
Intel® EP80579 Software for Security Applications
on Intel® QuickAssist Technology Cryptographic
API Reference

Automatically generated from sources, May 19, 2009.

Reference Number: 320184, Revision -003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTELS TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products
are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked ''reserved'' or ''undefined.'' Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may
be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Any software source code reprinted in this document is furnished under a software license and may only be used or
copied in accordance with the terms of that license.

This document contains information on products in the design phase of development.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each
processor family, not across different processor families. See http://www.intel.com/products/processor_number for
details.

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (''products'') in
development by Intel that have not been made commercially available to the public, i.e., announced, launched or
shipped. They are never to be used as ''commercial'' names for products. Also, they are not intended to function as
trademarks.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, FlashFile, i960, InstantIP, Intel, Intel
logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap
ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep,
Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks of
Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 2009. All Rights Reserved.

Reference Number: 320184, Revision -003

Revision History
Date Revision Description

May 2009 -003
All cpaCy*QueryStats functions now document the return value
of CPA_STATUS_RESOURCE
Documents version 1.1.1 of the API.

November
2008 -002 FreeBSD support added. There are no API changes.

Documents version 1.1.1 of the API.

July 2008 -001 First released version of this document.
Documents version 1.1 of the API.

Reference Number: 320184, Revision -003

Table of Contents
1 CPA API...1

1.1 Detailed Description..1
1.2 Modules..1

2 Base Data Types [CPA API]..2
2.1 Detailed Description..2
2.2 Data Structures...2
2.3 Defines..2
2.4 Typedefs...3
2.5 Enumerations..3
2.6 Data Structure Documentation...3

2.6.1 _CpaFlatBuffer Struct Reference..3
2.6.2 _CpaBufferList Struct Reference..4
2.6.3 _CpaInstanceInfo Struct Reference..5

2.7 Define Documentation..6
2.8 Typedef Documentation..7
2.9 Enumeration Type Documentation...8

3 CPA Type Definition [CPA API]..10
3.1 Detailed Description..10
3.2 Defines..10
3.3 Typedefs...10
3.4 Enumerations..10
3.5 Define Documentation..10
3.6 Typedef Documentation..11
3.7 Enumeration Type Documentation...11

4 Cryptographic API. [CPA API]..12
4.1 Detailed Description..12
4.2 Modules..12

5 Cryptographic Common API. [Cryptographic API.]..14
5.1 Detailed Description..14
5.2 Typedefs...14
5.3 Enumerations..14
5.4 Functions..14
5.5 Typedef Documentation..15
5.6 Enumeration Type Documentation...17
5.7 Function Documentation...17

6 Public Key Encryption Diffie-Hellman API. [Cryptographic API.]...24
6.1 Detailed Description..24
6.2 Data Structures...24
6.3 Typedefs...24
6.4 Functions..24
6.5 Data Structure Documentation...25

6.5.1 _CpaCyDhPhase1KeyGenOpData Struct Reference...25
6.5.2 _CpaCyDhPhase2SecretKeyGenOpData Struct Reference...26
6.5.3 _CpaCyDhStats Struct Reference..27

6.6 Typedef Documentation..28
6.7 Function Documentation...29

7 Public Key Encryption DSA API. [Cryptographic API.]..34
7.1 Detailed Description..34
7.2 Data Structures...34

Reference Number: 320184, Revision -003 i

Table of Contents
7 Public Key Encryption DSA API. [Cryptographic API.]

7.3 Typedefs...34
7.4 Functions..35
7.5 Data Structure Documentation...35

7.5.1 _CpaCyDsaPParamGenOpData Struct Reference...36
7.5.2 _CpaCyDsaGParamGenOpData Struct Reference..37
7.5.3 _CpaCyDsaYParamGenOpData Struct Reference...38
7.5.4 _CpaCyDsaRSignOpData Struct Reference...39
7.5.5 _CpaCyDsaSSignOpData Struct Reference...41
7.5.6 _CpaCyDsaRSSignOpData Struct Reference..42
7.5.7 _CpaCyDsaVerifyOpData Struct Reference...44
7.5.8 _CpaCyDsaStats Struct Reference...45

7.6 Typedef Documentation..49
7.7 Function Documentation...54

8 Crypto Instance Maintainence API. [Cryptographic API.]..65
8.1 Detailed Description..65
8.2 Functions..65
8.3 Function Documentation...65

9 Key and Mask Generation API. [Cryptographic API.]...68
9.1 Detailed Description..68
9.2 Data Structures...68
9.3 Defines..68
9.4 Typedefs...68
9.5 Enumerations..68
9.6 Functions..69
9.7 Data Structure Documentation...69

9.7.1 _CpaCyKeyGenSslOpData Struct Reference...69
9.7.2 _CpaCyKeyGenTlsOpData Struct Reference...71
9.7.3 _CpaCyKeyGenMgfOpData Struct Reference..73
9.7.4 _CpaCyKeyGenStats Struct Reference..74

9.8 Define Documentation..75
9.9 Typedef Documentation..76
9.10 Enumeration Type Documentation...77
9.11 Function Documentation...77

10 Crypto API Large Number. [Cryptographic API.]..83
10.1 Detailed Description..83
10.2 Data Structures...83
10.3 Typedefs...83
10.4 Functions..83
10.5 Data Structure Documentation...83

10.5.1 _CpaCyLnModExpOpData Struct Reference..84
10.5.2 _CpaCyLnModInvOpData Struct Reference...85
10.5.3 _CpaCyLnStats Struct Reference...86

10.6 Typedef Documentation..87
10.7 Function Documentation...88

11 Prime Number Test API. [Cryptographic API.]..92
11.1 Detailed Description..92
11.2 Data Structures...92
11.3 Typedefs...92
11.4 Functions..92
11.5 Data Structure Documentation...92

Reference Number: 320184, Revision -003 ii

Table of Contents
11 Prime Number Test API. [Cryptographic API.]

11.5.1 _CpaCyPrimeTestOpData Struct Reference..92
11.5.2 _CpaCyPrimeStats Struct Reference..94

11.6 Typedef Documentation..95
11.7 Function Documentation...96

12 Random Bit/Number Generation API. [Cryptographic API.]..99
12.1 Detailed Description..99
12.2 Data Structures...99
12.3 Defines..99
12.4 Typedefs...99
12.5 Functions..99
12.6 Data Structure Documentation...100

12.6.1 _CpaCyRandStats Struct Reference..100
12.6.2 _CpaCyRandGenOpData Struct Reference...101
12.6.3 _CpaCyRandSeedOpData Struct Reference..102

12.7 Define Documentation..103
12.8 Typedef Documentation..103
12.9 Function Documentation...104

13 Public Key Encryption RSA API. [Cryptographic API.]..108
13.1 Detailed Description..108
13.2 Data Structures...108
13.3 Typedefs...108
13.4 Enumerations..109
13.5 Functions..109
13.6 Data Structure Documentation...109

13.6.1 _CpaCyRsaPublicKey Struct Reference...109
13.6.2 _CpaCyRsaPrivateKeyRep1 Struct Reference...111
13.6.3 _CpaCyRsaPrivateKeyRep2 Struct Reference...112
13.6.4 _CpaCyRsaPrivateKey Struct Reference...113
13.6.5 _CpaCyRsaKeyGenOpData Struct Reference...115
13.6.6 _CpaCyRsaEncryptOpData Struct Reference..116
13.6.7 _CpaCyRsaDecryptOpData Struct Reference..118
13.6.8 _CpaCyRsaStats Struct Reference...120

13.7 Typedef Documentation..122
13.8 Enumeration Type Documentation...124
13.9 Function Documentation...125

14 Symmetric Cipher and Hash Crypto API [Cryptographic API.]...131
14.1 Detailed Description..131
14.2 Data Structures...131
14.3 Typedefs...131
14.4 Enumerations..132
14.5 Functions..133
14.6 Data Structure Documentation...133

14.6.1 _CpaCySymCipherSetupData Struct Reference..133
14.6.2 _CpaCySymHashNestedModeSetupData Struct Reference..134
14.6.3 _CpaCySymHashAuthModeSetupData Struct Reference..135
14.6.4 _CpaCySymHashSetupData Struct Reference...136
14.6.5 _CpaCySymSessionSetupData Struct Reference..137
14.6.6 _CpaCySymOpData Struct Reference..139
14.6.7 _CpaCySymStats Struct Reference..141

14.7 Typedef Documentation..143
14.8 Enumeration Type Documentation...146

Reference Number: 320184, Revision -003 iii

Table of Contents
14 Symmetric Cipher and Hash Crypto API [Cryptographic API.]

14.9 Function Documentation...149

Reference Number: 320184, Revision -003 iv

1 CPA API

Collaboration diagram for CPA API:

1.1 Detailed Description

This is the top level API definition.

It contains structures, data types and definitions that are common across the interface.

1.2 Modules

Base Data Types
The base data types for the Intel CPA API.

•

CPA Type Definition
This is the CPA Type Definitions.

•

Cryptographic API.
These functions specify the Cryptographic API.

•

Reference Number: 320184, Revision -003 1

2 Base Data Types
 [CPA API]

Collaboration diagram for Base Data Types:

2.1 Detailed Description

The base data types for the Intel CPA API.

2.2 Data Structures

struct _CpaFlatBuffer
Flat buffer structure containing a pointer and length member.

•

struct _CpaBufferList
Scatter/Gather buffer list containing an array of Simple buffers.

•

struct _CpaInstanceInfo
Instance Info Structure.

•

2.3 Defines

#define CPA_INSTANCE_HANDLE_SINGLE
Default instantiation handle value where there is only a single instance.

•

#define CPA_STATUS_SUCCESS
Success status value.

•

#define CPA_STATUS_FAIL
Fail status value.

•

#define CPA_STATUS_RETRY
Retry status value.

