
Intel®Infrastructure DSP Solution 
Version 1.2
Programmer’s Guide

November 2007



Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
2

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR 
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS 
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING 
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for 
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the 
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel 
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled 
platforms may require licenses from various entities, including Intel Corporation.

This Programmer’s Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms 
of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as 
a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this 
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any 
means without the express written consent of Intel Corporation.

Intel® Infrastructure DSP Solution may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel, Intel logo, and Intel XScale are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All Rights Reserved.

http://www.intel.com


Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

3

Intel® Infrastructure DSP Solution

Contents

1.0 Introduction............................................................................................................... 7
1.1 Scope ................................................................................................................7
1.2 Audience............................................................................................................7
1.3 Related Documents .............................................................................................7
1.4 Terminology .......................................................................................................7
1.5 General..............................................................................................................8

2.0 Architectural Overview ............................................................................................ 10

3.0 Intel® Infrastructure DSP Solution Run-Time Interfaces ......................................... 14
3.1 Control Interface............................................................................................... 14
3.2 PCM Data Interface............................................................................................ 15
3.3 Packet Interface................................................................................................ 17

4.0 Components, Features, and Parameters................................................................... 18
4.1 Network Endpoint.............................................................................................. 18
4.2 Encoder ........................................................................................................... 21
4.3 Decoder ........................................................................................................... 26
4.4 Tone Generator................................................................................................. 31
4.5 Tone Detector................................................................................................... 32
4.6 Audio Player ..................................................................................................... 33
4.7 Audio Mixer ...................................................................................................... 34
4.8 Audio Stream Router ......................................................................................... 35
4.9 T.38 Fax .......................................................................................................... 37
4.10 Message Agent ................................................................................................. 38

5.0 Programming Guide................................................................................................. 39
5.1 Initialization ..................................................................................................... 39
5.2 Programming Model........................................................................................... 40

6.0 OS-Specific Issues ................................................................................................... 42
6.1 Linux* ............................................................................................................. 42

7.0 User-Defined Messages............................................................................................ 44
7.1 Overview ......................................................................................................... 45
7.2 Pre-Defined User Messages................................................................................. 47

7.2.1 Link Message......................................................................................... 49
7.2.2 Link Break Message ................................................................................ 50
7.2.3 Link Switch Message............................................................................... 50
7.2.4 Start IP Message.................................................................................... 51
7.2.5 Stop IP Message .................................................................................... 52
7.2.6 Set Up Call Message .............................................................................. 52
7.2.7 Set Call Parameters Message ................................................................... 53
7.2.8 Set Up Call with Parameters Message........................................................ 54
7.2.9 Switch Call Message ............................................................................... 55
7.2.10 Create Three-Way Call Message ............................................................... 56
7.2.11 Exit Three-Way Call Message ................................................................... 57
7.2.12 Teardown Three-Way Call Message........................................................... 57
7.2.13 Back to Two-Way Call Message ................................................................ 58
7.2.14 Set Clear Channel Message...................................................................... 59
7.2.15 T.38 Switchover Message ........................................................................ 60
7.2.16 Set Parameters Message ......................................................................... 60

7.3 Pre-Defined User-Response Messages .................................................................. 61
7.3.1 Acknowledge Message ............................................................................ 61



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
4

7.3.2 Stop Acknowledge Message .....................................................................62

8.0 Application Examples ...............................................................................................62
8.1 IP Interface.......................................................................................................62
8.2 Caller-ID Generator ...........................................................................................64

Figures
1 Architecture of the Intel® Infrastructure DSP Solution ...................................................11
2 Data-Flow and Data-Processing Functions ....................................................................12
3 Intel® Infrastructure DSP Solution Message, Data, and Tasks.........................................13
4 Control Interface and Message Queues........................................................................15
5 PCM Data Interface...................................................................................................17
6 Packet Interface .......................................................................................................18
7 Example of Tone Disabler Event and Event Handling in Fax over IP application .................20
8 G.729.1 RTP Payload Header......................................................................................23
9 G.729.1 Bitrate Negotiation through RTP Payload..........................................................25
10 Jitter Buffer Statistics Resetting Mechanism .................................................................29
11 Audio Stream Connections in a Three-Way Call.............................................................35
12 Terminations and Router ...........................................................................................36
13 General State-Machine Approach for Client Applications .................................................42
14 Intel® Infrastructure DSP Solution Client Driver in Linux* ..............................................44
15 Decoding User-Defined Messages in the Message Agent.................................................47
16 Intel® Infrastructure DSP Solution Application in Linux* ................................................64
17 Snap-shot of Demo Codelet Make File .........................................................................69
18 Snap-shot of PlugInConfig.c file Showing Changes Needed for Unplugging a

Third Party Plug-in....................................................................................................71
19 Example to Remove a Plug-in in Codelet Demo Make File ...............................................72
20 Socket Interface.......................................................................................................73

Tables
1 MBS Table ...............................................................................................................24
2 FT Table..................................................................................................................24
3 Linux* User Mode DSP Library Threads........................................................................43
4 Linux* User Mode DSP Application Threads ..................................................................43



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

5

Intel® Infrastructure DSP Solution

Revision History

 

§ §

Date Revision Description

November 2007 003 Updated with G.729.1-related information

August 2007 002 Updated for the Intel® IXP43X product line of network processors

July 2007 001 Initial release



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
6



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

7

Intel® Infrastructure DSP Solution

1.0 Introduction

The Intel® Infrastructure DSP Solution Version 1.2 is a set of software modules that 
provides basic voice and signal processing functionality for 
Voice-over-Internet-protocol (VoIP) on the Intel® IXP43X product line of network 
processors.

This document explains the Intel® Infrastructure DSP Solution architecture and 
provides guidelines and examples to application developers.

1.1 Scope

The Intel® Infrastructure DSP Solution Version 1.2 Programmer’s Guide specifies how 
you can interface to the DSP solution. This document provides more application 
information on how the interface can be effectively used. Some examples are given for 
illustration purposes. Details on pre-defined user messages, which are not part of the 
core DSP solution, are provided to help ease integration.

1.2 Audience

This document is intended for third-party software developers who are using the DSP 
solution to build Integrated Access Devices (IADs) such as Customer Premises 
Equipment (CPE). It is assumed that the reader has general knowledge of VoIP 
applications and produts.

1.3 Related Documents

1.4 Terminology

Title

Intel® Infrastructure DSP Solution Version 1.2 API Reference Manual

Intel® Infrastructure DSP Solution Version 1.2 Codelet Demo Guide

Intel® Infrastructure DSP Solution Version 1.2 Release Notes

Term Description

AEC Acoustic Echo Canceller (Note: Not Supported)

AGC Automatic Gain Control for voice data towards IP network

ALC Automatic Level Control

CPE Consumer Premise Equipment

CNG Comfort Noise Generator

DEC Decoder

EC Echo Cancellation

FSK Frequency Shift Keying

FT Frame Type

G3 Group 3

HPF High Pass Filter

HSS High Speed Serial



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
8

1.5 General

The Intel® Infrastructure DSP Solution is designed for audio processing, and is targeted 
for next-generation IADs such as CPE. Specifically, the software is tailored to perform 
audio compression, echo cancellation, tone processing, and jitter control required in IP 
media gateway or real-time media-streaming functionalities.

This document describes the control and data interfaces in order for a third-party 
developer to incorporate the DSP solution into a media gateway and integrate it with 
other client software. Together with the Intel® Infrastructure DSP Solution Version 1.2 
API Reference Manual, this document should provide sufficient details of the interfaces 
and message and data-delivery mechanisms so that user applications can fully 
configure and control processing operations and services.

This release of the DSP solution supports the following features:

• Line echo cancellation up to 128ms for narrowband or up to 64 ms for Wideband

• G.711 µ-law and A-law CODEC with VAD and CNG support

• G.723.1 and G.729ab with VAD and CNG support

• G.726 with 16, 24, 32 and 40 Kbps rates and RFC3551 and I.366 Annex E packing 
formats

• G.722 Wideband codec

• G.729.1 Wideband/Narrowband CODEC with bitrate negotiation (Bitrates 
Supported : 8K. 12k, 14K, 16K, 18K, 20K, 22K, 24k, 26K, 28k, 30K, and 32Kbps)

IAD Integrated Access Device

ID Identification

iLBC internet Low Bitrate Codec

IP Internet Protocol

ISR Interrupt Service Routine

LEC Line Echo Canceller

MBS Maximum Bitrate Supported

NPE Network Processing Engine

NLP Non-linear Processing (for EC)

OSAL Operating System Abstraction Layer

PCM Pulse Code Modulation

PLC Packet Loss Concealment

RTP Real-time Transport Protocol

SLIC Subscriber Line Interface Circuit

SNR Signal to Noise Ratio

SP Signal Processing

SRTP Secure Real-time Transport Protocol

TD Tone Detector

TDM Time Division Multiplexing

TG Tone Generator

USCI Unified Speech CODEC Interface

VAD Voice Activity Detection

Term Description



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

9

Intel® Infrastructure DSP Solution

• internet Low Bitrate CODEC (iLBC) with dual frame size support : 20ms and 30 ms

• T.38 Fax relay with V.17, V.29, V.27Ter, and V.21 fax modulation/ demodulation 
support

• Dynamic switching of codec on the fly with automatic switching of decoder types 
according to the received RTP packets

• Packet loss concealment (PLC) for G.711, G.726, and G.722

• Configurable PCM interface in the Wideband or Narrowband mode

• Support multiple frames per packet. Maximum numbers of frames per packet are:

— 6 for G.711 and G.722

— 8 for G.723

— 9 for G.726 40 Kbps

— 12 for G.726 32 Kbps

— 12 for G.726 24 Kbps

— 12 for G.729ab and G.726 16 Kbps

— for G.729.1 maximum MFPP varies with bitrate (8K: 24, 12K: 17, 14: 14, 16K: 
12, 18K: 11, 20K: 10, 22K: 9, 24K: 8, 26K: 7, 28K: 7, 30K: 6, 32K: 6) 

— 10 for iLBC-30ms and 13 for iLBC-20ms

• Dynamically changing the frames per packet on the fly

• Automatic Gain Control (AGC) support for encoder, with provision for manual 
setting with mute

• Automatic Level Control (ALC) support for decoder, with provision for manual 
setting with mute

• DTMF generation and detection

• Modulated-tone generation capability

• Tone Disabler in NET component. Detects 2100 Hz tone with periodic phase-
reversals and report events on Tx and Rx direction separately

• T30 Preamble Detector in NET component. It reports T30 preamble events on both 
Tx and Rx direction separately

• APIs in NET component for ToneDisabler for user programmable silence threshold 
level and silence duration

• APIs to re-enable reporting of events "phase-reversal in 2100 Hz tone" and "T30 
Preamble" for both Tx & Rx direction

• Detection and generation of user-specified tones

• FSK modem signal generating and receiving for caller ID

• US, China, and Japan call-progress tone generation

• Dynamic DTMF tone clamping

• RFC 2833 tone event support for DTMF with variable frame rate

• Dynamic/Adaptive Jitter Buffer algorithm

• Additional statistics required for extended report as per RFC3611. Statistics 
provided are Maximum jitter, Minimum jitter, Mean jitter, Standard deviation, Jitter 
buffer Maximum delay, Jitter buffer absolute maximum delay, Jitter buffer nominal 
delay, Jitter discard rate and Echo Return Loss Enhancement (ERLE)

• Audio mixer component is enhanced to support up to four Conference Calls 
simultaneously depending on configuration



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
10

• Audio player for voice prompts, on-hold music, and so on. (playing back G.711 or 
G.729ab encoded data)

• Low-latency TDM switching

• Digital gain control at the front end

• User-defined control interface

• Lip-sync delay control

• Plug-in interface for pluggable modules

Note: AEC component in Network Endpoint MPR is not supported.

2.0 Architectural Overview

The DSP solution is implemented as an independent module having its own tasks and 
runtime environment. The software architecture is of a two-layer hierarchy - a control 
layer that handles the control interface and control logic and a data-processing layer 
where the media data streams are processed by appropriate algorithms.

Figure 1 shows the logic decomposition of the DSP solution modules.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

11

Intel® Infrastructure DSP Solution

From the control point of view, DSP solution channel consists of a set of Media 
Processing Resource (MPR) components. Each MPR is an addressable entity and can be 
controlled independently. That gives the maximum flexibility of setting up a channel 
with various resource configurations, for example, half-duplex call or asymmetry Rx 
and Tx codec types (Tx codec type and Rx codec type is different for a single channel), 
if necessary. Software developer has the flexibility to use Intel provided Media 
processing algorithmic modules or plug-in external algorithmic modules. 

These modules are static libraries and can be plugged into the framework during the 
build process. The Plug-in interface is the interface between the framework and the 
plug-in modules. The plug-in interface supports the Unified Speech Codec Interface 
(USCI). For more details on adding Intel provided algorithm (which is in USCI), refer to 
Appendix A.

From the perspective of data flows, the data processing functions are depicted in 
Figure 2. All the functions are executed by real-time tasks (or threads) created during 
initialization. There is one task for each unique coder frame rate. Currently there is a 

Figure 1. Architecture of the Intel® Infrastructure DSP Solution

Replies & 
events

Control layer

Data processing layer

User defined 
control msgs and 
replies

Intel IXP400 DSP Software Client

Intel IXP400 DSP Software 
Control Interface 

User defined Control 
Interface

 Control 
Messages

Common control logic & Generic 
control engine Message Agent

SLIC 
Interface

PCM data 
interface

Data processing 
algorithms & 

functions
Packet Interface IP Stack

Real time execution environment 

S
yn

c

Addressable control entities of media processing resource components

Plug-in 
Handler

External 
plug-ins

USCI

TGTD Audio 
Player

Audio 
Mixer MA

Net

EC Algo 
objects 

list

Decoder

Decoder 
Algo objects 

list

Encoder

Encoder 
Algo 

objects list

T.38
T.38 fax 

algo 
objects 

list



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
12

10-ms task for G.711, G722, G726 and G.729ab coders, a 20-ms task for G.729.1 and 
a 30-ms task for the G.723 coder and T.38 Fax. iLBC runs on both 20-ms and 30-ms 
tasks to support dual frame size.

The 10-ms task also handles all other non-coder voice processing, such as echo 
cancellation and tone detection. The real-time tasks are of higher priority than the 
control task and are synchronized (triggered) by the Network Processing Engine (NPE) 
of the High Speed Serial (HSS) port in the Intel® IXP4XX product line of network 
processors. 

Some of the necessary input and output functions are also performed in the context of 
the real-time tasks. This includes buffer reading/writing PCM data to and from the PCM 
interface (the HSS interface is the PCM interface shown in Figure 2), and the external 
function registered to DSP solution to encode the DSP solution's packets into RTP 
format for forwarding to the IP stack.

The relation among the messages, data and tasks inside and outside the DSP solution, 
is illustrated by Figure 3, and can be summarized as:

• The control task is driven by the user application (IXP4XX Client Application).

• The real-time tasks are synchronized with the data from the PCM Data Interface. 
Unblocking of the DSP solution library's read function triggers the real-time tasks 
according to the algorithms executed by the tasks.

• Real-time tasks generate and consume the encoded audio packets at the fixed 
rates essentially synchronized with PCM data.

• The encoded audio packets arrive at variable rate asynchronously with the real 
time tasks.

Note: It is important to understand that the internal, real-time tasks are characterized by 
their hard task deadlines. That means if a real task cannot finish its processing before 

Figure 2. Data-Flow and Data-Processing Functions

A
ud

io
 s

tr
ea

m
 ro

ut
er

Linear to A/µ-law 
Tx gain control

Rx Lip-sync 
delay control

Delay

A,µ-law to 
linear Rx 

gain control
HPF AEC/

LEC

Tx Lip-sync 
delay 

control

Front end processing 
(TDM termination)

Audio Player

Audio Mixer 
(Conference)

Media service

PC
M

 in
te

rfa
ce

T.38 Fax Module

TD/FSK

Switch/
Mixer ALC Dec Jitter 

buffer

TG/FSK

Tone 
clamping

EncoderAGC

Out-band signaling

RFC 2833 packets

Out-band signaling

IP Termination

R
TP

/U
D

P/
TC

P 
Pa

ck
et

 in
te

rf
ac

e

RFC 2833 packets



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

13

Intel® Infrastructure DSP Solution

the next task period, data will be lost and consequently voice quality is degraded 
seriously. That may happen if the real-time task is preempted by ISR or other tasks for 
a long time or simply the processor is overloaded.

• Application Interface provides interfaces for applications to configure and control 
the behavior of DSP solution.

• OSAL Interface provides abstractions to all OS specific function calls. This interface 
also abstracts the kernel space code or user space code based on preprocessor 
definition. 

• Packet Interface provides interface between DSP library and application to transmit 
and receive voice packets.

• Plug-in Interface enables media processing components to plugged into DSP 
framework, it provides following capabilities:

— Get component identification, Memory requirements, type, version, capabilities 
and others 

— Initialization and re-initialization routines

— Execute 

— Get/Set routines for the attributes of components at run time.

