Other	
J23	D[11]#	Source Synch	Input/ Output
J24	D[10]#	Source Synch	Input/ Output
J25	VSS	Power/Other	
J26	DINV[0]#	Source Synch	Input/ Output
K1	VSS	Power/Other	
K2	REQ[2]#	Source Synch	Input/ Output
K3	REQ[0]#	Source Synch	Input/ Output
K4	VSS	Power/Other	
K5	A[6]#	Source Synch	Input/ Output
K6	VCCP	Power/Other	
K21	VCCP	Power/Other	
K22	D[14]#	Source Synch	Input/ Output
K23	VSS	Power/Other	
K24	D[8]#	Source Synch	Input/ Output
K25	D[17]#	Source Synch	Input/ Output
K26	VSS	Power/Other	
L1	A[13]#	Source Synch	Input/ Output
L2	ADSTB[0]#	Source Synch	Input/ Output
L3	VSS	Power/Other	
L4	A[4]#	Source Synch	Input/ Output
L5	REQ[4]#	Source Synch	Input/ Output
L6	VSS	Power/Other	
L21	VSS	Power/Other	
L22	D[21]#	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
L23	D[22]#	Source Synch	Input/ Output
L24	VSS	Power/Other	
L25	D[20]#	Source Synch	Input/ Output
L26	D[29]#	Source Synch	Input/ Output
M1	A[7]#	Source Synch	Input/ Output
M2	VSS	Power/Other	
M3	A[5]#	Source Synch	Input/ Output
M4	RSVD	Reserved	
M5	VSS	Power/Other	
M6	VCCP	Power/Other	
M21	VCCP	Power/Other	
M22	VSS	Power/Other	
M23	D[23]#	Source Synch	Input/ Output
M24	DSTBN[1]#	Source Synch	Input/ Output
M25	VSS	Power/Other	
M26	DINV[1]#	Source Synch	Input/ Output
N1	VSS	Power/Other	
N2	A[8]#	Source Synch	Input/ Output
N3	A[10]#	Source Synch	Input/ Output
N4	VSS	Power/Other	
N5	RSVD	Reserved	
N6	VCCP	Power/Other	
N21	VCCP	Power/Other	
N22	D[16]#	Source Synch	Input/ Output
N23	VSS	Power/Other	
N24	D[31]#	Source Synch	Input/ Output
N25	DSTBP[1]#	Source Synch Input/ Output	
N26	VSS	Power/Other	

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
P1	A[15]#	Source Synch	Input/ Output
P2	A[12]#	Source Synch	Input/ Output
P3	VSS	Power/Other	
P4	A[14]#	Source Synch	Input/ Output
P5	A[11]#	Source Synch	Input/ Output
P6	VSS	Power/Other	
P21	VSS	Power/Other	
P22	D[25]#	Source Synch	Input/ Output
P23	D[26]#	Source Synch	Input/ Output
P24	VSS	Power/Other	
P25	D[24]#	Source Synch	Input/ Output
P26	D[18]#	Source Synch	Input/ Output
R1	A[16]#	Source Synch	Input/ Output
R2	VSS	Power/Other	
R3	A[19]#	Source Synch	Input/ Output
R4	A[24]#	Source Synch	Input/ Output
R5	VSS	Power/Other	
R6	VCCP	Power/Other	
R21	VCCP	Power/Other	
R22	VSS	Power/Other	
R23	D[19]#	Source Synch	Input/ Output
R24	D[28]#	Source Synch	Input/ Output
R25	VSS	Power/Other	
R26	COMP[0]	Power/Other	Input/ Output
T1	VSS	Power/Other	
T2	RSVD	Reserved	
Т3	A[26]#	Source Synch	Input/ Output

Table 14. Pin Listing by Pin Number

_	T		1
Pin Number	Pin Name	Signal Buffer Type	Direction
T4	VSS	Power/Other	
T5	A[25]#	Source Synch	Input/ Output
T6	VCCP	Power/Other	
T21	VCCP	Power/Other	
T22	RSVD	Reserved	
T23	VSS	Power/Other	
T24	D[27]#	Source Synch	Input/ Output
T25	D[30]#	Source Synch	Input/ Output
T26	VSS	Power/Other	
U1	COMP[2]	Power/Other	Input/ Output
U2	A[23]#	Source Synch	Input/ Output
U3	VSS	Power/Other	
U4	A[21]#	Source Synch	Input/ Output
U5	A[18]#	Source Synch	Input/ Output
U6	VSS	Power/Other	
U21	VSS	Power/Other	
U22	D[39]#	Source Synch	Input/ Output
U23	D[37]#	Source Synch	Input/ Output
U24	VSS	Power/Other	
U25	D[38]#	Source Synch	Input/ Output
U26	COMP[1]	Power/Other	Input/ Output
V1	COMP[3]	Power/Other	Input/ Output
V2	VSS	Power/Other	
V3	RSVD	Reserved	
V4	ADSTB[1]#	Source Synch	Input/ Output
V5	VSS	Power/Other	
V6	VCCP	Power/Other	
V21	VCCP	Power/Other	