•

#define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

•

#define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

•

#define CPA_STATUS_FATAL
A serious error has occurred.

•

#define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES
API status string type definition Maximum length of the Overall Status String (including
generic and specific strings returned by calls to cpaXxGetStatusText.

•

#define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

•

#define CPA_STATUS_STR_FAIL
Status string for CPA_STATUS_FAIL.

•

#define CPA_STATUS_STR_RETRY
Status string for CPA_STATUS_RETRY.

•

#define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.

•

#define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_PARAM.

•

#define CPA_STATUS_STR_FATAL•

Reference Number: 320184, Revision -003 2

Status string for CPA_STATUS_FATAL.
#define CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES

Instance Info Max string lengths Maximum instance info name string length in bytes.
•

#define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

•

2.4 Typedefs

typedef void * CpaInstanceHandle
Instance handle type.

•

typedef _CpaFlatBuffer CpaFlatBuffer
Flat buffer structure containing a pointer and length member.

•

typedef _CpaBufferList CpaBufferList
Scatter/Gather buffer list containing an array of Simple buffers.

•

typedef Cpa32S CpaStatus
API status value type definition.

•

typedef enum _CpaInstanceType CpaInstanceType
Instance Types.

•

typedef enum _CpaInstanceState CpaInstanceState
Instance State.

•

typedef _CpaInstanceInfo CpaInstanceInfo
Instance Info Structure.

•

typedef enum _CpaInstanceEvent CpaInstanceEvent
Instance Events.

•

2.5 Enumerations

enum _CpaInstanceType {
CPA_INSTANCE_TYPE_CRYPTO,
CPA_INSTANCE_TYPE_DATA_COMPRESSION,
CPA_INSTANCE_TYPE_RAID,
CPA_INSTANCE_TYPE_XML,
CPA_INSTANCE_TYPE_REGEX

}
Instance Types.

•

enum _CpaInstanceState {
CPA_INSTANCE_STATE_INITIALISED,
CPA_INSTANCE_STATE_SHUTDOWN

}
Instance State.

•

enum _CpaInstanceEvent {
CPA_INSTANCE_EVENT_CREATION,
CPA_INSTANCE_EVENT_DELETION

}
Instance Events.

•

2.6 Data Structure Documentation

2.6.1 _CpaFlatBuffer Struct Reference

2.3 Defines

Reference Number: 320184, Revision -003 3

2.6.1.1 Detailed Description

Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address however the actual data pointed to is
required to be in contiguous physical memory. It is expected that this buffer handle will be used when simple,
unchained buffers are needed.

2.6.1.2 Data Fields

Cpa32U dataLenInBytes
Data length specified in bytes.

•

Cpa8U * pData
The data pointer is a virtual address, however the actual data pointed to is required to be in
contiguous physical memory.

•

2.6.1.3 Field Documentation

Cpa32U _CpaFlatBuffer::dataLenInBytes
Data length specified in bytes.

Cpa8U* _CpaFlatBuffer::pData
The data pointer is a virtual address, however the actual data pointed to is required to be in contiguous
physical memory.

2.6.2 _CpaBufferList Struct Reference

Collaboration diagram for _CpaBufferList:

2.6.2.1 Detailed Description

Scatter/Gather buffer list containing an array of Simple buffers.

A Scatter/Gather buffer list structure. It is expected that this buffer structure will be used where more than one
flat buffer can be provided on an particular API.

2.6.1 _CpaFlatBuffer Struct Reference

Reference Number: 320184, Revision -003 4

IMPORTANT - The memory for the pPrivateMetaData member must be allocated by the client as contiguous
memory. When allocating memory for pPrivateMetaData a call to cpaCyBufferListGetMetaSize MUST be
made to determine the size of the Meta Data Buffer. The returned size (in bytes) may then be passed in a
memory allocation routine to allocate the pPrivateMetaData memory.

2.6.2.2 Data Fields

Cpa32U numBuffers
Number of pointers.

•

CpaFlatBuffer * pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by
numBuffers.

•

void * pUserData
This is an opaque field that is not read or modified internally.

•

void * pPrivateMetaData
Private Meta representation of this buffer List - the memory for this buffer needs to be
allocated by the client as contiguous data.

•

2.6.2.3 Field Documentation

Cpa32U _CpaBufferList::numBuffers
Number of pointers.

CpaFlatBuffer* _CpaBufferList::pBuffers
Pointer to an unbounded array containing the number of CpaFlatBuffers defined by numBuffers.

void* _CpaBufferList::pUserData
This is an opaque field that is not read or modified internally.

void* _CpaBufferList::pPrivateMetaData
Private Meta representation of this buffer List - the memory for this buffer needs to be allocated by the client
as contiguous data.

The amount of memory required is returned with a call to cpaCyBufferListGetMetaSize. If
cpaCyBufferListGetMetaSize returns a size of zero no memory needs to be allocated, and this parameter
can be NULL.

2.6.3 _CpaInstanceInfo Struct Reference

2.6.3.1 Detailed Description

Instance Info Structure.

Structure that contains the information to describe the instance.

2.6.3.2 Data Fields

CpaInstanceType type
Type definition for this instance.

•

CpaInstanceState state
Operational state of the instance.

•

Cpa8U name [CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]•

2.6.2 _CpaBufferList Struct Reference

Reference Number: 320184, Revision -003 5

Simple text string identifier for the instance.
Cpa8U version [CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]

Version string.
•

2.6.3.3 Field Documentation

CpaInstanceType _CpaInstanceInfo::type
Type definition for this instance.

CpaInstanceState _CpaInstanceInfo::state
Operational state of the instance.

Cpa8U _CpaInstanceInfo::name[CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES]
Simple text string identifier for the instance.

Cpa8U _CpaInstanceInfo::version[CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES]
Version string.

There may be multiple versions of the same type of instance accessible through a particular library.

2.7 Define Documentation

#define CPA_INSTANCE_HANDLE_SINGLE
Default instantiation handle value where there is only a single instance.

Used as an instance handle value where only one instance exists.

#define CPA_STATUS_SUCCESS
Success status value.

#define CPA_STATUS_FAIL
Fail status value.

#define CPA_STATUS_RETRY
Retry status value.

#define CPA_STATUS_RESOURCE
The resource that has been requested is unavailable.

Refer to relevant sections of the API for specifics on what the suggested course of action is.

#define CPA_STATUS_INVALID_PARAM
Invalid parameter has been passed in.

#define CPA_STATUS_FATAL
A serious error has occurred.

Recommended course of action is to shutdown and restart the component.

2.6.3 _CpaInstanceInfo Struct Reference

Reference Number: 320184, Revision -003 6

#define CPA_STATUS_MAX_STR_LENGTH_IN_BYTES
API status string type definition Maximum length of the Overall Status String (including generic and specific
strings returned by calls to cpaXxGetStatusText.

This type definition is used for the generic status text strings provided by cpaXxGetStatusText API
functions. Common values are defined, for example see CPA_STATUS_STR_SUCCESS,
CPA_STATUS_FAIL, etc., as well as the maximum size CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

#define CPA_STATUS_STR_SUCCESS
Status string for CPA_STATUS_SUCCESS.

#define CPA_STATUS_STR_FAIL
Status string for CPA_STATUS_FAIL.

#define CPA_STATUS_STR_RETRY
Status string for CPA_STATUS_RETRY.

#define CPA_STATUS_STR_RESOURCE
Status string for CPA_STATUS_RESOURCE.

#define CPA_STATUS_STR_INVALID_PARAM
Status string for CPA_STATUS_INVALID_PARAM.

#define CPA_STATUS_STR_FATAL
Status string for CPA_STATUS_FATAL.

#define CPA_INSTANCE_MAX_NAME_SIZE_IN_BYTES
Instance Info Max string lengths Maximum instance info name string length in bytes.

Definitions of the instance info max string lengths.

#define CPA_INSTANCE_MAX_VERSION_SIZE_IN_BYTES
Maximum instance info version string length in bytes.

2.8 Typedef Documentation

typedef void* CpaInstanceHandle
Instance handle type.

Handle used to uniquely identify an instance.

Note:
Where only a single instantiation exists this field must be set to
CPA_INSTANCE_HANDLE_DEFAULT.

typedef struct _CpaFlatBuffer CpaFlatBuffer
Flat buffer structure containing a pointer and length member.

A flat buffer structure. The data pointer, pData, is a virtual address however the actual data pointed to is
required to be in contiguous physical memory. It is expected that this buffer handle will be used when
simple, unchained buffers are needed.

2.7 Define Documentation

Reference Number: 320184, Revision -003 7

typedef struct _CpaBufferList CpaBufferList
Scatter/Gather buffer list containing an array of Simple buffers.

A Scatter/Gather buffer list structure. It is expected that this buffer structure will be used where more than
one flat buffer can be provided on an particular API.

IMPORTANT - The memory for the pPrivateMetaData member must be allocated by the client as
contiguous memory. When allocating memory for pPrivateMetaData a call to cpaCyBufferListGetMetaSize
MUST be made to determine the size of the Meta Data Buffer. The returned size (in bytes) may then be
passed in a memory allocation routine to allocate the pPrivateMetaData memory.

typedef Cpa32S CpaStatus
API status value type definition.

This type definition is used for the return values used in all the API functions. Common values are defined,
for example see CPA_STATUS_SUCCESS, CPA_STATUS_FAIL, etc.

typedef enum _CpaInstanceType CpaInstanceType
Instance Types.

Enumeration of the different instance types.

typedef enum _CpaInstanceState CpaInstanceState
Instance State.

Enumeration of the different instance states that are possible.

typedef struct _CpaInstanceInfo CpaInstanceInfo
Instance Info Structure.

Structure that contains the information to describe the instance.

typedef enum _CpaInstanceEvent CpaInstanceEvent
Instance Events.

