

Intel® Infrastructure DSP
Solution Version 1.1 Migration
Guide:
Migration from Intel® IXP400
Digital Signal Processing (DSP)
Software Version 2.6.2

Application Note

August 2007

Intel® Infrastructure DSP Solution

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights that relate to the presented subject matter. The furnishing of documents and other materials and
information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks,
copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life-saving, life-sustaining, critical control or safety systems, or in
nuclear-facility applications. Intel may make changes to specifications and product descriptions at any time, without
notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The Intel® Infrastructure DSP Solution software may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG
CODECs, or MPEG enabled platforms may require licenses from various entities, including Intel Corporation.

This Application Note and the software described in it are furnished under license and may only be used or copied in
accordance with the terms of the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation
assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software
that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel logo, and Intel XScale are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2007

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
2

http://www.intel.com/

Intel® Infrastructure DSP Solution

Contents

1 Introduction ...5
1.1 Scope ...5
1.2 Audience...5
1.3 Terminology ..6

2 Architecture Comparison ..7
2.1 Directory Structure Comparison..10
2.2 Build Process and Makefile...11

3 Linux User Space and Kernel Space ...12
3.1 Intel® IXP400 DSP Software Version 2.6.2 Running in Kernel Space............12
3.2 Intel® Infrastructure DSP Solution v1.1 Running in User Space13

4 Device Drivers..16
4.1 PCM Data Interface and HSS Device Driver ..16

4.1.1 HSS Device Driver in Intel® Infrastructure DSP Solution Version 1.1..16
4.1.2 HSS Device Usage in Intel® IXP400 DSP Software Version 2.6.217

4.2 SLIC Device Driver ...18
5 IP Termination..20

Figures

Figure 1. Architecture of Intel® Infrastructure DSP Solution Version 1.18
Figure 2. Architecture of Intel® IXP400 DSP Software Version 2.6.2.........................9
Figure 3. Intel® Infrastructure DSP Solution Version 1.1 directory structure............10
Figure 4. Intel® IXP400 DSP Software Version 2.6.2 directory structure10
Figure 5. Intel® Infrastructure DSP Solution Version 1.1 Application in Linux13
Figure 6. Intel® IXP400 DSP Software Version 2.6.2 Application in Linux14
Figure 7. Intel® Infrastructure DSP Solution Version 1.1 pSysConfig Structure15
Figure 8. Intel® IXP400 DSP Software Version 2.6.2 pSysConfig Structure..............15

Tables

Table 1. Architecture Comparison..7
Table 2. Comparison of PCM Data Interface and HSS driver...................................16
Table 3. Comparison of SLIC driver..18
Table 4. Comparison of IP Termination implementation in codelets.........................20

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 3

Intel® Infrastructure DSP Solution

Revision History

Revision
Number

Description Revision Date

001 Initial release. July 2007

002 Updated for migration to Intel® Infrastructure DSP Solution v1.1
release

August 2007

§

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
4

Intel® Infrastructure DSP Solution

1 Introduction

Intel® Infrastructure DSP Solution Version 1.1 is a software module that provides
basic voice and signal processing functionality for Voice-over-Internet Protocol (VoIP)
on the Intel® IXP4XX Product Line of Network Processors.

This document highlights the differences between Intel® IXP400 DSP Software
Version 2.6.2 and Intel® Infrastructure DSP Solution Version 1.1. New features
introduced in Intel® Infrastructure DSP Solution Version 1.1 such as Multi-conference
calls, programmable thread priority, extended report for VoIP statistics, EC-Tone
Disabler and T.30 Preamble detection will not be covered in this document, please
refer to respective Programmer’s Guide or API Reference Manual document for details.
The information provided in this document is intended specifically for migration
purposes.

Note: Throughout this document, Intel® IXP400 DSP Software Version 2.6.2 shall be
referred to as Version 2.6.2 and Intel® Infrastructure DSP Solution Version 1.1 shall
be referred to as Version 1.1.

