
Reference Number: 310859-001

Intel® 3100 Chipset Enhanced
DMA Driver for Linux
User’s Manual

Rev 1.0

March 2006

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
2

Legal Notice

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or
in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by
estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

IMPORTANT - PLEASE READ BEFORE INSTALLING OR USING INTEL® PRE-RELEASE PRODUCTS.

Please review the terms at http://www.intel.com/design/prerelease_terms.htm carefully before using any Intel® pre-release product, including any
evaluation, development or reference hardware and/or software product (collectively, “Pre-Release Product”). By using the Pre-Release Product, you
indicate your acceptance of these terms, which constitute the agreement (the “Agreement”) between you and Intel Corporation (“Intel”). In the event
that you do not agree with any of these terms and conditions, do not use or install the Pre-Release Product and promptly return it unused to Intel.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See http://www.intel.com/products/processor_number for details.

The Intel® 3100 Chipset Enhanced DMA Driver for Linux may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading Technology and an
HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use.
See http://www.intel.com/info/hyperthreading/ for more information including details on which processors support HT Technology.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486,
i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade,
Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel
SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive,
Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie,
Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2006, Intel Corporation. All Rights Reserved.

http://www.intel.com/design/prerelease_terms.htm
http://www.intel.com/info/hyperthreading/
http://www.intel.com
http:\\www.intel.com/products/processor_number

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
3

Contents
1.0 Product Features ..5

1.1 General Features for Linux Kernel Version 2.4.21 ..5

2.0 Overview ...6

2.1 System Requirements ..6
2.2 Build and Installation...7
2.3 Build Settings and Configuration Options ...8

3.0 Client Driver API...9
3.1 Obtaining the Client API ...10
3.2 API Pointer References in Linux Kernel v. 2.4.21...11
3.3 Allocation and Registration ...12

3.3.1 edma_client Structure ..12
3.3.2 edma_chan Structure ..12
3.3.3 edma_client_alloc and edma_client_release Functions ..13
3.3.4 edma_client_register and edma_client_unregister Functions................................14
3.3.5 edma_chan_alloc Function ..15
3.3.6 edma_chan_release Function ...17

3.4 Memory Transactions ...17
3.4.1 edma_memcpy Function ...18
3.4.2 Interrupts and Descriptor Chains ...20

3.5 Polling and Callbacks ...21
3.5.1 edma_callback_t Typedef ..21
3.5.2 edma_is_complete Function ..22
3.5.3 edma_get_errors Function...22

4.0 Modifying the Driver ...24

4.1 Loadable Modules ..24
4.2 Client/Channel Relationships..24
4.3 Descriptor List ...24

A References ...25

Figures
1 Driver-to-Driver Model ..9
2 Client Driver API Usage..10

Tables
1 System Requirements for Building with Kernel Version 2.4.21 ..6
2 Driver File List...7
3 API Function Prototypes ...10
4 edma_client Parameters...12
5 edma_client_release Parameters ...14
6 edma_client_register and edma_client_unregister Parameters ...14

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
4

7 edma_chan_alloc Parameters.. 15
8 edma_chan_release Parameters ... 17
9 Memory Transaction Modalities.. 17
10 edma_memcpy Parameters .. 18
11 edma_callback_t Parameters ...21
12 edma_is_complete Parameters.. 22
13 edma_get_errors Parameters...23

Revision History

§§

Date Revision Description

January 2006 001 Initial release on FDBL.

Product Features

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
5

1.0 Product Features

1.1 General Features for Linux Kernel Version 2.4.21

• Implemented in C language and intended for use as an Open Source module.

• Compliant with the GNU Public License (GPL).

• Tested and written for these Linux kernel versions as a point release:

— 2.4.21-4.ELsmp (WS)

— 2.4.21-27.ELsmp (AS)

• Implemented as a driver-to-driver model with a client driver API.

• Thread-safe/Re-entrant.

• Supports the following features of the Intel® 3100 Chipset enhanced Direct Memory Access
(EDMA) Controller:

— Memory to memory (MM) and memory to memory mapped I/O (MMIO) transfers
between two physical addresses with a 36-bit address range for both MM and MMIO
transfers.

— Maximum transfer size of 16 MBytes per block.

— Chain mode EDMA transfer with four independent channels.

— Programmable independent alignment between source and destination addresses.

— Increment of the source and destination address.

— Increment of the destination address and decrement of the source address to enable byte
stream reversal.

— Constant address mode for the destination address based on the transfer granularity to
enable targeting of memory mapped I/O FIFO devices.

— Buffer/memory initialization mode.