Table 14. Pin Listing by Pin Number

	Table 14. The Listing by Thirteaniber				
Pin Number	Pin Name	Signal Buffer Type	Direction		
V22	VSS	Power/Other			
V23	DINV[2]#	Source Synch	Input/ Output		
V24	D[34]#	Source Synch	Input/ Output		
V25	VSS	Power/Other			
V26	D[35]#	Source Synch	Input/ Output		
W1	VSS	Power/Other			
W2	A[30]#	Source Synch	Input/ Output		
W3	A[27]#	Source Synch	Input/ Output		
W4	VSS	Power/Other			
W5	A[28]#	Source Synch	Input/ Output		
W6	A[20]#	Source Synch	Input/ Output		
W21	VCCP	Power/Other			
W22	D[41]#	Source Synch	Input/ Output		
W23	VSS	Power/Other			
W24	DSTBN[2]#	Source Synch	Input/ Output		
W25	D[36]#	Source Synch	Input/ Output		
W26	VSS	Power/Other			
Y1	A[31]#	Source Synch	Input/ Output		
Y2	A[17]#	Source Synch	Input/ Output		
Y3	VSS	Power/Other			
Y4	A[29]#	Source Synch	Input/ Output		
Y5	A[22]#	Source Synch	Input/ Output		
Y6	VSS	Power/Other			
Y21	VSS	Power/Other			
Y22	D[45]#	Source Synch	Input/ Output		
Y23	D[42]#	Source Synch	Input/ Output		

Table 14. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
Y24	VSS	Power/Other	
Y25	DSTBP[2]#	Source Synch	Input/ Output
Y26	D[44]#	Source Synch	Input/ Output

4.5 Alphabetical Signals Reference

Table 15. Signal Description (Sheet 1 of 8)

Name	Туре		Description	
A[31:3]#	Input/ Output	A[31:3]# (Address) define a 2 ³² -byte physical memory address space. In sub-phase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the Intel® Celeron® M processor FSB. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted.		
A20M#	Input	If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wraparound at the 1-Mbyte boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.		
ADS#	Input/ Output	ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.		
		Address strobes are used to latch A[31:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below.		
ADSTB[1:0]#	Input/ Output	Signals	Associated Strobe	
		REQ[4:0]#, A[16:3]#	ADSTB[0]#	
		A[31:17]#	ADSTB[1]#	
BCLK[1:0]	Input	The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLKO crossing V _{CROSS} .		
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.		
BPM[2:1]# BPM[3,0]#	Output Input/ Output			

Table 15. Signal Description (Sheet 2 of 8)

Name	Туре		De	scription	
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#.			
BRO#	Input/ Output	done between	the Celeron M p	rocessor (Sym	e bus. The arbitration is imetric Agent) and hipset (High Priority
BSEL[2:0]	Output	BSEL[2:0] (Bus Select) are used to select the processor input clock frequency. Table 3 on page 23 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. The Celeron M processor operates 533 MHz system bus frequency (133-MHz BCLK[1:0] frequency).			
COMP[3:0]	Analog	COMP[3:0] must be terminated on the system board using precision (1% tolerance) resistors. Please contact your Intel representative for more implementation details.			
		D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer. D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#.			t connect the river asserts DRDY# to thus be driven four the latched off the falling #. Each group of 16 BP# and one DSTBN#.
	Input/	Quad-Pumpe	d Signal Group	s	
D[63:0]#	Output	Data Group	DSTBN#/ DSTBP#	DINV#	
		D[15:0]#	0	0	
		D[31:16]#	1	1	
		D[47:32]#	2	2	
		D[63:48]#	3	3	
		Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high.			
DBR#	Output	DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.			