Figure 3. Intel® Infrastructure DSP Solution Message, Data, and Tasks

IP Packets

8-bit 
PC

M
RTP/UDP 

stack

HSS NPE SLIC Interface Ethernet NPE

Operating 
System

HardWare

IP taskIP taskIP task

IXP4XX Client Application

Core module
Control messages

Egress encoded 
packets

Ingress encoded 
packets

Buffer Jitter 
buffer

Job 
ManagementScheduler

Real time taskReal time taskReal time task

16-bit 
PCM

Control task

PCM abstraction

Packet abstraction
External M

edia 
A

lgorithm
 

plug-ins

Plug-in Interface

Application Interface/
Control Interface 

OSAL

Application space

Blocking Read

SLIC Events



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
14

The DSP solution uses USCI as the plug-in interface. USCI (Unified Speech Codec 
Interface) is the interface between the core framework and plug in Codecs/Algorithms. 
The purpose of this interface is to provide unified access to a module independent of 
algorithm internals and to enable binaries to be easily integrated into existing software 
applications. De-coupling the USC interface from the algorithm details provides a high 
level of independence between the development of system components and the 
algorithm implementation. Refer to Appendix A and the Intel® Infrastructure DSP 
Solution Version 1.2 Release Notes for information on the usage of USCI.

• PCM Interface defines the generic interface for both Transmit and Receive side of 
PCM data. This supports the following formats:

— Narrowband (8kHz) G.711 A-law 8bit

— Narrowband (8kHz) G.711 µ -law 8bit

— Wideband (16kHz) 16bit Linear PCM

3.0 Intel® Infrastructure DSP Solution Run-Time 
Interfaces

The DSP solution is implemented as an independent module executed by its own tasks. 
User applications do not directly access the internal functions or data. 

The DSP solution provides three interfaces for the applications to communicate control 
information, PCM data, and encapsulated voice packets, respectively, in run-time as 
shown in Figure 1 and Figure 2.

3.1 Control Interface

The applications primarily communicate with the DSP solution through the control 
interface defined as a set of functions, messages and macros. 

There are two message queues in the control interface for the in-bound messages from 
applications to the DSP solution and the out-bound messages in the other direction. 
Refer to Figure 4. The DSP solution has set the message queue's (in-bound/out-bound) 
length to 64. Two interface functions, xMsgSend() and xMsgReceive(), can be used 
for the application to send and receive messages to/from the queues, respectively. 

The DSP solution spawns a dedicated control task pending on the in-bound message 
queue to handle the control messages. The reason for isolating the DSP solution from 
user applications by message queues is to avoid the internal control functions being 
accessed by multiple tasks of the user application, since making the control functions 
multitask-safe creates extra complexity and subsequent performance penalties. 

The DSP solution sends replies or events to the application through the out-bound 
message queue. The application can retrieve the messages using xMsgReceive(). 
The caller's task of xMsgReceive() will be blocked forever (or until timeout) if the 
out-bound queue is empty.

A third function for the control interface, xMsgWrite(), allows the application to 
directly post external messages to the out-bound message queue back to the user 
application if necessary. This enables the user application to receive all 
channel-associated events from one place, even though some of these events are 
external to the DSP solution. For instance, the application may hook a callback function 
to the ISR that reports the SLIC interface on/off hook events. In the callback function, 
an external event message as defined by the user is sent to the out-bound message 
queue to signal the event to the user application. 



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

15

Intel® Infrastructure DSP Solution

Both in-bound queue and out-bound queue have queue length of 64. Because of the 
limitation of the queue lengths, the queues may overflow and the messages may be 
lost if the application keeps sending messages without waiting for the replies. In this 
case, the in-bound queue may overflow if the user application is of higher priority than 
the DSP solution control task, or the out-bound queue may overflow if the user 
application has lower priority.

Copy-based message delivery is used. That is, the entire message context is actually 
copied from the deliverer to the receptor rather than passing a pointer around. This 
avoids dynamically allocating memory for the messages. Since no memory is shared 
between the DSP solution and the application, the application can reuse the memory of 
a message for any other purpose immediately after the message is sent. On the other 
hand, to receive a message the application is responsible for preparing the memory 
that must be able to accommodate the maximum message size with the alignment at 
4-byte boundary.

The message format consists of an 8-byte message header plus an optional message 
payload. The message header contains the common information like channel ID, MPR 
ID, type, size, etc. A 4-byte transaction ID is provided to allow the user application to 
keep track of the replies or events. When the DSP solution sends a reply or event 
message to the user application, it copies the transaction ID from the associated 
message originated from the user application. Refer to the Intel® Infrastructure DSP 
Solution Version 1.2 API Reference Manual for details of the control message format.

3.2 PCM Data Interface

PCM data represents the audio data stream between the DSP solution and the 
telephone interface. The easiest way to do this is to use the TDM bus of the Intel® 
IXP4XX product line of network processors, which is also called HSS device.

The DSP solution is provided with read and write functions to read and write from HSS 
device. In Linux*, this is done using HSS device driver. Read function call is a blocking 
call, it is blocked until the number of bytes mentioned in the read call is available in 
HSS buffer. The user application, however, controls how the HSS is being configured, by 
parameters being passed to the HSS driver during initialization. HSS driver is the 
interface between the DSP solution and the HSS NPE for IXP4XX product line 
processors. HSS driver provides the following APIs to the DSP application:

• IxHssDriverHssPortInit(hss_port_config) - This API downloads NPE 
microcode image corresponding to npe_image_id provided in hss_port_config 

Figure 4. Control Interface and Message Queues

In-Bound
Message
Queue

Out-Bound
Message
Queue

Control
Messages

Replies or
Events

Other
Channel-
Associated
Events

xMsgSend ( ) xMsgReceive ( ) xMsgWrite( )

Control Task



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
16

structure and initializes NPE A. Initializes the HSS device. It configures the HSS 
port for the channelized service and connects the configured port to the HSS driver.

DSP solution configures HSS device using the above APIs.

Figure 5 illustrates the PCM data interface and the data flow between telephone 
interface and the DSP solution. From the user application's perspective, the HSS can be 
viewed as a piece of hardware to be properly configured, to interoperate with the 
external, customer-specific interface connected to it. Once it is configured and started, 
there is no further user application involvement.

The user application configures the HSS by specifying the signal format to be presented 
on TDM bus of the HSS device, including the clock rate, time slots, frame sync, endian, 
and so on. This information is provided through the HSS_config structure. For more 
information on this structure refer to the Intel® Infrastructure DSP Solution Version 1.2 
API Reference Manual.

Using this set of information, the DSP solution initializes the HSS interface and starts 
data transfers.

The DSP solution supports dual-band PCM interface over the HSS. In the narrowband 
mode, the PCM data format is 8-bit A-law or µ-law compressed data at an 8 KHz 
sampling rate. In the wideband mode, it is 16-bit linear data at 16 KHz sampling rate. 
To share the TDM bus of the HSS, a wideband audio channel takes four time slots at the 
8 KHz frame rate. In the narrowband mode, an audio channel takes one time slot of the 
TDM bus of the HSS. 

The user applications must specify how those time slots are located if a channel is 
configured to wideband mode during the system initialization. Sampling rate 
conversion (SRC) is applied automatically if a wideband channel is connected to a 
narrowband media processing resource or vice versa. The superior voice quality can be 
expected only when both the interface and the resources operate in the wideband 
mode.

The user application may enable more HSS time slots than the number of channels 
supported by the DSP solution. Four channels are supported by the DSP solution. In 
this case the time slots are connected to the channels from the first one sequentially 
and the extra time slots are ignored by default, or you can specify which time slots will 
be used. To use the low latency time slot switch feature, at least eight time slots must 
be enabled. The number of time slots can be mentioned in the numChannelised 
member of the hssportTx_Rx_config of the Hss_config structure.

For more information on this structure refer to the Intel® Infrastructure DSP Solution 
Version 1.2 API Reference Manual.

Internally, the real-time tasks are synchronized with HSS data transfer - the scheduler 
being signaled by unblocking the read call by the HSS driver each time when certain 
amount (10 ms) of data is transferred. The real-time tasks may not be invoked at all if 
the HSS interface is not configured and started properly.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

17

Intel® Infrastructure DSP Solution

3.3 Packet Interface

Compared to PCM Data Interface, the Packet Interface is a pure software protocol that 
defines how the encoded audio data packets are exchanged between the DSP solution 
and the IP interface.

There are two functions and a packet format involved in the Audio Packet Interface as 
shown in Figure 6. The DSP solution defines the packet format and provides the packet 
receive function. The user application is responsible for providing the transmit function.

In ingress (packets coming from the IP interface), the IP interface converts each 
incoming VoIP packet it receives to a DSP solution data packet and then calls 
xPacketReceive() to deliver it to the DSP solution. The user application needs to 
decode the incoming IP packets to forward the RTP packet payloads with the proper 
DSP solution header format, with the extracted RTP timestamp, to the proper DSP 
solution channel. 

The function xPacketReceive() copies the packet to the jitter buffer without further 
processing. Therefore xPacketReceive() can be called from an Interrupt Service 
Routine context but re-entry is not allowed. Since the packets are copied by the DSP 
solution, the caller of the xPacketReceive() can free or reuse any memory it may 
have allocated to buffer the incoming RTP packets upon return from the function.

In egress (packets going to the IP interface), through xDspSysInit(), the application 
registers a callback function with the DSP solution. This callback function is supposed to 
deliver the data packet to the IP interface and sends it out. The DSP solution always 
prepares the memory for the packet and fills the packet header information (including 
local time stamp) and packet payload before it calls the function. This user-provided 
function should create and encode the RTP header with the time stamp in the data 
packet supplied by the DSP solution. After returning from the function, the DSP solution 
will immediately reuse the memory for other purpose. Therefore, it may be necessary 
for the callback function to make a copy of the packet.

Since the function is called from the internal real-time tasks at regular basis each time 
when a packet is generated, there are two additional requirements for the callback 
function:

• It must finish as soon as possible without any blocks inside (to allow real-time data 
to be acquired and processed without data loss)

Figure 5. PCM Data Interface

 PCM Samples
Intel® 

Infrastructure
DSP Solution

Real-Time 
Tasks and 

Data-
Processing
FunctionsTe

le
ph

on
e

In
te

rfa
ce

Da
ta

fo
rm

at
co

nv
er

si
on

a
nd

ga
in

co
nt

ro
l

In
te

l®
IX

P4
XX

H
S

S
C

ha
n

ne
l

Data transfer  
buffers of HSS or 
external device

R i i 001



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
18

• It must be multitask-safe (it must allow re-entry)

4.0 Components, Features, and Parameters

A DSP solution channel consists of several media processing resource (MPR) 
components, which can be addressed independently by the application. Each 
component has its particular processing functions and features that are controlled by 
the messages and parameters. In this section, we will discuss the MPR components and 
their features and parameters.

Note: AEC component in Network Endpoint is not supported.

4.1 Network Endpoint

Network Endpoint component is a front-end data processing unit connecting the HSS 
interface to the rest of MPR components. In addition to receiving and transmitting data, 
it also applies the gain, A-law or µ-law conversion (in the narrowband mode) in both 
directions and high-pass filter (HPF) and echo cancellation in the Rx direction (from the 
HSS to the DSP solution).

The channels of Network Endpoint can be configured to narrowband or wideband during 
initialization.

In the narrowband mode, the application can specify A-law or µ-law conversion by 
setting the parameter XPARMID_NET_LAW. If this parameter is set to 
XPARM_NET_PASSTHRU, all the front-end processing mentioned above will be 
automatically bypassed. This is only used for debugging purposes and should not be set 
in normal applications. When XPARM_NET_PASSTHRU is set, the encoder and decoder 
should also be set to PASSTHRU CODEC. In this mode, 8-bit to 16-bit data conversion 
from HSS to linear is also bypassed and MPR components - such as tone detection and 
tone generation - are no longer meaningful. This parameter only applies to the 
narrowband mode.

Digital gain control can be applied to the audio signal in front of the Network Endpoint 
via the XPARMID_NET_GAIN_RX and XPARMID_NET_GAIN_TX parameters. Because it 
takes extra processing time and may also affect voice quality if not set properly, this 
feature should be used only if the gain control is not available in the SLIC interface. 
Gain control is bypassed when setting the gain control parameters to zero. A low-
latency HSS channel bypass with gain control is available. 

Figure 6. Packet Interface

xPacketReceive()

packetSendCB()

Data packets delivered via 
two call-back functions

Intel® Infrastructure DSP Solution

IP Stack



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

19

Intel® Infrastructure DSP Solution

A high-pass filter is applied to the input audio data from HSS interface in order to 
remove the unwanted low-frequency noise and safeguard the other algorithms from 
the harmful DC bias. The HPF uses a 3-dB cut-off frequency at 270 Hz in the 
narrowband mode or 150 Hz in the wideband mode. The HPF cannot be disabled until 
the Network Endpoint is stopped.

Echo cancellation is the most significant function in this component. EC cancels the 
echo generated by the hybrid of local telephone interface and phone set so that the 
other party connected to the channel will not hear the echo. In other words, the 
beneficiary of EC is the remote party. DSP solution supports Line Echo Canceller (LEC) 
as pluggable module. DSP solution does not provide Acoustic Echo Canceller as 
pluggable module. 

EC performance is mainly affected by two parameters: tail length and delay 
compensation (that is, XPARMID_NET_ECTAIL and XPARMID_NET_DELAYCOMP). 
Depending on the hardware circuits and telephone set, the tail length of 4 to 8ms is 
usually good enough if the telephone set is directly connected to the unit. 

Since EC is very computation intensive, the longer tail length results in higher CPU 
occupancy. Changing the parameter of EC tail length requires that the Network 
Endpoint component be reset (by sending XMSG_RESET message). The CPU occupancy 
is about doubled if the channel is configured to the wideband mode. The maximum tail 
length is limited to 64 ms for wideband and 128 ms for narrowband mode. 

EC can be made the most effective if the reference signal is properly aligned with the 
delayed echo signal. That is the purpose of adjusting the parameter of delay 
compensation. The value of the parameter should be determined according to the 
customer's specific hardware platform.

You can use the XPARMID_NET_ECENABLE parameter to enable or disable EC. The 
parameter XPARMID_NET_ECFREEZE, used to disable adaptation on the EC algorithm, 
should only be used in debugging.

Lip-Sync Delay control is part of network endpoint resource component. APIs are 
present to control the delay from 0 to 1000 msec in step of 1ms both at transmit and 
receive side.

Network Endpoint resource also provides a complementary function of reporting hook 
state and detecting flash hook on behalf of the SLIC interface. The SLIC driver detects 
the hook state changes through the interrupt. The SLICs interrupt service routine can 
call the xFlashHookDetect() function, which reports the hook state via the 
XEVT_NET_HOOK_STATE event. The event data gives the hook state. If an on-hook 
followed by an off-hook transition within the time specified by the 
XPARMID_NET_FLASH_HK parameter, a flash-hook event will be reported.

Another complementary function is timer service. The user applications can set the 
timer counter via the XPARMID_NET_TIMER parameter. This counter is decremented 
by 1 each 10 ms. A XEVT_NET_TIMER event is generated when the counter is 
decremented to 0.

The Network Endpoint component is started with the default setup values automatically 
after initialization. The application can still start or stop it using XMSG_START or 
XMSG_STOP message for debug and test purpose. Stopping the component stops EC, 
HPF, and the complementary functions, but the audio data stream still continues and 
the A-law or µ-law conversion still functions in the narrowband mode. In other words, 
stopping the Network Endpoint component does not affect data transfer from/to the 
HSS interface.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
20

The Network Endpoint component can be configured to report events related to fax 
over IP application, such as the detection of 2100 Hz tone with periodic (450+/-25 ms) 
phase-reversals, the detection of T30 preamble or the detection of user programmable 
silence threshold level and silence duration for fax operations. Figure below illustrates 
use case for Tone Disabler Events and events handling in typical fax over IP application. 

There are 4 modes for Tone Disabler in LEC by setting the parameter 
XPARMID_NET_ECTONEDISABLERMODE. In OFF mode, the Tone Disabler is off with 
default value set to 0. In Manual mode, the user application has to manually bypass or 
manually reactivate LEC in response to phase reversal and silence detected events. The 
user application needs to bypass LEC or make LEC inactive by setting 
XPARMID_NET_ECBYPASS to value 1 (ON) when an event 
XEVT_NET_SIN_PHASEREV_YES or XEVT_NET_RIN_PHASEREV_YES received. On the 
other hand, the user application needs to reactivate LEC to value 0 (OFF) after both 
XEVT_NET_SIN_ECENABLED and  XEVT_NET_RIN_ECENABLED events received. In 
this mode, LEC must be bypassed before Fax Transfer starts and reactivated on 
completion of Fax transfer. Refer to example of Use Case in figure above for details. 
Bypassing LEC during silence or reactivating LEC during a fax transfer could lead to 
unexpected behavior due to improper timing of bypass/reactivation of LEC. In Auto 
mode, LEC is automatically bypassed when an event XEVT_NET_SIN_PHASEREV_YES 
or XEVT_NET_RIN_PHASEREV_YES received and LEC is automatically reactivated after 
both XEVT_NET_SIN_ECENABLED and XEVT_NET_RIN_ECENABLED events received. 
However these events will not be reported. In Auto with Event Report mode, LEC 
is automatically bypassed when an event XEVT_NET_SIN_PHASEREV_YES or 
XEVT_NET_RIN_PHASEREV_YES received and these events are reported. In Auto 

Figure 7. Example of Tone Disabler Event and Event Handling in Fax over IP application



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

21

Intel® Infrastructure DSP Solution

with Event Report mode, LEC is reactivated when both 
XEVT_NET_SIN_ECENABLED and XEVT_NET_RIN_ECENABLED events received and 
these events are reported.