§§

Overview

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
6

2.0 Overview

This document describes the installation and general usage details of Intel® 3100 Chipset
Enhanced DMA Driver for Linux; henceforth referred to as the EDMA driver. The
EDMATerminology

2.1 System Requirements

All EDMA driver development and testing was performed using the Red Hat* Enterprise Linux AS
operating system version 3.0. While the code is portable to other versions, no testing has been
performed on other kernel versions or with other versions of the GNU C Compiler. The driver was
built successfully with the Intel® Compiler for Linux (v. 8.1) on the 2.4.21-4.ELsmp kernel;
however, the resulting binary was not tested extensively or validated. Any specific kernel version
porting is left to the user. It is not necessary to build the kernel, but the kernel source must be
installed to build the driver. The table below describes the necessary system requirements.

The EDMA driver is available as a gzipped tarball (edma_driver-1.0.tar.gz) for the Linux
environment. The EDMA driver source code may be extracted to any directory of preference.

Example code extraction on a Linux machine:

[user@machine] mkdir /mydir/edma; cd /mydir/edma

[user@machine] cp edma_driver-1.0.tar.gz /mydir/edma/

[user@machine] tar -zxf edma_driver-1.0.tar.gz

After code extraction, the following files will be in the working directory:

Item Description

Intel® 3100 Chipset
Enhanced DMA Driver for
Linux

The enhanced DMA driver whose features and API are described in this
document. Also referred to in this document as the “EDMA driver.”

Client Driver API An API present in the EDMA driver and exposed to potential client drivers.

EDMA_W Refers to the Intel® 3100 Chipset platform (also a build directive).

Intermodule Communication Process by which modules can use a Linux interface to share data (functions,
strings, variables) between modules.

EDMA FIFO Mode A constant address memory mode for the destination memory address in the
EDMA_W platform.

Table 1. System Requirements for Building with Kernel Version 2.4.21

System Requirement Version Notes

Red Hat Enterprise Linux WS or AS Version 3

Linux Kernel Source Code
Version 2.4.21-4.ELsmp

Version 2.4.21-27.ELsmp (AS
or WS version)

Update 5 was applied to the original AS
and WS kernels. Applying an update
will change the version number.

GNU C Compiler (gcc) Version 3.2.3 Available on Red Hat Enterprise Linux
Version 3 distribution.

Overview

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
7

2.2 Build and Installation

The build and installation instructions assume that the Linux kernel source code is stored in the /
usr/src directory for 2.4.21 builds. The soft links, /usr/src/linux and /usr/src/linux-2.4, should be
pointing to the kernel source code directory.

Example:

[user@machine] ls -l /usr/src

linux--> /usr/src/linux-2.4.21-4.ELsmp

linux-2.4--> linux-2.4.21-4.ELsmp

If the kernel source was installed in a different location, modify the INCLUDE variable in the
EDMA driver makefile or the soft links to point to the appropriate location.

Example INCLUDE variable in the Makefile:

INCLUDE = -I. -I/usr/src/linux-2.4/include

The EDMA driver is designed to be built for a specific hardware platform, the Intel® 3100 Chipset
chipset, indicated by the variable EDMA_W in the makefile. The makefile also contains a variable
near the top of the file called KERNEL_VERSION. The variable will be prefixed by the ‘#’ or
comment character. To uncomment the line for building, remove the ‘#’ character in front of
KERNEL_VERSION. Use the all_2_4 target to build the driver.

Example makefile contents:

#Choose a Kernel Version by ‘uncommenting’ the appropriate kernel

#version line below.

#KERNEL_VERSION = -DDMA_2_4

Example build for kernel 2.4.21 and the EDMA_W chipset:

[user@machine] cd /mydir/edma

[user@machine] make all_2_4

Table 2. Driver File List

File Name Description of Contents

dma.c The exposed client driver API, functions internal to the driver, undocumented test
API for application-style unit testing.

dma.h Public data structure definitions, constants, register offsets, string messages, ioctl
values, etc.

dma_internals.h Data structure definitions internal to the driver.

dma_list.h API for managing lists internal to the driver.

dma_api.h List of function prototypes in the Client Driver API.

Makefile Commands for building driver.

ReleaseNotes.txt High level summary of building the driver for Linux 2.4.21 .

310859.pdf This document.

Overview

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
8

After the build has completed, install the resulting object file, dma.o, with the insmod program.