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

2.9 Enumeration Type Documentation

enum _CpaInstanceType
Instance Types.

Enumeration of the different instance types.

Enumerator:
CPA_INSTANCE_TYPE_CRYPTO Cryptograhic instance

type.
CPA_INSTANCE_TYPE_DATA_COMPRESSION Data compression

instance type.
CPA_INSTANCE_TYPE_RAID RAID instance type.
CPA_INSTANCE_TYPE_XML XML instance type.

2.8 Typedef Documentation

Reference Number: 320184, Revision -003 8

CPA_INSTANCE_TYPE_REGEX Regular Expression
instance type.

enum _CpaInstanceState
Instance State.

Enumeration of the different instance states that are possible.

Enumerator:
CPA_INSTANCE_STATE_INITIALISED Instance is in the initialized state and ready for use.
CPA_INSTANCE_STATE_SHUTDOWN Instance is in the shutdown state and not available

for use.

enum _CpaInstanceEvent
Instance Events.

Enumeration of the different events that will cause the registered Instance notification callback function to
be invoked.

Enumerator:
CPA_INSTANCE_EVENT_CREATION Event type that triggers the registered instance notification

callback function when an instance is created.
CPA_INSTANCE_EVENT_DELETION Event type that triggers the registered instance notification

callback function when an instance is deleted.

2.9 Enumeration Type Documentation

Reference Number: 320184, Revision -003 9

3 CPA Type Definition
 [CPA API]

Collaboration diagram for CPA Type Definition:

3.1 Detailed Description

This is the CPA Type Definitions.

3.2 Defines

#define NULL
NULL definition.

•

#define TRUE
True value definition.

•

#define FALSE
False value definition.

•

3.3 Typedefs

typedef enum _CpaBoolean CpaBoolean
Boolean type.

•

3.4 Enumerations

enum _CpaBoolean {
CPA_FALSE,
CPA_TRUE

}
Boolean type.

•

3.5 Define Documentation

#define NULL
NULL definition.

#define TRUE
True value definition.

#define FALSE
False value definition.

Reference Number: 320184, Revision -003 10

3.6 Typedef Documentation

typedef enum _CpaBoolean CpaBoolean
Boolean type.

Functions in this API use this type for Boolean variables that take true or false values.

3.7 Enumeration Type Documentation

enum _CpaBoolean
Boolean type.

Functions in this API use this type for Boolean variables that take true or false values.

Enumerator:
CPA_FALSE False value.
CPA_TRUE True value.

3.6 Typedef Documentation

Reference Number: 320184, Revision -003 11

4 Cryptographic API.
 [CPA API]

Collaboration diagram for Cryptographic API.:

4.1 Detailed Description

These functions specify the Cryptographic API.

4.2 Modules

Cryptographic Common API.
This file specifies items which are common for both the asymmetric (public key cryptography)
and the symmetric operations for the Cryptographic API.

•

Public Key Encryption Diffie-Hellman API.
These functions specify the API for Public Key Encryption (cryptography) operations for use
with Diffie-Hellman algorithm.

•

Public Key Encryption DSA API.
These functions specify the API for Public Key Encryption (cryptography) Digital Signature
Algorithm (DSA) operations.The FIPS PUB 186-2 with Change Notice 1 specification is
supported.

•

Crypto Instance Maintainence API.•

Reference Number: 320184, Revision -003 12

These functions specify the Instance Maintainence API for available Crypto Instances.
Key and Mask Generation API.

These functions specify the API for key and mask generation operations.
•

Crypto API Large Number.
These functions specify the Cryptographic API for Large Number Operations.

•

Prime Number Test API.
These functions specify the API for the prime number test operations.

•

Random Bit/Number Generation API.
These functions specify the API for the Cryptographic Random Bit and Random number
generation.

•

Public Key Encryption RSA API.
These functions specify the API for Public Key Encryption (cryptography) RSA operations.

•

Symmetric Cipher and Hash Crypto API
These functions specify the Cryptographic Component API for symmetric cipher, hash, and
combined cipher and hash operations.

•

4.2 Modules

Reference Number: 320184, Revision -003 13

5 Cryptographic Common API.
 [Cryptographic API.]

Collaboration diagram for Cryptographic Common API.:

5.1 Detailed Description

This file specifies items which are common for both the asymmetric (public key cryptography) and the
symmetric operations for the Cryptographic API.

5.2 Typedefs

typedef void(* CpaCyGenericCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData)
Definition of the crypto generic callback function.

•

typedef void(* CpaCyGenFlatBufCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpdata,
CpaFlatBuffer *pOut)

Definition of generic callback function with an additional output CpaFlatBuffer parameter.

•

typedef void(* CpaCyInstanceNotificationCbFunc)(void *pCallbackTag, const CpaInstanceEvent
instanceEvent)

Callback function for instance notification support.

•

5.3 Enumerations

enum CpaCyPriority {
CPA_CY_PRIORITY_NORMAL,
CPA_CY_PRIORITY_HIGH

}
Request priority.

•

5.4 Functions

CpaStatus cpaCyBufferListGetMetaSize (const CpaInstanceHandle instanceHandle, Cpa32U
numBuffers, Cpa32U *pSizeInBytes)

Function to return the size of the memory which must be allocated for the pPrivateMetaData
member of CpaBufferList.

•

CpaStatus cpaCyGetStatusText (const CpaInstanceHandle instanceHandle, CpaStatus errStatus,
Cpa8S *pStatusText)

Function to return a string indicating the specific error that occurred for a particular instance.

•

CpaStatus cpaCyGetNumInstances (Cpa16U *pNumInstances)
Get the number of instances that are supported by the API implementation.

•

CpaStatus cpaCyGetInstances (Cpa16U numInstances, CpaInstanceHandle *cyInstances)
Get the handles to the instances that are supported by the API implementation.

•

CpaStatus cpaCyInstanceGetInfo (const CpaInstanceHandle instanceHandle, CpaInstanceInfo
*pInstanceInfo)

Function to get information on a particular instance.

•

CpaStatus cpaCyInstanceSetNotificationCb (const CpaCyInstanceNotificationCbFunc
pInstanceNotificationCb, void *pCallbackTag)

•

Reference Number: 320184, Revision -003 14

Subscribe for instance notifications.

5.5 Typedef Documentation

typedef void(* CpaCyGenericCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData)
Definition of the crypto generic callback function.

This data structure specifies the prototype for a generic callback function

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag Opaque value provided by user while making individual function call.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Opaque Pointer to the operation data that was submitted in the request

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
cpaCyKeyGenSsl()

typedef void(* CpaCyGenFlatBufCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpdata,
CpaFlatBuffer *pOut)

Definition of generic callback function with an additional output CpaFlatBuffer parameter.

This data structure specifies the prototype for a generic callback function which provides an output buffer
(of type CpaFlatBuffer).

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

5.4 Functions

Reference Number: 320184, Revision -003 15

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag Opaque value provided by user while making individual function call.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Opaque Pointer to the operation data that was submitted in the request
[in] pOut Pointer to the output buffer provided in the request invoking this callback.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
None

typedef void(* CpaCyInstanceNotificationCbFunc)(void *pCallbackTag, const CpaInstanceEvent
instanceEvent)

Callback function for instance notification support.

This is the prototype for the instance notification callback function. The callback function is passed in as a
parameter to the cpaInstanceSetNotificationCb function.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

5.5 Typedef Documentation

Reference Number: 320184, Revision -003 16

Thread-safe:
Yes

Parameters:
[in] pCallbackTag Opaque value provided by user while making individual function calls.
[in] instanceEvent The event that will trigger this function to get invoked.

Return values:
None

Precondition:
Component has been initialized and the notification function has been set via the
cpaInstanceSetNotificationCb function.

Postcondition:
None

Note:
None

See also:
cpaInstanceSetNotificationCb(),

5.6 Enumeration Type Documentation

enum CpaCyPriority
Request priority.

Enumeration of priority of the request to be given to the API. Currently two levels - HIGH and NORMAL are
supported. HIGH priority requests will be prioritized on a "best-effort" basis over requests that are marked
with a NORMAL priority.

Enumerator:
CPA_CY_PRIORITY_NORMAL Normal priority.
CPA_CY_PRIORITY_HIGH High priority.

5.7 Function Documentation

CpaStatus cpaCyBufferListGetMetaSize (const CpaInstanceHandle instanceHandle,
Cpa32U numBuffers,
Cpa32U * pSizeInBytes

)
Function to return the size of the memory which must be allocated for the pPrivateMetaData member of
CpaBufferList.

This function is used obtain the size (in bytes) required to allocate a buffer descriptor for the
pPrivateMetaData member in the CpaBufferList the structure. Should the function return zero then no meta
data is required for the buffer list.

Context:
This function may be called from any context.

5.6 Enumeration Type Documentation

Reference Number: 320184, Revision -003 17

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API.
[in] numBuffers The number of pointers in the CpaBufferList. this is the maximum number

of CpaFlatBuffers which may be contained in this CpaBufferList.
[out] pSizeInBytes Pointer to the size in bytes of memory to be allocated when the client

wishes to allocate a cpaFlatBuffer

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None.

Postcondition:
None

Note:
None

See also:
cpaCyGetInstances()

CpaStatus cpaCyGetStatusText (const CpaInstanceHandle instanceHandle,
CpaStatus errStatus,
Cpa8S * pStatusText

)
Function to return a string indicating the specific error that occurred for a particular instance.

When a function invocation on a particular instance returns an error, the client can invoke this function to
query the instance for a null terminated string which describes the general error condition, and if available
additional text on the specific error. The Client MUST allocate
CPA_STATUS_MAX_STR_LENGTH_IN_BYTES bytes for the buffer string.

Context:
This function may be called from any context.