By default, during initial setup, all Tone Disabler and T.30 Preamble events are enabled. 
Event reporting will be disabled once the event is detected and reported. Setting 
XPARMID_NET_EVTRPTENABLE to value 6 will enable event reporting of all the events 
irrespective of their current status. User application also has the flexibility to enable 
individual event reporting. The current value of  XPARMID_NET_EVTRPTENABLE shows 
only the recent value written, but does not show all the currently re-enabled event 
reports. It also doesn’t disable previously re-enabled events through this API. For 
example, if you enable report of TDIS_PhaseReversal_TxEvt, followed by another 
command to enable reporting of TDIS_PhaseReversal_RxEvt, reporting will be 
enabled for both events (TDIS_PhaseReversal_TxEvt and 
TDIS_PhaseReversal_RxEvt) although XPARMID_NET_EVTPRTENABLE parameter 
shows only the reporting of the latest enabled (Enable 
TDIS_PhaseReversal_RxEvt). 

T.30 preamble pattern detection can be enabled on Tx or Rx path by enabling 
XPARMID_NET_T30PREAMBDETENABLE. T.30 preamble pattern may be observed in 
ITU-T T.30 based fax sessions. 

User application can specify threshold and duration for silence detection after a fax 
session. To qualify for an silence event, average amplitude level of the continuous 
silence and minimum duration of the silence must be configured. 

4.2 Encoder

The primary function of this component is to encode and packetize the audio data from 
the HSS and then send to the IP interface. The audio codec supports G.711, G.726, 
G.722, and G.729ab on 10-ms frame size, G.729.1 on 20-ms framesize, G.723.1 and 
T.38 Fax on 30-ms frame size. iLBC is supported on both 20-ms and 30-ms frame size. 
Other features include Automatic Gain Control (AGC), Automatic Level Control (ALC), 
Voice Activity Detector (VAD), and Multiple Frame per Packet (MFPP). In the following 
paragraphs, the possible effect of these features on voice quality or system 
performance is briefly discussed.

This component works in the wideband mode when using G.722. While using G.729.1, 
this component may work in the wideband or narrowband depending on the SLIC 
configuration. 

There are two automatic gain control elements: AGC in the egress side and ALC in the 
ingress side. Only one of these should be turned on, depending on what gain control 
functions are implemented in the remote party. 

In the completed audio path when two parties are connected, enabling both AGC on 
one side and ALC on the other side may cause unexpected interaction and degrade 
voice quality. Typical VoIP equipment employs ALC, thus it is recommended that AGC is 
turned off and ALC is turned on (this is the default).

The VAD algorithm can distinguish active speech signal from the silence (background 
noise). During the silence period, the encoder only sends much smaller packets 
containing only the noise parameter at much lower rate. That helps to reduce network 
traffic. 

Enabling VAD slightly impacts the voice quality. 

Another effect of VAD is the change of average CPU occupancy. Enabling VAD in 
G.729ab and G.723.1 will significantly reduce the average occupancy because the most 
complicated processing of G.729ab encoder is eliminated during the silence and 



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
22

background-noise period. However, VAD increases the CPU occupancy, when enabled 
with G.711, because the VAD algorithm is much more complicated than just the G.711 
coder. 

VAD is not available in G.726 and G.722.

Packing more frames into a packet (for example, MFPP) is another way to reduce 
network traffic. The application either specifies the number of frames per packet - in 
XMSG_CODER_START message when it starts the encoder - or modifies it - by setting 
the parameter XPARMID_ENC_MFPP at any time. Obviously, having MFPP increases the 
total latency and voice quality is more affected if the packet is lost. Typically, this trade-
off of network traffic versus latency/voice quality is made depending on the target 
network and user preference.

You can query or change the coder type via the XPARMID_ENC_CTYPE parameter. 

Switching the coder type on the fly may cause a few packets to be discarded. The 
number of frames per packet may be reduced automatically during switching if it 
exceeds the maximum allowed by the new coder type. If the encoder is started by 
XMSG_START message without specifying MFPP and the coder type, the current 
parameter values take effect. 

G.726 has four different rates. Each of them is treated as a different coder type. They 
use dynamic RTP payload types that are negotiated by the call stack during call setup. 
The application is responsible for informing the DSP solution the payload type to be 
used in the current call by setting the payload type parameters. The parameters are: 

• XPARMID_ENC_G726_40_RTP_PLD

• XPARMID_ENC_G726_32_RTP_PLD

• XPARMID_ENC_G726_24_RTP_PLD

• XPARMID_ENC_G726_16_RTP_PLD

Two packing formats are supported for G.726 of all the rates. One is described in RFC 
3551 as commonly used for VoIP. Another is defined for ATM AAL in ITU-T I.366.2 
Annex E. The XPARMID_ENC_G726_PACK parameter determines which format takes 
effect. Setting the parameter to XPARM_G726_PACK_LSB will choose RFC 3551 
packing format or XPARM_G726_PACK_MSB for I.366.2 Annex E format.

G.729.1 is a variable bitrate CODEC, and can support 12 bitrates (8, 12, 14, 16, 18, 20, 
22, 24, 26, 28, 30, 32 Kbps). All  the 12 bitrates are supported in narrow-band and 
wideband. These bitrates are dynamically changed based on bitrate negotiation 
between the two nodes. To run G.729.1 encoder in wideband mode, 
XPARMID_ENC_G729_1_PCM_MODE parameter should be set to 
XPARM_G729_1_WIDEBAND.

G.729.1 uses dynamic payload type, similar to G.726 codec payload type. The dynamic 
payload type parameter for G.729.1 encoder is:  

• XPARMID_ENC_G729_1_RTP_PLD

iLBC, supports two different frame sizes. Each frame size is treated as a different coder 
type. It uses dynamic RTP payload type,  that can be set during the call setup. The 
application is responsible for informing the DSP solution the payload type to be used in 
the current call by setting the payload type parameters. The parameters are:

• XPARMID_ENC_ILBC_20MS_RTP_PLD

• XPARMID_ENC_ILBC_30MS_RTP_PLD



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

23

Intel® Infrastructure DSP Solution

The XPARMID_ENC_EVT_PKT message is used to set up the encoder to report bad 
packets. This is only intended for debugging since packet loss should not be monitored 
on an event basis.

The user application starts Encoder by XMSG_CODER_START or XMSG_START message 
when a call is setup and stops it when the call is torn down. The Encoder is the 
component that enables data flow from HSS to the IP side. 

A PASSTHRU CODEC type is provided for debugging purposes in the narrowband mode, 
in conjunction with the pass-through mode of the Network Endpoint component. When 
using PASSTHRU CODEC, no signal processing is done. The data in RTP G.711 packets 
are directly copied from HSS.

G.729.1 is an 8-32 Kbps Scalable Wideband (50 Hz -7000 Hz) speech and audio coding 
algorithm. It provides a standardized solution for a smooth transition from narrow-
band to wide-band telephony. G.729.1 supports, 12 bitrates : 8000, 12000,14000, 
16000, 18000, 20000, 22000, 24000, 26000, 28000, 30000, 32000 bits/sec. 

The first layer at 8 Kbps, is called the core layer and is bitstream compatible with the 
ITU-T G.729/G.729.A coder. At 12 Kbps a second layer improves the  narrow-band 
quality. Upper layers provide wideband audio between 14 and 32 Kbps with a 2 Kbps 
granularity. The codec operates on 20ms frames and the default sampling rate is 16 
KHz. Input and output at 8 KHz is also supported at all bitrates.

G.729.1 Payload consists of payload header of one Octet followed by zero or more 
consecutive audio frames, at the same bitrate. The payload header consists of two 
fields Maximum Bitrate Supported (MBS)  and Frame Type (FT).

MBS value is used to limit the maximum bitrate that can be received by the decoder of 
the source node of the RTP payload.  Decoder on the destination node receives the MBS 
value and updates XPARAMID_ENC_G729_1_MAX_RATE parameter of the destination 
Encoder. The value of the MBS field is set according to the following table:

Figure 8. G.729.1 RTP Payload Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5  6 7 8 9 0 9 1 2 3 4 5 6 7 8 9 0
MBS FT

Zero or more Frames at the same rate



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
24

FT is used to communicate the frame encoded rate. Values 12 -14 are reserved values 
and the packets with reserved FT values are neglected. FT value 15 is used for 0 
payload, and the payload is reduced to the payload header. This is used to 
communicate MBS value whenever there are no packets to send. FT field is used to 
indicate the frame size and the bitrate, as shown in the table:  

 

The communication between the two gateways happens by sending and reciving RTP 
payload over network, let us say Gatway A :Channel 1 and Gatway B:channel 2.

Initially, the  the bitrate on both sending and receiving side on both the gateways is 32 
Kbps. G.729.1 runtime bitrate negotiation through RTP payload header is shown in 
Figure 9

Case: If Gatway A :channel 1 receives voice data say at a maximum bitrate of 16 Kbps, 
the following sequence of negotiation steps happens:  

• Application inputs the XPARAMID_ENC_G729_1_MBS parameter channel 1 with 3, 
(MBS code for 16 Kbps) to the DSP software. Channel 1 encoder embeds the 
XPARAMID_ENC_G729_1_MBS, along with the FT code in the RTP payload header 
and delivers the payload.

Table 1. MBS Table

MBS Maximum Bitrate

0
1
2
3
4
5
6
7
8
9
10
11
12-14
15

8000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
Reserved
No_MBS

Table 2. FT Table

FT
Encoding 

Rate
(bits/sec)

Frame 
Size

(bytes)

0
1
2
3
4
5
6
7
8
9
10
11
12-14
15

8000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
Reserved
NO_DATA

20
30
35
40
45
50
55
60
65
70
75
80

0



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

25

Intel® Infrastructure DSP Solution

• Channel 2 decoder receives the payload, and decodes the payload header. Channel 
2 Decoder updates the XPARAMID_ENC_G729_1_MAX_RATE parameter of channel 
2 Encoder by decoding the XPARAMID_ENC_G729_1_MBS parameter to 16 Kbps, 
that is received from channel 1. 

•  XPARAMID_ENC_G729_1_MAX_RATE is a read-only parameter; application can 
only read and it cannot modify this parameter value. This parameter is used to limit 
the current encoding rate.

• Application can set two parameters on encoder: XPARAMID_ENC_G729_1_MBS and 
XPARAMID_ENC_G729_1_MAX_RATE. Application sets these two parameters on 
the channel 2 encoder while XPARAMID_ENC_G729_1_RATE is made as the current 
encoding rate.

• Channel 2 encoder compares the current encoding rate with the 
XPARAMID_ENC_G729_1_MAX_RATE parameter.If the channel 2 encoding rate is 
greater than the XPARAMID_ENC_G729_1_MAX_RATE parameter, the current 
encoding rate is set equal to the XPARAMID_ENC_G729_1_MAX_RATE parameter.

• Channel 2 encodes the packet with 16 Kbps or a bitrate of 
XPARAMID_ENC_G729_1_RATE which is less than 16 Kbps.

Figure 9. G.729.1 Bitrate Negotiation through RTP Payload

Encoder : Channel 1 Decoder : Channel 1 Decoder :Channel 2 Encoder :Channel 2

Default:
MBS = 11,
EncRate = 32000,
MaxEncRate = 32000

Default:
MBS = 11,
EncRate = 32000,
MaxEncRate = 32000

Payload(MBS,FT,EncodedFrame)

ReceivedBitRate = 
Decode(FT)

Update Max Encode Rate <Intenal message>

G729.1 Pkts

G729.1 Pkts

XPARMID_ENC_G729_1_MBSRATE

DSP Software DSP Software

Normal  scinario with voice path

{ If current encode rate > Max encode rate
 Then Set current encode rate to 
 Max encode rate
 }

User/
Application triggers bitrate negotiation 

XPARMID_ENC_G729_1_RATE

Application can also set these parameters

Packet with Requested Bitrate



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
26

4.3 Decoder

The Decoder receives the encoded audio packets from the IP interface and converts 
them to the audio stream to the HSS interface. Similar to the encoder, the decoder 
supports G.711, G.729ab, G.723.1, G.722, G.726, G.729.1 and iLBC coder types and 
additional features like Comfort Noise Generator (CNG), ALC, Packet Loss Concealment 
(PLC), and Jitter Buffer.

CNG is the counterpart of VAD in the encoder. For G.729ab and G.723 coders, CNG is 
built into the decoder algorithms and cannot be turned off. For G.711, disabling CNG 
will result in the pure silence between active speech periods if VAD is enabled in the 
remote party. 

CNG is not available in G.726 and G.722.

The PLC algorithm uses the previous speech signal to repair the lost frames. But it 
cannot repair any big chunk of consecutive frames lost. Because of the complexity of 
PLC algorithm, it will increase the processor occupancy during packet loss when using 
G.711, G.726, and G.722 coders. But since they are relatively low computation coders, 
the resultant processor occupancy rates are still lower than that of G.729ab and G.723. 

The PLC algorithm is always enabled.

The Decoder automatically handles MFPP if a received packet contains multiple frames. 
The application starts Decoder when a call is set up, using a XMSG_CODER_START 
message (frmsPerPkt field in the message is ignored for the Decoder). Currently, 
both the Encoder and Decoder support MFPP frame counts that are limited by internal 
buffer size. 

The Jitter Buffer regulates the flow of data from the IP interface to the HSS interface. 
This is necessary since encoded audio packets from the IP interface are being 
transmitted on the IP network in real time using RTP protocol. This means packets can 
be delayed, out-of-order, duplicated, or lost without re-transmission. To perform this 
function, the Jitter Buffer delays incoming packets to allow delayed and out-of-order 
packets to arrive and be delivered to the HSS interface correctly. Depending on IP 
network conditions, this delay is dynamically adjusted by the Jitter Buffer.

The Jitter Buffer monitors network conditions by checking the timestamps in the 
incoming DSP solution packets against the local clock. The correct sequencing of audio 
packets is also done with the help of the timestamp. The Jitter Buffer implements a 
proprietary delay profiling algorithm that (compared with the algorithm specified by 
RFC 3550) provides better tracking and improves voice quality.

There is typically a trade-off of delay versus being able to recover more delayed 
packets in real data networks. The Jitter Buffer allows the user application to balance 
this by two parameters: 

• XPARMID_DEC_JB_MAXDLY - Specifies the maximum desired jitter delay in ms 
(current range is 10 to 500 ms)

• XPARMID_DEC_JB_PLR - Specifies the allowable packet loss rate in 0.1% units

The jitter buffer automatically determines the jitter delay based on the network delay 
profile it keeps from the desired packet loss rate, subject to the limit of the maximum 
allowed jitter delay parameter. By setting the allowable packet loss rate judiciously, a 
balance between voice quality and latency can be achieved in real network conditions.

If a packet has not arrived after the allowable jitter delay, the packet is declared lost 
and the Decoder is instructed to perform packet loss concealment. The Jitter Buffer also 
handles VAD packets and MFPP packets appropriately.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

27

Intel® Infrastructure DSP Solution

Since they can be at a different rate than the codec frame rate and the timestamps are 
event-based instead of frame-based, the Jitter Buffer handles RFC 2833 tone packets 
independently.

The Jitter Buffer is at the front-end of the ingress side. The user application uses the 
xPacketReceive() function to copy the encoded audio packets from the IP interface 
directly into the jitter buffer memory.

The Jitter Buffer also provides additional statistics such as maximum jitter, minimum 
jitter, mean jitter, standard deviation, jitter buffer maximum delay, jitter buffer 
absolute maximum delay, jitter buffer nominal delay and jitter discard rate. Some of 
the Jitter Buffer statistics variables, such as Residual Echo Return Loss (from Network 
Endpoint component) and Multiple-Frames-per-Packet (from Encoder component), are 
not directly related to Jitter Buffer or Decoder component. 

Maximum jitter variable (maxJitter) is defined as a 32-bit variable. Suppose the 
packets received are 0, 1, 2, till N-th packet within the jitter buffer length. To calculate 
the maxJitter, find the maximum jitter of the packets 1 and 2. Store this in a variable 
maxJitter. Now, calculate the maximum jitter of packets 2 and 3 and compare this 
with the value in maxJitter. Store the higher of the two values in maxJitter. In this 
way, update the value of the maxJitter variable continuously. When you execute the 
command to get jitter statistics, you get the current value stored in maxJitter.