[user@machine] insmod dma.o

2.3 Build Settings and Configuration Options

§§

Item Description

36-bit Addressing

Because the EDMA driver must accommodate 36-bit addressing, the EDMA driver
uses the kernel type dma_addr_t, a type that can be 32 or 64 bits in length. The
definition of the dma_addr_t type can be found in the kernel source directory in
include/asm/types.h. CONFIG_HIGHMEM64G must be set for dma_addr_t to be a
64-bit type.

Channel Priority

The EDMA driver does provide the option of modifying the priority of a single channel to
receive favorable latency and bandwidth service when there are competing channels.
The high priority channel receives 50 percent of the bandwidth and the remaining
bandwidth is distributed evenly among the competing channels. When the driver is
loaded using the “insmod” or “modprobe” programs, the option of modifying channel
priority is available through the use of the configuration option edma_chan_priority.
Integer values of 0-3 are valid channel numbers. Any other value will reset arbitration to
the default “round robin” scheme.

Example:

[user@machine] insmod edma.o edma_chan_priority=1

BIOS Settings
Check the BIOS to determine if the EDMA controller settings are present. At the time of
this document’s creation, the BIOS was still in development. The BIOS may contain
chipset configuration settings that will enable or disable the EDMA controller.

Character Driver
Registration

The EDMA driver uses the register_chrdev function to obtain the major number:

register_chrdev(unsigned int major, const char * name, struct file_operations * fops)

The function dynamically selects a major number if the value of major is 0. In this case,
a script needs to be created to repeatedly discover the major number and create a
device node under the /dev directory with the mknod utility. In the EDMA reference
driver, a non-zero major number value was used. When the major number is constant,
the mknod utility is used only once to create the device node. This is not a good
practice to use for long term driver development as dynamic major number allocation is
the preferred method.

For more information about character driver registration, see Linux documentation
suggestions in the Appendix.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
9

3.0 Client Driver API

The EDMA driver is designed to be employed by client drivers in a driver-to-driver usage model.
In this model, client drivers access the EDMA functionality through the EDMA driver’s exposed
API. The client driver API provides access to such EDMA features as channel arbitration and
programmable alignment of source and destination memory addresses.

Client drivers allocate a client data structure and register with the EDMA driver as represented in
Figure 2 below. A client driver fills in certain data fields in the client structure such as the
“callback” function pointer which allows the EDMA driver to alert the client driver of the status of
memory transactions.

Each client can obtain one or more channels; a channel can be allocated to only one client. After
registration, the client driver requests the use of a particular DMA channel. If the channel is
available, the EDMA driver allocates a channel structure and returns it to the client driver. Once
channel allocation has completed successfully, the client driver requests memory transactions.

If the client driver has supplied the EDMA driver with a non-NULL “callback” function pointer
upon registration of the client, the EDMA driver will alert the client driver when memory
transactions have completed. Alternatively, the client driver may supply a NULL pointer to the
EDMA driver and use the API to poll the EDMA driver to discover the status of a particular
transaction.

Figure 1. Driver-to-Driver Model

Platform Bridge
EDMA Engine

C
h
a
n
n
e
l

C
h
a
n
n
e
l

C
h
a
n
n
e
l

C
h
a
n
n
e
l

EDMA Driver

PCI Express

Port A (PEA)

EDMA Features

Chain Mode Transfer

Programmable Align.

Addressing Modes

Channel Arbitration

Client Driver Client Driver

Platform Bridge

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
10

3.1 Obtaining the Client API

The driver-to-driver model requires intermodule communication. To use the EDMA driver’s client
API, a client driver must obtain pointer references to the functions of the API. Linux provides a
mechanism for intermodule communication through an interface. The sections below describe how
to obtain pointer references to the client API.

The client API outlined in the table below can be found in the dma_api.h file.

Figure 2. Client Driver API Usage

EDMA Driver Internal
Structures

Internal Channel Structure

Internal Client Structure

EDMA Driver Client API

edma_client_alloc, edma_chan_alloc,
edma_client_register, edma_memcpy,
…

CLIENT
STRUCT

CHAN
STRUCT

2. Register Client

3. Allocate Channel.

4. Execute Memory Transactions

7. Un-register/ Release Structures

5. Check for Errors

6. Release Channel

1. Allocate a Client

CLIENT DRIVER EDMA DRIVER

Table 3. API Function Prototypes (Sheet 1 of 2)

Function Name Description

edma_client_alloc Allocates a client structure to be placed in the EDMA driver’s client struct list and
provides a client driver with a pointer to a client struct.

edma_client_release Releases both the internal client struct and client driver’s pointer reference to a client.

edma_chan_alloc Allocates one of the four channel resources in the EDMA driver and provides the client
driver with a pointer to a channel struct.