Assumptions:
None

5.7 Function Documentation

Reference Number: 320184, Revision -003 18

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API.
[in] errStatus The error condition that occurred
[out] pStatusText Pointer to the string buffer that will be updated with a null terminated

status text string. The invoking application MUST allocate this buffer to be
CPA_STATUS_MAX_STR_LENGTH_IN_BYTES.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Note, In this scenario it is INVALID to call this

function a further time.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None.

Postcondition:
None

Note:
None

See also:
CpaStatus

CpaStatus cpaCyGetNumInstances (Cpa16U * pNumInstances)
Get the number of instances that are supported by the API implementation.

This function will get the number of instances that are supported by an implementation of the Crytpo API.
This number is then used to determine the size of the array that must be passed to cpaCyGetInstances().

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

5.7 Function Documentation

Reference Number: 320184, Revision -003 19

Reentrant:
No

Thread-safe:
Yes

Parameters:
[out] pNumInstances Pointer to where the number of instances will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated

See also:
cpaCyGetInstances

CpaStatus cpaCyGetInstances (Cpa16U numInstances,
CpaInstanceHandle * cyInstances

)
Get the handles to the instances that are supported by the API implementation.

This function will return handles to the instances that are supported by an implementation of the Crypto API.
These instance handles can then be used as input parameters with other Crytpo API functions.

This function will populate an array that has been allocated by the caller. The size of this API will have been
determined by the cpaCyGetNumInstances() function.

Context:
This function MUST NOT be called from an interrupt context as it MAY sleep.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:

5.7 Function Documentation

Reference Number: 320184, Revision -003 20

[in] numInstances Size of the array.
[in,out] cyInstances Pointer to where the instance handles will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
None

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated

See also:
cpaCyGetNumInstances

CpaStatus cpaCyInstanceGetInfo (const CpaInstanceHandle instanceHandle,
CpaInstanceInfo * pInstanceInfo

)
Function to get information on a particular instance.

This function will provide instance specific information through a CpaInstanceInfo structure.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API to be initialized.
[out] pInstanceInfo Pointer to the memory location allocated by the client into which the

CpaInstanceInfo structure will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

5.7 Function Documentation

Reference Number: 320184, Revision -003 21

Precondition:
The client has retrieved an instanceHandle from successive calls to cpaCyGetNumInstances and
cpaCyGetInstances.

Postcondition:
None

Note:
None

See also:
cpaCyGetNumInstances, cpaCyGetInstances, CpaInstanceInfo

CpaStatus
cpaCyInstanceSetNotificationCb (

const
CpaCyInstanceNotificationCbFunc pInstanceNotificationCb,

void * pCallbackTag
)

Subscribe for instance notifications.

Clients of the CpaCy interface can subscribe for instance notifications by registering a
CpaCyInstanceNotificationCbFunc function.

Context:
This function will be executed in a context that requires that sleeping MUST NOT be permitted.

Assumptions:
None

Side-Effects:
None

Blocking:
No

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pInstanceNotificationCb Instance notification callback function pointer.
[in] pCallbackTag Opaque value provided by user while making individual function

calls.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Instance has been initialized.

Postcondition:
None

5.7 Function Documentation

Reference Number: 320184, Revision -003 22

Note:
None

See also:
CpaCyInstanceNotificationCbFunc

5.7 Function Documentation

Reference Number: 320184, Revision -003 23

6 Public Key Encryption Diffie-Hellman API.
 [Cryptographic API.]

Collaboration diagram for Public Key Encryption Diffie-Hellman API.:

6.1 Detailed Description

These functions specify the API for Public Key Encryption (cryptography) operations for use with
Diffie-Hellman algorithm.

6.2 Data Structures

struct _CpaCyDhPhase1KeyGenOpData
Diffie-Hellman Phase 1 Key Generation Data.

•

struct _CpaCyDhPhase2SecretKeyGenOpData
Diffie-Hellman Phase 2 Secret Key Generation Data.

•

struct _CpaCyDhStats
Diffie-Hellman Statistics.

•

6.3 Typedefs

typedef _CpaCyDhPhase1KeyGenOpData CpaCyDhPhase1KeyGenOpData
Diffie-Hellman Phase 1 Key Generation Data.

•

typedef _CpaCyDhPhase2SecretKeyGenOpData CpaCyDhPhase2SecretKeyGenOpData
Diffie-Hellman Phase 2 Secret Key Generation Data.

•

typedef _CpaCyDhStats CpaCyDhStats
Diffie-Hellman Statistics.

•

6.4 Functions

CpaStatus cpaCyDhKeyGenPhase1 (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pDhPhase1Cb, void *pCallbackTag, const
CpaCyDhPhase1KeyGenOpData *pPhase1KeyGenData, CpaFlatBuffer *pLocalOctetStringPV)

Function to implement Diffie-Hellman phase 1 operations.

•

CpaStatus cpaCyDhKeyGenPhase2Secret (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pDhPhase2Cb, void *pCallbackTag, const
CpaCyDhPhase2SecretKeyGenOpData *pPhase2SecretKeyGenData, CpaFlatBuffer
*pOctetStringSecretKey)

Function to implement Diffie-Hellman phase 2 operations.

•

CpaStatus cpaCyDhQueryStats (const CpaInstanceHandle instanceHandle, CpaCyDhStats
*pDhStats)

Query statistics for Diffie-Hellman operations.

•

Reference Number: 320184, Revision -003 24

6.5 Data Structure Documentation

6.5.1 _CpaCyDhPhase1KeyGenOpData Struct Reference

Collaboration diagram for _CpaCyDhPhase1KeyGenOpData:

6.5.1.1 Detailed Description

Diffie-Hellman Phase 1 Key Generation Data.

This structure lists the different items that are required in the cpaCyDhKeyGenPhase1 function. The client
MUST allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
with the CpaCyDhPhase1KeyGenOpData structure.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDhKeyGenPhase1 function, and before it has been returned in the callback, undefined behavior
will result. All values in this structure are required to be in Most Significant Byte first order, e.g.
primeP.pData[0] = MSB.

6.5.1.2 Data Fields

CpaFlatBuffer primeP
Flat buffer containing a pointer to the random odd prime number (p).

•

CpaFlatBuffer baseG
Flat buffer containing a pointer to base (g).

•

CpaFlatBuffer privateValueX
Flat buffer containing a pointer to the private value (x).

•

6.5.1.3 Field Documentation

CpaFlatBuffer _CpaCyDhPhase1KeyGenOpData::primeP
Flat buffer containing a pointer to the random odd prime number (p).

6.5 Data Structure Documentation

Reference Number: 320184, Revision -003 25

This number may be 768, 1024, 1536, 2048, 3072 or 4096 bits in length.

CpaFlatBuffer _CpaCyDhPhase1KeyGenOpData::baseG
Flat buffer containing a pointer to base (g).

This MUST comply with the following: 0 < g < p. The bit length of baseG MUST be less than or equal to the
bit length of primeP.

CpaFlatBuffer _CpaCyDhPhase1KeyGenOpData::privateValueX
Flat buffer containing a pointer to the private value (x).

This is a random value which MUST satisfy the following condition: 0 < PrivateValueX < (PrimeP - 1)

However, if a central authority specifies a private-value length L, in which case the private value (x) shall
satisfy: 2^(L-1) <= PrivateValueX < 2^L

The specification defines "L" in units of bits. In this implementation only values of "L" that are multiples of 8
are permitted.

Refer to PKCS #3: Diffie-Hellman Key-Agreement Standard for details. The client creating this data MUST
ensure the compliance of this value with the standard. Note: This value is also needed to complete local
phase 2 Diffie-Hellman operation.

6.5.2 _CpaCyDhPhase2SecretKeyGenOpData Struct Reference

Collaboration diagram for _CpaCyDhPhase2SecretKeyGenOpData:

6.5.2.1 Detailed Description

Diffie-Hellman Phase 2 Secret Key Generation Data.

This structure lists the different items that required in the cpaCyDhKeyGenPhase2Secret function. The client
MUST allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
with the callback.

6.5.1 _CpaCyDhPhase1KeyGenOpData Struct Reference

Reference Number: 320184, Revision -003 26

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDhKeyGenPhase2Secret function, and before it has been returned in the callback, undefined
behavior will result. All values in this structure are required to be in Most Significant Byte first order,
e.g. primeP.pData[0] = MSB.

6.5.2.2 Data Fields

CpaFlatBuffer primeP
Flat buffer containing a pointer to the random odd prime number (p).

•

CpaFlatBuffer remoteOctetStringPV
Flat buffer containing a pointer to the remote entity octet string Public Value (PV).

•

CpaFlatBuffer privateValueX
Flat buffer containing a pointer to the private value (x).

•

6.5.2.3 Field Documentation

CpaFlatBuffer _CpaCyDhPhase2SecretKeyGenOpData::primeP
Flat buffer containing a pointer to the random odd prime number (p).

This number may be 768, 1024, 1536, 2048, 3072 or 4096 bits in length. This SHOULD be same
prime number as was used in the phase 1 key generation operation.

CpaFlatBuffer _CpaCyDhPhase2SecretKeyGenOpData::remoteOctetStringPV
Flat buffer containing a pointer to the remote entity octet string Public Value (PV).

This is the public value being negotiated with. The first octet of this PV has the most significance in the
integer and the last octet of PV has the least significance. The length specified MUST be equal to the length
of the primeP (in bits) divided by the number of bits in an octet(8).

CpaFlatBuffer _CpaCyDhPhase2SecretKeyGenOpData::privateValueX
Flat buffer containing a pointer to the private value (x).

This value may have been used in a call to the cpaCyDhKeyGenPhase1 function. This is a random value
which MUST satisfy the following condition: 0 < privateValueX < (primeP - 1).