Minimum jitter variable (minJitter) is defined as a 32-bit variable. Suppose the 
packets received are 0, 1, 2, till N-th packet, to calculate the minJitter, find the 
minimum jitter of the packets 1 and 2. Store this in a variable minJitter. Now 
calculate the minimum jitter of packets 2 and 3 and compare this with the value in 
minJitter. Store the lower of the two values in minJitter. In this way, update the 
value of minJitter variable continuously. So, when you execute the command get 
jitter statistics, you get the current value stored in minJitter. The initial value for 
minJitter is maximum positive number and is equal to 0x7fffffff in terms of time 
stamp units and while reporting it gets right shifted appropriately to give the value in 
milliseconds.

Mean jitter variable (meanJitter) is defined as a 32-bit variable. Suppose the packets 
received are 0, 1, 2, till N-th packets and jitters associated with packets from 1 to N are 
J1 to JN. We will get the meanJitter by using the formula given below:

where J (i) is the instantaneous jitter and N is the number of packets accumulated 

Standard deviation variable (devJitter) is defined as a 32-bit variable. Suppose the 
packets received are 0, 1, 2, till N-th packets and jitters associated with packets from 1 
to N are J1 to JN. We will get the devJitter by using the formula given below:

Where N is the number of packets accumulated, J(i) is the instantaneous jitter and S is 
standard deviation jitter.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
28

Jitter buffer maximum delay variable (jbMaxDelay) is defined as a 16-bit variable. 
This is the current maximum jitter buffer delay in milliseconds which corresponds to the 
earliest arriving packet that would not be discarded. In simple queue implementations 
this may correspond to the nominal size. This parameter has the same value as 
XPARMID_DEC_JB_MAXDLY. 

Jitter buffer absolute maximum delay variable (jbAbsMaxDelay) is defined as a 16-bit 
variable. This is the absolute maximum delay in milliseconds that the adaptive jitter 
buffer can reach under worst case conditions. If this value exceeds 65535 milliseconds, 
then this field conveys the value 65535. This parameter must be provided for adaptive 
jitter buffer implementations and its value must be set to JB maximum for fixed jitter 
buffer implementations. This value is 500ms at present for adaptive jitter buffer and 
200ms for fixed jitter buffer.

Jitter buffer nominal delay variable (jbNominalDelay) is defined as a 16-bit variable. 
This has been assumed to be the actual jitter buffer delay length at a given instant. 

Jitter discard rate variable (discardRate) is defined as an 8-bit variable. Discard rate 
is defined by the formula as given below. The maximum value is limited to 255 to avoid 
overflow and the integer part is considered. 

discardRate (%) = [(Packets arrived early + Packets dropped due to 
overflow + packets dropped due to underflow + 
Packets arrived late)/(Total packets expected)] 
* 256

Residual Echo Return Loss (RERL) variable (8 bits) and Multiple-Frames-per-Packet 
(MFPP) variable (8-bits) are defined along with other jitter buffer statistics. The residual 
echo return loss value may be measured directly by the VoIP end system's echo 
canceller or may be estimated by adding the echo return loss (ERL) and echo return 
loss enhancement (ERLE) values reported by the echo canceller. RERL is given by the 
formula mentioned below. 

RERL(dB)= ERL hybrid(dB) + ERLE(dB)

ERLE is running echo attenuation by LEC, averaged over current and past speech 
frames. It is computed and updated only for single-talk with far-end speech.

Multiple-Frames-per-Packet variable is set through user application in encoder 
component. In this case, there is no computation involved. This parameter is again 
given back to the user application, when the status of MFPP is enquired through 
codelets application’s diagnostics menu.

The Jitter Buffer statistic can be reset through inbound message structure 
“XMSG_GET_JBSTAT”. The example shown in Figure 10 depicts a scenario where the 
reset command is executed for resetting mean jitter. The assumption made here is that 
the jitter for a packet is already available. In this example, the resetting mechanism for 
mean jitter is explained.

• Suppose, at a given point, say at time t1, you want to get the mean_jitter. 
Assume that till that point, N packets have arrived. So, for N packets, the 
mean_jitter will be calculated. Now, say you execute reset command (at time 
t1), and want to calculate the mean at time t2. Suppose “K” packets have arrived 
by time t2. At this time, if you request for calculating mean you will get the result 
for the packets from “N+1” to “K”. 

Note: There is no reset applied at time t2.

• Now, suppose at time t3 you want to get mean_jitter. Assume that till time t3, L 
packets have arrived. Then in this case, you will get the mean_jitter for packets 
from “N+1” to “L”.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

29

Intel® Infrastructure DSP Solution

The above principle holds good for minimum jitter, maximum jitter, standard deviation 
and jitter discard rate as well.

You can query the coder type via the XPARMID_DEC_CTYPE parameter. During 
decoding processing, the coder type may be switched automatically according to the 
received RTP payload type or changed by the user's application. 

To allow automatic coder switch, set the XPARMID_DEC_AUTOSW parameter in which 
each bit represents a coder type. For instance, setting the parameter to 
(XPARM_DEC_AUTOSW_G711MU | XPARM_DEC_AUTOSW_G711A) allows the decoder to 
automatically switch between G.711 A-Law and µ-Law coder types. The received 
packets will be discarded if they do not match either of the two coder types.

Figure 10. Jitter Buffer Statistics Resetting Mechanism



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
30

Setting the parameter to XPARM_DEC_AUTOSW_OFF disables the auto-switch feature. 

Setting the parameter to XPARM_DEC_AUTOSW_ALL enables Decoder to switch to all 
supported coder types. 

You can also change the coder via the XPARMID_DEC_CTYPE parameter at any time. 
But keep in mind that the coder type may switch anyway if auto-switch is enabled. 
When the decoder is started by a XMSG_START message without specifying the coder 
type, the current parameter takes effect. Changing the coder type on the fly may cause 
a few packets to be lost.

The DSP solution reports the changes of received RTP payload type through the event 
message (XMSG_EVENT). The event code is XEVT_DEC_PACKET_CHNG. The event data 
1 gives the coder type associated with the changed payload type and the event data 2 
is the received RTP payload type. From the event and the setting of 
XPARMID_DEC_AUTOSW parameter, the user application can determine if the coder type 
is switched automatically or not. 

For example, if the coder type reported by the event matches any of the ones set in the 
XPARMID_DEC_AUTOSW parameter, the event also indicates the decoder has switched 
its coder type accordingly. The event report can be enabled or disabled by the 
XPARMID_DEC_EVT_PKTCHNG parameter.

G.726 has four different rates. Each of them is treated as a different coder type. They 
use dynamic RTP payload types that are negotiated by the call stack during call setup. 
The application is responsible for informing the DSP solution of the payload type to be 
used in the current call by setting the payload type parameters. The parameters are:

• XPARMID_DEC_G726_40_RTP_PLD 

• XPARMID_DEC_G726_32_RTP_PLD 

• XPARMID_DEC_G726_24_RTP_PLD 

• XPARMID_DEC_G726_16_RTP_PLD 

Two packing formats are supported for G.726 of all the rates. One is described in RFC 
3551 as commonly used for VoIP. Another is defined for ATM AAL in ITU-T I.366.2 
Annex E. The XPARMID_DEC_G726_PACK parameter determines which format takes 
effect. Setting the parameter to XPARM_G726_PACK_LSB will choose RFC 3551 
packing format or XPARM_G726_PACK_MSB for I.366.2 Annex E format. 

G.729.1 uses dynamic payload type, similar to G.726 codec payload type. The dynamic 
payload type parameter for G.729.1 encoder is:  

• XPARMID_ENC_G729_1_RTP_PLD

To run G.729.1 decoder in wideband mode, XPARMID_DEC_G729_1_PCM_MODE 
parameter should be set to XPARM_G729_1_WIDEBAND.

iLBC, supports two different frame sizes. Each frame size is treated as a different coder 
type. It uses dynamic RTP payload type, that can be set during the call setup. The 
application is responsible for informing the DSP solution the payload type to be used in 
the current call by setting the payload type parameters. The parameters are:

• XPARMID_DEC_ILBC_20MS_RTP_PLD

• XPARMID_DEC_ILBC_30MS_RTP_PLD

The XPARMID_DEC_EVT_PKT parameter is used to setup the decoder to report packet 
loss. This is only intended for debugging since packet loss should not be monitored on 
an event basis.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

31

Intel® Infrastructure DSP Solution

The user application starts the Decoder together with the Encoder when a call is set up 
and stops it when the call is torn down. The decoder is the component that enables 
data flow from the IP side to the HSS. A PASSTHRU CODEC type is provided for 
debugging purposes, in conjunction with the pass-through mode of the Network 
Endpoint component in the narrowband mode. When using PASSTHRU CODEC, no 
signal processing is done. The data payload in RTP packet is directly copied from Jitter 
Buffer to the HSS.

4.4 Tone Generator

The Tone Generator is capable to generate single- or dual-frequency tone and 
amplitude-modulated tone. It has a set of pre-defined tones. And user-defined tones 
can be added. Several tone segments can be combined as a single tone signal. This is 
very useful to generate some special call progress tones.

Internally, a tone is represented by a template that contains information such as tone 
ID, frequencies, amplitude, and cadence. Current supported tones can have one or two 
frequencies (DTMF), each with its amplitude information. Modulated tones are 
supported by specifying the carrier frequency/amplitude and modulating frequency/
amplitude. Tones, (especially call progress tones), can have a cadence, that is, an 'on' 
duration, following by an 'off' duration, and a repeat pattern.

The Tone Generator is a narrowband resource and cannot produce the frequency higher 
than 4,000 Hz.

All the tone templates, including DTMF and call progress tones, are pre-defined. Since 
call progress tones are country-specific, the application has to set the country code 
during initialization, so that Tone Generator can select the correct template table 
accordingly. 

Overall tone volume can be changed by the XPARMIDTNGEN_VOL parameter.

The application can play tones by sending an XMSG_TG_PLAY message with a list of 
tone IDs to be played sequentially. The definition of tone ID is compliant to RFC 2833 
standard.

If tones are played while decoder has been started, the tone signal will overwrite or mix 
with the speech signal from the decoder according to the mode specified in the tone 
template. Most tones are of the overwrite-mode so that the speech is muted during the 
whole tone period. However, some tones have the cadence of a tone-on duration 
followed by a silent duration. For example, a call-progress tone, such as the call waiting 
notification tone, may require a short tone, followed by a long pause, and then the 
repetition of the tone-on/tone-off sequence. For these tones, the mix-mode is more 
appropriate, which allows the tone signal to be added to the speech so that the speech 
is not suppressed during the silence duration, or non-activated part of the tone.

If a continuous tone (for example, call-progress tone) is played, the user application 
can stop it by playing another tone or stop it explicitly using XMSG_STOP message.

The Tone Generator can also generate FSK modem signals compliant to ITU-V.23 or 
Bellcore* 202 specifications, depending on user mode selection via the 
XPARMID_TNGEN_FSK_MOD parameter. This is implemented for caller ID generation. To 
implement caller ID functionality, a user application has to directly control the SLIC 
telephone interface and implement the caller ID transmit sequence.

FSK parameters such as baud rate, channel seizure bits (CS) length, mark bits length, 
and postmark bits length can be modified by the XPARMID_TNGEN_FSK_RATE, 
XPARMID_TNGEN_FSK_CS, XPARMID_TNGEN_FSK_MARK, and 
XPARMID_TNGEN_FSK_POSTMK parameters, respectively.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
32

The Tone Generator also generates the corresponding tones when RFC 2833 packets 
are received, if RFC 2833 tone generation is enabled by the 
XPARMID_TNGEN_RFC2833 parameter. The RTP user application needs to classify the 
RFC-2833 packets based on the negotiated dynamic payload type, and encode the 
media field in the headers to indicate to the DSP solution that these are RFC-2833 
packets. RFC-2833 tones will override audio frames if both are present.

Although the Tone Generator has a set of pre-defined tones including the DTMF tones 
and the call progress tones of the United States, Japan, and China, the user 
applications can add more tone definitions through the xBuildToneTG() function in 
which a new tone is defined by a list of tone segments and associated tone ID. 

Each segment is specified by a set of parameters including the signal types (single or 
dual frequency or amplitude-modulated tone), amplitudes or modulation rate, on/off 
durations and numbers of repetitions. A total of 64 tone segments can be added. Since 
a tone can contain multiple segments, the number of tones that can be added can be 
less than 64. The multiple segment tones are typically necessary in the country-specific 
call progress tone definitions.

You can replace the pre-defined call progress tones with the newly added tones by 
specifying the same tone IDs.

The user-defined tones must be added during initialization time following 
xDspSysInit().

4.5 Tone Detector

The Tone Detector is also a narrowband resource and is able to detect single- or dual-
frequency tones with the frequency range from 300 to 3,500 Hz, using an FFT analyzer. 
Besides the pre-defined tones, you can add new criterion tables during initialization to 
detect user-specified tone signals. TD can receive FSK data.

To reliably detect a dual tone, it is required that the frequencies of the dual-tone signal 
are separated by at least 200 Hz. 

Internally all the tones to be detected (that is, DTMF tones) are described by a list of 
templates that contain the criteria of frequencies, energy, SNR, durations, and so on.

To use any features provided by the Tone Detector, the user application needs to first 
start Tone Detector by sending XMSG_START message. The basic function of Tone 
Detector is to report tone events that are enabled by setting the parameter 
XPARMID_TD_RPT_EVENTS. Tone-on and/or tone-off events are reported according to 
the parameter. Tone events are reported via the XMSG_EVENT message in which the 
event data 1 field indicates tone ID and event data 2 field is the time stamp in 10-ms 
units.

Instead of being notified by tone events, the user application may want to receive a 
DTMF digit string, for example, a telephone number entered from the telephone set. 
For this purpose, the user application can use the XMSG_TD_RCV message and specify 
number of digits it expects and the termination conditions. Tone Detector will return the 
result via XMSG_TD_RCV_CMPLT message once the digits are collected or the 
termination conditions are met. 

One scenario of using this feature is call setup. For example when the application 
detects the off-hook state of the telephone, it plays the dial tone and then starts to 
collect 10 digits of calling number entered by the telephone. It waits for 20 seconds for 
the first entering. After that, it stops collecting the entering of the digits if getting all 
the 10 digits as expected, or no entering in 5 seconds after any digits, or any special 
digits (star or pound) entered, or the total time of 25 seconds passed before getting 10 
digits.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

33

Intel® Infrastructure DSP Solution

In this case, the application use the XMSG_TD_RCV message, specifying all the 
termination conditions mentioned above in the message correspondingly. The 
XMSG_TD_RCV_CMPLT message returns the collected digits and tells the reasons why 
collecting the digits is stopped. If the tone event report is enabled during receiving 
digits, the first digit entering is also reported as an event. The application can use that 
event to stop the dial tone in the above example. Then the tone event report is 
temporarily disabled for the rest of digits automatically.

The Tone Detector can also receive and decode FSK signals used in Caller ID 
specifications. Currently it works for Bellcore* 202 or ITU-V.23 at a fixed, 1,200-bps 
baud rate. To start receiving FSK data, the application sends the XMSG_TD_RCV_FSK 
message and receives the XMSG_TD_RCV_FSK_CMPLT message with the decoded data 
once completed, or when the specified timeout has expired. 

During receiving FSK, all other tone detection features are temporally suspended. 

Another feature of the Tone Detector is tone clamping. The Tone Detector mutes the 
input audio stream from HSS during the period when a tone signal is detected. For VoIP 
applications, this feature is primarily used to implement out-band DTMF, because the 
tone signal is often distorted by speech coder like G.729ab. Since it takes about 30 ms 
to detect a tone, up to 30-ms tone signal may already leak out before it is clamped. To 
prevent tone leakage, the user application can enable the look-ahead buffer by setting 
the buffer size parameter XPARMID_TD_TC_FRAMES to 1, 2 or 3 (in 10-ms units). 
Remember that enabling the look-ahead buffer increases the latency accordingly.

If RFC 2833 is enabled (XPARMID_TD_RFC2833E_ENABLE), the Tone Detector will 
generate RFC-2833 payloads for transmission from the user RTP application, via the 
registered RTP transmit function (using xDspSysInit). The RTP payload type for the 
RFC-2833 packets is specified via the XPARMID_TD_RFC2833E_PAYLOADTYPE 
message. The marker bit in the packet header is also set by the DSP solution.

The rate for RFC-2833 packet generation can be set by the user application 
(XPARMID_TD_RFC2833E_UPDATERATE, typical rate is either 50 ms or coder frame 
rate). The number of beginning-of-tone (XPARMID_TD_RFC2833E_NUMBOE) and end-
of-tone (XPARMID_TD_RFC2833E_NUMEOE) redundant packet transmission can also be 
set by the user application.