edma_chan_release Releases channel struct.

edma_memcpy Executes EDMA memory transactions.

edma_register Adds allocated client struct to the internal list of clients.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
11

3.2 API Pointer References in Linux Kernel v. 2.4.21

To obtain pointers to the client API functions provided by the EDMA driver, use the intermodule
communication interface available in Linux 2.4.x kernels. The retrieval function of the client driver
API has been registered using the inter_module_register function, which associates a given string
with a module and data. The data may be obtained using the inter_module_get function.

const void * inter_module_get(const char * string);

Pointer references to the client driver API functions are stored in a table structure of type
edma_api_export which may be obtained using the API retrieval function edma_get_functions. In
the example below the inter_module_get function is called using the string “edma_get_functions.”
The data that is returned is a pointer to the function edma_get_functions. After the pointer is
returned, the function can be used to obtain the client driver API in an edma_api_export struct. In
the example below, the edma_api_export struct variable is called dma_funcs. After
edma_api_export struct is initialized, it may be used to call any member of the clientr driver API.

The names of the client driver functions can be found in Table 3 above.

Example Usage:

int (*edma_get_functions)();

int error_func = 0;

struct edma_client * kern_client = NULL;

static struct edma_api_export dma_funcs = { };

//Getting the function pointer edma_get_functions

edma_get_functions = inter_module_get("edma_get_functions");

//Initializing the edma_api_export struct

error_func = (*edma_get_functions)(&dma_funcs);

//Calling the client allocation function...

kern_client = dma_funcs.edma_client_alloc();

For more information about intermodule communication, consult the Linux documentation
referenced in the Appendix. The source code examples that follow assume edma_api_export
initialization similar to the one illustrated in the example above.

edma_unregister Removes allocated client struct from the internal list of clients.

edma_is_complete Obtains progress information for a particular memory transaction. Primarily used to poll
the EDMA driver to determine if a memory transaction has completed.

edma_get_errors Obtains error information for a particular memory transaction.

Table 3. API Function Prototypes (Sheet 2 of 2)

Function Name Description

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
12

3.3 Allocation and Registration

Each client can obtain one or more channels; a channel can be allocated to only one client. This
behavior can be modified by making alterations to the data structures and allocation functions in
the driver, which are detailed in the following sections.

3.3.1 edma_client Structure

The edma_client structure contains fields that a client must fill out before registration with the
EDMA driver as the structure is used to uniquely identify a client. The structure must be allocated
and released using the client driver API as there are additional structures allocated which are
internal to the driver operation.

struct edma_client {

struct pci_dev *pdev;

 unsigned int chan_no; //Only 0,1,2,3

edma_callback_t edma_callback;

};

3.3.2 edma_chan Structure

The edma_chan structure is used internally by the EDMA driver. The structure returned from
allocation is not intended to be modified by client drivers; however, the structure details are
included below for reference. Client drivers are expected to treat pointers to these structures as
opaque handles for DMA resources.

/*

 * STRUCT: dma_chan -

 * @channel_no: channels are organized by number 0...3.

 * @reg_offset: private reserved.

 * @sw_in_use: value set when a channel is allocated.

 * @dma_resource_internal: internal resource tracking mechanism

 * @spinlock_t desc_lock: for locking memory

Table 4. edma_client Parameters

Parameter Description

*pdev Pointer to the kernel structure representing a PCI I/O device. May be set to NULL for pure
software clients that only need to use chipset DMA resources.

chan_no Channel number the client is requesting.

edma_callback

Function pointer for the DMA interrupt callback, used when a DMA channel generates a
completion interrupt (end of chain) or an error interrupt. Required for all clients that use
DMA resources. A value of NULL will indicate that the client chooses to use the polling
function to determine when a transaction has completed.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
13

 * @list_start free_desc: list of free descriptors available

 * @list_start used_desc: list of used descriptors available

 * @dma_cookie_t completed_cookie: last cookie completed

 * @dma_cookie_t cookie: 'current' cookie

 * @dma_cookie_t error_cookie: last cookie completed with an error

*/

struct dma_chan

{

unsigned int channel_no;

unsigned int reg_offset;

int sw_in_use;

struct dma_resource_internal resource;

spinlock_t desc_lock;

struct list_start free_desc;

struct list_start used_desc;

dma_cookie_t completed_cookie; //last cookie completed

dma_cookie_t cookie; //'current' cookie

dma_cookie_t error_cookie; //last cookie completed with err

 }

3.3.3 edma_client_alloc and edma_client_release Functions

The edma_client_alloc function allocates a new client structure, along with some additional
memory allocations internal to the EDMA driver.

struct edma_client *edma_client_alloc(void);

Return Values:

• A pointer to a newly allocated structure on success.