6.5.3 _CpaCyDhStats Struct Reference

6.5.3.1 Detailed Description

Diffie-Hellman Statistics.

This structure contains statistics on the Diffie-Hellman operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

6.5.3.2 Data Fields

Cpa32U numDhPhase1KeyGenRequests
Total number of successful Diffie-Hellman phase 1 key generation requests.

•

Cpa32U numDhPhase1KeyGenRequestErrors
Total number of Diffie-Hellman phase 1 key generation requests that had an error and could
not be processed.

•

Cpa32U numDhPhase1KeyGenCompleted•

6.5.2 _CpaCyDhPhase2SecretKeyGenOpData Struct Reference

Reference Number: 320184, Revision -003 27

Total number of Diffie-Hellman phase 1 key generation operations that completed
successfully.

Cpa32U numDhPhase1KeyGenCompletedErrors
Total number of Diffie-Hellman phase 1 key generation operations that could not be
completed successfully due to errors.

•

Cpa32U numDhPhase2KeyGenRequests
Total number of successful Diffie-Hellman phase 2 key generation requests.

•

Cpa32U numDhPhase2KeyGenRequestErrors
Total number of Diffie-Hellman phase 2 key generation requests that had an error and could
not be processed.

•

Cpa32U numDhPhase2KeyGenCompleted
Total number of Diffie-Hellman phase 2 key generation operations that completed
successfully.

•

Cpa32U numDhPhase2KeyGenCompletedErrors
Total number of Diffie-Hellman phase 2 key generation operations that could not be
completed successfully due to errors.

•

6.5.3.3 Field Documentation

Cpa32U _CpaCyDhStats::numDhPhase1KeyGenRequests
Total number of successful Diffie-Hellman phase 1 key generation requests.

Cpa32U _CpaCyDhStats::numDhPhase1KeyGenRequestErrors
Total number of Diffie-Hellman phase 1 key generation requests that had an error and could not be
processed.

Cpa32U _CpaCyDhStats::numDhPhase1KeyGenCompleted
Total number of Diffie-Hellman phase 1 key generation operations that completed successfully.

Cpa32U _CpaCyDhStats::numDhPhase1KeyGenCompletedErrors
Total number of Diffie-Hellman phase 1 key generation operations that could not be completed successfully
due to errors.

Cpa32U _CpaCyDhStats::numDhPhase2KeyGenRequests
Total number of successful Diffie-Hellman phase 2 key generation requests.

Cpa32U _CpaCyDhStats::numDhPhase2KeyGenRequestErrors
Total number of Diffie-Hellman phase 2 key generation requests that had an error and could not be
processed.

Cpa32U _CpaCyDhStats::numDhPhase2KeyGenCompleted
Total number of Diffie-Hellman phase 2 key generation operations that completed successfully.

Cpa32U _CpaCyDhStats::numDhPhase2KeyGenCompletedErrors
Total number of Diffie-Hellman phase 2 key generation operations that could not be completed successfully
due to errors.

6.6 Typedef Documentation

typedef struct _CpaCyDhPhase1KeyGenOpData CpaCyDhPhase1KeyGenOpData

6.5.3 _CpaCyDhStats Struct Reference

Reference Number: 320184, Revision -003 28

Diffie-Hellman Phase 1 Key Generation Data.

This structure lists the different items that are required in the cpaCyDhKeyGenPhase1 function. The client
MUST allocate the memory for this structure. When the structure is passed into the function, ownership of
the memory passes to the function. Ownership of the memory returns to the client when this structure is
returned with the CpaCyDhPhase1KeyGenOpData structure.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDhKeyGenPhase1 function, and before it has been returned in the callback, undefined
behavior will result. All values in this structure are required to be in Most Significant Byte first order,
e.g. primeP.pData[0] = MSB.

typedef struct _CpaCyDhPhase2SecretKeyGenOpData CpaCyDhPhase2SecretKeyGenOpData
Diffie-Hellman Phase 2 Secret Key Generation Data.

This structure lists the different items that required in the cpaCyDhKeyGenPhase2Secret function. The
client MUST allocate the memory for this structure. When the structure is passed into the function,
ownership of the memory passes to the function. Ownership of the memory returns to the client when this
structure is returned with the callback.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDhKeyGenPhase2Secret function, and before it has been returned in the callback,
undefined behavior will result. All values in this structure are required to be in Most Significant Byte
first order, e.g. primeP.pData[0] = MSB.

typedef struct _CpaCyDhStats CpaCyDhStats
Diffie-Hellman Statistics.

This structure contains statistics on the Diffie-Hellman operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

6.7 Function Documentation

CpaStatus cpaCyDhKeyGenPhase1 (const CpaInstanceHandle instanceHandle,
const CpaCyGenFlatBufCbFunc pDhPhase1Cb,
void * pCallbackTag,
const
CpaCyDhPhase1KeyGenOpData * pPhase1KeyGenData,

CpaFlatBuffer * pLocalOctetStringPV
)

Function to implement Diffie-Hellman phase 1 operations.

This function may be used to implement the Diffie-Hellman phase 1 operations as defined in the PKCS #3
standard. It may be used to generate the two keys that are needed, the (local) octet string public value (PV)
key and the private value (x) key. x is a random value, less than the prime number (PrimeP). If the length of
this value is specified (non-zero) then additional constraints apply to this value. The prime number sizes
specified in RFC 2409, 4306, and part of RFC 3526 are supported (bit sizes 6144 and 8192 from RFC 3536
are not supported).

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does

6.6 Typedef Documentation

Reference Number: 320184, Revision -003 29

not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pDhPhase1Cb Pointer to a callback function to be invoked when the operation is

complete. If the pointer is set to a NULL value the function will
operate synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged
in the callback

[in] pPhase1KeyGenData Structure containing all the data needed to perform the DH Phase 1
key generation operation. The client code allocates the memory for
this structure. This component takes ownership of the memory until
it is returned in the callback.

[out] pLocalOctetStringPV Pointer to memory allocated by the client into which the (local) octet
string Public Value (PV) will be written. This value needs to be sent
to the remote entity that Diffie-Hellman is negotiating with. The first
octet of this PV has the most significance in the integer and the last
octet of PV has the least significance. The size of the memory
required is equal to the length of pPrimeP (in bits) divided by the
number of bits in an octet(8). On invocation the callback function will
contain this parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pDhPhase1Cb is non-NULL an asynchronous callback of type CpaCyGenFlatBufCbFunc is
generated in response to this function call. Any errors generated during processing are reported in
the structure returned in the callback.

6.7 Function Documentation

Reference Number: 320184, Revision -003 30

See also:
CpaCyGenFlatBufCbFunc, CpaCyDhPhase1KeyGenOpData

CpaStatus
cpaCyDhKeyGenPhase2Secret (const CpaInstanceHandle instanceHandle,

const CpaCyGenFlatBufCbFunc pDhPhase2Cb,
void * pCallbackTag,
const
CpaCyDhPhase2SecretKeyGenOpData
*

pPhase2SecretKeyGenData,

CpaFlatBuffer * pOctetStringSecretKey
)

Function to implement Diffie-Hellman phase 2 operations.

This function may be used to implement the Diffie-Hellman phase 2 operation as defined in the PKCS #3
standard. It may be used to generate the Diffie-Hellman shared secret key.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pDhPhase2Cb Pointer to a callback function to be invoked when the

operation is complete. If the pointer is set to a NULL value
the function will operate synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned
unchanged in the callback.

[in] pPhase2SecretKeyGenData Structure containing all the data needed to perform the DH
Phase 2 secret key generation operation. The client code
allocates the memory for this structure. This component
takes ownership of the memory until it is returned in the
callback.

[out] pOctetStringSecretKey Pointer to memory allocated by the client into which the octet
string secret key will be written. The size of the memory
required is equal to the length of pPrimeP (in bits) divided by
the number of bits in an octet(8). On invocation the callback
function will contain this parameter in it's pOut parameter.

6.7 Function Documentation

Reference Number: 320184, Revision -003 31

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pDhPhase2Cb is non-NULL an asynchronous callback of type CpaCyGenFlatBufCbFunc is
generated in response to this function call. Any errors generated during processing are reported in
the structure returned in the callback.

See also:
CpaCyGenFlatBufCbFunc, CpaCyDhPhase2SecretKeyGenOpData

CpaStatus cpaCyDhQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyDhStats * pDhStats

)
Query statistics for Diffie-Hellman operations.

This function will query a specific Instance handle for Diffie- Hellman statistics. The user MUST allocate the
CpaCyDhStats structure and pass the reference to that structure into this function call. This function writes
the statistic results into the passed in CpaCyDhStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:
This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pDhStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

6.7 Function Documentation

Reference Number: 320184, Revision -003 32

CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyDhStats

6.7 Function Documentation

Reference Number: 320184, Revision -003 33

7 Public Key Encryption DSA API.
 [Cryptographic API.]

Collaboration diagram for Public Key Encryption DSA API.:

7.1 Detailed Description

These functions specify the API for Public Key Encryption (cryptography) Digital Signature Algorithm (DSA)
operations.The FIPS PUB 186-2 with Change Notice 1 specification is supported.

Only the modular math aspects of DSA parameter generation and message signature generation and
verification are implemented here. For full DSA support, this DSA API SHOULD be used in conjunction with
other parts of this overall Cryptographic API. In particular the Symmetric functions (for hashing), the Random
Number Generation functions, and the Prime Number Test functions will be required.

7.2 Data Structures

struct _CpaCyDsaPParamGenOpData
DSA P Parameter Generation Operation Data.

•

struct _CpaCyDsaGParamGenOpData
DSA G Parameter Generation Operation Data.

•

struct _CpaCyDsaYParamGenOpData
DSA Y Parameter Generation Operation Data.

•

struct _CpaCyDsaRSignOpData
DSA R Sign Operation Data.