Normally, audio RTP packets are not transmitted during tones, but they can be enabled 
by turning off audio suppression (XPARMID_TD_RFC2833E_AUDIOSUPRESS).

Besides a set of built-in criteria to detect the DTMF tones, you can add new criterion 
tables, using xBuildToneTD(), to detect user-specified tone signals. Currently you 
can add the new tone detection ability for single or dual frequency tones but not 
amplitude modulated (AM) tones. The user-specified tone will be reported via the 
XMSG_EVENT message along with the tone ID and time stamp. 

You cannot replace the pre-defined tone detection criteria. New tones are always added 
in addition.

4.6 Audio Player

The Audio Player component resource plays back the pre-recorded audio data to TDM 
and/or IP terminations. The Audio Player is designed to play cached voice prompts, that 
is, the audio data must be all pre-loaded into memory. The user application registers 
the audio data with the DSP solution via xDspRegCachePrompt() and obtains the 
prompt handles. Each handle represents a piece of audio data stored in contiguous 
memory. 



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
34

Currently up to 32 handles can be registered permanently. The audio data must be 
recorded in G.711 A-law/µ-law or G.729 format and loaded into the memory as raw 
data format without any extra embedded information such as header, time stamps or 
other information.

The demo source code included in this release gives the examples of using hard coded 
audio data and loading the audio data from wave format files.

During playback, the application can play any selected data segments by specifying the 
handle, offset and length. This segment information must be supplied with the 
XMSG_PLY_START message. Each message can carry up to 14 segments which can be 
played back in any given order once or repeatedly.

The number of player instances in the DSP solution is configurable at initialization time. 
Each player instance has a dedicated location of the output audio stream where the 
encoded audio data is converted. To play back to an HSS or IP channel, the Network 
Endpoint resource or the Decoder resource has to listen to a player instance by 
connecting its input to the player. For details of audio stream routing, see Figure 12. 

If an application uses the player resource only for playing on-hold music, one player 
instance is enough for the purpose since all the channels can listen to the same player. 
Otherwise each channel may need a dedicated player instance. 

4.7 Audio Mixer

Audio Mixer mixes a number of audio streams to form an audio conference. The Mixer 
resource in the DSP solution is primarily used for three-way call applications. It does 
not have the pre-processing functions that are found in the audio conference resources 
such as active talker selection, and volume balance. Therefore, mixing too many 
parties may results in voice quality problems like background noise built up, 
unbalanced volumes on different parties when the network condition is not good. 

DSP Solution provides four mixer instances. As one mixer instance is required to 
support one conference call, audio mixer component is enhanced to support up to four 
conference calls simultaneously, with up to five parties per conference call. However, 
actual number of Conference calls (mixer instances) and number of parties per 
conference call (TDM + IP terminations) possible may be less than 4x5, due to CPU 
load. For DSP Solution, up to four mixers enabled simultaneously with three parties per 
mixer is validated.

Note: The CPU cycles requirement varies from one speech codec to another. For example, 
running four conference calls with three parties per conference call using the codec 
G.711 on all IP terminations is possible on 533MHz CPU, but not with codec G.729ab. 
The codelet includes demo for four conference calls with three parties per conference 
call. Refer to Codelets Demo Guide document and codelets source code for example to 
configure multiple mixer instances. 

Figure 11 shows how the audio streams are connected when a normal two-way and a 
three-way call are set up simultaneously. We can see during the three-way call there is 
no longer 1:1 association between HSS channels and IP channels and a mechanism of 
dynamically routing the audio streams is required. This will be discussed in the next 
section. Also we may need more IP channels than HSS channels if two parties of the 
three-way call come from IP side.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

35

Intel® Infrastructure DSP Solution

The Mixer has multiple ports (pairs of input and output audio streams). Each port is to 
be connected to the resource (or party) that joins the call. The output of a port is the 
summation of all the inputs except for itself. 

For example, consider three-party mixing:

• First party with input port L1 and output port T1.

— The output of first party on port T1 is sum of data of input ports L2 and L3.

• Second party with input port L2 and output port T2.

— The output of second party on port T2 is sum of data of input ports L1 and L3.

• The third party with input port L3 and output port T3. 

— The output of third party on port T3 is sum of data of input ports L1 and L2.

The Mixer resource is started and stopped by the XMSG_START and XMSG_STOP 
messages. It has the parameters that are used to link its audio input and output to 
other resources. 

Currently, the Mixer operates only in the narrowband mode. The wideband audio data is 
converted to narrowband if a wideband channel is connected to the Mixer. 

4.8 Audio Stream Router

The three-way call is an example that requires the audio streams be routed among the 
resources. Other examples are call transfer and IP tone detection. 

To route the audio streams, we first break the DSP resources along the data path into a 
TDM termination and an IP termination which are connected by the router in between 
as shown in Figure 2.

The TDM termination contains the Network Endpoint resource.

The IP termination contains a set of resources (Decoder, Encoder, Tone Detector, and 
Tone Generator).

The TDM termination has a talk-port (T-Port) that supplies data to the router and a 
listen-port (L-Port) that receives the data from the router. 

Figure 11. Audio Stream Connections in a Three-Way Call

HSS Channel 1 Audio-
Stream
Router

HSS Channel 2 IP Channel 2

IP Channel 3

IP Channel 1

Audio
Mixer

IP
Network



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
36

The IP termination has one T-Port shared by Decoder and Tone Generator and two L-
Ports for Encoder and Tone Detector separately. 

In general, a resource that generates PCM audio data has a T-Port as its output and a 
resource that receives the audio has an L-Port as its input. For example, an Audio 
Player instance has only one T-Port and a Mixer has multiple pairs of T-Ports and L-
Ports. 

The Router applies sampling rate conversion (SRC) automatically if the resources being 
connected are in different modes (wideband or narrowband).

The DSP solution implements a distributed switch method to route the audio streams. 
The Audio Stream Router is not a control entity but a set of streams that can link the T-
Ports and L-Ports. 

All the T-Ports of the resources are assigned the dedicated streams permanently. 

Routing is done by enabling an L-Port of a resource to listen to any streams by setting a 
parameter to the resource. In this way any T-Ports can be linked to any L-Ports. 

Figure 12 shows a full-duplex connection between a TDM termination and an IP 
termination. In this figure, if the L-Port of the Tone Detector listens to the stream of the 
T-Port of the same IP termination instead of the one of TDM termination, then it will 
detect tones coming from the remote IP side.

Each stream is specified by a unique ID number from 0. A null stream is given the ID as 
(-1). Any L-Ports listen to the null stream receive silence.

To make a connection between two resources, you should know what stream IDs are 
assigned to the T-Ports of the resources. Such information is available by calling 
xDspGetResConfig(). The function returns the base stream IDs for the T-Port for 
each type of terminations and resources (the TDM and IP terminations, Player and 
Mixer). 

For example, the base stream ID of the TDM termination means the stream ID 
assigned to the T-Port of the first TDM termination channel. The T-Port stream of n-th 
channel (n=1, 2) is calculated as (base stream + n - 1). The base stream of the Mixer 
means the output stream of the Mixer's first port. The Mixer has 3 to 5 L-Ports that it 
mixes and it has the same numbers of T-Ports where the outputs of the mixes are 
transmitted.

Figure 12. Terminations and Router

Network
Endpoint

Phone
Interface

Dec / TG

Enc

Tone Det

RTP
IP

…

TDM  Termination

Audio-Stream 
Router

TD detects tones from IP side,
if it listens to this stream.

IP  Termination

T Port

L Port

L Port

T Port

L Port



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

37

Intel® Infrastructure DSP Solution

Having the stream ID information for the T-Ports, you can have a resource listen to a 
particular T-Port by setting the L-Port stream parameter of the resource. For example, 
to detect the tone from IP side in the channel 2 of the IP termination, first obtains the 
base stream ID of the IP termination (suppose it is 4), Then the T-Port stream ID of IP 
termination channel 2 is 5 (4 + 2 - 1). Set the XPARMID_TD_LP_STREAM parameter of 
the Tone Detector to 5. 

Network Endpoint and Encoder have their L-Port stream parameters too. 

The XPARMID_MIX_LP_STREAM is such parameter ID of the first port of the mixer. For 
the rest of the ports, parameter IDs increases by 1 sequentially.

Examples of high-level message interfaces that link the terminations and the Mixer are 
also provided using the Message Agent approach.

In some applications, you may want to link two TDM terminations without IP involved 
(also called TDM switch or TDM bypass). 

There are two modes for such connection. In the normal mode - when the 
XPARMID_NET_HSS_BYPASS parameter in Network Endpoint resource is set to 
XPARM_OFF(0) - the echo cancellation and front end gain control are applied to the 
audio path. This achieves a latency of approximately 25 ms and is a bypass at the Intel 
XScale® processor level. 

In the short bypass mode when the parameter is set to XPARM_ON(1), the connection 
is made within the NPE between the corresponding time slots, therefore the latency is 
reduced significantly to approximately less than 2 ms. In this mode, only the gain 
control remains in effect.

The short bypass can only be enabled if both TDM terminations to be linked are in 
narrowband mode or the audio data will be corrupted. To enable short bypass feature, 
initialize the DSP solution using the built-in HSS interface with at least eight active 
timeslots and register the necessary switching functions of the DSP solution patch.

4.9 T.38 Fax

The T.38 Fax serves as the real-time fax gateway, between G3 fax machines and the IP 
network. Unlike the fax bypass mode in which the modulated fax data are directly 
packed in G.711 format and transmitted over RTP packets, the T.38 component 
transfers the demodulated T.30 commands and fax image data over UDP or TCP 
packets. 

T.38 component contains three modules: 

• A fax modem that establishes the T.30 session between the fax gateway and the 
local fax machine.

• T.38 CODEC that encapsulates the demodulated T.30 commands and HDLC data 
together with redundancy or forward error correction, into fax data packets suitable 
for transmission over UDP or TCP protocols.

• Packet Loss Recovery (PLR) that recovers lost packets from the redundancy or 
forward error correction on the receive side

The T.38 component is implemented as a separate entity from the voice resources (the 
Encoder, Decoder, Tone Detector, and Generator). A T.38 session is established by 
sending the XMSG_T38_START message. The T.38 resource returns the 
XMSG_T38_CMPLT message if the session is terminated. The termination reason can be 
retrieved from this message.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
38

The T.38 component is mutually exclusive with voice resource components within the 
same channel during the run-time. It is the user applications' responsibility to stop the 
voice resources and start the T.38 component when switching over from voice mode to 
T.38 fax mode. 

The included DSP codelet source code provides examples of how this can be 
accomplished in the VoIP gateway demonstration.

The  DSP solution uses the same packet format to exchange voice and T.38 packets 
with the user applications. The media type field in the packet header indicates the 
packet types. In the TDM side, the fax modem uses the same PCM stream IDs assigned 
to the Encoder and Decoder with the same instance number to receive or generate the 
modulated fax data.

There are different modes that T.38 can operate in: in UDP or TCP mode, specified by 
the parameter XPARMID_T38_TRANSPORT, with packet redundancy or FEC (Forward 
Error Correction), specified by the parameter XPARMID_T38_FEC.

For TCP mode (currently not supported), the fax payload is transmitted via TCP/IP 
protocol. Packet loss in the network is recovered by retransmission via the TCP/IP 
protocol. 

Encapsulation of the UDP or TCP packets is the responsibility of the user application. In 
UDP mode, the DSP solution emits the formatted UDPTL packet; in TCP mode, it emits 
the raw fax payload. The media type field in the DSP packet header identifies the type 
of packet being transmitted or received.

The XPARMID_T38_RATE_NEG parameter determines whether the rate negotiation is 
performed locally or remotely. Rate negotiation is typically done remotely for UDP 
mode, since the network conditions affect rate selection. Rate negotiation is typically 
done locally for TCP mode (currently not supported). In this case, 
XPARMID_T38_TCF_THRSHLD determines the error level threshold used to locally 
determine the rate.

In UDP mode, T.38 specifies either packet redundancy or FEC for error recovery. For 
packet redundancy, the XPARMID_T38_REDUNDANCY parameter specifies the level of 
redundancy. This is only an indication of the overall level of redundancy. The actual 
redundancy in the payload is also determined by the type of fax payload (for example, 
signaling or image data).  For FEC mode, the XPARMID_T38_REDUNDANCY parameter 
specifies the number of FEC messages per UDPTL packet.

The XPARMID_T38_MODE parameter specifies which variation of the T.38 protocol is to 
be used.  The options are ITU T.38 or China T.38.  In China Telecom mode, the 
XPARMID_T38_DISCONNECT  parameter specifies whether the optional disconnect IP 
message is generated or not.

The XPARM_ID_T38_ELLIPSIS parameter is used to enable support of ellipsis added 
to Internet Fax Protocol in T.38 Corrigendum 1 (2001).  The ellipsis is an extension 
marker in the protocol.  When this extension marker was added in Corrigendum 1 of 
the T.38 recommendation, compatibility with the original T.38 recommendation was 
broken.  At the time of writing most devices support the original version of the protocol 
and some newer devices support the Corrigendum version or are configurable to 
support both.  This parameter should be set ON if it is known that the fax transaction 
will occur with a device that is configured for the Corrigendum to the recommendation.

4.10 Message Agent

The DSP solution exposes the individual media-processing resources and provides a 
basic set of message interface to user applications. This allows the maximal flexibility, 
but may not be convenient to the application development. 



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

39

Intel® Infrastructure DSP Solution

For example, the user application may have a state machine driven by the 
asynchronous events from the call stack and user inputs of the telephone set. For each 
event, the application has to send several control messages to the resource 
components and handle the replies. The large number of messages and their replies 
make the state machine more complicated. You may prefer one comprehensive 
message for each event. Such a message could include all the resource components 
involved.

The Message Agent can be viewed as a macro or scripting facility that allows multiple 
basic messages to be executed by one user message command. By eliminating multiple 
messages being passed between the DSP solution and user application, the associated 
context swaps are removed and operating efficiency gained. By providing a base of 
helpful pre-defined user messages, which can be modified and expanded, the 
integration between user application and the DSP solution can be expedited.

If you are going to replace an existing DSP solution with the DSP solution, you may 
have to modify you applications significantly because of the differences in the 
interfaces, or you may implement a translation layer to convert the interface. To build 
such a layer on top of the DSP solution may introduce extra overhead and inefficiency. 
With the Message Agent, you can embed such translation layer inside the DSP solution 
much more easily and efficiently because the message traffic is greatly reduced.

The Message Agent is a special resource component that does not have any media 
processing functions. To support the user-defined, high-level messages, supply a 
message decoder function registered with the Message Agent. The function 
decomposes the user message into a series of original control messages. The Message 
Agent will directly execute the control to resources based on the decoded message 
sequence. During the procedure, the responses from the resources are redirected to 
another user-supplied message encoder function, which composes the responses into 
one user-defined reply message sent back to the user application by the Message 
Agent. The only responses which are directly the results of the control messages such 
as XMSG_ACK and XMSG_ERROR are redirected. The messages that are the results of 
media data processing like XMSG_EVENT and XMSG_TG_PLAY_CMPLT are still sent to 
the applications as usual.

The Message Agent is enabled if a message decoder function is registered during the 
initialization via the xDspSysInit() function. The message encoder function is optional. 
If not registered, the replies from the resources are always sent to the application as 
usual.

As examples, this release includes a set of high-level messages and the source code of 
message decoder and encoder functions. You can further extend and modify that 
message interface.

5.0 Programming Guide

This section discusses the rules and guidelines that should be followed when building 
user applications on top of the DSP solution.

5.1 Initialization

As the DSP solution is a standalone module or a layer of media processing, it must be 
configured and initialized properly before the application can interact with it. 
Initialization of HSS is done through the API IxHssDriverHssPortInit 
(hss_port_config). Configuration details are provided in the Hss_config structure. 
For more details on this structure, refer to the Intel® Infrastructure DSP Solution 
Version 1.2 API Reference Manual.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
40

The Hss_config structure includes:

• The Signal formats and time slot assignment on the HSS TDM bus are defined by 
the data structures IxHssAccConfigParams and IxHssAccTdmSlotUsage. This 
is given in HSSConfig.h file of the HSS driver.

Depending on the mode, each instance of the Network Endpoint resource must be 
linked to one or four time slots. If more time slots are activated, the data from the 
extra time slots are ignored and the data to those time slots are undetermined. 

The link between the effective time slots and the instances of the Network Endpoint is 
specified by the XDSPChanTdmSlots_t data structure. If not given, all the instance of 
Network Endpoint will be configured to the narrowband mode and the first N time slots 
will be linked to the total N instance of Network Endpoint component sequentially. (For 
more details, see the Intel® Infrastructure DSP Solution Version 1.2 API Reference 
Manual.)

In the current release, the number of active time slots must be at least eight if the low-
latency TDM switching feature is required. (The latency of HSS NPE will be minimized if 
eight or more time slots are enabled).