• NULL if the structure could not be allocated due to a memory allocation error.

Example Usage:

struct edma_client * client = NULL;

/ * Obtain a client */

client = dma_funcs.edma_client_alloc();

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
14

/ * report error */

if(client == NULL)

{

printk(KERN_INFO"Problem allocating client\n");

}

else

{

dma_funcs.edma_client_release(client);

}

The edma_client_release function simply releases the allocated client structure along with some
internal allocations made by the edma_client_alloc function.

void edma_client_release(struct edma_client *client)

3.3.4 edma_client_register and edma_client_unregister Functions

The edma_client_register function registers the filled-in client structure with the EDMA driver.
Registration is important as it gives the driver a way to determine if transaction queries will be
handled by polling or callback functions.

int edma_client_register(struct edma_client *client);

Return Values:

• 0 on success

• -1 on failure

The example below illustrates typical usage of the allocation and registration functions. An
edma_client is allocated and its member elements are initialized.

Example Usage:

/* A function to test the client callback feature */

void test_client_event_callback(struct edma_client * client, struct edma_chan *
chan, edma_cookie_t cookie, enum edma_status_t status, unsigned long user_data);

struct edma_client * client = NULL;

Table 5. edma_client_release Parameters

Parameter Description

*client Pointer to a client instance structure, with the required fields populated.

Table 6. edma_client_register and edma_client_unregister Parameters

Parameter Description

*client Pointer to a client instance structure, with the required fields populated.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
15

client = dma_funcs.edma_client_alloc();

/ * report error */

if(client == NULL)

{

printk(KERN_INFO "Problem allocating client\n");

}

else

{

 /* Channel that the Client will be requesting. */

 client->chan_no = 0;

 client->pdev = NULL;

 /*

 * Initialize the callback pointer

 * A value of NULL here would indicate polling is the

 * preferred method for querying transactions.

 */

 client->edma_callback = test_client_event_callback;

 /* Register, then unregister*/

 if(dma_funcs.edma_client_register(client) == 0)

 {

dma_funcs.edma_client_unregister(client);

 }

3.3.5 edma_chan_alloc Function

The client driver must allocate an EDMA engine channel resource to be used for the memory
transactions using edma_chan_alloc. If the channel requested is available, a non-NULL value will
be returned.

struct edma_chan * edma_chan_alloc(struct edma_client *client);

Return Values:

Table 7. edma_chan_alloc Parameters

Parameter Description

*client Pointer to a client instance structure, with the required fields populated.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
16

• NULL on failure

• Non-NULL value on success

Example Usage:

void test_client_event_callback(struct edma_client * client, struct edma_chan *
chan, edma_cookie_t cookie, enum edma_status_t status, unsigned long user_data);

struct edma_client * client = NULL;

client = dma_funcs.edma_client_alloc();

struct edma_chan * chan = NULL;

/ * report error */

if(client == NULL)

{

printk(KERN_INFO"Problem allocating client\n");

}

else

{

 /* Channel that the Client will be requesting. */

 client->chan_no = 0;

 client->pdev = NULL;

 /*

 * Initialize the callback pointer

 * A value of NULL here would indicate polling is the

 * preferred method for querying transactions.

 */

 client->edma_callback = test_client_event_callback;

 /* Register */

 if(dma_funcs.edma_client_register(client) == 0)

 {

 /* Allocate a channel */

 chan = dma_funcs.edma_chan_alloc(kern_client);

 if(chan != NULL)

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
17

 {

 dma_funcs.edma_chan_release_(chan)

 }

 }

}

3.3.6 edma_chan_release Function

The edma_chan_release function releases a DMA channel resource when a client no longer
wishes to use it.

void edma_chan_release(struct edma_chan * chan)

3.4 Memory Transactions

Client drivers will supply the edma_memcpy function with a value constructed by logically “OR-
ing” defined constants that represent particular transfer modalities for the source and destination
addresses. The following list contains the constants representing the memory transaction
modalities present in the EDMA_W platform.

Table 8. edma_chan_release Parameters

Parameter Description

*chan DMA channel resource handle.

Table 9. Memory Transaction Modalities (Sheet 1 of 2)

Constant Description

SRC_DWORD_ALIGNED Source address is DWORD aligned.

SRC_CACHE_ALIGNED Source address is aligned on a cache line boundary.

DST_DWORD_ALIGNED Destination address is DWORD aligned.

DST_CACHE_ALIGNED Destination address is aligned on a cache boundary.