•

struct _CpaCyDsaSSignOpData
DSA S Sign Operation Data.

•

struct _CpaCyDsaRSSignOpData
DSA R & S Sign Operation Data.

•

struct _CpaCyDsaVerifyOpData
DSA Verify Operation Data.

•

struct _CpaCyDsaStats
Cryptographic DSA Statistics.

•

7.3 Typedefs

typedef _CpaCyDsaPParamGenOpData CpaCyDsaPParamGenOpData
DSA P Parameter Generation Operation Data.

•

typedef _CpaCyDsaGParamGenOpData CpaCyDsaGParamGenOpData
DSA G Parameter Generation Operation Data.

•

typedef _CpaCyDsaYParamGenOpData CpaCyDsaYParamGenOpData
DSA Y Parameter Generation Operation Data.

•

typedef _CpaCyDsaRSignOpData CpaCyDsaRSignOpData
DSA R Sign Operation Data.

•

typedef _CpaCyDsaSSignOpData CpaCyDsaSSignOpData
DSA S Sign Operation Data.

•

typedef _CpaCyDsaRSSignOpData CpaCyDsaRSSignOpData
DSA R & S Sign Operation Data.

•

Reference Number: 320184, Revision -003 34

typedef _CpaCyDsaVerifyOpData CpaCyDsaVerifyOpData
DSA Verify Operation Data.

•

typedef _CpaCyDsaStats CpaCyDsaStats
Cryptographic DSA Statistics.

•

typedef void(* CpaCyDsaGenCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean protocolStatus, CpaFlatBuffer *pOut)

Definition of a generic callback function invoked for a number of the DSA API functions.

•

typedef void(* CpaCyDsaRSSignCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean protocolStatus, CpaFlatBuffer *pR, CpaFlatBuffer *pS)

Definition of callback function invoked for cpaCyDsaSignRS requests.

•

typedef void(* CpaCyDsaVerifyCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean verifyStatus)

Definition of callback function invoked for cpaCyDsaVerify requests.

•

7.4 Functions

CpaStatus cpaCyDsaGenPParam (const CpaInstanceHandle instanceHandle, const
CpaCyDsaGenCbFunc pCb, void *pCallbackTag, const CpaCyDsaPParamGenOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pP)

Generate DSA P Parameter.

•

CpaStatus cpaCyDsaGenGParam (const CpaInstanceHandle instanceHandle, const
CpaCyDsaGenCbFunc pCb, void *pCallbackTag, const CpaCyDsaGParamGenOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pG)

Generate DSA G Parameter.

•

CpaStatus cpaCyDsaGenYParam (const CpaInstanceHandle instanceHandle, const
CpaCyDsaGenCbFunc pCb, void *pCallbackTag, const CpaCyDsaYParamGenOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pY)

Generate DSA Y Parameter.

•

CpaStatus cpaCyDsaSignR (const CpaInstanceHandle instanceHandle, const
CpaCyDsaGenCbFunc pCb, void *pCallbackTag, const CpaCyDsaRSignOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pR)

Generate DSA R Signature.

•

CpaStatus cpaCyDsaSignS (const CpaInstanceHandle instanceHandle, const
CpaCyDsaGenCbFunc pCb, void *pCallbackTag, const CpaCyDsaSSignOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pS)

Generate DSA S Signature.

•

CpaStatus cpaCyDsaSignRS (const CpaInstanceHandle instanceHandle, const
CpaCyDsaRSSignCbFunc pCb, void *pCallbackTag, const CpaCyDsaRSSignOpData *pOpData,
CpaBoolean *pProtocolStatus, CpaFlatBuffer *pR, CpaFlatBuffer *pS)

Generate DSA R & S Signature.

•

CpaStatus cpaCyDsaVerify (const CpaInstanceHandle instanceHandle, const
CpaCyDsaVerifyCbFunc pCb, void *pCallbackTag, const CpaCyDsaVerifyOpData *pOpData,
CpaBoolean *pVerifyStatus)

Verify DSA R & S Signature.

•

CpaStatus cpaCyDsaQueryStats (const CpaInstanceHandle instanceHandle, CpaCyDsaStats
*pDsaStats)

Query statistics for a specific DSA instance.

•

7.5 Data Structure Documentation

7.3 Typedefs

Reference Number: 320184, Revision -003 35

7.5.1 _CpaCyDsaPParamGenOpData Struct Reference

Collaboration diagram for _CpaCyDsaPParamGenOpData:

7.5.1.1 Detailed Description

DSA P Parameter Generation Operation Data.

This structure contains the operation data for the cpaCyDsaGenPParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data buffers SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. X.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaGenPParam function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyDsaGenPParam()

7.5.1.2 Data Fields

CpaFlatBuffer X
2^1023 <= X < 2^1024 (from FIPS 186-2 Change Notice 1 Appendix 2.2 Step 8)

•

CpaFlatBuffer Q
DSA group parameter q.

•

7.5.1.3 Field Documentation

CpaFlatBuffer _CpaCyDsaPParamGenOpData::X
2^1023 <= X < 2^1024 (from FIPS 186-2 Change Notice 1 Appendix 2.2 Step 8)

7.5 Data Structure Documentation

Reference Number: 320184, Revision -003 36

CpaFlatBuffer _CpaCyDsaPParamGenOpData::Q
DSA group parameter q.

7.5.2 _CpaCyDsaGParamGenOpData Struct Reference

Collaboration diagram for _CpaCyDsaGParamGenOpData:

7.5.2.1 Detailed Description

DSA G Parameter Generation Operation Data.

This structure contains the operation data for the cpaCyDsaGenGParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

All numbers MUST be stored in big-endian order.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaGenGParam function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyDsaGenGParam()

7.5.2.2 Data Fields

CpaFlatBuffer P
DSA group parameter p.

•

CpaFlatBuffer Q
DSA group parameter q.

•

CpaFlatBuffer H•

7.5.1 _CpaCyDsaPParamGenOpData Struct Reference

Reference Number: 320184, Revision -003 37

any integer with 1 < h < p - 1

7.5.2.3 Field Documentation

CpaFlatBuffer _CpaCyDsaGParamGenOpData::P
DSA group parameter p.

CpaFlatBuffer _CpaCyDsaGParamGenOpData::Q
DSA group parameter q.

CpaFlatBuffer _CpaCyDsaGParamGenOpData::H
any integer with 1 < h < p - 1

7.5.3 _CpaCyDsaYParamGenOpData Struct Reference

Collaboration diagram for _CpaCyDsaYParamGenOpData:

7.5.3.1 Detailed Description

DSA Y Parameter Generation Operation Data.

This structure contains the operation data for the cpaCyDsaGenYParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaGenYParam function, and before it has been returned in the callback, undefined behavior

7.5.2 _CpaCyDsaGParamGenOpData Struct Reference

Reference Number: 320184, Revision -003 38

will result.

See also:
cpaCyDsaGenYParam()

7.5.3.2 Data Fields

CpaFlatBuffer P
DSA group parameter p.

•

CpaFlatBuffer G
DSA group parameter g.

•

CpaFlatBuffer X
DSA private key x.

•

7.5.3.3 Field Documentation

CpaFlatBuffer _CpaCyDsaYParamGenOpData::P
DSA group parameter p.

CpaFlatBuffer _CpaCyDsaYParamGenOpData::G
DSA group parameter g.

CpaFlatBuffer _CpaCyDsaYParamGenOpData::X
DSA private key x.

7.5.4 _CpaCyDsaRSignOpData Struct Reference

Collaboration diagram for _CpaCyDsaRSignOpData:

7.5.3 _CpaCyDsaYParamGenOpData Struct Reference

Reference Number: 320184, Revision -003 39

7.5.4.1 Detailed Description

DSA R Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignR function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaSignR function, and before it has been returned in the callback, undefined behavior will
result.

See also:
cpaCyDsaSignR()

7.5.4.2 Data Fields

CpaFlatBuffer P
DSA group parameter p.

•

CpaFlatBuffer Q
DSA group parameter q.

•

CpaFlatBuffer G
DSA group parameter g.

•

CpaFlatBuffer K
DSA secret parameter k for signing.

•

7.5.4.3 Field Documentation

CpaFlatBuffer _CpaCyDsaRSignOpData::P
DSA group parameter p.

CpaFlatBuffer _CpaCyDsaRSignOpData::Q
DSA group parameter q.

CpaFlatBuffer _CpaCyDsaRSignOpData::G
DSA group parameter g.

CpaFlatBuffer _CpaCyDsaRSignOpData::K
DSA secret parameter k for signing.

7.5.4 _CpaCyDsaRSignOpData Struct Reference

Reference Number: 320184, Revision -003 40

7.5.5 _CpaCyDsaSSignOpData Struct Reference

Collaboration diagram for _CpaCyDsaSSignOpData:

7.5.5.1 Detailed Description

DSA S Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignS function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. Q.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaSignS function, and before it has been returned in the callback, undefined behavior will
result.

See also:
cpaCyDsaSignS()

7.5.5.2 Data Fields

CpaFlatBuffer Q
DSA group parameter q.

•

CpaFlatBuffer X
DSA private key x.

•

CpaFlatBuffer K•

7.5.5 _CpaCyDsaSSignOpData Struct Reference

Reference Number: 320184, Revision -003 41

DSA secret parameter k for signing.
CpaFlatBuffer R

DSA message signature r.
•

CpaFlatBuffer M
DSA message digest.

•

7.5.5.3 Field Documentation

CpaFlatBuffer _CpaCyDsaSSignOpData::Q
DSA group parameter q.

CpaFlatBuffer _CpaCyDsaSSignOpData::X
DSA private key x.

CpaFlatBuffer _CpaCyDsaSSignOpData::K
DSA secret parameter k for signing.