• The maximum number of instances is eight (except for Mixer, which has only four 
instances). The default number of eight will be used if an invalid number is given. 
For 533-MHz processor, the maximum number of channels that can be supported 
with the CPU occupancy under 50% is eight if only the G.711 coder is used or two if 
any other coders are used. For a 266-MHz processor, the channel density should be 
reduced by half. It is not recommended to have the higher channel density that 
leads to CPU occupancy of above 50%.

• Country code which determines the call-progress tone definitions and some the 
default FSK parameters.

• The base priority for the internal real-time data-processing and control tasks. 

• The callback functions.

With user-supplied configuration information, the initialization follows these steps:

1. Download HSS NPE code and initialize HSS dependents. 

(For more information, refer to the example shown in the demo source code.)

2. Add user-specified tone detection criterion tables to Tone Detector using 
xBuildToneTD().

3. Call xDspSysInit() with the configuration information as described above. An 
assertion occurs if fatal errors happen (for example, if the memory is exhausted).

4. Add user-defined tone definitions to Tone Generator using xBuildToneTG().

5. Use xDspGetResConfig() to retrieve the base stream information assigned to 
the different resource components. Such information is required when routing the 
audio streams between the resources. Also the function returns the actual resource 
configuration that can be different from what a user may have incorrectly specified.

5.2 Programming Model

A VoIP gateway application may contain several modules such as user interface, IP call 
stacks, and the DSP solution. The key functionality of the gateway application is to 
handle the call progress procedure: establishing calls and connecting the audio data 
path between two remote and local parties, then dropping the calls and disconnecting 
the data path accordingly. 



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

41

Intel® Infrastructure DSP Solution

From control point of view, this procedure can be characterized as the interactions 
among the DSP solution, IP call stack, and SLIC driver through asynchronous messages 
and commands. Such control logic is best implemented by a message-driven state 
machine model. The DSP solution's control interface is suitably designed to support this 
programming model.

To use the state machine approach, it is recommended that the user application spawn 
a dedicated task to handle the call-progress procedures. The DSP solution allows you to 
use the DSP solution release output message queue via the xMsgWrite() function.

You can use this function to send external messages (such as SLIC driver events or IP 
call stack messages) back to the user application to allow all message inputs to be 
consolidated. (In Linux*, this can be done in the client driver module). Then the user 
control task is pending on the message queue, using xMsgReceive(), to handle all 
the call progress-related messages from all these modules. 

Figure 13 shows a general approach of such state machine model. In this programming 
model, a call progress scenario is represented by a sequence of states. Each state is 
characterized by:

• The actions it takes 

• The messages it expects

• The next state it goes to

For example, the scenario of accepting a remote call can be represented by the 
following states:

• Idle State - Waiting for call-setup message from IP call stack.

• Ring State - Ringing the local telephone set and waiting for an off-hook event.

• Channel Setup State - Sending control messages to the DSP solution to start 
encoder, decoder, and tone-detector resources and waiting for the 
acknowledgements.

• Connected State - Acknowledging IP call stack that a local channel has been set up. 
Waiting for disconnect message from the call stack or on-hook event from the local 
telephone set.

• Teardown State - Sending control messages to the DSP solution to stop the 
resources and waiting for acknowledgements. Acknowledging IP call stack that the 
channel has been teardown. Going back to Idle State. 

The actual state machine will be more complicated when taking all the possible error 
conditions into account. For instance, timeout message must be handled in Ring State 
if the call is not answered.

The major advantage of such a programming model is high efficiency and performance. 
In Linux, it also helps the DSP solution maintain its real-time behavior. The Gateway 
Demo included in this release is a good example of this programming model.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
42

6.0 OS-Specific Issues

You should understand some OS-specific issues to design the overall software 
appropriately. Since the DSP solution only supports Linux OS, this section only covers 
Linux. 

6.1 Linux*

If target-product cost is a major consideration, Linux will likely be the choice for use 
with the DSP solution. This OS will require some extra development effort and caution 
because:

• The DSP solution in Linux is fully in user mode. The software creates the user mode 
threads shown in Table 3 and Table 4.

You can configure the realtime task (taskPriReal) priority, control task (taskPriCtrl) 
priority and PCM read task (taskPriPCMRead) priority of dspcfg structure of Intel® 
Infrastructure DSP Solution Version 1.2. For better performance, realtime task and PCM 

Figure 13. General State-Machine Approach for Client Applications

Yes No

� Creating task
� Initializing Intel® Infrastructure

DSP Solution
� Initializing state information

Waiting for reply and event
or user-defined message

Updating state 
information

� Handling the reply, event, or message 
according to the current state information

� Handling the error conditions
� Determining the next state

State changes?

� Starting/ initializing a new state
� Sending control message (or to 

SLIC driver and IP call stack that 
will eventually result in a message 
coming in through the message 
queue)



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

43

Intel® Infrastructure DSP Solution

read task should have higher priority than any other tasks. The task thread priority 
level ranges 1 (lowest) to 99 (highest). All tasks are scheduled in Round-Robin with 
Linux* Kernel Scheduler. 

To enforce real-time behavior, it is important that DspCtrlTsk never takes too much 
time in any 10-ms period. Although the DSP solution is designed to avoid the burst 
execution in the control task, it can still be affected by the user applications. 

For the performance and reliability reasons, it is suggested the user applications that 
are non-time-critical such as call-control and call-progress modules be implemented in 
Linux user-mode. The demo code in the DSP solution release provides an example of 
the client driver module.

As the middleware, the primary responsibility of the driver module is to act as a 
transport layer between the DSP solution's control interface and the user application 
and between the packet interface and the IP stack. The secondary responsibility is to 
perform the module initialization, which can be done as part of driver module 
initialization function. Additionally, the driver may also consolidate the messages and 
events from SLIC and other related modules into the same format and through a single 
queue to the user applications.

Table 3. Linux* User Mode DSP Library Threads

Thread Name Priority Description

DspCtrlTsk

IX_DSP_CODELET
_CTRLTASK_PRI 
(Default 
Value=10)

Real-time task. Control thread. Pending on in-bound message 
queue. Triggered by incoming control messages. 

DspRtTsk30

IX_DSP_CODELET
_REALTASK_PRI 
(Default 
Value=15)

Real-time task. Wakes up every 30 ms synchronously with PCM 
data. Executes G.723 CODEC algorithms, fax modem and T.38 
CODEC algorithms. and iLBC CODEC algorithms (for 30-ms frame 
size)

DspRtTsk20

IX_DSP_CODELET
_REALTASK_PRI 
(Default 
Value=15)

Real-time task. Wakes up every 20 ms synchronously with PCM 
data. Executes G.729.1 CODEC algorithms, and iLBC CODEC 
algorithms (for 20-ms frame size)

DspRtTsk10

IX_DSP_CODELET
_REALTASK_PRI 
(Default 
Value=15)

Real-time task. Wakes up every 10 ms synchronously with PCM 
data. Executes all the DSP algorithms supported in the current 
release.

DsrPcmDriverRead

IX_DSP_CODELET
_PCMREAD_TASK
_PRI 
(Default 
Value=15)

Real-time task. Reads PCM data from HSS driver

Table 4. Linux* User Mode DSP Application Threads

Thread Name Priority Description

cbthread Default Value 
= 40 Real-time task. Thread monitors SLIC events.

Socket thread Default Value 
= 20

Real-time task. Four threads created, one for each channel. The threads 
wait for data to be read from the socket associated with the channel. 
Optionally, single thread for multiple sockets can be created instead of 
four threads to perform socket operations. Refer to the Release Notes 
for the procedures to enable single socket thread. 



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
44

The driver can be implemented as an active or passive transport layer. In active mode, 
the driver spawns a dedicated kernel thread pending on the out-bound queue and 
automatically pumps the messages to applications once there is a message in the 
queue. In passive mode, it retrieves the message from the queue once the user 
application requests it. 

The applications should not send a burst of control messages without waiting for the 
replies, or the real-time behavior of the DSP solution may be affected. 

If the user application has to create kernel threads for time-critical data processing, the 
execution of the threads must be predictable and not impact the internal real time 
thread. As a guideline, the total execution time of these other threads should not 
exceed 1 ms in any 10-ms period. The DSP application in Linux* is depicted in 
Figure 14.

7.0 User-Defined Messages

To enable a simpler and more efficient interface, the DSP solution provides a facility for 
you to define custom messages, based on a combination of basic messages.

Figure 14. Intel® Infrastructure DSP Solution Client Driver in Linux*

User Application

Infrastructure DSP Solution 
Library

User Mode

Kernel Mode

HSS NPE

HSS Driver

SLIC

SLIC Driver

Data Plane 
Task

API’s

HSS User API’s
SLIC 
User 
API’s

SLIC
 

AP
I’s

H
SS 

AP
I 

and 
PC

M
 

D
ata

PCM Data

Block 
Read of 

PCM 
Data



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

45

Intel® Infrastructure DSP Solution

7.1 Overview

To enable the user control message facility using the Message Agent, the user 
application needs to register a decoder function and an encoder function with the DSP 
solution via the function xDspSysInit(). The decoder function is called by the DSP 
solution to decode all user control messages. The encoder function is called to handle 
all the replies to the decoder function, eventually encoding a reply message to the user 
message.

User control messages have the same format as the basic control messages, which 
contain a message header defined as:

The resource field in the header should specify XMPR_MA, which directs it to the 
Message Agent resource. 

The instance field must always be 1, and because the field is always 1 for the messages 
sent to and received from the Message Agent, use the transactionId field to track 
the messages associated with the channels. 

The type field in the header specifies type of message. User control messages should 
start with the value XMSG_USRMSG_TYPE_BEGIN - values less than this constant 
represents the basic control messages. 

User-defined messages are delivered in the same way as the DSP solution control 
messages - using the same message queues for input and output, respectively.

The Message Agent calls the registered decoder function when the type is beyond its 
internal range. The user-supplied decoder function is of the format:

The first parameter of the decoder function is the input message pointer, which 
references the control message to be decoded. 

The second parameter is the output message pointer, which references the output of 
the decoder function. The sequenceNo field starts at 1 for the first decoder function 
call, and is incremented each time the decoder function is called. 

The return value of the decoder function indicates whether the decoder function is 
complete with its message sequencing (returns 0); or whether the decoder function 
should continue to be called (returns non-zero). The return value can simply be the 

typedef struct{

UINT32 transactionId;/* used by apps to track the message */

UINT16 instance; /* instance ID (1-0xffff), 0:reserved */

UINT8 resource; /* MPR resource type */

UINT8 reserved; /* reserved for future */ 

UINT16 size; /* total size in bytes */

UINT8 type; /* message type */

UINT8 attribute; /* attribute, reserved for future */ 

} XMsgHdr_t, *XMsgRef_t;

typedef int (*XMsgAgentDec_t)(XMsgRef_t pUsrMsg, 

                 XMsgRef_t pNativeMsg,  int sequenceNo);



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
46

number of messages left to sequence. If there is an error in the decoder process, the 
return value is set to negative. The return value - together with the sequence number - 
are used to drive the decoder function until the entire message sequence required is 
complete.

One useful feature of the Message Agent is the ability to recursively call other user 
control messages (maximum level of recursion is 4). This allows more complex 
functions to be built compactly.

The user encoder function is of the format:

The first parameter of the encoder function is the output message pointer, referencing 
the output of the encoder function. 

The second parameter is the input message pointer, referencing the reply message 
from the resource component involved. 

The Message Agent first calls the encoder function once with sequenceNo set to 
XMSG_MA_ENCODING_INIT (0) before receive the replies. Then the sequenceNo field 
is incremented each time a reply is received. The Message Agent in the DSP solution 
sets this field to XMSG_MA_ENCODING_CMPLT (-1) when the decoding process is 
complete. 

The usrMsgType field informs the encoder of the user message ID, such that specific 
encoder functions may be called accordingly.

The replies to the decoded messages are re-directed to the encoder function, which can 
record the number of replies and any errors that may occur. A final reply message will 
be encoded and sent back to the user application when the message decoding process 
is complete.

Figure 15 depicts how the Message Agent processes user-defined control messages.

typedef void (*XMsgAgentEnc_t)(XMsgRef_t pUsrReply, XMsgRef_t pNativeReply,

                     int sequenceNo, UINT8 usrMsgType);



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

47

Intel® Infrastructure DSP Solution

7.2 Pre-Defined User Messages

This section describes the user messages that have already been implemented as 
examples. They can be further extended or modified by you. These messages form a 
higher-level control interface for the application scenarios like call setup, call transfer 
and three-way call. The control entities of this interface are the terminations which can 
be a TDM or IP terminations or a port of the mixer. The termination is specified by its 
type and channel defined as: 

Figure 15. Decoding User-Defined Messages in the Message Agent

Receive user-defined message

   Allocate memory for decoded message .
   Call user encoder function to initialize.
   Set decoder sequence # = 1 .

  Call user decoded function to obtain the
  decoded message .

If  decoded msg is a 
DSP message?

Repeat
recursively  

  Forward the message to DSP resource .
  Reply from DSP resource redirected to
  user’s encoder function .

If  decoder function 
returns < 0 ?

If  decoder function
returns > 0 ?

Call user encoder function to complete

End

End
with
error

Set decoder
sequence # 

+ 1

N
o

N
o

N
o

Yes

Yes

Yes



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
48

typedef struct{

  UINT8 type;

  UINT8 channel;

} __attribute__ ((packed)) IxDspCodeletTerm;

where channel is the channel number, and type can be:

typedef enum{

  IX_DSP_CODELET_TERM_NULL = 0,  /* null termination, to link to null

        means to disconnect the L-Port */

  IX_DSP_CODELET_TERM_TDM,  /* TDM termination contains one DSP

        dspResource - Network Endpoint which

        has a T-Port and a L-Port */

  IX_DSP_CODELET_TERM_IP,   /* IP termination contains DEC,ENC,

        TG and TD resources. It has one

        T-Port shared by DEC and TG and

        2 L-Ports for ENC and TD. But in

        This API, the 2 L-Ports always

        listen to the same talker */

  IX_DSP_CODELET_TERM_MIXER_PORT, /* Mixer termination has multiple

        T-Ports and L-Ports */

  IX_DSP_CODELET_TERM_EOL   /* End of List */

} IxDspCodeletTermType;

The following message types are defined and the corresponding message decoder and 
encoder functions are implemented:

typedef enum{

  /*------ messages send to Message Agent -------*/

  IX_DSP_CODELET_MSG_LINK = IX_DSP_CODELET_MSG_TYPE_BEGIN,

  IX_DSP_CODELET_MSG_LINK_BREAK,

  IX_DSP_CODELET_MSG_LINK_SWITCH,

  IX_DSP_CODELET_MSG_START_IP,

  IX_DSP_CODELET_MSG_STOP_IP,

  IX_DSP_CODELET_MSG_SETUP_CALL,

  IX_DSP_CODELET_MSG_SET_CALL_PARMS,

  IX_DSP_CODELET_MSG_SETUP_CALLWPARMS,

  IX_DSP_CODELET_MSG_SWITCH_CALL,



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

49

Intel® Infrastructure DSP Solution

  IX_DSP_CODELET_MSG_CREATE_3WCALL,

  IX_DSP_CODELET_MSG_EXIT_3WCALL,

  IX_DSP_CODELET_MSG_TEARDOWN_3WCALL,

  IX_DSP_CODELET_MSG_BACKTO_2WCALL,

  IX_DSP_CODELET_MSG_SET_CLEAR_CHAN,

  IX_DSP_CODELET_MSG_T38_SWITCH,

  IX_DSP_CODELET_MSG_SET_PARMS,

  IX_DSP_CODELET_MSG_END_OF_OUTMSG,

  /*------messages received from Message Agent------*/

  IX_DSP_CODELET_MSG_ACK,

  IX_DSP_CODELET_MSG_LINK_ACK,

  IX_DSP_CODELET_MSG_SETUP_ACK,

  IX_DSP_CODELET_MSG_3W_ACK,

  IX_DSP_CODELET_MSG_t38_ACK,

  IX_DSP_CODELET_MSG_STOP_ACK,

  IX_DSP_CODELET_MSG_END_OF_LIST

} IxDspCodeletMsgType;

7.2.1 Link Message

Type: IX_DSP_CODELET_MSG_LINK 

Direction: Inbound

Description: Connects two specified terminations. Since terminations involve multiple 
resources, this involves multiple basic control messages.

Format:

typedef struct{

  XMsgHdr_t  header;

  IxDspCodeletTerm  term1;

  IxDspCodeletTerm  term2;

} IxDspCodeletMsgLink;

Macro:

#define IX_DSP_CODELET_MAKE_MSGHDR_LINK(pMsg, trans) \

  {\

  XMSG_MA_MAKE_HEADER \

  (  pMsg, \



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
50

  trans, \

  IX_DSP_CODELET_MSG_LINK, \

  sizeof(IxDspCodeletMsgLink) \

  )\

  }

Response: General Acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.2 Link Break Message

Type: IX_DSP_CODELET_MSG_LINK_BREAK

Direction: Inbound

Description: Disconnect two terminations. This connects each termination to null, using 
the IX_DSP_CODELET_MSG_LINK user message.