SRC_NONCOHERENT For the source address, no FSB snoop cycle will be issued on behalf of EDMA
memory accesses.

SRC_COHERENT For the source address, a FSB snoop cycle can be issued on behalf of EDMA
memory accesses.

DST_NONCOHERENT For the destination address, no FSB snoop cycle will be issued on behalf of
EDMA memory accesses.

DST_COHERENT For the destination address, a FSB snoop cycle can be issued on behalf of EDMA
memory accesses.

SRC_MEM Source address is in local memory.

DST_MEM Destination address is in local memory.

DST_IO Destination address is in memory mapped I/O.

SRC_INC Source address is incremented as data is read.

SRC_DEC Source address is decremented as data is read.

SRC_BUFFER_INIT Source address contains a constant value to be written to destination address.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
18

3.4.1 edma_memcpy Function

The edma_memcpy function is used to initiate a DMA memory copy operation on a DMA
channel. A “cookie”, a value associated with the particular transaction, is returned. An interrupt
will be generated upon reaching the end of chain (series of transfers), and the client will receive a
callback via the edma_callback_t value if the client supplied a non-null callback value in the client
struct. If a hardware error occurs during processing, the client will receive a callback. The client
can poll that the operation is complete by using the edma_is_complete call. The dma_addr_t type
is a Linux kernel type which holds valid DMA addresses for the platform.

edma_cookie_t edma_memcpy(

u32 memory_ops,

struct edma_chan *chan,

dma_addr_t dest, /* edma_addr_t from #include <linux/pci.h */

dma_addr_t src,

size_t size,

unsigned long user_data

);

DST_INC Destination address is incremented as data is written.

DST_CONST (EDMA FIFO mode) 1, 2, or 4 bytes are sent repeatedly until the size count is
satisfied.

GRAN_1_BYTE 1 byte granularity of the EDMA FIFO mode described above.

GRAN_2_BYTE 2 byte granularity of the EDMA FIFO mode described above.

GRAN_4_BYTE 4 byte granularity of the EDMA FIFO mode described above.

TC_0 – TC_7 Traffic classes.

Table 9. Memory Transaction Modalities (Sheet 2 of 2)

Constant Description

Table 10. edma_memcpy Parameters

Parameter Description

memory_ops

Contains a value that is the result of the client logically “OR-ing” defined constants that
represent potential transfer modes that the EDMA driver will use to program the EDMACTRL
register. The EDMA driver does not check this value to determine if it is one of the valid
transfer mode combinations for the source and destination addresses. Misuse of this value
may cause a serious error.

*chan DMA channel resource handle.

dest Destination address, an address in physical memory.

src Source address, an address in physical memory.

size Size of the memory copy operation in bytes, up to 16 MBytes per block for the EDMA_W
platform.

user-data
This client-defined value is returned as part of the edma_callback. This integer type will
always be large enough to store a pointer value, but may not be large enough to store a
physical address.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
19

Return Values:

• An integer value of greater than 0 indicates a valid cookie value.

• A memory size that requires more than the 16 descriptors or the number of free descriptors
available will return an invalid cookie value (ERROR_OUT_OF_DESCRIPTORS). See the
Section 3.4.2, “Interrupts and Descriptor Chains” on page 20 for more information.

Example Usage:

void test_client_event_callback(struct edma_client * client, struct edma_chan *
chan, edma_cookie_t cookie, enum edma_status_t status, unsigned long user_data);

struct edma_client * client = NULL;

struct edma_client * chan = NULL;

unsigned int memory_ops = SRC_DWORD_ALIGNED | DST_DWORD_ALIGNED | DST_MEMTOIO
|SRC_MEMTOMEM | DST_COHERENT | SRC_COHERENT;

void * src = kmalloc((sizeof(char) * 0x0400), SLAB_HWCACHE_ALIGN);

void * dest = kmalloc((sizeof(char) * 0x0400), SLAB_HWCACHE_ALIGN);

dma_addr_t phys_src = (dma_addr_t)virt_to_phys(src);

dma_addr_t phys_dst = (dma_addr_t)virt_to_phys(dest);

size_t transfer_size = 0x0400;

client = dma_funcs.edma_client_alloc();

/ * report error */

if(client == NULL)

{

printk(KERN_INFO "Problem allocating client\n");

}

else

{

 /* Channel that the Client will be requesting. */

 client->chan_no = 0;

 client->pdev = NULL;

 /*

 * Initialize the callback pointer

 * A value of NULL here would indicate polling is the

 * preferred method for querying transactions.