Table 15. Signal Description (Sheet 3 of 8)

Name	Туре	Description			
DBSY#	Input/ Output	DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents.			
DEFER#	Input	DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or Input/ Output agent. This signal must connect the appropriate pins of both FSB agents.			
		DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent will invert the data bus signals if more than half the bits, within the covered group, would change level in the next cycle.			
		DINV[3:0]# Assignment To Data Bus			
DINV[3:0]#	Input/ Output	Bus Signal Data Bus Signals			
		DINV[3]# D[63:48]#			
		DINV[2]# D[47:32]#			
		DINV[1]# D[31:16]#			
		DINV[0]# D[15:0]#			
DPRSTP#	Not used	DPRSTP# is not used by the Celeron M processor.			
DPSLP#	Input	DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by the ICH7-M chipset.			
DPWR#	Input	DPWR# is a control signal from the Intel 945GMS and Intel 940GML Express Chipsets used to reduce power on the Celeron M data bus input buffers.			
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents.			
		Data strobe used to latch in D[63:0]#.			
		Signals Associated Strobe			
DSTBN[3:0]#	Input/ Output	D[15:0]#, DINV[0]# DSTBN[0]#			
	Output	D[31:16]#, DINV[1]# DSTBN[1]#			
		D[47:32]#, DINV[2]# DSTBN[2]#			
		D[63:48]#, DINV[3]# DSTBN[3]#			
]				

Table 15. Signal Description (Sheet 4 of 8)

Name	Туре		Description	
		Data strobe used to latch	n in D[63:0]#.	
		Signals	Associated Strobe	
DSTBP[3:0]#	Input/	D[15:0]#, DINV[0]#	DSTBP[0]#	
	Output	D[31:16]#, DINV[1]#	DSTBP[1]#	
		D[47:32]#, DINV[2]#	DSTBP[2]#	
		D[63:48]#, DINV[3]#	DSTBP[3]#	
FERR#/PBE#	Output	FERR# (Floating-point Error)PBE# (Pending Break Event) is a multiplexed signal and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the Processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it will remain asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active will also cause an FERR# break event. For additional information on the pending break event functionality, including identification of support of the feature and enable/disable information, refer to Volume 3 of the IA 32 Intel® Architecture Software Developer's Manual and the Intel® Processor Identification and CPUID Instruction application note. For termination requirements, please contact your Intel		
GTLREF	Input	representative. GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should be set at 2/3 $V_{\rm CCP}$. GTLREF is used by the AGTL+ receivers to determine if a signal is a logical 0 or logical 1.		
HIT#/ HITM#	Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together.		
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#, BINIT#, or INIT#. For termination requirements, please contact your Intel representative.		

Table 15. Signal Description (Sheet 5 of 8)

Name	Туре	Description
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be
		valid along with the TRDY# assertion of the corresponding Input/ Output Write bus transaction.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents. If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST). For termination requirements, please contact your Intel representative.
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINTO signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Intel® Pentium® processor. Both signals are asynchronous. Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default
LOCK#	Input/ Output	configuration. LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock.
PRDY#	Output	Probe Ready signal used by debug tools to determine processor debug readiness. Please contact your Intel representative for more implementation details.
PREQ#	Input	Probe Request signal used by debug tools to request debug operation of the processor. Please contact your Intel representative for more implementation details.

Table 15. Signal Description (Sheet 6 of 8)

Name	Type	Description
PROCHOT#	Input/ Output	As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled. The TCC will remain active until the system deasserts PROCHOT#. By default PROCHOT# is configured as an output only. Bidirectional PROCHOT# must be enabled via the BIOS. For termination requirements, please contact your Intel representative. This signal may require voltage translation on the motherboard. Please contact your Intel representative for more detailed information.
PSI#	Output	Processor Power Status Indicator signal. This signal is asserted when the processor is in a lower state (Deep Sleep). Please contact your Intel representative for more details on the PSI# signal.
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. "Clean" implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. For termination requirements, please contact your Intel representative.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after Vcc and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents will deassert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted. There is a 55 Ω (nominal) on die pull-up resistor on this signal.
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents.
RSVD	Reserved /No Connect	These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. Please contact your Intel representative for more detailed information.

Datasheet Datasheet

Table 15. Signal Description (Sheet 7 of 8)

Name	Type	Description
SLP#	Input	SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the deassertion of RESET# the processor will tristate its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
тск	Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port). Please contact your Intel representative for termination requirements and implementation details.
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. Please contact your Intel representative for termination requirements and implementation details.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. Please contact your Intel representative for termination requirements and implementation details.
TEST1	Input	TEST1 must have a stuffing option of separate pull-down resistor to V _{SS} . Please contact your Intel representative for more detailed information.
TEST2	Input	TEST2 must have a 51- Ω ±5% pull-down resistor to V _{SS} . Please contact your Intel representative for more detailed information.
THERMDA	Other	Thermal Diode Anode.