Format:

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    term1;

    IxDspCodeletTerm    term2;

} IxDspCodeletMsgLinkBreak;

Macro: 

#define IX_DSP_CODELET_MAKE_MSGHDR_LINK_BREAK(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_LINK_BREAK, \

            sizeof(IxDspCodeletMsgLinkBreak) \

        )\

    }

Response: General Acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.3 Link Switch Message

Type: IX_DSP_CODELET_MSG_LINK_SWITCH

Direction: Inbound



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

51

Intel® Infrastructure DSP Solution

Description: Disconnects the termination from one termination and connects to another. 
This connects the term termination to the switchTo termination, and connects the 
switchFrom termination to null. Again, this uses the IX_DSP_CODELET_MSG_LINK 
user message.

Format: 

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    term;

    IxDspCodeletTerm    switchFrom;

    IxDspCodeletTerm    switchTo;

} IxDspCodeletMsgLinkSwitch;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_LINK_SWITCH(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_LINK_SWITCH, \

            sizeof(IxDspCodeletMsgLinkSwitch) \

        )\

    }

Response: General Acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.4 Start IP Message

Type: IX_DSP_CODELET_MSG_START_IP

Direction: Inbound

Description: Starts an IP termination. This involves the basic messages to start the 
Encoder, Decoder, and Tone Detector, respectively, and to stop the Tone Generator.

Format: 

typedef struct{

    XMsgHdr_t   header;

    UINT8       channel;

} IxDspCodeletMsgStartIP;

Macros: 

#define IX_DSP_CODELET_MAKE_MSG_START_IP(pMsg, trans, chanIP) \

    {\



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
52

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_START_IP, \

            sizeof(IxDspCodeletMsgStartIP) \

        )\

        ((IxDspCodeletMsgStartIP *)(pMsg))->channel = (chanIP);\

    }

Response: General Acknowledgement message(IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.5 Stop IP Message

Type: IX_DSP_CODELET_MSG_STOP_IP

Direction: Inbound

Description: Stops an IP termination. This involves the messages to stop the Encoder, 
Decoder, Tone Detector, and Tone Generator, respectively.

Format: 

typedef struct{

    XMsgHdr_t   header;

    UINT8       channel;

} IxDspCodeletMsgStopIP;

Macros: 

#define IX_DSP_CODELET_MAKE_MSG_STOP_IP(pMsg, trans, chanIP) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_STOP_IP, \

            sizeof(IxDspCodeletMsgStopIP) \

        )\

        ((IxDspCodeletMsgStopIP *)(pMsg))->channel = (chanIP);\

    }

Response: Stop Acknowledgement message (IX_DSP_CODELET_MSG_STOP_ACK)

7.2.6 Set Up Call Message 

Type: IX_DSP_CODELET_MSG_SETUP_CALL



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

53

Intel® Infrastructure DSP Solution

Direction: Inbound

Description: Sets up a call. This uses two user messages, 
IX_DSP_CODELET_MSG_LINK to connect an HSS termination to an IP termination, and 
IX_DSP_CODELET_MSG_START_IP to start the IP termination.

Format: 

typedef struct{

    XMsgHdr_t   header;

    UINT8       channelIP;

    UINT8       channelTDM;

} IxDspCodeletMsgSetupCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSG_SETUP_CALL(pMsg, trans, chanIP, chanTDM) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SETUP_CALL, \

            sizeof(IxDspCodeletMsgSetupCall) \

        )\

        ((IxDspCodeletMsgSetupCall *)(pMsg))->channelIP = (chanIP);\

        ((IxDspCodeletMsgSetupCall *)(pMsg))->channelTDM = (chanTDM);\

    }

Response: General acknowledgement message(IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.7 Set Call Parameters Message

Type: IX_DSP_CODELET_MSG_SET_CALL_PARMS

Direction: Inbound

Description: Sets parameters of a call. These parameters are likely affected by the 
results of negotiation between the call stacks and may change call by call. The message 
involves four basic messages to set the parameters for the Encoder, Decoder, Tone 
Detector, and Tone Generator of an IP termination.

Format: 

typedef struct{

    XMsgHdr_t               header;

    IxDspCodeletCallParms   parms;

    UINT8                   channelIP;



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
54

}IxDspCodeletSetCallParms;

where IxDspCodeletCallParms is defined as:

typedef struct{

    UINT16  decAutoSwitch;

    UINT8   decType;

    UINT8   encType;

    UINT8   frmsPerPkt;

    UINT8   vad;

    UINT8   rfc2833;

    UINT8   rfc2833pyldType;

    UINT8   toneClamp;

} IxDspCodeletCallParms;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_SET_CALL_PARMS(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SET_CALL_PARMS, \

            sizeof(IxDspCodeletSetCallParms) \

        )\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_ACK)

7.2.8 Set Up Call with Parameters Message

Type: IX_DSP_CODELET_MSG_SETUP_CALLWPARMS

Direction: Inbound

Description: Set up a call with parameters. This involves two user messages, 
IX_DSP_CODELET_MSG_SET_CALL_PARMS to set up the call parameters, and 
IX_DSP_CODELET_MSG_SETUP_CALL to set up the call.

Format: 

typedef struct{

    XMsgHdr_t               header;

    IxDspCodeletCallParms   parms;

    UINT8                   channelIP;



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

55

Intel® Infrastructure DSP Solution

    UINT8                   channelTDM;

} IxDspCodeletMsgSetupCallwParms;

where IxDspCodeletCallParms is defined as:

typedef struct{

    UINT16  decAutoSwitch;

    UINT8   decType;

    UINT8   encType;

    UINT8   frmsPerPkt;

    UINT8   vad;

    UINT8   rfc2833;

    UINT8   rfc2833pyldType;

    UINT8   toneClamp;

} IxDspCodeletCallParms;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_SETUP_CALLWPARMS(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SETUP_CALLWPARMS, \

            sizeof(IxDspCodeletMsgSetupCallwParms) \

        )\

    }

Response: General acknowledgement message(IX_DSP_CODELET_MSG_SETUP_ACK)

7.2.9 Switch Call Message

Type: IX_DSP_CODELET_MSG_SWITCH_CALL

Direction: Inbound

Description: Switches a call. This involves two user messages, 
IX_DSP_CODELET_MSG_LINK_SWITCH to switch an HSS termination to another IP 
termination, and IX_DSP_CODELET_MSG_SETUP_CALL to set up the call.

Format: 

typedef struct{

    XMsgHdr_t   header;

    UINT8       channelTDM;



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
56

    UINT8       ipChanOnHold;

    UINT8       ipChanNewCall;

} IxDspCodeletMsgSwitchCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSG_SWITCH_CALL(pMsg, trans, chTDM, chHld, chNew) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SWITCH_CALL, \

            sizeof(IxDspCodeletMsgSwitchCall) \

        )\

        ((IxDspCodeletMsgSwitchCall *)(pMsg))->channelTDM = (chTDM);\

        ((IxDspCodeletMsgSwitchCall *)(pMsg))->ipChanOnHold = (chHld);\

        ((IxDspCodeletMsgSwitchCall *)(pMsg))->ipChanNewCall = (chNew);\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_LINK_ACK)

7.2.10 Create Three-Way Call Message

Type: IX_DSP_CODELET_MSG_CREATE_3WCALL

Direction: Inbound

Description: Sets up a three-way call. This involves using user message 
IX_DSP_CODELET_MSG_LINK three times to connect each of the three parties in the 
three-way call to the mixer. Then a basic message is used to start the mixer resource.

Format: 

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    parties[3];

} IxDspCodeletMsgCreate3wCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_CREATE_3WCALL(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

57

Intel® Infrastructure DSP Solution

            IX_DSP_CODELET_MSG_CREATE_3WCALL, \

            sizeof(IxDspCodeletMsgCreate3wCall) \

        )\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK).

7.2.11 Exit Three-Way Call Message

Type: IX_DSP_CODELET_MSG_EXIT_3WCALL

Direction: Inbound

Description: Exits a three-way call. This is the same as in 
IX_DSP_CODELET_MSG_CREATE_3WCALL, except the 
IX_DSP_CODELET_MSG_LINK_BREAK is used instead. Then a basic message is used to 
stop the mixer resource.

Format: 

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    parties[3];

} IxDspCodeletMsgExit3wCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_EXIT_3WCALL(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_EXIT_3WCALL, \

            sizeof(IxDspCodeletMsgExit3wCall) \

        )\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK)

7.2.12 Teardown Three-Way Call Message

Type: IX_DSP_CODELET_MSG_TEARDOWN_3WCALL

Direction: Inbound

Description: Teardown a three-way call. This involves first using the user message 
IX_DSP_CODELET_MSG_EXIT_3WCALL to exit the three-way call. Then the user 
message IX_DSP_CODELET_MSG_STOP_IP is used to stop any IP channels that have 
been connected.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
58

Format: 

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    parties[3];

} IxDspCodeletMsgTeardown3wCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_TEARDOWN_3WCALL(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_TEARDOWN_3WCALL, \

            sizeof(IxDspCodeletMsgTeardown3wCall) \

        )\

    }

Response: Stop acknowledgement message (IX_DSP_CODELET_MSG_STOP_ACK)

7.2.13 Back to Two-Way Call Message

Type: IX_DSP_CODELET_MSG_BACKTO_2WCALL

Direction: Inbound

Description: Changes a three-way call to a two-way call. It involves using the user 
message IX_DSP_CODELET_MSG_EXIT_3WCALL to exit the three-way call. Then the 
user message IX_DSP_CODELET_MSG_LINK is used to create the two-way call. Then 
the user message IX_DSP_CODELET_MSG_STOP_IP is used to stop the IP termination 
if the disconnected party is one.

Format: 

typedef struct{

    XMsgHdr_t           header;

    IxDspCodeletTerm    party1;

    IxDspCodeletTerm    party2;

    IxDspCodeletTerm    partyToDrop;

} IxDspCodeletMsgBackto2wCall;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_BACKTO_2WCALL(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

59

Intel® Infrastructure DSP Solution

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_BACKTO_2WCALL, \

            sizeof(IxDspCodeletMsgBackto2wCall) \

        )\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_3W_ACK).

7.2.14 Set Clear Channel Message

Type: IX_DSP_CODELET_MSG_SET_CLEAR_CHAN

Direction: Inbound

Description: Sets a channel to clear channel. This involves five basic messages to set 
the parameters of the Encoder, Decoder, Tone Generator, Tone Detector, and Network 
resources, respectively.

Format: 

typedef struct{

    XMsgHdr_t   header;

    UINT8       channelIP;

    UINT8       channelTDM;

    UINT8       codeType;

} IxDspCodeletMsgSetClearChan;

Macros: 

#define IX_DSP_CODELET_MAKE_MSG_SET_CLEAR_CHAN(pMsg, trans, chanIP, ChanTDM, code) 
\

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SET_CLEAR_CHAN, \

            sizeof(IxDspCodeletMsgSetClearChan) \

        )\

        ((IxDspCodeletMsgSetClearChan *)(pMsg))->channelIP = chanIP; \

        ((IxDspCodeletMsgSetClearChan *)(pMsg))->channelTDM = ChanTDM; \

        ((IxDspCodeletMsgSetClearChan *)(pMsg))->codeType = code; \

    }



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
60

Response: General acknowledgement message (IX_DSP_CODELET_MSG_ACK)

7.2.15 T.38 Switchover Message

• Type : IX_DSP_CODELET_MSG_T38_SWITCH

• Direction : Inbound

• Description : Switches a channel between voice and T.38 fax modes

• Format : 
  typedef struct{
  XMsgHdr_t     header;
  UINT8         channelIP;
  UINT8         channelTDM;
  UINT8         mode;           /* mode to switch, fax or voice */
  UINT8         tone;           /* Tone id that triggered switch */
  }IxDspCodeletMsgT38Switch;

• Macros :
#define IX_DSP_CODELET_MAKE_MSG_T38_SWITCH(pMsg, trans,
chanIP,ChanTDM,md, toneId) \
{\
        XMSG_MA_MAKE_HEADER \
        (   pMsg, \
            trans, \
            IX_DSP_CODELET_MSG_T38_SWITCH, \
            sizeof(IxDspCodeletMsgT38Switch) \
        )\
        ((IxDspCodeletMsgT38Switch *)(pMsg))->channelIP = chanIP; \
        ((IxDspCodeletMsgT38Switch *)(pMsg))->channelTDM = ChanTDM; \
        ((IxDspCodeletMsgT38Switch *)pMsg)->mode = md;\
        ((IxDspCodeletMsgT38Switch *)pMsg)->tone = toneid;\
}

• Response:
T.38 acknowledgement message (IX_DSP_CODELET_MSG_T38_ACK)

7.2.16 Set Parameters Message

Type: IX_DSP_CODELET_MSG_SET_PARMS

Direction: Inbound

Description: Sets parameters. It sends basic messages to set the parameters from an 
input list across the different resource components involved.

Format: 

typedef struct{

    XMsgHdr_t     header;

    UINT16        numParms;

    IxDspCodeletParm parms[IX_DSP_CODELET_MAX_PARMS];

} IxDspCodeletMsgSetParms;

where IxDspCodeletParm is defined as:

typedef struct{

    UINT16  parmID;



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

61

Intel® Infrastructure DSP Solution

    INT16   value;

    UINT8   dspResource;

    UINT8   dspResInstance;

} __attribute__ ((packed)) IxDspCodeletParm;

Macros: 

#define IX_DSP_CODELET_MAKE_MSGHDR_SET_PARMS(pMsg, trans) \

    {\

        XMSG_MA_MAKE_HEADER \

        (   pMsg, \

            trans, \

            IX_DSP_CODELET_MSG_SET_PARMS, \

            sizeof(IxDspCodeletMsgSetParms) \

        )\

    }

Response: General acknowledgement message (IX_DSP_CODELET_MSG_ACK).

7.3 Pre-Defined User-Response Messages

7.3.1 Acknowledge Message

There are three Acknowledge messages that are of the same format, but correspond to 
different control messages.

Type: IX_DSP_CODELET_MSG_ACK, IX_DSP_CODELET_MSG_LINK_ACK, 
IX_DSP_CODELET_MSG_SETUP_ACK and IX_DSP_CODELET_MSG_T38_ACK.

Direction: Outbound

Description: Acknowledge messages to user control messages.

Format: 

typedef struct{

    XMsgHdr_t           header;

    INT16               numDspReplies;

    INT16               numErrors;

    IxDspCodeletError   error[IX_DSP_CODELET_MAX_ERR_REPLY];

} IxDspCodeletMsgAck,

IxDspCodeletMsgLinkAck,

IxDspCodeletMsgSetupAck,

IxDspCodeletMsgT38Ack;



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
62

where IxDspCodeletError is defined as:

typedef struct{

    UINT32  errData;

    UINT16  errCode;

    UINT8   dspResource;

    UINT8   dspResInstance;

} IxDspCodeletError;

7.3.2 Stop Acknowledge Message 

Type: IX_DSP_CODELET_MSG_STOP_ACK

Direction: Outbound

Description: Stops acknowledge message to user stop messages.

Format: 

typedef struct{

    XMsgHdr_t             header;

    INT16                 numDspReplies;

    INT16                 numErrors;

    IxDspCodeletError     error[IX_DSP_CODELET_MAX_ERR_REPLY];

    INT16                 numStopAck;

    IxDspCodeletStopCmplt stopAck[IX_DSP_CODELET_MAX_STOP_CMPLT];

} IxDspCodeletMsgStopAck;

where IxDspCodeletError is defined above and IxDspCodeletStopCmplt is 
defined as:

typedef struct{

    UINT32  totalFrames;

    UINT8   dspResource;

    UINT8   dspResInstance;

} IxDspCodeletStopCmplt;

8.0 Application Examples

8.1 IP Interface

The DSP solution uses two interface functions to transfer encoded audio packets to and 
from the IP interface. These audio packets are transferred on the IP network as RTP 
(Real-time Transport Protocol) packets. RTP packets are UDP (User Datagram Protocol) 



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

63

Intel® Infrastructure DSP Solution

packets with a 12-byte RTP header at the beginning of the UDP payload. UDP packets 
are suitable for transmitting real-time media data since they are low on overhead and 
thus provide speedy delivery, though packet delivery is not guaranteed.

The RTP packet streams must be extracted from the overall incoming IP traffic in the 
ingress direction, and merged to outgoing IP traffic in the egress direction. One way to 
do this is to examine the IP packets in the Ethernet driver. Incoming RTP packets are 
routed to the DSP solution, while other IP packets are sent to the user's IP stack. 
Another way is to route all IP traffic to the user application from the Ethernet driver. 
Then use standard interfaces, such as sockets, to route the appropriate traffic to the 
respective parties.

The advantage of the second approach is that socket functions are already provided by 
the Linux operating system. The EthAcc interface of the DSP solution is integrated with 
the Ethernet driver and the user application developers need not worry about this 
service. The user application is only required to perform initialization and then 
exchange control messages and data packets between the DSP solution and the 
application. Because an application can open multiple sockets as needed, the resource 
in the DSP solution can be shared by multiple clients.

