intel®

Intel[®] Pentium[®] III Xeon[™] Processor Bus Terminator Design Guidelines

May, 1999 ORDER NUMBER: 245149 -001

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty, and Intel assumes no liability for vendor products, either alone or in combination with Intel products. Intel may make changes to specifications and product descriptions at any time, without notice. The Pentium® II Processor, Pentium ® II Xeon[™] processor, Pentium® III processor and Intel® Celeron[™] processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may obtained by calling 1-800-548-4725, or by visiting Intel's literature center at http://www.intel.com.

Copyright © Intel Corporation 1994-99

*Third-party brands and names are the property of their respective owners.

Contents

1 OVERVIEW	4
2 Mechanical Specifications	4
2.1 Connector Interface	4
2.1.1 Interface Pin Locations	6
3.0 Electrical Specifications	7
3.1 Power Requirements	7
3.2 Card Layout Guidelines	7
3.3 Interface Pin-out	8
3.4 Marking	8

1. Overview

The Intel[®] Pentium[®] III XeonTM processor includes termination circuitry for the microprocessor's Assisted Gunning Transceiver Logic (AGTL+) bus. In a multiple-processor system each processor location (slot connector) must be properly terminated, whether or not all locations have processors installed. This document describes design considerations for a termination card to occupy unused connector locations and terminate the bus.

These design guidelines include layout rules and hints based on system design experience. They do not define a specific card design nor constitute a specification. Card designers will still need an understanding of the system the card will be used in and will need to perform the customary simulation and system testing.

In the following four-way symmetric multi-processing (SMP) example all processor system bus AGTL+ signals are tied to +1.5V through a 150 Ω resistor, so that the bus maintains a 25 Ω impedance no matter what configuration is used in the six available slots. A two-way SMP design would simply have two processor locations and the appropriate chipset.

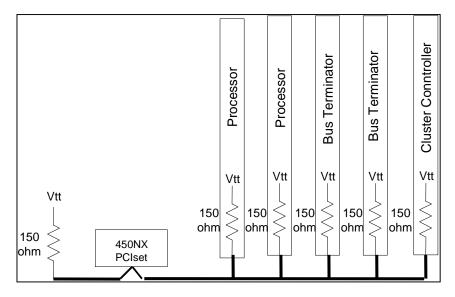


Figure 1. Bus Termination Example

2. Mechanical Specifications

2.1 Connector Interface

The Terminator Card uses a 330-pin edge connection to the processor system board slot connector. Below is the mechanical specification for the edge finger layout.