1.1 Scope

This application note is intended to highlight the major differences between Version
2.6.2 and Version 1.1 for migration purposes. This document focuses on architecture
comparison, directory structure comparison, Linux kernel space and Linux user space
implementation, HSS device driver and SLIC device driver implementation, and IP
termination implementation. This application note is not intended to list out all the
differences between both versions of software releases. For the supported
environments of Version 2.6.2 and Version 1.1, please refer to the respective Release
Notes

This document uses the codelets demo application (sample code) of both versions of
software releases to compare the methodology of designing applications utilizing the
API provided by both versions of software.

Version 1.1 does not support VxWorks* Operating System. Only Linux* Kernel 2.6.16
Operating System codelets demo application is covered in this comparison.

This application note is not intended to provide a line-by-line comparison of the
codelets demo application source code of the two versions of software releases or to
list out all the differences in codelets demo application. For explanation purposes,
function references only include function names and do not include the argument to
be passed to the function. Please refer to respective API Reference Manual document
or codelets for details of the functions.

1.2 Audience

This document is intended for system architects or software engineers, who have
implemented a platform solution using Version 2.6.2 codelets demo application and
who wish to migrate to Version 1.1.

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 5

Intel® Infrastructure DSP Solution

1.3 Terminology

Term Description

AEC Acoustic Echo Canceller

API Application Programming Interface

DSP Digital Signal Processing

EC Echo Cancellation

FXO Foreign Exchange Office

FXS Foreign Exchange Subscriber

IP Internet Protocol

MPR Media Processing Resource

PCM Pulse Code Modulation

RTP Real-Time Protocol

SRTP Secure Real-Time Protocol

SLIC Subscriber Line Interface Circuit

TDM Time Division Multiplexing

OSAL Operating System Abstraction Layer

USCI Unified Speech Component Interface

1.4 Reference Documents

Document

Intel® Infrastructure DSP Solution Version 1.1 Programmer’s Guide

Intel® Infrastructure DSP Solution Version 1.1 API Reference Manual

Intel® Infrastructure DSP Solution Version 1.1 Release Notes

Intel® Infrastructure DSP Solution Version 1.1 Codelets Demo Guide

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
6

Intel® Infrastructure DSP Solution

2 Architecture Comparison

Intel® IXP400 DSP Software Version 2.6.2 and Intel® Infrastructure DSP Solution
Version 1.1 have major differences in architecture as listed in Table 1.

Table 1. Architecture Comparison

Intel® IXP400 DSP Software
 Version 2.6.2

Intel® Infrastructure DSP Solution
Version 1.1

Software Release only provides single binary
file. Both base library (also known as
framework) and media processing algorithm
are provided a single binary file.

Separation of base library (also known as
framework) and other plug-in modules. Each
plug-in module is a media processing
algorithm, which can be plugged onto base
library during build process. This feature
provides flexibility to plug-in media
processing algorithm during build process.

Fixed memory footprint as you cannot
determine which media processing algorithm
is to be included in the binary file.

Flexibility to choose the required plug-in
media processing algorithms during build
process. This feature translates to the
flexibility to minimize the memory footprint
to include only the required algorithms.

Library runs in Linux Kernel Mode Library runs in Linux User Mode

Supports T.38 Media Processing Resource Does not support T.38 Media Processing
Resource

However, both versions are similar in terms of architecture design. Both versions are
implemented as independent modules having their own tasks and runtime
environments. The software architecture has a two-layer hierarchy:

• Control layer, which provides the control interface and control logic

• Data processing layer, where the media data streams are processed by
appropriate algorithms

Figure 1 illustrates the architecture of Version 1.1 and Figure 2 illustrates the
architecture of Version 2.6.2. In Version 1.1 architecture, software developers have
the flexibility to use Intel-provided media processing algorithm modules or to plug in
external algorithm modules according to Unified Speech Component Interface (USCI).
Figure 1 illustrates the relationship of Plug-in Handler component (which follows USCI
to interface between the framework of Version 1.1) and external media processing
algorithm modules. As illustrated in Figure 2, this feature is not available in Version
2.6.2.