Table 15. Signal Description (Sheet 8 of 8)

Name	Туре	Description
THERMTRIP#	Output	The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 125 °C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin. For termination requirements, please contact your Intel representative.
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. Please contact your Intel representative for termination requirements and implementation details.
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents. Please contact your Intel representative for termination requirements and implementation details.
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. Please contact your Intel representative for termination requirements and implementation details.
V _{cc}	Input	Processor core power supply.
V _{CCA}	Input	V _{CCA} provides isolated power for the internal processor core PLL's. Please contact your Intel representative for complete implementation details.
V _{CCP}	Input	Processor I/O Power Supply.
V _{CCSENSE}	Output	V_{CCSENSE} is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure power near the silicon with little noise. Please contact your Intel representative for termination requirements and routing recommendations.
VID[6:0]	Output	VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (V_{CC}). Unlike some previous generations of processors, these are CMOS signals that are driven by the Celeron M processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 2 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.
V _{SSSENSE}	Output	V_{SSSENSE} is an isolated low impedance connection to processor core V_{SS} . It can be used to sense or measure ground near the silicon with little noise. Please contact your Intel representative for termination requirements and routing recommendations.

Datasheet Datasheet

5 Thermal Specifications and Design Considerations

The Celeron M processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1. Any attempt to operate that processor outside these operating limits may result in permanent damage to the processor and potentially other components in the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions include active or passive heatsinks or heat exchangers attached to the processor exposed die. The solution should make firm contact to the die while maintaining processor mechanical specifications such as pressure. A typical system level thermal solution may consist of a processor fan ducted to a heat exchanger that is thermally coupled to the processor via a heat pipe or direct die attachment. A secondary fan or air from the processor fan may also be used to cool other platform components or to lower the internal ambient temperature within the system.

To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor remains within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 16 and Table 17. Thermal solutions not designed to provide this level of thermal capability may affect the long-term reliability of the processor and system.

Contact your Intel representative for more details on processor and system level cooling approaches.

The maximum junction temperature is defined by an activation of the processor Intel® Thermal Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the TDP indicated in Table 16 and Table 17. The Intel Thermal Monitor feature is designed to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.1.3. In all cases the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.

Table 16. Power Specifications for the Celeron M Processor Standard Voltage

Symbol	Processor Number	Core Frequency & Voltage	Thermal Design Power		Unit	Notes	
	450	2.00 GHz & HFM Vcc		27			
	440	1.86 GHz & HFM Vcc		27			
TDP	430	1.73 GHz & HFM Vcc		27		W	1, 4
	420	1.60 GHz & HFM Vcc		27			
	410	1.46 GHz & HFM Vcc		27			
Symbol	Parameter		Min	Тур	Max	Unit	
P _{AH} , P _{SGNT}	Auto Halt, Stop Grant Power				10.1	W	At 50°C 2
P _{SLP}	Sleep Power at Vcc				10.0	W	At 50°C 2
P _{DSLP}	Deep Sleep Power at Vcc				6.5	W	At 35°C 2
TJ	Junction Temperatur	re	0		100	°C	3, 4

NOTES:

- 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate.
- 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum T_J has been reached. Refer to Section 5.1 for more details.
- 4. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.

Table 17. Power Specifications for the Celeron M Processor Ultra Low Voltage

Symbol	Processor Number	Core Frequency & Voltage Thermal Design Power		Unit	Notes		
TDP	423	1.06 GHz & HFM Vcc	5.5			W	1, 4
Symbol	Parameter		Min	Тур	Max	Unit	
P _{AH} , P _{SGNT}	Auto Halt, Stop Grant Power				3.0	W	At 50°C 2
P _{SLP}	Sleep Power at Vcc				2.9	W	At 50°C 2
P _{DSLP}	Deep Sleep Power at Vcc				1.5	W	At 35°C 2
T _J	Junction Temperature	<u>,</u>	0		100	°C	3, 4

NOTES:

- 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate.
- Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- 3. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum T_J has been reached. Refer to Section 5.1 for more details.
- 4. The IntelThermal Monitor automatic mode must be enabled for the processor to operate within specifications.

5.1 Thermal Specifications

The Celeron M processor incorporates three methods of monitoring die temperature, the Digital thermal sensor, Intel Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1.3) must be used to determine when the maximum specified processor junction temperature has been reached.