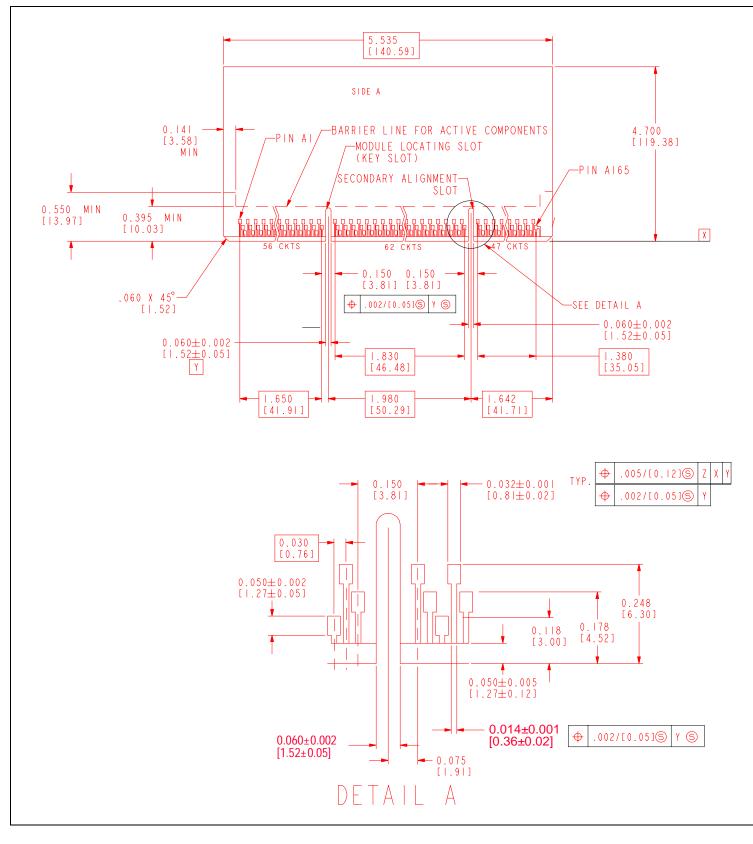
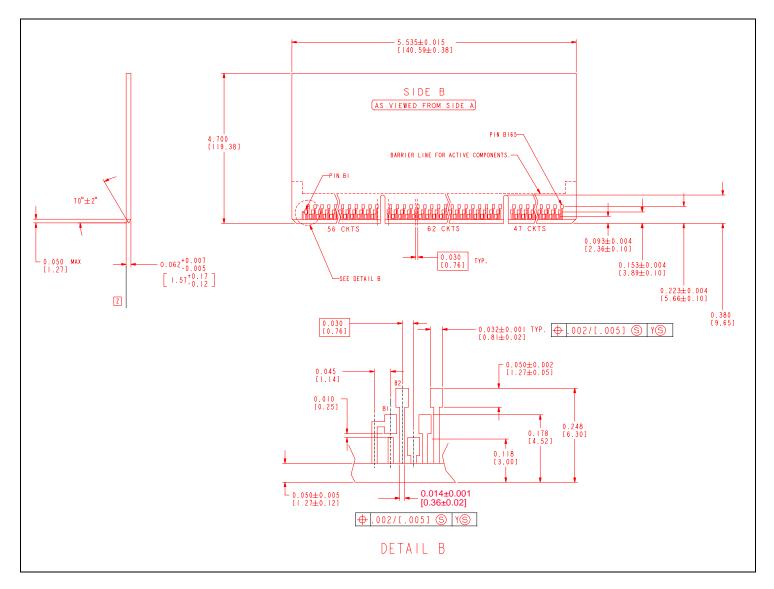



Figure 2. Interface Connector Pin Diagram, Primary Side

Figure 3. Interface Connector Pin Diagram, Secondary Side

2.1.1 Interface Pin Locations

Pin locations on the primary side, viewed from the primary side:

Upper row of edge fingers:		A1 A4 A7
Middle row of edge fingers:	Board Edge →	A2 A5 A8
Lower row of edge fingers:		A3 A6 A9

Pin locations on the secondary side, viewed from the secondary side:

Upper row of edge fingers:	B8	B5	B2	
Middle row of edge fingers:	B7	B4	B1	← Board Edge
Lower row of edge fingers:	B6	6	B3	

3. Electrical Specifications

3.1 Power Requirements

The system board must supply V_{tt} voltage to the pull-up resistors on the Terminator Card:

Voltage	1.5V ± 9 %	 Measured at substrate edge fingers 1.5V ± 3% when bus is idle 	
Current	1.2 A	Maximum	

3.2 Card Layout Guidelines

The design should follow AGTL+ layout guidelines:

- Use a trace routing length of 3.400 ± 0.032 inches to emulate the processor substrate's termination traces. Reducing this length may be beneficial for some topologies. Analog simulation should be performed to ensure that the bus termination card does not cause any violation of signal integrity specifications (e.g., overshoot and undershoot).
- Distribute V_{tt} with a wide trace or plane. A four-layer board, with V_{tt} and ground planes as the internal layers, is generally preferred.
- If there are V_{tt} partial planes on either the top or the bottom layer, the widths of the planes should be ≥ 200 mils. The partial planes should be stitched densely to the V_{tt} power plane.
- The V_{tt} end of terminating resistors should be connected to the V_{tt} plane with closely placed vias. Traces connecting common pins of the V_{tt} end of an R-pack should be \geq 30 mils wide.
- Four sets of two edge finger pins connect to the V_{tt} plane on the top left, top right, bottom left, and bottom right. Each of the traces connecting the edge fingers to the V_{tt} plane should be ≥ 12 mils wide and ≤ 200 mils long.
- Closely control the characteristic line impedance, Z_0 , at 65 $\Omega \pm 10\%$. A ground plane will be needed to maintain the proper characteristic line impedance.
- Use a PCB signal velocity of 2.05 to 2.15 ns/ft (stripline).
- Ensure that V_{tt} is decoupled correctly.
 - ♦ Traces connecting a capacitor pad to a via or component should be ≥ 20 mils wide and ≤ 15 mils long.
 - \diamond There need to be at least two 47 µF capacitors on the card. One should be placed to the left and one to the right (top or bottom), adjacent to the V_{tt}-pin traces.

- Take steps to minimize cross talk:
 - ♦ Maximize the line-to-line spacing (minimum three-width spacing to one-width trace). Leave at least 15 mils between traces.
 - ♦ Keep the dielectric constant of the termination card between 4.2 and 4.8.
 - \diamond Minimize the cross-sectional area of the traces (5 mil lines with 1 ounce/ft² copper but beware of higher-resistivity traces).
 - Eliminate parallel traces between layers if not separated by a power or ground plane.
 - ♦ Isolate AGTL+ signals in groups. That is, route the data signals in one group, the control signals in one group, and the address signals in another group. If the groups are routed together on a plane, provide at least 25 mils separation between the groups.
- Conventional "pull-up" resistor networks may not be suitable for termination. These networks have a common power or ground pin at the extreme end of the package, shared by 13 to 19 resistors (for 14- and 20-pin components). These packages generally have too much inductance to maintain the voltage and current needed at each resistive load. Systems usually get better results with discrete resistors, resistor packages with two separate pins for each resistor, or other resistor networks with acceptable characteristics.

The design should follow these guidelines in addition to the AGTL+ layout rules:

- The PWR_EN trace must be ≥ 15 mils wide.
- BCLK termination may be necessary in some system. For example, the card could use a 2-inch trace to a pad to allow addition of a capacitor (probably about 10 pF) if system testing shows it is necessary.

3.3 Interface Pin-out

The tables on the following pages list the connections on the Terminator Card for each pin. Each line on the table lists:

- Pin number
- Signal name, if used by the Terminator Card
- Connection on the card

Pins designated "N/C" should be open — not connected to any trace or plane on the terminator card.

3.4 Marking

Products complying with this version of the *Design Guidelines* should be conspicuously labeled "SC330.1."