As shown in Figure 1, there are seven Media Processing Resource (MPR) components
in Version 1.1. Version 2.6.2 supports one additional MPR, which is T.38 MPR. T.38 is
an ITU-T specification for fax transmission protocol over IP. T.38 MPR is not supported
in Version 1.1.

For Version 1.1, Encoder MPR, Decoder MPR and Network End-Point MPR, have the
flexibility to plug in media processing algorithm modules during build process.

During planning for migration, you can customize the software solution based on the
following available options for pluggable media processing algorithm modules:

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 7

Intel® Infrastructure DSP Solution

• Encoder algorithm (either Version 1.1 -provided encoder algorithm modules or
external encoder algorithm with interface compliant with USCI)

• Decoder algorithm (either Version 1.1-provided decoder algorithm modules or
external decoder algorithm with interface compliant with USCI)

• Echo Cancellation algorithm (either Version 1.1 -provided echo cancellation
algorithm module (Line Echo Canceller ONLY) or external echo cancellation
algorithm with interface compliant with USCI.)

: Note: The third party plug-in codecs or external plug-in codecs must be the same
codec type as the supported Intel-provided codec type.

Figure 1. Architecture of Intel® Infrastructure DSP Solution Version 1.1

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
8

Intel® Infrastructure DSP Solution

Figure 2. Architecture of Intel® IXP400 DSP Software Version 2.6.2

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 9

Intel® Infrastructure DSP Solution

2.1 Directory Structure Comparison

Version 2.6.2 software patches some of the Intel® IXP400 Software Release files
located in ixp400_xscale_sw directory (for example, files located in
ixp400_xscale_sw/src/hssAcc directory). Version 1.1 does not patch any IXP400
Software Release files and all the Version 1.1 software files are located in a new
directory called IDS directory. Figure 3 and Figure 4 show the directory structure of
both the software releases. Besides the directory structure, another major difference
is that Version 2.6.2 is packaged in a single zip file, and Version 1.1 is packaged in
five packages (Foundation Library, Codec Library, Codelets, HSS Device Driver, and
SLIC Device Driver). Figure 3 and Figure 4 show the directory structure after the
package is unzipped.

Figure 3. Intel® Infrastructure DSP Solution Version 1.1 directory structure

Figure 4. Intel® IXP400 DSP Software Version 2.6.2 directory structure

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
10

Intel® Infrastructure DSP Solution

2.2 Build Process and Makefile

Due to the differences in architecture, the build process of both versions is different.
Version 2.6.2 build process includes building codelets (ixp400_codelets_dspEng.o) and
demo application (IxDspCodeletApp). In Version 1.1, the build process includes
building HSS driver, SLIC driver, and demo applications (also known as codelets) by
linking the base library and other plug-ins. For detailed instructions on building
Version 1.1, please refer to Intel® Infrastructure DSP Solution Version 1.1 Release
Notes.

You are required to modify the Makefile of Version 1.1 for adding and removing plug-
ins during the build process. To add or to remove the default, Intel-provided plug-ins,
please refer to Intel® Infrastructure DSP Solution Version 1.1 Release Notes section to
edit PlugInConfig.c and PlugInConfig.h file. For example, to add external (third party)
plug-ins, please refer to Appendix B of Intel® Infrastructure DSP Solution Version 1.1
Programmer’s Guide.

Version 1.1 uses OSAL located in IDS/lib/IXP/2_6/Foundation directory. You need
to edit the Codelet Makefile to include this library prior to building a DSP application.

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 11

Intel® Infrastructure DSP Solution

3 Linux User Space and Kernel Space

One of the major differences between the two versions of software is the base library
(also known as foundation library) running in either Linux Kernel Space or Linux User
Space. In Version 2.6.2, the software library runs in Linux Kernel Space. In Version
1.1, the software library runs in Linux User Space.

3.1 Intel® IXP400 DSP Software Version 2.6.2
Running in Kernel Space

Version 2.6.2 demonstrates the implementation of a character device driver, called
ixDspCodeletModule (with major number 253 and minor number 0). This device
driver is for the codelets demo application from the user space to interface with kernel
space software library. The operations supported by this device driver are defined in
Version 2.6.2 ixp400_xscale_sw/src/codelets/dspEng directory
IxDspCodeletModuleSymbols.c file.