5.1.1 Thermal Diode

The processor incorporates an on-die PNP transistor whose base emitter junction is used as a thermal diode, with its collector shorted to Ground. The thermal diode, can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but is not a reliable indication that the maximum operating temperature of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor model specific register (MSR) and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted.

Note:

The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest

location on the die, and time based variations in the die temperature measurement. Time based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the T_J temperature can change.

Offset between the thermal diode-based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor's Automatic mode activation of thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events. This offset is different than the diode Toffset value programmed into the Intel Core Duo and Intel Core Solo processors' MSR.

Table 18, Table 19, Table , and Table 21 provide the diode interface and specifications. Two different sets of diode parameters are listed in Table 19 and Table 20. The Diode Model parameters (Table 19) apply to traditional thermal sensors that use the Diode Equation to determine the processor temperature. Transistor Model parameters (Table 20) have been added to support thermal sensors that use the transistor equation method. The Transistor Model may provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. Please contact your external thermal sensor supplier for their recommendation. This thermal diode is separate from the Intel Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor.

Table 18. Thermal Diode Interface

Signal Name	Pin/Ball Number	Signal Description
THERMDA	A24	Thermal diode anode
THERMDC	A25	Thermal diode cathode

Table 19. Thermal Diode Parameters using Diode Model

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5	-	200	μΑ	1
n	Diode Ideality Factor	1.000	1.009	1.050	-	2, 3, 4
R _T	Series Resistance	2.79	4.52	6.24	Ω	2, 3, 5

NOTES:

- Intel does not support or recommend operation of the thermal diode under reverse bias.
 Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
- 2. Characterized across a temperature range of 50 100 °C.
- 3. Not 100% tested. Specified by design characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

$$I_{FW} = I_S * (e^{qV_D/nkT} - 1)$$

where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

5. The series resistance, R_T, is provided to allow for a more accurate measurement of the junction temperature. R_T, as defined, includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. R_T can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:

$$T_{error} = [R_T * (N-1) * I_{FWmin}] / [nk/q * In N]$$

where T_{error} = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge.

Table 20. Thermal Diode Parameters using Transistor Mode

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5	-	200	μΑ	1, 2
IE	Emitter Current	5		200	μΑ	
n _Q	Transistor Ideality	0.997	1.001	1.005	-	3, 4, 5
Beta		0.3		0.760		3, 4
R _T	Series Resistance	2.79	4.52	6.24	Ω	3, 6

NOTES:

- 1. Intel does not support or recommend operation of the thermal diode under reverse bias.
- 2. Same as I_{FW} in Table 19
- 3. Characterized across a temperature range of 50 100 °C.
- 4. Not 100% tested. Specified by design characterization.
- 5. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current:

$$I_{C} = I_{S} * (e^{qV}BE^{/n}Q^{kT} - 1)$$

Where I_S = saturation current, q = electronic charge, V_{BE} = voltage across the transistor base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute temperature (Kelvin).

 The series resistance, R_{T,} provided in the Diode Model Table (Table 19) can be used for more accurate readings as needed.

When calculating a temperature based on thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although some are capable of also measuring the series resistance. Calculating the temperature is then accomplished using the equations listed under Table 19. In most temperature sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode the ideality value (also called $n_{\rm trim}$) will be 1.000. Given that most diodes are not perfect, the designers usually select an $n_{\rm trim}$ value that more closely matches the behavior of the diodes in the processor. If the processors diode ideality deviates from that of $n_{\rm trim}$, each calculated temperature will be offset by a fixed amount. This temperature offset can be calculated with the equation:

$$T_{error(nf)} = T_{measured} X (1 - n_{actual}/n_{trim})$$

Where $T_{error(nf)}$ is the offset in degrees C, $T_{measured}$ is in Kelvin, n_{actual} is the measured ideality of the diode, and n_{trim} is the diode ideality assumed by the temperature sensing device.

5.1.2 Thermal Diode Offset

In order to improve the accuracy of diode based temperature measurements, a temperature offset value (specified as Toffset) will be programmed into a Intel Core Duo and Intel Core Solo processors' MSR, which will contain thermal diode characterization data. During manufacturing each processors thermal diode will be evaluated for its behavior relative to a theoretical diode. Using the equation above, the temperature error created by the difference between n_{trim} and the actual ideality of the particular processor will be calculated.