`Pin	Signal	Connects to:	Pin	Signal	Connects to:	Pin	Signal	Connects to:
A1	N/C		A56	N/C		A111	GROUND	
A2	N/C		A57	GROUND		A112	A#(19)	150 Ω to Vtt
A3	N/C		A58	D#(42)	150 Ω to Vtt	A113	A#(18)	150 Ω to Vtt
A4	GROUND		A59	D#(45)	150 Ω to Vtt	A114	GROUND	100 12 10 Vii
A5	+1.5V		A60	GROUND	100 32 10 Vii	A115	A#(16)	150 Ω to Vtt
A6	+1.5V		A61	D#(39)	150 Ω to Vtt	A116	A#(13)	150 Ω to Vtt
A0 A7	SELFSB1#	N/C ¹	A62	N/C	150 22 10 Vii	A110 A117	GROUND	150 22 10 Vii
A8	N/C	N/C	A63	GROUND		A117 A118	A#(14)	150 () to \//
A0 A9	N/C		A63	D#(43)	450.04+1/4	A118 A119	GROUND	150 Ω to Vtt
A9 A10	GROUND		A64 A65		150 Ω to Vtt	A119 A120		450.0 1- 1/-
			_	D#(37)	150 Ω to Vtt		A#(10)	150 Ω to Vtt
A11	N/C		A66	GROUND		A121	A#(5)	150 Ω to Vtt
A12	N/C		A67	D#(33)	150 Ω to Vtt	A122	GROUND	
A13	GROUND		A68	D#(35)	150 Ω to Vtt	A123	A#(9)	150 Ω to Vtt
A14	N/C		A69	GROUND		A124	A#(4)	150 Ω to Vtt
A15	N/C		A70	D#(31)	150 Ω to Vtt	A125	GROUND	
A16	GROUND		A71	D#(30)	150 Ω to Vtt	A126	N/C	
A17	N/C		A72	GROUND		A127	BNR#	150 Ω to Vtt
A18	TEST	A20	A73	D#(27)	150 Ω to Vtt	A128	GROUND	
A19	GROUND		A74	D#(24)	150 Ω to Vtt	A129	BPRI#	150 Ω to Vtt
A20	TEST	A18	A75	GROUND		A130	TRDY#	150 Ω to Vtt
A21	N/C		A76	D#(23)	150 Ω to Vtt	A131	GROUND	
A22	GROUND		A77	D#(21)	150 Ω to Vtt	A132	DEFER#	150 Ω to Vtt
A23	N/C		A78	GROUND		A133	REQ#(2)	150 Ω to Vtt
A24	N/C		A79	D#(16)	150 Ω to Vtt	A134	GROUND	
A25	GROUND		A80	D#(13)	150 Ω to Vtt	A135	REQ#(3)	150 Ω to Vtt
A26	N/C		A81	GROUND	100 10 1	A136	HITM#	150 Ω to Vtt
A27	N/C		A82	TESTHI	150 Ω to Vtt	A137	GROUND	100 12 10 Vii
A28	GROUND		A83	N/C	100 12 10 1 1	A138	DBSY#	150 Ω to Vtt
A29	N/C		A84	GROUND		A139	RS#(1)	150 Ω to Vtt
A30	N/C		A85	D#(11)	150 Ω to Vtt	A140	GROUND	150 22 10 VII
A31	GROUND		A86	D#(10)	150 Ω to Vtt	A140	BREQ#(2)	150 Ω to Vtt
A32	N/C		A87	GROUND	150 \$2 10 Vii	A141	BREQ#(0)	150 Ω to Vtt
A33	N/C		A88	D#(14)	150 Ω to Vtt	A142 A143	GROUND	150 \$2 10 VII
A33 A34	GROUND		A89	D#(14) D#(9)	150 Ω to Vtt	A143 A144	ADS#	150 O to \//
A34 A35	BINIT#	450 0 1- 1/-	A89 A90	GROUND	150 12 to Vtt	A144 A145		150 Ω to Vtt
		150 Ω to Vtt	_				AP#(0)	150 Ω to Vtt
A36	DEP#(0)	150 Ω to Vtt	A91	D#(8)	150 Ω to Vtt	A146	GROUND	
A37	GROUND		A92	D#(5)	150 Ω to Vtt	A147	N/C	
A38	(DEP#(1)	150 Ω to Vtt	A93	GROUND	450 0 1 11	A148	N/C	
A39	(DEP#(3)	150 Ω to Vtt	A94	D#(3)	150 Ω to Vtt	A149	GROUND	
A40	GROUND		A95	D#(1)	150 Ω to Vtt	A150	N/C	
A41	DEP#(5)	150 Ω to Vtt	A96	GROUND		A151	N/C	
A42	DEP#(6)	150 Ω to Vtt	A97	BCLK	2" trace to pad	A152	GROUND	
A43	GROUND		A98	N/C		A153	L2_VID(2)	(OPEN)
A44	D#(61)	150 Ω to Vtt	A99	GROUND		A154	L2_VID(1)	(OPEN)
A45	D#(55)	150 Ω to Vtt	A100	BERR#	150 Ω to Vtt	A155	GROUND	
A46	GROUND		A101	A#(33)	150 Ω to Vtt	A156	+1.5V	
A47	D#(60)	150 Ω to Vtt	A102	GROUND		A157	+1.5V	
A48	D#(53)	150 Ω to Vtt	A103	A#(34)	150 Ω to Vtt	A158	GROUND	
A49	GROUND			A#(30)	150 Ω to Vtt	A159	N/C	
A50	D#(57)	150 Ω to Vtt		GROUND		A160	N/C	
A51	D#(46)	150 Ω to Vtt			150 Ω to Vtt	A161	GROUND	
A52	GROUND			A#(27)	150 Ω to Vtt	A162	N/C	
A53	D#(49)	150 Ω to Vtt	A108	GROUND	100 22 10 Vii	A163	N/C	
A54	D#(51)	150 Ω to Vtt		A#(22)	150 Ω to Vtt	A164	GROUND	
, .u-t	D#(01)	100 22 10 VII		A#(22) A#(23)	150 Ω to Vtt	A165	PWR_EN(0)	