For example, during initialization, the codelets demo application (in
ixp400_xscale_sw/src/codelets/dspEng/dspApp directory) IxDspCodeletApp.c file
main function calls xInitOssl to initialize the DSP software. Part of the initialization
process includes initializing the inbound and outbound message queues to
pass/receive control messages to/from Version 2.6.2. The outbound message queue is
registered through the ixDspCodeletModule device driver
(ixp400_xscale_sw/src/codelets/dspEng/dspApp/IxDspCodeletAppOsslLib.c).

outMsgQue = open("/dev/ixDspCodeletModule",O_RDWR);

… …

rc = ioctl(outMsgQue,IX_DSP_CODELET_SETOUTMSGQUEUE, &dspConfig);

The “ioctl” function calls ixDspCodeletModule_ioctl function (defined in
ixp400_xscale_sw/src/codelets/dspEng/IxDspCodeletModuleSymbols.c) to
execute the case of IX_DSP_CODELET_SETOUTMSGQUEUE to register the outbound
message queue.

With the registration of inbound and outbound queue and the definition of functions
such as xMsgWrite and xMsgRead functions in IxDspCodeletAppOsslLib.c file,
Version 2.6.2 codelets demo application is able to send/receive messages to/from
kernel space.

Version 2.6.2 is able to send/receive data to/from HSS and SLIC driver without any
Linux device driver implementation because in Version 2.6.2 software, HSS driver and
SLIC driver run in kernel space.

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
12

Intel® Infrastructure DSP Solution

3.2 Intel® Infrastructure DSP Solution v1.1 Running
in User Space

Version 1.1 runs in user space. Figure 5 illustrates that codelets demo application and
Version 1.1 software library is running in Linux User Mode. Hence, there is no need to
specifically register the inbound or outbound queue to pass messages between kernel
and user space. Figure 6 illustrates that the base library of Version 2.6.2 is running in
Linux Kernel Mode. Compared to Version 2.6.2 software, the Version 1.1 codelets
demo application is able to directly call software library APIs provided, such as
xMsgRead function or xMsgWrite function, without registering the inbound or outbound
queue using “ioctl” function.

Due to Version 1.1 software running in User Space, the codelets demo application
does not require ixDspCodeletModule character device driver to pass data/messages
between codelets demo application and Version 1.1 software library. However, two
additional device drivers are required. The HSS driver and SLIC driver run in kernel
space, as shown in Figure 5. Hence, Linux Device Drivers associated with both devices
are required to be defined in order to pass data or messages between codelets demo
application and the devices.

Figure 5. Intel® Infrastructure DSP Solution Version 1.1 Application in Linux

Codelets demo Application

Version 1.1 Library

User Mode

Kernel Mode

HSS NPE

HSS Driver

SLIC

SLIC Driver

Data Plane Task

API

HSS User APIs Socket

Recvfrom

SLIC
User

APIs

SLIC API

PCM Data

HSS API

Read Write

 ()

Sendto ()

IP Stack

EDD

EthAcc

MII / Phy

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 13

Intel® Infrastructure DSP Solution

Figure 6. Intel® IXP400 DSP Software Version 2.6.2 Application in Linux

In Version 1.1, three new parameters (taskPriReal, taskPriCtrl and
taskPriPCMRead) were added to the pSysConfig structure. You can configure the
real-time task priority, control task priority and PCM read task priority through these
new members of the pSysConfig structure as shown in Figure 7. The parameters
taskPriBase and taskPriOrder are not used in Version 1.1; these parameters are
reserved for future use.

In Version 2.6.2, you can configure the base priority for the real-time task, PCM read
task and control task through taskPriBase and taskPriOrder parameters; however
the priority for individual task is not configurable. Refer to Figure 8 for Version 2.6.2
pSysConfig Structure.