CpaFlatBuffer _CpaCyDsaSSignOpData::R
DSA message signature r.

CpaFlatBuffer _CpaCyDsaSSignOpData::M
DSA message digest.

7.5.6 _CpaCyDsaRSSignOpData Struct Reference

Collaboration diagram for _CpaCyDsaRSSignOpData:

7.5.5 _CpaCyDsaSSignOpData Struct Reference

Reference Number: 320184, Revision -003 42

7.5.6.1 Detailed Description

DSA R & S Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignRS function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaSignRS function, and before it has been returned in the callback, undefined behavior will
result.

See also:
cpaCyDsaSignRS()

7.5.6.2 Data Fields

CpaFlatBuffer P
DSA group parameter p.

•

CpaFlatBuffer Q
DSA group parameter q.

•

CpaFlatBuffer G
DSA group parameter g.

•

CpaFlatBuffer X
DSA private key x.

•

CpaFlatBuffer K
DSA secret parameter k for signing.

•

CpaFlatBuffer M
DSA message digest.

•

7.5.6.3 Field Documentation

CpaFlatBuffer _CpaCyDsaRSSignOpData::P
DSA group parameter p.

CpaFlatBuffer _CpaCyDsaRSSignOpData::Q
DSA group parameter q.

CpaFlatBuffer _CpaCyDsaRSSignOpData::G
DSA group parameter g.

CpaFlatBuffer _CpaCyDsaRSSignOpData::X
DSA private key x.

CpaFlatBuffer _CpaCyDsaRSSignOpData::K
DSA secret parameter k for signing.

7.5.6 _CpaCyDsaRSSignOpData Struct Reference

Reference Number: 320184, Revision -003 43

CpaFlatBuffer _CpaCyDsaRSSignOpData::M
DSA message digest.

7.5.7 _CpaCyDsaVerifyOpData Struct Reference

Collaboration diagram for _CpaCyDsaVerifyOpData:

7.5.7.1 Detailed Description

DSA Verify Operation Data.

This structure contains the operation data for the cpaCyDsaVerify function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyDsaVerify function, and before it has been returned in the callback, undefined behavior will
result.

See also:
cpaCyDsaVerify()

7.5.7 _CpaCyDsaVerifyOpData Struct Reference

Reference Number: 320184, Revision -003 44

7.5.7.2 Data Fields

CpaFlatBuffer P
DSA group parameter p.

•

CpaFlatBuffer Q
DSA group parameter q.

•

CpaFlatBuffer G
DSA group parameter g.

•

CpaFlatBuffer Y
DSA public key y.

•

CpaFlatBuffer M
DSA message digest.

•

CpaFlatBuffer R
DSA message signature r.

•

CpaFlatBuffer S
DSA message signature s.

•

7.5.7.3 Field Documentation

CpaFlatBuffer _CpaCyDsaVerifyOpData::P
DSA group parameter p.

CpaFlatBuffer _CpaCyDsaVerifyOpData::Q
DSA group parameter q.

CpaFlatBuffer _CpaCyDsaVerifyOpData::G
DSA group parameter g.

CpaFlatBuffer _CpaCyDsaVerifyOpData::Y
DSA public key y.

CpaFlatBuffer _CpaCyDsaVerifyOpData::M
DSA message digest.

CpaFlatBuffer _CpaCyDsaVerifyOpData::R
DSA message signature r.

CpaFlatBuffer _CpaCyDsaVerifyOpData::S
DSA message signature s.

7.5.8 _CpaCyDsaStats Struct Reference

7.5.8.1 Detailed Description

Cryptographic DSA Statistics.

This structure contains statistics on the Cryptographic DSA operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

7.5.7 _CpaCyDsaVerifyOpData Struct Reference

Reference Number: 320184, Revision -003 45

7.5.8.2 Data Fields

Cpa32U numDsaPParamGenRequests
Total number of successful DSA P parameter generation requests.

•

Cpa32U numDsaPParamGenRequestErrors
Total number of DSA P parameter generation requests that had an error and could not be
processed.

•

Cpa32U numDsaPParamGenCompleted
Total number of DSA P parameter generation operations that completed successfully.

•

Cpa32U numDsaPParamGenCompletedErrors
Total number of DSA P parameter generation operations that could not be completed
successfully due to errors.

•

Cpa32U numDsaGParamGenRequests
Total number of successful DSA G parameter generation requests.

•

Cpa32U numDsaGParamGenRequestErrors
Total number of DSA G parameter generation requests that had an error and could not be
processed.

•

Cpa32U numDsaGParamGenCompleted
Total number of DSA G parameter generation operations that completed successfully.

•

Cpa32U numDsaGParamGenCompletedErrors
Total number of DSA G parameter generation operations that could not be completed
successfully due to errors.

•

Cpa32U numDsaYParamGenRequests
Total number of successful DSA Y parameter generation requests.

•

Cpa32U numDsaYParamGenRequestErrors
Total number of DSA Y parameter generation requests that had an error and could not be
processed.

•

Cpa32U numDsaYParamGenCompleted
Total number of DSA Y parameter generation operations that completed successfully.

•

Cpa32U numDsaYParamGenCompletedErrors
Total number of DSA Y parameter generation operations that could not be completed
successfully due to errors.

•

Cpa32U numDsaRSignRequests
Total number of successful DSA R sign generation requests.

•

Cpa32U numDsaRSignRequestErrors
Total number of DSA R sign requests that had an error and could not be processed.

•

Cpa32U numDsaRSignCompleted
Total number of DSA R sign operations that completed successfully.

•

Cpa32U numDsaRSignCompletedErrors
Total number of DSA R sign operations that could not be completed successfully due to
errors.

•

Cpa32U numDsaSSignRequests
Total number of successful DSA S sign generation requests.

•

Cpa32U numDsaSSignRequestErrors
Total number of DSA S sign requests that had an error and could not be processed.

•

Cpa32U numDsaSSignCompleted
Total number of DSA S sign operations that completed successfully.

•

Cpa32U numDsaSSignCompletedErrors
Total number of DSA S sign operations that could not be completed successfully due to
errors.

•

Cpa32U numDsaRSSignRequests
Total number of successful DSA RS sign generation requests.

•

Cpa32U numDsaRSSignRequestErrors
Total number of DSA RS sign requests that had an error and could not be processed.

•

Cpa32U numDsaRSSignCompleted
Total number of DSA RS sign operations that completed successfully.

•

7.5.8 _CpaCyDsaStats Struct Reference

Reference Number: 320184, Revision -003 46

Cpa32U numDsaRSSignCompletedErrors
Total number of DSA RS sign operations that could not be completed successfully due to
errors.

•

Cpa32U numDsaVerifyRequests
Total number of successful DSA verify generation requests.

•

Cpa32U numDsaVerifyRequestErrors
Total number of DSA verify requests that had an error and could not be processed.

•

Cpa32U numDsaVerifyCompleted
Total number of DSA verify operations that completed successfully.

•

Cpa32U numDsaVerifyCompletedErrors
Total number of DSA verify operations that could not be completed successfully due to errors.

•

Cpa32U numDsaVerifyFailures
Total number of DSA verify operations that executed successfully but the outcome of the test
was that the verification failed.

•

7.5.8.3 Field Documentation

Cpa32U _CpaCyDsaStats::numDsaPParamGenRequests
Total number of successful DSA P parameter generation requests.

Cpa32U _CpaCyDsaStats::numDsaPParamGenRequestErrors
Total number of DSA P parameter generation requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaPParamGenCompleted
Total number of DSA P parameter generation operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaPParamGenCompletedErrors
Total number of DSA P parameter generation operations that could not be completed successfully due to
errors.

Cpa32U _CpaCyDsaStats::numDsaGParamGenRequests
Total number of successful DSA G parameter generation requests.

Cpa32U _CpaCyDsaStats::numDsaGParamGenRequestErrors
Total number of DSA G parameter generation requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaGParamGenCompleted
Total number of DSA G parameter generation operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaGParamGenCompletedErrors
Total number of DSA G parameter generation operations that could not be completed successfully due to
errors.

Cpa32U _CpaCyDsaStats::numDsaYParamGenRequests
Total number of successful DSA Y parameter generation requests.

Cpa32U _CpaCyDsaStats::numDsaYParamGenRequestErrors
Total number of DSA Y parameter generation requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaYParamGenCompleted

7.5.8 _CpaCyDsaStats Struct Reference

Reference Number: 320184, Revision -003 47

Total number of DSA Y parameter generation operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaYParamGenCompletedErrors
Total number of DSA Y parameter generation operations that could not be completed successfully due to
errors.

Cpa32U _CpaCyDsaStats::numDsaRSignRequests
Total number of successful DSA R sign generation requests.

Cpa32U _CpaCyDsaStats::numDsaRSignRequestErrors
Total number of DSA R sign requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaRSignCompleted
Total number of DSA R sign operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaRSignCompletedErrors
Total number of DSA R sign operations that could not be completed successfully due to errors.

Cpa32U _CpaCyDsaStats::numDsaSSignRequests
Total number of successful DSA S sign generation requests.

Cpa32U _CpaCyDsaStats::numDsaSSignRequestErrors
Total number of DSA S sign requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaSSignCompleted
Total number of DSA S sign operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaSSignCompletedErrors
Total number of DSA S sign operations that could not be completed successfully due to errors.

Cpa32U _CpaCyDsaStats::numDsaRSSignRequests
Total number of successful DSA RS sign generation requests.

Cpa32U _CpaCyDsaStats::numDsaRSSignRequestErrors
Total number of DSA RS sign requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaRSSignCompleted
Total number of DSA RS sign operations that completed successfully.

Cpa32U _CpaCyDsaStats::numDsaRSSignCompletedErrors
Total number of DSA RS sign operations that could not be completed successfully due to errors.