Table 2. Interface Connector Pin-	out
-----------------------------------	-----

¹ Change from Bus Terminator Design Guidelines, 243774-001.

`Pin	Signal	Connects to:	Pin	Signal	Connects to:	Pin	Signal	Connects to:
B1	PWR_EN(1)	Pin A165	B56	N/C		B111	A#(21)	150 Ω to Vtt
B2	N/C		B57	N/C		B112	N/C	
B3	N/C		B58	N/C		B113	A#(25)	150 Ω to Vtt
B4	N/C		B59	D#(41)	150 Ω to Vtt	B114	A#(15)	150 Ω to Vtt
B5	N/C		B60	D#(47)	150 Ω to Vtt	B115	N/C	100-100-1
B6	+1.5V		B61	N/C	100 10 1	B116	A#(17)	150 Ω to Vtt
B7	+1.5V		B62	D#(44)	150 Ω to Vtt	B117	A#(11)	150 Ω to Vtt
B8	N/C		B63	D#(36)	150 Ω to Vtt	B118	N/C	100121014
B9	N/C		B64	N/C	100 10 V.	B119	A#(12)	150 Ω to Vtt
B10	N/C		B65	D#(40)	150 Ω to Vtt	B120	N/C	100 32 10 Vii
B11	N/C		B66	D#(34)	150 Ω to Vtt	B121	A#(8)	150 Ω to Vtt
B12	N/C		B67	N/C	100 12 10 14	B122	A#(7)	150 Ω to Vtt
B13	N/C		B68	D#(38)	150 Ω to Vtt	B123	N/C	100 32 10 Vii
B14	N/C		B69	D#(32)	150 Ω to Vtt	B124	A#(3)	150 Ω to Vtt
B15	N/C		B70	N/C	150 32 10 VII	B125	A#(6)	150 Ω to Vtt
B16	N/C		B71	D#(28)	150 Ω to Vtt	B125 B126	N/C	150 \$2 10 VII
B17	N/C		B72	D#(29)		B120 B127	AERR#	150 O to \/#
B17 B18	N/C	+	в72 В73	N/C	150 Ω to Vtt	B127 B128	REQ#(0)	150 Ω to Vtt 150 Ω to Vtt
вто B19	N/C	+	в73 В74	D#(26)	150 O to \//	B128 B129	N/C	130 12 10 Vtt
B19 B20	N/C		в74 В75	D#(26) D#(25)	150 Ω to Vtt 150 Ω to Vtt	B129 B130	REQ#(1)	150 Ω to Vtt
					150 Ω to Vtt			
B21	N/C		B76	N/C	450 0 4 14	B131	REQ#(4)	150 Ω to Vtt
B22	N/C		B77	D#(22)	150 Ω to Vtt	B132	N/C	
B23	N/C		B78	D#(19)	150 Ω to Vtt	B133	LOCK#	150 Ω to Vtt
B24	N/C		B79	N/C		B134	DRDY#	150 Ω to Vtt
B25	N/C		B80	D#(18)	150 Ω to Vtt	B135	N/C	
B26	N/C		B81	D#(20)	150 Ω to Vtt	B136	RS#(0)	150 Ω to Vtt
B27	N/C		B82	N/C		B137	HIT#	150 Ω to Vtt
B28	N/C		B83	N/C		B138	N/C	
B29	N/C		B84	N/C		B139	RS#(2)	150 Ω to Vtt
B30	N/C		B85	N/C		B140	RP#	150 Ω to Vtt
B31	N/C		B86	D#(17)	150 Ω to Vtt	B141	N/C	
B32	N/C		B87	D#(15)	150 Ω to Vtt	B142	BREQ#(3)	150 Ω to Vtt
B33	N/C		B88	N/C		B143	BREQ#(1)	150 Ω to Vtt
B34	N/C		B89	D#(12)	150 Ω to Vtt	B144	N/C	