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
14

Intel® Infrastructure DSP Solution

Figure 7. Intel® Infrastructure DSP Solution Version 1.1 pSysConfig Structure

typedef struct{
 int numChTDM; /* number of channels of TDM termination */
 int numChIP; /* number of channels of IP termination */
 int numPlayers; /* number of player instances */
 int numMixers; /* number of Audio Mixers */
 int numPortsPerMixer; /* number of ports per mixer */
 int countryCode; /* country code */
 int taskPriBase; /* the base priority of DSP module */
 int taskPriOrder; /* the priority ordering of the OS */
 int taskPriReal; /* realtime task priority of DSP module*/
 int taskPriCtrl; /* control task priority of DSP module */
 #ifndef OS_VXWORK
 int taskPriPCMRead; /* PCM read task priority of DSP module */
 #endif
 IxHssAccHssPort port; /* HSS port */
 IxHssAccConfigParams *pHssCfgParms; /* HSS configuration parameters*/
 IxHssAccTdmSlotUsage *pHssTDMSlots; /* HSS TDM time slot mapping */
 XDSPChanTdmSlots_t *pChanTsMap; /* channel vs. slot mapping for WB
mode */
 XPktRcvFxn_t pktRcvFxn; /* packet receiver function */
 XMsgAgentDec_t msgDecoder; /* message decoder function of MA*/
 XMsgAgentEnc_t msgEncoder; /* message encoder function of MA*/
} XDSPSysConfig_t;

Figure 8. Intel® IXP400 DSP Software Version 2.6.2 pSysConfig Structure

typedef struct{
 int numChTDM; /* number of channels of TDM termination */
 int numChIP; /* number of channels of IP termination */
 int numPlayers; /* number of player instances */
 int numMixers; /* number of Audio Mixers */
 int numPortsPerMixer; /* number of ports per mixer */
 int countryCode; /* country code */
 int taskPriBase; /* the base priority of DSP module */
 int taskPriOrder; /* the priority ordering of the OS */
 IxHssAccHssPort port; /* HSS port */
 IxHssAccConfigParams *pHssCfgParms; /* HSS configuration parameters*/
 IxHssAccTdmSlotUsage *pHssTDMSlots; /* HSS TDM time slot mapping */
 XDSPChanTdmSlots_t *pChanTsMap; /* channel vs. slot mapping for
WB mode */
 XPktRcvFxn_t pktRcvFxn; /* packet receiver function */
 XMsgAgentDec_t msgDecoder; /* message decoder function of MA*/
 XMsgAgentEnc_t msgEncoder; /* message encoder function of MA*/
} XDSPSysConfig_t

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 15

Intel® Infrastructure DSP Solution

4 Device Drivers

Intel® Infrastructure DSP Solution Version 1.1 does not implement
ixDspCodeletModule character device driver (as implemented in Version2.6.2)
because the software library runs in user space. HSS device driver and SLIC device
driver are required in Version 1.1. In Version 2.6.2, device drivers are not required to
access HSS device and SLIC device because the software library runs in kernel space.

4.1 PCM Data Interface and HSS Device Driver

PCM data represents the audio data stream between software releases and the
telephone interface. Both versions of software use the TDM bus of Intel® IXP4XX
Product Line HSS interface as PCM data interface. To be able to utilize HSS device,
user application is required to setup the HSS interface. The codelets demo application
of both versions of software show the method to configure the HSS device. However,
Version 1.1 implements HSS device driver (which separates from codelets demo
application) and Version 2.6.2 integrates the HSS device enabling code in base binary
library file.

Table 2. Comparison of PCM Data Interface and HSS driver

Intel® IXP400 DSP Software
Version 2.6.2

Intel® Infrastructure DSP Solution
Version 1.1

HSS enabling source code is not located in
driver directory

HSS enabling source code located in
IDS/drivers/HSS

No Linux device driver associated with HSS
driver to pass/receive data to/from codelets
demo application

Linux device driver, hssdriver defined to
pass data/messages to/from codelets demo
application

Does not implement any standalone module
for HSS

HSS driver is a standalone module,
hssdriver.o

4.1.1 HSS Device Driver in Intel® Infrastructure DSP Solution
Version 1.1

For Version 1.1, the HSS device driver source code is located in directory
IDS/drivers/HSS. The HSS device driver is defined as Linux character device driver.
Referring to this directory, it includes HSS driver source code for initialization function,
clean-up function, open and close functions, read and write functions, input/output
control functions and callback functions. All of these functions are required to build the
HSS driver to be run in kernel mode.

