Silicon Nanotechnology

Ken David Director, Components Research Technology & Manufacturing Group Intel Corp.

February 18, 2004

Agenda

What is Nanotechnology? Nanoscaling Nonclassical CMOS Novel Devices Summary

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Developer Forum

Copyright © 2004, Intel Corporation

Agenda What is Silicon Nanotechnology? **CMOS** Nanoscaling Nonclassical CMOS Novel Devices Summery

Nanotechnology Definition

"Research and technology development at the atomic, molecular or macromolecular levels, in the length scale of approximately **1 - 100 nanometer** range."

Dr. Mike Roco, National Science and Technology Council, February 2000

Intel started sub-100nm production in Q3'00

Technology Scaling

Nanotechnology Today

Example of today's technology: 50 nm transistor dimension

Transistor for 90nm-node Gate oxide=1.2nm

Source: Intel

Influenza virus

Source: CDC

Intel 2003 Silicon Nanotech Product Revenue >\$20B

Scaling => Nanoscaling

Nearly 7 Orders Of Magnitude Reduction in Cost/Transistor

Source: WSTS/Dataquest/Intel, 8/02

Silicon Nanotechnology Evolution

- Continued CMOS Nanoscaling -materials, lithography innovation
- Implement Non-classical CMOS
 new architectures, new structures
- Transition to Novel devices

 alternative state variables
 must meet device requirements
 and demonstrate integrability

Agenda

What is Silicon Nanotechnology? CMOS Nanoscaling Nonclassical CMOS Novel Devices Summary

CMOS Nanoscaling....Extending Moore's Law

intal

New Materials, Devices Extend Si Scaling

intel

11

New Materials, Devices Extend Si Scaling

Source: Intel

int

EUV LLC Consortium Demonstrates EUVL with Prototype Exposure Tool

Source: Sandia

EUV Lithography - Full Field ETS Images (using 0.1 NA system)

100 nm Elbows 1:1

100 nm contacts 1:1

SANDIA 2.0 ky X30. åK <u>6</u>00mm

4x5 matrix

152 mm², 4X Reflective Mask

Printing 80 nm images at 0.1 NA is equivalent to printing 32 nm with 0.25 NA production system

Strained Silicon Transistors

Normal electron flow

Normal Silicon Lattice

intel

Source: Intel

Faster electron flow

Strained Silicon Transistors

Strained silicon benefits

- Strained silicon lattice increases electron and hole mobility in transistor channels
- Greater mobility results in 10-20% increase in transistor current flow (drive current)
- Increased drive current = increased transistor performance
- Both NMOS and PMOS transistor performance improved

Strained silicon process

- Intel's strained silicon process is unique in the industry
- No detriments to transistor short channel behavior or junction leakage
- The added process steps increase total processing cost by only ~2%

Transistor Strain Techniques

Traditional Approach

Intel's 90nm Technology

Graded SiGe Layer Biaxial Tensile Strain

Selective SiGe S-D

Uniaxial Compressive Strain for PMOS

Tensile Si₃N₄ Cap Uniaxial Tensile Strain

for NMOS

High-K Gate Dielectric

	90nm process	<u>High-k</u>
Capacitance:	1.0x	1.6x
Leakage:	1.0x	< 0.01x

Source: Intel

int

High-K Gate Dielectric Formed Using Atomic Layer Chemical Vapor Deposition

Introduce reactant 2

Step 2

- Step 3 Final film Step 4
- "Self-assembly process" ready for manufacturing
- Sequential introduction of precursors molecules
- Allows for precise building of the dielectric film

intel

Source: Intel

High-K/Metal-Gate Achieved Recording-Setting Performance

Continuation of Moore's Law

Process Name	P856	P858	Px60	P1262	P1264	P1266	P1268	P1270
1st Production	1997	1999	2001	2003	2005	2007	2009	2011
Process Generation	0.25 μm	0.18μm	0.13μm	90 nm	65 nm	45 nm	32 nm	22 nm
Wafer Size (mm)	200	200	200/300	300	300	300	300	300
Inter-connect	AI	AI	Cu	Cu	Cu	Cu	Cu	?
Channel	Si	Si	Si	Strained Si	Strained Si	Strained Si	Strained Si	Strained Si
Gate dielectric	SiO ₂	High-k	High-k	High-k				
Gate electrode	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Poly- silicon	Metal	Metal	Metal

Source: Intel

Introduction targeted at this time

Subject to change

intel

Intel found a solution for High-k and metal gate

Agenda

What is Silicon Nanotechnology? Nanoscaling Nonclassical CMOS Novel Devices

Summary

Transistor Architectures

Tri-Gate Transistor

SimulationCross-section of
silicon channel
shows much more
current flow
(indicated by red)

in tri-gate transistor
than in planar
transistor

World Record Non-Planar Performance

Very high drive current at saturation, 1.23 mA/µm

Source: Intel

nte

Non-Classical CMOS

- Many options including nanotubes/nanowires
- Collaborations with universities in progress

Source: Morales & Lieber, Science 279, 208 (1998)

CMOS Device Scaling Demonstration

Agenda

What is silicon Nanotechnology? Nano Scaling Non classical CMOS Novel Devices

Summary

Novel Devices

- Many device options....
- Compatibility with CMOS for evolutionary introduction
- Directed or self assembly of arrays???

- Defect density or purity required....

- Self correcting architectures??
- Nanotechnology needs a richer suite of functionality...

Collaboration between industry, universities, and government is essential

Novel Devices What are we looking for?

- Required characteristics:
 - Scalability
 - Performance
 - Energy efficiency
 - Gain
 - Operational reliability
 - Room temp. operation
- Preferred approach:
 - CMOS process compatibility
 - CMOS architectural compatibility

Alternative state variables

- Spin–electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state

Intel Involved in University Research

Intel-supported Nanotechnology Research at Universities

Agenda

What is Silicon Nanotechnology? Nano Scaling Non classical CMOS Novel Devices Summary

Summary

- Nanotechnology is here today in "state of the art" high speed Si CMOS process technologies
- Si nanotechnology process scaling/convergence will continue indefinitely.
- New architectures will further extend silicon scaling.
- Novel technologies being investigated and may be integrated with silicon technology mid-next decade
- Compatability with CMOS (product development spectrum) will leverage existing learning and enable earlier production of novel devices

Please fill out the Session Evaluation Form.

Thank You!

intal