B35	N/C		B90	D#(7)	150 Ω to Vtt	B145	RSP#	150 Ω to Vtt
B36	N/C		B91	N/C		B146	AP#(1)	150 Ω to Vtt
B37	N/C		B92	D#(6)	150 Ω to Vtt	B147	N/C	
B38	N/C		B93	D#(4)	150 Ω to Vtt	B148	N/C	
B39	(DEP#(2)	150 Ω to Vtt	B94	N/C		B149	N/C	
B40	(DEP#(4)	150 Ω to Vtt	B95	D#(2)	150 Ω to Vtt	B150	N/C	
B41	N/C		B96	D#(0)	150 Ω to Vtt	B151	N/C	
B42	(DEP#(7)	150 Ω to Vtt	B97	N/C		B152	L2_VID(0)	(OPEN)
B43	D#(62)	150 Ω to Vtt	B98	P6_RESET_L	150 Ω to Vtt	B153	N/C	
B44	N/C		B99	N/C		B154	L2_VID(4)	GROUND
B45	D#(58)	150 Ω to Vtt	B100	N/C		B155	L2_VID(3)	(OPEN)
B46	D#(63)	150 Ω to Vtt	B101	A#(35)	150 Ω to Vtt	B156	N/C	
B47	N/C	T	B102	A#(32)	150 Ω to Vtt	B157	+1.5V	
B48	D#(56)	150 Ω to Vtt		N/C		B158	+1.5V	
B49	D#(50)	150 Ω to Vtt		A#(29)	150 Ω to Vtt	B159	N/C	
B50	N/C		B105	A#(26)	150 Ω to Vtt	B160	N/C	
B51	D#(54)	150 Ω to Vtt	B106	N/C		B161	N/C	
B52	D#(59)	150 Ω to Vtt		A#(24)	150 Ω to Vtt	B162	N/C	
B53	N/C	100 22 10 VII		A#(28)	150 Ω to Vtt	B163	N/C	1
B54	D#(48)	150 Ω to Vtt	B100	N/C	100 32 10 VII	B164	N/C	
B55	D#(48)			A#(20)	150 () to \/#	B165	N/C	
000	U#(JZ)	150 Ω to Vtt		<u>η</u> π(20)	150 Ω to Vtt	0100	14/0	1

Appendix: Indicating Presence of Processor or Terminator Card in Socket 2

1. Power Enable Link

The processor indicates its presence by connecting the two PWR_EN signals on pins B1 and A165. The Terminator Card should connect these two pins to allow the system to check continuity and verify that either a processor or a Terminator Card is properly inserted in the socket.

2. VRM Voltage Identification Bits

To allow the system to correctly detect that a Terminator Card (instead of a processor) is installed in a particular processor slot, some systems look for the Voltage Identification (VID) bit pattern. The example below uses the L2 cache VID bits. Refer to the processor data sheet or VRM Design Guidelines for the rest of the possible VID combinations.

	Proces 0 = 0 1= Op				
VID4	VID3	VID2	VID1	VID0	
0	1	1	1	1	Terminator present

Table A. L2 VRM Voltage I	dentification (VID) Bits
---------------------------	--------------------------