Refer to Intel® Infrastructure DSP Solution Version 1.1 Release Notes section Building
HSS Driver. Running the command ‘make hssdriver’ in IDS directory will make the
HSS device driver. It is required to define the HSS device driver as character device
with major number 251 and minor number 0 (mknod /dev/hssdriver c 251 0).

With the definition of HSS device driver and inserting the device driver module into
the target Linux* Operating System, the codelets demo application (IxDspCodeletApp)
is able to access to the HSS device driver. The HSS device driver provides three APIs
to user applications:

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
16

Intel® Infrastructure DSP Solution

• IxHssDriverHssPortInit(Hss_config *port_config)

• IxHssDriverNpeBCInit(UINT32 npeB_image_id, UINT32 npeC_image_id)

• IxHssDriverNpeCInit(UINT32 npeC_image_id)

From Version 1.1 codelets demo application, the three APIs are called from
IxDspCodeletMain.c file demostart(void) function where the demostart(void) is
called from the main function entry point main(void)function in IxDspCodeletApp.c.
IxHssDriverHssPortInit is called to download NPE A microcode image and initialize
NPE A. This API also initializes and configures HSS device and connects the device
with the HSS device driver. IxHssDriverNpeBCInit downloads NPE Images to NPE B
and NPE C and starts both NPEs, whereas IxHssDriverNpeCInit downloads NPE
Image to NPE C and starts NPE C. By default, codelets demo application does not call
IxHssDriverNpeBCInit or IxHssDriverNpeCInit API because Ethernet Device Driver
performs the same operation as these APIs. However, if user application does not use
Ethernet Device Driver, either one of the APIs is required to be called to enable NPE B
and NPE C, depending on the platform used.

Another major functionality of HSS device driver is to define the call-back function to
pass PCM data between the software library running in user space and the HSS driver
in kernel space. The HSS driver defines xHssCallBack function in IDS/drivers/HSS
directory HssDriverFuncs.c file. This callback function is attached to HSS port (using
ixHssAccChanConnect function) during HSS device initialization process. With this
implementation, Version 1.1 software library gets the PCM data from HSS device and
passes the PCM data from IP termination to HSS device.

4.1.2 HSS Device Usage in Intel® IXP400 DSP Software
Version 2.6.2

Version 2.6.2 runs in kernel mode and it does not require the implementation of
device driver to pass data between codelets demo application and the software library.
There is no specific directory that contains the files related to HSS device usage for
Version 2.6.2; however, in Version 1.1, the HSS device driver files are stored in
IDS/drivers/HSS directory.

Using the NPE initialization process as a comparison, Version 2.6.2 codelets demo
application initializes the NPEs directly in demostart function in IxDspCodeletMain.c
by calling ixDspCodeletNPEInit function.

Call-back functions (such as xHssCallBack function) and the mechanism to pass data
between Version 2.6.2 software library and HSS device are defined in the software
binary file, dsr.o. PCM data is not passed between user space and kernel space. For
example, there is no need to copy data from Version 2.6.2 software library using
hssdriver_write function (through copy_from_user function) to HSS buffer in kernel
space. Such implementation is not required since Version 2.6.2 runs in kernel space.

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 17

Intel® Infrastructure DSP Solution

4.2 SLIC Device Driver

SLIC device driver implementation provides access of SLIC functionality to codelets
demo application. Both Version 2.6.2 and Version 1.1 provide sample code to
demonstrate the method to enable and utilize the SLICs on the platforms supported.
Table 3 shows the differences in SLIC driver between Version 2.6.2 and Version 1.1.