If the n_{trim} value used to calculate Toffset differs from the n_{trim} value used in a temperature sensing device, the $T_{error(nf)}$ may not be accurate. If desired, the Toffset can be adjusted by calculating n_{actual} and then recalculating the offset using the actual n_{trim} as defined in the temperature sensor manufacturers' datasheet.

The n_{trim} used to calculate the Diode Correction Toffset are listed in Table 21.

Table 21. Thermal Diode n_{trim} and Diode Correction Toffset

Symbol	Parameter		Unit
n _{trim}	Diode ideality used to calculate Toffset	1.01	

Contact your Intel representative for more details on the temperature offset MSR definition and recommended offset implementation.

5.1.3 Intel® Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC (Thermal Control Circuit) when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the TCC is not user configurable. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be minor and hence not detectable. An underdesigned thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously.

The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses this mode to activate the TCC: Automatic mode and on-demand mode. If both modes are activated, Automatic mode takes precedence.

Note:

The Intel Thermal Monitor automatic mode must be enabled through BIOS for the processor to be operating within specifications.

This automatic mode is called Intel Thermal Monitor 1 (TM1). This mode is selected by writing values to the Model Specific Registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation.

When Intel Thermal Monitor 1 is enabled while a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active.

The TCC may also be activated via on-demand mode. If bit 4 of the ACPI Intel Thermal Monitor control register is written to a 1, the TCC will be activated immediately, independent of the processor temperature. When using on-demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be used at the same time automatic mode is enabled, however, if the system tries to enable the TCC via on-demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode will take precedence.

An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.

Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also includes one ACPI register, one performance counter register, three MSRs, and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

Note:

PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep and Deep Sleep low power states (internal clocks stopped), hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within maximum specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point.

Contact your Intel representative for more details on the Intel Thermal Monitor register and programming details.

If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125 °C. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.5.

5.1.4 Digital Thermal Sensor

The Celeron M processor also contains an on die digital thermal sensor that can be read via a MSR (no I/O interface). The digital thermal sensor is the preferred method of reading the processor die temperature since it can be located much closer to the hottest portions of the die and can thus more accurately track the die temperature and potential activation of processor core clock modulation via the Intel Thermal Monitor. The digital thermal sensor is only valid while the processor is in the normal operating state (CO state).

Unlike traditional thermal devices, the Digital Thermal sensor will output a temperature relative to the maximum supported operating temperature of the processor $(T_{J,max})$. It is the responsibility of software to convert the relative temperature to an absolute temperature. The temperature returned by the digital thermal sensor will always be at or below $T_{J,max}$. Over temperature conditions are detectable via an Out Of Spec status bit. This bit is also part of the Digital Thermal sensor MSR. When this bit is set, the processor is operating out of specification and immediate shutdown of the system should occur. The processor operation and code execution is not guaranteed once the activation of the Out of Spec status bit is set.

The Digital Thermal Sensor (DTS) relative temperature readout corresponds to the Intel Thermal Monitor (TM1) trigger point. When the DTS indicates maximum processor core temperature has been reached TM1 hardware thermal control mechanism will activate. The DTS and Intel Thermal Monitor (TM1) temperature may not correspond to the thermal diode reading since the thermal diode is located in a separate portion of the die and thermal gradient between the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary substantially due to changes in processor power, mechanical and thermal attach and software application. The system designer is required to use the DTS to guarantee proper operation of the processor within its temperature operating specifications

Changes to the temperature can be detected via two programmable thresholds located in the processor MSRs. These thresholds have the capability of generating interrupts via the core's local APIC. Refer to the *IA-32 Intel® Architecture Software Developer's Manual* and your Intel representative for specific register and programming details.

5.1.5 Out of Specification Detection

Overheat detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shut down before the THERMTRIP# is activated. If the processor's TM1 is triggered and the temperature remains high, an "Out Of Spec" status and sticky bit are latched in the status MSR register and generates thermal interrupt. For more details on the interrupt mechanism, contact your Intel representative.

5.1.6 PROCHOT# Signal Pin

An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If the Intel Thermal Monitor 1 is enabled (note that the Intel Thermal Monitor 1 must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#. Refer to the *IA-32 Intel® Architecture Software Developer's Manuals* and your Intel representative for specific register and programming details.

The Celeron M processor implements a bi-directional PROCHOT# capability to allow system designs to protect various components from over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor has

reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

When PROCHOT# is driven by an external agent, TM1 is enabled and the processor core will have their core clocks modulated.

One application is the thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR can cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An underdesigned thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss.

Contact your Intel representative for details on implementing the bi-directional PROCHOT# feature.

8