A typical VoIP application using sockets will consist of a few tasks that handle either the 
data packets or the control messages. Figure 16 shows the possible implementation in 
Linux. 

The application may choose to send and receive packets through sockets with a single 
port. A channel ID can be embedded in the package so that the package can be passed 
to the corresponding the DSP solution channel based on the ID number. Alternatively, 
the application may choose to map the socket port number with the DSP solution 
channel.



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
64

8.2 Caller-ID Generator

The FSK modulator provided in the DSP solution is designed primarily to allow user 
applications to implement the caller-ID generator. 

Note: The caller-ID generation is a function of the user application as it involves direct 
interaction with the specific SLIC interface being used.

The caller ID specifications are country-specific and some of them can be found in the 
documents of Bellcore* 202 for the United States, Technical Specification YDN 069-
1977 for China, and the NTT Technical Reference - Telephone Interfaces, Edition 5 for 
Japan. 

In this release, the demo source codes are included to show how to implement U.S., 
China, and Japan caller-ID generators on the evaluation platform using the FSK feature 
according to these specifications.

To implement caller-ID generation, the user's applications are responsible to provide 
the following functions in addition to FSK modulator:

• Generate the complete caller ID data to be transmitted by the FSK modem. The 
data must be represented in octet (byte) without mark, start, and stop bits. The 
demo code includes useful utilities that can build the caller ID data format from the 
information to be displayed and add parity check bits, CRC octets, or check sum if 
necessary.

Figure 16. Intel® Infrastructure DSP Solution Application in Linux*

Infrastructure DSP Solution 
Application

Infrastructure DSP Solution 
Library

User Mode

Kernel Mode

HSS NPE

HSS Driver

SLIC

SLIC Driver

Data Plane 
Task

AP
I’s

HSS User API’s
SLIC 
User 
API’s

S
LIC

 
AP

I’s

H
SS

 
AP

I 
and 
P

C
M

 
data

PCM Data

Block 
Read of 

PCM 
Data

Socket

Recvfrom()

Sendto()

IP Stack

MII/ Phy

EthAcc

Ethernet 
Driver



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

65

Intel® Infrastructure DSP Solution

• Control the SLIC device to generate the signals such as polarity reverse, short ring 
(CRA), and normal ring as required by the caller-ID specifications

• Detect the loop connection/disconnection (or off-hook/on-hook status) for Japan 
caller ID. SLIC driver may report such events through the outbound message 
queue using the complementary function of hook-event detection.

• Provide timer service using OS services, based on hardware or software resources. 
The built-in complementary timer service function in the NET component in the DSP 
solution can be used for this purpose. The timer events can be reported through 
the outbound message queue. 

• Implement the state machine that follows the signal flow diagram of the caller ID 
as described in NTT* specifications. The data ID data as we discussed above are 
transmitted using the FSK modem function in the proper state. The demo code 
gives an example of such state machine.

Most of other country-specific caller-ID generators can be implemented similarly. Some 
caller-ID specifications, like Japan, require the FSK data to be transmitted in off-hook 
state, while others transmit the data in on-hook state. The procedure of on-hook 
transmission is simpler because the interactions between SLIC device and the caller-ID 
receiver are no longer necessary.

§ §



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
66

Appendix A : Procedure to Add Intel-Provided DSP
Plug-ins

This section gives the procedure to add and build Intel-provided plug-ins.

A.1 Directory Structure

The Intel® Infrastructure DSP Solution package consists of the following directory 
structures.

The plug-in folder contains the plug-in configuration files.

A.2 Edit PlugInConfig.c

Edit IDS/plugin/PlugInConfig.c as below:

PlugInConfig.c

#include "PlugInConfig.h" /*The global PlugInList*/

PLUG_IN_LIST_BEGIN

/********Don't edit or modify above this line********/

/*Add plug-in entries below */

include

codelets

lib

plugin

drivers

MakeFile

IXP
2.6

Codec

Foundation
Libdsp.a,
 liblec.a, 
libosal.a

Libippscs2.a, 
libippss2.a,
libg722.a, l
ibg723 .1.a, 
libg726 .a, 
libg729i.a,

Libg729.1.a,
libilbc .a

Component Description

PlugInConfig.h This is mainly used to define all plug-ins header files.

PlugInConfig.c
Configures the CODECs/EC plug-ins. Adds entry for 
either CODEC or EC (in any order) plug-ins in the 
plug-in list.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

67

Intel® Infrastructure DSP Solution

USCI_CODEC_PLUG_IN (USC_G722SB_Fxns,XCODER_TYPE_G722,0)

USCI_CODEC_PLUG_IN(USC_G729A_Fxns,XCODER_TYPE_G729A,0)

USCI_CODEC_PLUG_IN(USC_G726_Fxns,XCODER_TYPE_G726_40,0)

USCI_CODEC_PLUG_IN(USC_G726_Fxns,XCODER_TYPE_G726_32,0) 

USCI_CODEC_PLUG_IN(USC_G726_Fxns,XCODER_TYPE_G726_24,0)

USCI_CODEC_PLUG_IN(USC_G726_Fxns,XCODER_TYPE_G726_16,0)  

USCI_CODEC_PLUG_IN(USC_G723_Fxns,XCODER_TYPE_G723,0)

USCI_CODEC_PLUG_IN(USC_G7291_Fxns,XCODER_TYPE_G729_1,0)

USCI_CODEC_PLUG_IN(USC_ILBC_Fxns,XCODER_TYPE_ILBC_30MS,0)

USCI_CODEC_PLUG_IN(USC_ILBC_Fxns,XCODER_TYPE_ILBC_20MS,0)

USCI_FAX_PLUG_IN(USC_T38INT_Fxns,XFAX_TYPE_T38,0)

/*Echo cancellor plug_ins*/ 

USCI_EC_PLUG_IN(USC_LECINT_Fxns,XEC_TYPE_LINE_EC,0)  

/********Don't edit or modify beyond this line********/ 

PLUG_IN_LIST_END

A.3 Examples

A.3.1 Case 1

To plug in only G726, rate-40Kbps, select: 

USCI_CODEC_PLUG_IN (USC_G726_Fxns,XCODER_TYPE_G726_40,0) and 
comment all other lines between the lines PLUG_IN_LIST_BEGIN and 
PLUG_IN_LIST_END. 

A.3.2 Case 2

To select line echo canceller, select: 

USCI_EC_PLUG_IN (USC_LECINT_Fxns,XEC_TYPE_LINE_EC,0) and comment all 
other lines between the lines PLUG_IN_LIST_BEGIN and PLUG_IN_LIST_END.

A.3.3 Case 3

To select "G726, rate-40Kbps" and "line echo canceller", select the following two lines:

USCI_CODEC_PLUG_IN(USC_G726_Fxns,XCODER_TYPE_G726_40,0)

USCI_EC_PLUG_IN (USC_LECINT_Fxns,XEC_TYPE_LINE_EC,0)

A.4 Edit PlugInConfig.h

Edit the IDS/plugin/PlugInConfig.h as below:

PlugInConfig.h



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
68

#ifndef __PLUGINCONFIG_H__

#define __PLUGINCONFIG_H__

#include "PlugInDefs.h"

DECLARE_PLUG_IN_LIST

/*Don't edit or modify above this line*/

/*Add Plug-in Header file below*/

#include "g729usc.h" 

#include "g723usc.h"

#include "g726usc.h"

#include "g722usc.h"

#include “g729_1usc.h”

#include “iLBCusc.h”

#include “t38interface.h”

#include "lecinterface.h" /*Line echo cancellor*/

/*Don't edit or modify beyond this line*/

#endif /*__PLUGINCONFIG_H__*/

A.5 Examples

A.5.1 Case 1

To plug-in only G726, rate-40Kbps, select: 

#include "g726usc.h" and comment all other lines between the lines 
DECLARE_PLUG_IN_LIST and #endif

A.5.2 Case 2

To select line echo canceller, select: 

#include "lecinterface.h"  and comment all other lines between the lines 
DCLARE_PLUG_IN_LIST and #endif

A.5.3 Case 3

To select G726, rate-40Kbps and line echo canceller, select the following two lines 

#include "g726usc.h" 

#include "lecinterface.h"

and comment all other lines between the lines DCLARE_PLUG_IN_LIST and #endif

A.6 Building Plug-in Module

Build DSP plug-in module by using the command make plug. This builds the plug-in.



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

69

Intel® Infrastructure DSP Solution

cd <workdir>/IDS

make plug

Appendix B : Adding Third Party Plug-ins

This section gives the procedure to plug-in a third party/external plug-in into the DSP 
solution. It also gives the procedure to unplug the plugged-in component. 

Note: The third party plug-in codecs or external plug-in codecs must be the same codec type 
as the supported Intel-provided codec type. 

B.1 Procedure to Add and Build Third Party Plug-ins

Copy the plug-in, for example, libxyz.a to the location <Installed dir>/IDS/
lib/IXP/<kernel version>/Codec

Modify the plug-in configuration file PlugInConfig.c to hook the customer plug-in 
into DSP solution as explained in Appendix A.

Modify the Make file to link the plug-ins, For example, for plugging into the demo 
codelet application, modify the file <Installed dir>/IDS/codelets/dspApp/
Makefile as shown in Figure 17. In case of plugging into customer applications, link 
the plug-in file libxyz.a in the application's make file in a similar way.

Build PlugInConfig.c to generate file libPlug*.a using <Installed dir>/IDS/
plugin/Makefile as explained in Appendix A.4.

Build demo codelet/customer application.

B.2 Procedure to Access Plug-in Parameters

Two APIs are available to access plug-in parameters:
XStatus_t xDspPlugInParmRead(UINT8 res, UINT16 inst,UINT16 
algType, UINT16 parmId, UINT32 *pParmVal);
XStatus_t xDspPlugInParmWrite(UINT8 res, UINT16 inst,UINT16 
algType, UINT16 parmId, UINT32 ParmVal);

This section describes how to use parameter IDs (paramID) for these APIs.

For example, Echo Canceller (EC) is plugged in as a third party component that 
supports some additional custom parameters, say paramX and paramY.

The following are USCI defined parameters:

Figure 17. Snap-shot of Demo Codelet Make File



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
70

/* USC echo canceller modes */

typedef struct {

   USC_AdaptType adapt;      /* 0 - disable adaptation, 1 - enable full 
adaptation, 2 - enable lite adaptation  */

   int zeroCoeff;  /* 0 - no zero coeffs of filters, 1 - zero coeffs of 
filters  */

   int cng;        /* 0 - disable CNG, 1 - enable CNG */

   int nlp;        /* 0 - disable NLP, 1 or 2 - enable different NLP types 
*/

   int td;         /* 0 - disable ToneDisabler, 1 - enable ToneDisabler */

   int ah;         /* 0 - disable anti-howling,  1-spectra-based HD, 2- 
energy-based HD */

}USC_EC_Modes;

Here the USCI parameter index is a zero-based index from the structure member 
adapt till the member freq_shift in the USC_EC_Modes, as shown above.

This implies USCI parameter ID for all members, as shown below:

To support additional custom parameters, say ParamX and ParamY, the 
implementation of USC_EC_Modes structure is as follows:

/* USC echo canceller modes */

typedef struct {

/* 0 - disable adaptation, 1 - enable full adaptation, 2 - enable lite adaptation  
*/

   USC_AdaptType adapt;

   int      zeroCoeff;  /* 0 - no zero coeffs of filters,

                            1 - zero coeffs of filters  */

   int      nlp;       /* 0 - disable NLP, 1 - enable NLP */

   int      cng;        /* 0 - disable CNG, 1 - enable CNG */

   int      td;         /* 0 - disable ToneDisabler,

                            1 - enable ToneDisabler */

   int      ah;          /* 0 - disable anti-howling,

USCI Parameter ID USC_EC_Modes Member

0 adapt

1 zeroCoeff

cng

2 nlp

5 td

6 ah



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

71

Intel® Infrastructure DSP Solution

                            1-spectra-based HD, 2- energy-based HD */

   int      paramX;

   int      paramY;

}USC_EC_Modes;

Note: It is mandatory to add custom parameters at the end, as shown above. 

The USCI ID for the custom parameter is as shown below.

Applications can read/write the custom parameters paramX and paramY with the 
Parameter ID as 9 and 10.

B.3 Procedure to Un-Plug Third Party Plug-ins

Remove or comment out the plug-in entry in file PlugInConfig.c. An example is 
illustrated in Figure 18.

USCI Parameter ID USC_EC_Modes Member

0 adapt

1 zeroCoeff

cng

2 nlp

5 td

6 ah

9 paramX

10 paramY

Figure 18. Snap-shot of PlugInConfig.c file Showing Changes Needed for Unplugging a
Third Party Plug-in



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
72

Remove the plug-in entry in the make file that is used for building the application. 
Figure 19 shows an example to remove entry in codelet demo make file. 

Note: Strikethrough font in the figure illustrates that the text should be deleted.

Rebuild PlugInConfig.c to generate file libPlug*.a using <Installed dir>/
IDS/plugin/Makefile as explained in Appendix A.4.

Rebuild and run the application or codelet demo application to reflect the unplug 
changes.

Note:

— At present the DSP solution supports only CODECs and echo canceller plug-ins.

— To be pluggable, the CODECs and echo canceller should be USCI compliant.

— DSP solution supports only 10ms, 30ms linear PCM samples for CODECs and 
8ms and 10ms frame sizes.

— Plug-ins can only be statically plugged in. They cannot be plugged in at 
runtime. 

Appendix C : Socket Interface

The user application uses an IP address-based call setup procedure by using the socket 
configuration menu. You can specify the destination IP address together with the calling 
channel and called channel information. The ixDspCodeletSocketChanConfig 
routine maps the source and destination channel numbers to IP address/UDP port 
combination, thereby providing the addressing information for the socket interface. 

ixDspCodeletSocketCreate routine creates a pair of sockets per channel for 
transmit and receive operation. In the Ingress path, packets are received on the Rx 
sockets associated with the channel and are passed on to the DSP via the call to 
xPacketReceive function. On the Egress path, the ixDspCodeletRtpSocketSend 
is the callback routine that is registered by the application and called by the DSP 
solution to deliver packets to the network stack. This routine uses the addressing 
information to transmit packets on the network via the IP stack.

ixDspCodelet_RTP_Sendto() and ixDspCodelet_RTP_Recvfrom() are used in 
the egress and ingress paths respectively for RTP processing and SRTP encrypt/decrypt 
functions from the srtp library. Figure 20 illustrates this.

Figure 19. Example to Remove a Plug-in in Codelet Demo Make File



Intel®Infrastructure DSP Solution Version 1.2
November 2007 Programmer’s Guide

73

Intel® Infrastructure DSP Solution

 

§ §

Figure 20. Socket Interface

UDP Transport

Linux RTOS

IP

Stack

User 
Space

Kernel
Space

IXP400 Linux 
Ethernet 

Device Driver

ethAcc 
Component

Tx
Socket

Rx
Socket

Infrastructure 
DSP Solution

Infrastructure DSP Solution 
Codelet



Intel® Infrastructure DSP Solution

Intel®Infrastructure DSP Solution Version 1.2
Programmer’s Guide November 2007
74


	1.0 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Related Documents
	1.4 Terminology
	1.5 General

	2.0 Architectural Overview
	3.0 Intel® Infrastructure DSP Solution Run-Time Interfaces
	3.1 Control Interface
	3.2 PCM Data Interface
	3.3 Packet Interface

	4.0 Components, Features, and Parameters
	4.1 Network Endpoint
	4.2 Encoder
	4.3 Decoder
	4.4 Tone Generator
	4.5 Tone Detector
	4.6 Audio Player
	4.7 Audio Mixer
	4.8 Audio Stream Router
	4.9 T.38 Fax
	4.10 Message Agent

	5.0 Programming Guide
	5.1 Initialization
	5.2 Programming Model

	6.0 OS-Specific Issues
	6.1 Linux*

	7.0 User-Defined Messages
	7.1 Overview
	7.2 Pre-Defined User Messages
	7.2.1 Link Message
	7.2.2 Link Break Message
	7.2.3 Link Switch Message
	7.2.4 Start IP Message
	7.2.5 Stop IP Message
	7.2.6 Set Up Call Message
	7.2.7 Set Call Parameters Message
	7.2.8 Set Up Call with Parameters Message
	7.2.9 Switch Call Message
	7.2.10 Create Three-Way Call Message
	7.2.11 Exit Three-Way Call Message
	7.2.12 Teardown Three-Way Call Message
	7.2.13 Back to Two-Way Call Message
	7.2.14 Set Clear Channel Message
	7.2.15 T.38 Switchover Message
	7.2.16 Set Parameters Message

	7.3 Pre-Defined User-Response Messages
	7.3.1 Acknowledge Message
	7.3.2 Stop Acknowledge Message


	8.0 Application Examples
	8.1 IP Interface
	8.2 Caller-ID Generator