Table 3. Comparison of SLIC driver

Intel® IXP400 DSP Software
Version 2.6.2

Intel® Infrastructure DSP Solution
Version 1.1

SLIC enabling source code located in
ixp400_xscale_sw/src/codec

SLIC enabling source code located in
IDS/drivers/SLIC

No Linux device driver associated with SLIC
driver to pass/receive data to/from codelets
demo application

Linux device driver, ixSlicModule defined
to pass data/messages to/from codelets
demo application

SLIC driver included in codelets module,
ixp400_codelets_dspEng.o

SLIC driver is a standalone module,
ixp400_codec.o

SLIC driver only enables up to 2 FXSs,
because supported platform (ADI* Coyote*
Platform) only supports 2 FXSs

SLIC driver supports up to 4 FXSs, because
Intel® IXDPG425 Network Gateway
Reference Platform and Intel® IXDP465
Development Platform support 4 FXSs,
Intel® IXP435 Multi-Service Residential
Gateway Reference Platform, SLIC driver
supports 2 FXSs.

SLIC driver does not support FXO port
because platform does not support FXO

SLIC driver supports FXO port, because Intel
IXDP465 Development Platform and Intel
IXP435 Reference Platform support FXO
(Si3050 chip)

Codelets demo application Gateway and Fax Bypass Demo option is used to show the
differences in SLIC driver between the two versions of software releases. When
executing Gateway and Fax Bypass Demo, when dialing from one phone to another
phone (for example, if user of phone 1 dials phone 2), codelets demo application is
required to ring the FXS port of phone 2.

In Version 2.6.2, when the Gateway State Machine changes to RING state by invoking
ixDspCodeletGwInitRing function (defined in
ixp400_xscale_sw/src/codelets/dspEng directory IxDspCodeletGw.c file), it
invokes ixDspCodeletNormalRing function (defined in IxDspCodeletSlicUtil.c).
The ixDspCodeletNormalRing function contains six lines of code (invoking
ixScDirectRegWrite function) to write to SLIC Direct Registers. With this procedure,
SLIC will send the RING signal through the FXS interface to the analog phone and the
analog phone will ring. Since both Gateway State Machine and SLIC driver run in
kernel space, it can directly invoke the SLIC driver functions.

In Version 1.1, when the Gateway State Machine changes to RING state by invoking
ixDspCodeletGwInitRing function (defined in IDS/codelets/dspApp directory
IxDspCodeletGw.c file), it invokes ixDspCodeletNormalRing function (defined in
IxDspCodeletSlicUtil.c). In ixDspCodeletNormalRing function, it calls
ixFXSODirectRegWrite API to write to SLIC registers to ring the analog phone. Since
Version 1.1 Gateway State Machine runs in user space, ixFXSODirectRegWrite
function utilizes SLIC device driver to pass “ioctl” function call to kernel space. Refer

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
18

Intel® Infrastructure DSP Solution

to IxSlicDriverUsrAPIs.c file for the definition of ixFXSODirectRegWrite function
to write to SLIC Direct Register.

int ixFXSODirectRegWrite(int slot, int board, int chip,int reg, int data)

{

… …

SlicMsgQue = open("/dev/ixSlicModule",O_RDWR);

… …

rc = ioctl(SlicMsgQue, IX_FXS_REG_WRITE, &IxSlicBoardIdregWr);

… …

}

With the “ioctl” function with IX_FXS_REG_WRITE, the codelets demo application
passes the required data using IxSlicBoardIdregWr structure (for example which FXS
slot which register) to the SLIC device driver. The ixSlicDirectRegWrite function
defined in IDS/drivers/SLIC directory IxSlicCommon.c file writes to the specified
SLIC register.

This example shows only one functionality of SLIC, which is to ring the analog phone.
Similar differences can be observed by comparing the SLIC driver source code of
Version 2.6.2 with Version 1.1.

Intel® Infrastructure DSP Solution Version 1.1
August 2007 Application Note
 19

Intel® Infrastructure DSP Solution

5 IP Termination

For both versions of software, there is no difference between the API to send and
receive packets from IP Termination and no difference in DSP Software Release Packet
Data Interface. For details on the API to send and receive IP packets and Packet Data
Interface, refer to Intel® Infrastructure DSP Solution API Reference Manual.