 */

 client->edma_callback = test_client_event_callback;

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
20

 /* Register */

 if(dma_funcs.edma_client_register(client) > -1)

 {

 chan = dma_funcs.edma_chan_alloc(kern_client);

 if(chan != NULL)

{

 cookie = dma_funcs.edma_memcpy(memory_ops, chan,

 phys_dst, phys_src, transfer_size, 0);

}

}

3.4.2 Interrupts and Descriptor Chains

The EDMA driver uses a linked list of sixteen descriptors (data structures which store source and
destination memory locations) to facilitate memory transactions. The descriptors comprise a
descriptor chain which is created by the EDMA driver upon loading and initialization. The number
of descriptors used in a particular memory transaction is dependent on the size of the transaction.
The EDMA_W platform may handle a maximum memory size of 16 MBytes per descriptor; hence,
a 32 MByte transaction would be split over two descriptors.

Each descriptor has a “cookie value”, an integer value greater than or equal to zero, which
identifies a particular memory transaction and aids in tracking the transaction’s progress. The
cookie value is returned to the client upon a call to edma_memcpy and may also be used by a client
to poll the driver about status of memory transactions.

Because there are a finite number of descriptors in the descriptor list, the driver maintains a list of
used and free descriptors. Used descriptors are reclaimed after a memory transaction has
completed. Information about a particular transaction may expire, as the descriptors are reused.

The EDMA driver is configured to handle an interrupt only when an end of chain or abort
condition occurs. An end of chain condition occurs when the driver has finished processing the last
assigned descriptor in the descriptor list. When an end of chain event occurs, the EDMA driver’s
interrupt handler will execute callbacks to the client driver for each completed transaction if a
callback function pointer was supplied in the client struct. Alternatively, if no callback pointer was
made available, the client driver may use the polling function to determine if a particular
transaction completed successfully.

An abort condition occurs if the driver experiences serious errors during a memory transaction. As
with the end of chain condition, the EDMA driver’s interrupt handler will execute a callback to the
client driver if a callback function pointer was supplied in the client struct. In addition, if there is a
transaction in the descriptor list after the problematic transaction, the EDMA driver will restart the
DMA engine to execute the next transaction.

Single memory transactions that require more than 16 descriptors will produce an error message
with the edma_memcpy routine. These extremely large transactions should be broken into multiple
transactions. In addition, if the EDMA driver does not have enough free descriptors to service a
particular memory transaction, an error will be produced.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
21

3.5 Polling and Callbacks

The following sections present details about polling and callback mechanisms discussed in the
previous interrupt sections.

3.5.1 edma_callback_t Typedef

The edma_callback_t typedef is used to define the DMA callback, a pointer to a function, in the
client structure. A DMA callback function is used to notify the client driver of an error or the
completion of a transaction. Callback functions should be designed to execute and return quickly.
See the section edma_client for more details.

typedef void (* edma_callback_t)(

struct edma_client *client,

struct edma_chan *chan,

edma_cookie_t cookie,

edma_status_t status,

unsigned long user_data

);

Example Usage:

void test_client_event_callback(struct edma_client * client, struct edma_chan *
chan, edma_cookie_t cookie, enum edma_status_t status, unsigned long user_data)

{

/*

 Include in this function checks for error

 status…

 */

 if(status == EDMA_ERROR)

 {

/* Call to an error handling function which calls

 edma_get_errors.

Table 11. edma_callback_t Parameters

Parameter Description

*client Pointer to a client instance structure.

*chan DMA channel resource handle.

cookie DMA operation identifier.

status Status of the DMA operation.

user_data The client defined value passed to edma_memcpy is returned here.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
22

 */

}

}

client->edma_callback = test_client_event_callback;

3.5.2 edma_is_complete Function

This function is used to poll the status of a DMA memory copy operation. Because errors always
result in a dma_callback if a callback function was assigned and DMA operations will always
complete in order, it is valid for a client to use a single call to this function to determine if multiple
DMA operations have completed rather than check the status of each operation individually.

edma_status_t edma_is_complete(

struct edma_chan *chan,

edma_cookie_t cookie

);

Return Values:

• EDMA_ERROR = -1 Error occurred in transaction.

• EDMA_SUCCESS=0 Transaction completed successfully.

• EDMA_IN_PROGRESS=1 Transaction in progress.

• EDMA_NO_RECORD=2 No record for transaction is available.

Example Usage:

do

{

 status = dma_funcs.edma_is_complete(chan, cookie);

 printk("ClientDriver: status %x \n", status);

}while(status == EDMA_IN_PROGRESS);

3.5.3 edma_get_errors Function

EDMA errors are considered non-fatal to the system because they cause the EDMA engine to stop
the process. When an error occurs the EDMA_FERR is set and locked; after it has been locked, all
subsequent errors are placed in the EDMA_NERR register. If a DMA operation completes with
status EDMA_ERROR, this function is used to retrieve the contents of the EDMA_FERR register.
A call to this function clears the EDMA_FERR.

u32 edma_get_errors(

Table 12. edma_is_complete Parameters

Parameter Description

*chan DMA channel resource handle.

cookie DMA operation identifier.

Client Driver API

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
23

struct edma_chan *chan,

edma_cookie_t cookie

);

Return Values:

• The lower 16 bits contain the value of the EDMA_FERR register for the DMA channel and the
upper 16 bits contain the descriptor in which the problem occurred.

Example Usage:

do

{

 status = dma_funcs.edma_is_complete(chan, cookie);

 printk("ClientDriver: status %x \n", status);

 if(status == EDMA_ERROR)

{

 err_val = dma_funcs.edma_get_errors(chan, cookie);

}

}while(status == EDMA_IN_PROGRESS);

§§

Table 13. edma_get_errors Parameters

Parameter Description

*chan DMA channel resource handle.

cookie DMA operation identifier.

Modifying the Driver

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
24

4.0 Modifying the Driver

The following sections describe several potential modifications of the EDMA driver behavior
defined in the previous sections.

4.1 Loadable Modules

The EDMA driver is registered as a character driver. As written, the driver uses the register_chrdev
function in the edma_init function to assign a major number to the driver and assign the
file_operations structure, which is defined at the top of the dma.c file.

int register_chrdev(unsigned int major, const char * name, struct file_operations *
fops)

After the driver is loaded with the insmod program, the major number of the driver can be seen in
the /dev directory with the ls –l command. A list of major numbers and corresponding devices can
be found in the file documentation/devices.txt. The major number for this driver was chosen at
random, but this is not a very good permanent solution.

Dynamic allocation can be used to obtain a major number for the device. Scripts that accomplish
dynamic allocation are available on the web or in the texts listed in the Appendix. Using dynamic
allocation will adversely affect the ability to use the load-on command feature.

4.2 Client/Channel Relationships

A single client can allocate multiple channels, but a channel is allocated to a single client at any
given time. As described in previous sections, clients request a channel by filling in the channel
number of the client structure. The edma_chan_alloc function uses this number to check if the
particular channel is in use. This behavior can be altered by removing the channel number data
member from the structure and simply tracking channel usage in the channel allocation function.

4.3 Descriptor List

As written, the EDMA driver allocates 16 descriptors per channel and maintains these lists as a
global variable in the dma.c file.

static struct edma_descriptor_list g_descriptor_lists[MAX_NO_CHANS];

The descriptor type edma_descriptor_list can be found in the dma_internal.h file. Pools of memory
for the descriptor lists are allocated with kmalloc in create_internal_structures. In order to modify
the number of descriptors in the EDMA driver, alter the DESCRIPTOR_NO constant in dma.h.

§§

References

Intel® 3100 Chipset Enhanced DMA Driver for Linux User’s Manual
25

Appendix A References

• Linux Device Drivers, 2nd Edition by Alessandro Rubini and Johnathon Corbet.

§§

	Intel® 3100 Chipset Enhanced DMA Driver for Linux
	Contents
	Figures
	Tables

	1.0 Product Features
	1.1 General Features for Linux Kernel Version 2.4.21

	2.0 Overview
	2.1 System Requirements
	2.2 Build and Installation
	2.3 Build Settings and Configuration Options

	3.0 Client Driver API
	3.1 Obtaining the Client API
	3.2 API Pointer References in Linux Kernel v. 2.4.21
	3.3 Allocation and Registration
	3.3.1 edma_client Structure
	3.3.2 edma_chan Structure
	3.3.3 edma_client_alloc and edma_client_release Functions
	3.3.4 edma_client_register and edma_client_unregister Functions
	3.3.5 edma_chan_alloc Function
	3.3.6 edma_chan_release Function

	3.4 Memory Transactions
	3.4.1 edma_memcpy Function
	3.4.2 Interrupts and Descriptor Chains

	3.5 Polling and Callbacks
	3.5.1 edma_callback_t Typedef
	3.5.2 edma_is_complete Function
	3.5.3 edma_get_errors Function

	4.0 Modifying the Driver
	4.1 Loadable Modules
	4.2 Client/Channel Relationships
	4.3 Descriptor List
	Appendix A References