Table 4. Comparison of IP Termination implementation in codelets

Intel® IXP400 DSP Software
Version 2.6.2

Intel® Infrastructure DSP Solution
Version 1.1

Codelets directly calls Ethernet Access Layer
(ixEthAcc)

Intel® IXP400 Linux Ethernet Device Driver
is used to manage packets to/from
ixEthAcc Access Layer component.

IP packets do not pass through Linux
Operating System socket interface.

Codelets implementation shows the method
to utilize Linux Operating System socket
interface.

Codelets implementation does not work with
Secure Real-Time Protocol (SRTP)

Codelets implementation shows the usage of
Secure Real-Time Protocol (SRTP)

However, both versions of codelets demo applications demonstrate different methods
to pass the packets for IP termination. Version 2.6.2 directly calls functions in the
Ethernet Access Layer, ixEthAcc to send and receive IP packets (RTP packets). The IP
packets are passed between Access Layer and DSP Software in kernel space only. This
method does not route the packet through Operating System socket interface. For
Version 1.1, the IP packets pass through the Linux Operating System socket interface.
The socket interface passes the data between the user space and kernel space. In the
kernel space, Intel® IXP400 Linux Ethernet Device Driver is used to manage the
packets to/from ixEthAcc Access Layer component.

For example, to send IP packets from DSP software to IP termination, Version 2.6.2
software codelets defined ixDspCodeletEthRtpSend function (in
ixp400_xscale_sw/src/codelets/dspEng directory IxDspCodeletEthIf.c file). For
Version 1.1, ixDspCodeletRtpSocketSend function (in IDS/codelets/dspApp
directory IxDspCodeletSocket.c file) is defined to send IP packets from DSP software
to IP termination. For receiving packets from IP termination to DSP software, both
versions of codelets demo application use xPacketReceive API. The difference is, in
Version 2.6.2 codelets demo application registers ixDspCodeletRtpRxCB function (in
IxDspCodeletIf.c file) using ixEthAccPortRxCallbackRegister function. In Version
1.1, ixDspCodeletSocketReceive function (in IxDspCodeletSocket.c) is registered
with Operating System socket interface to receive packets from IP termination and
send to DSP software. The receive socket threads are created as real-time threads.

This example shows some of the differences between the codelets demo application of
both versions of software releases to handle ingress and egress IP Packets. For
detailed implementation, compare IxDspCodeletEthIf.c for Version 2.6.2 with
IxDspCodeletSocket.c for Version 1.1.

Codelets in Version 1.1 support Secure Real-Time Transport Protocol (SRTP). SRTP is
a set of BSD-style license library to provide confidentiality, message authentication,
and replay protocol to Real-Time Transport Protocol (RTP). Intel® Infrastructure DSP
Solution Release Notes explains the steps to build codelets with SRTP. For more
details on SRTP, please refer to SRTP webpage http://srtp.sourceforge.net/.

Intel® Infrastructure DSP Solution Version 1.1
Application Note August 2007
20

http://srtp.sourceforge.net/

	1 Introduction
	1.1 Scope
	1.2 Audience
	1.3 Terminology

	2 Architecture Comparison
	2.1 Directory Structure Comparison
	2.2 Build Process and Makefile

	3 Linux User Space and Kernel Space
	3.1 Intel® IXP400 DSP Software Version 2.6.2 Running in Kernel Space
	3.2 Intel® Infrastructure DSP Solution v1.1 Running in User Space

	4 Device Drivers
	4.1 PCM Data Interface and HSS Device Driver
	4.1.1 HSS Device Driver in Intel® Infrastructure DSP Solution Version 1.1
	4.1.2 HSS Device Usage in Intel® IXP400 DSP Software Version 2.6.2

	4.2 SLIC Device Driver

	5 IP Termination
	Word Bookmarks
	Table1
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7
	Figure8
	Table2
	Table3
	Table4