Cpa32U _CpaCyDsaStats::numDsaVerifyRequests
Total number of successful DSA verify generation requests.

Cpa32U _CpaCyDsaStats::numDsaVerifyRequestErrors
Total number of DSA verify requests that had an error and could not be processed.

Cpa32U _CpaCyDsaStats::numDsaVerifyCompleted
Total number of DSA verify operations that completed successfully.

7.5.8 _CpaCyDsaStats Struct Reference

Reference Number: 320184, Revision -003 48

Cpa32U _CpaCyDsaStats::numDsaVerifyCompletedErrors
Total number of DSA verify operations that could not be completed successfully due to errors.

Cpa32U _CpaCyDsaStats::numDsaVerifyFailures
Total number of DSA verify operations that executed successfully but the outcome of the test was that the
verification failed.

N.B. This does not indicate an "error".

7.6 Typedef Documentation

typedef struct _CpaCyDsaPParamGenOpData CpaCyDsaPParamGenOpData
DSA P Parameter Generation Operation Data.

This structure contains the operation data for the cpaCyDsaGenPParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into
the function, ownership of the memory passes to the function. Ownership of the memory returns to the
client when this structure is returned in the callback function.

For optimal performance all data buffers SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. X.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaGenPParam function, and before it has been returned in the callback, undefined
behavior will result.

See also:
cpaCyDsaGenPParam()

typedef struct _CpaCyDsaGParamGenOpData CpaCyDsaGParamGenOpData
DSA G Parameter Generation Operation Data.

This structure contains the operation data for the cpaCyDsaGenGParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into
the function, ownership of the memory passes to the function. Ownership of the memory returns to the
client when this structure is returned in the callback function.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

All numbers MUST be stored in big-endian order.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaGenGParam function, and before it has been returned in the callback, undefined
behavior will result.

See also:
cpaCyDsaGenGParam()

typedef struct _CpaCyDsaYParamGenOpData CpaCyDsaYParamGenOpData
DSA Y Parameter Generation Operation Data.

7.6 Typedef Documentation

Reference Number: 320184, Revision -003 49

This structure contains the operation data for the cpaCyDsaGenYParam function. The client MUST allocate
the memory for this structure and the items pointed to by this structure. When the structure is passed into
the function, ownership of the memory passes to the function. Ownership of the memory returns to the
client when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaGenYParam function, and before it has been returned in the callback, undefined
behavior will result.

See also:
cpaCyDsaGenYParam()

typedef struct _CpaCyDsaRSignOpData CpaCyDsaRSignOpData
DSA R Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignR function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaSignR function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyDsaSignR()

typedef struct _CpaCyDsaSSignOpData CpaCyDsaSSignOpData
DSA S Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignS function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. Q.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaSignS function, and before it has been returned in the callback, undefined behavior
will result.

See also:

7.6 Typedef Documentation

Reference Number: 320184, Revision -003 50

cpaCyDsaSignS()

typedef struct _CpaCyDsaRSSignOpData CpaCyDsaRSSignOpData
DSA R & S Sign Operation Data.

This structure contains the operation data for the cpaCyDsaSignRS function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaSignRS function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyDsaSignRS()

typedef struct _CpaCyDsaVerifyOpData CpaCyDsaVerifyOpData
DSA Verify Operation Data.

This structure contains the operation data for the cpaCyDsaVerify function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

For optimal performance all data SHOULD be 8-byte aligned.

All values in this structure are required to be in Most Significant Byte first order, e.g. P.pData[0] = MSB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyDsaVerify function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyDsaVerify()

typedef struct _CpaCyDsaStats CpaCyDsaStats
Cryptographic DSA Statistics.

This structure contains statistics on the Cryptographic DSA operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

typedef void(* CpaCyDsaGenCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData, CpaBoolean
protocolStatus, CpaFlatBuffer *pOut)

Definition of a generic callback function invoked for a number of the DSA API functions.

This is the prototype for the cpaCyDsaGenCbFunc callback function.

Context:

7.6 Typedef Documentation

Reference Number: 320184, Revision -003 51

This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag User-supplied value to help identify request.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Opaque pointer to Operation data supplied in request.
[in] protocolStatus The result passes/fails the DSA protocol related checks.
[in] pOut Output data from the request.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
cpaCyDsaGenPParam() cpaCyDsaGenGParam() cpaCyDsaSignR() cpaCyDsaSignS()

typedef void(* CpaCyDsaRSSignCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean protocolStatus, CpaFlatBuffer *pR, CpaFlatBuffer *pS)

Definition of callback function invoked for cpaCyDsaSignRS requests.

This is the prototype for the cpaCyDsaSignRS callback function, which will provide the DSA message
signature r and s parameters.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

7.6 Typedef Documentation

Reference Number: 320184, Revision -003 52

Thread-safe:
Yes

Parameters:
[in] pCallbackTag User-supplied value to help identify request.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Operation data pointer supplied in request.
[in] protocolStatus The result passes/fails the DSA protocol related checks.
[in] pR DSA message signature r.
[in] pS DSA message signature s.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
cpaCyDsaSignRS()

typedef void(* CpaCyDsaVerifyCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean verifyStatus)

Definition of callback function invoked for cpaCyDsaVerify requests.

This is the prototype for the cpaCyDsaVerify callback function.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag User-supplied value to help identify request.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Operation data pointer supplied in request.
[in] verifyStatus The verification passed or failed.

7.6 Typedef Documentation

Reference Number: 320184, Revision -003 53

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
cpaCyDsaVerify()

7.7 Function Documentation

CpaStatus cpaCyDsaGenPParam (const CpaInstanceHandle instanceHandle,
const CpaCyDsaGenCbFunc pCb,
void * pCallbackTag,
const
CpaCyDsaPParamGenOpData * pOpData,

CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pP

)
Generate DSA P Parameter.

This function performs FIPS 186-2 Change Notice 1 Appendix 2.2 Step 9 and part of Step 11:

Step 9. Let c = X mod 2q and set p = X - (c - 1). Step 11. Perform a robust primality test on p. [a GCD test
against ~1400 small primes is performed on p to eliminate ~94% of composites - this is NOT a "robust"
primality test]

A response status of ok (protocolStatus == CPA_TRUE) means p is in the right range, and SHOULD be
subjected to a robust primality test (for example 50 rounds of Miller-Rabin).

A response status of not ok (protocolStatus == CPA_FALSE) means p is either in the right range but
composite, or p < 2^1023 (in which case the value of p gets set to zero).

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:

7.7 Function Documentation

Reference Number: 320184, Revision -003 54

No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pP Candidate for DSA parameter p, p odd and 2^1023 < p < X On invocation

the callback function will contain this parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaPParamGenCbFunc is
generated in response to this function call. For optimal performance, data pointers SHOULD be
8-byte aligned.

See also:
CpaCyDsaPParamGenOpData, CpaCyDsaGenCbFunc

CpaStatus cpaCyDsaGenGParam (const CpaInstanceHandle instanceHandle,
const CpaCyDsaGenCbFunc pCb,
void * pCallbackTag,
const
CpaCyDsaGParamGenOpData * pOpData,

CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pG

)
Generate DSA G Parameter.

This function performs FIPS 186-2 Change Notice 1 Appendix 4 Step 2, Step 4, and part of Step 5:

Step 2. Let e = (p - 1)/q. Step 4. Set g = h^e mod p. Step 5. If g = 1, go to step 3. [a check for g = 1 is
performed, and status returned accordingly]

A response status of ok (protocolStatus == CPA_TRUE) means g is acceptable.

7.7 Function Documentation

Reference Number: 320184, Revision -003 55

A response status of not ok (protocolStatus == CPA_FALSE) means g = 1, so a different value of h
SHOULD be used to generate another value of g.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pG g = h^((p-1)/q) mod p. On invocation the callback function will contain this

parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaGParamGenCbFunc is
generated in response to this function call. For optimal performance, data pointers SHOULD be
8-byte aligned.

See also:
CpaCyDsaGParamGenOpData, CpaCyDsaGenCbFunc

7.7 Function Documentation

Reference Number: 320184, Revision -003 56

CpaStatus cpaCyDsaGenYParam (const CpaInstanceHandle instanceHandle,
const CpaCyDsaGenCbFunc pCb,
void * pCallbackTag,
const
CpaCyDsaYParamGenOpData * pOpData,

CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pY

)
Generate DSA Y Parameter.

This function performs FIPS 186-2 Change Notice 1 Section 4 Step 5: 5. y = g^x mod p

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pY y = g^x mod p* On invocation the callback function will contain this

parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:

7.7 Function Documentation

Reference Number: 320184, Revision -003 57

None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaYParamGenCbFunc is
generated in response to this function call. For optimal performance, data pointers SHOULD be
8-byte aligned.

See also:
CpaCyDsaYParamGenOpData, CpaCyDsaGenCbFunc

CpaStatus cpaCyDsaSignR (const CpaInstanceHandle instanceHandle,
const CpaCyDsaGenCbFunc pCb,
void * pCallbackTag,
const CpaCyDsaRSignOpData * pOpData,
CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pR

)
Generate DSA R Signature.

This function performs FIPS 186-2 Change Notice 1 Section 5: r = (g^k mod p) mod q

A response status of ok (protocolStatus == CPA_TRUE) means r != 0. A response status of not ok
(protocolStatus == CPA_FALSE) means r = 0.

Generation of signature r does not depend on the content of the message being signed, so this operation
can be done in advance for different values of k. Then once each message becomes available only the
signature s needs to be generated.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes

7.7 Function Documentation

Reference Number: 320184, Revision -003 58

ownership of the memory until it is returned in the callback.
[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pR DSA message signature r. On invocation the callback function will contain

this parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaRSignCbFunc is generated in
response to this function call. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyDsaRSignOpData, CpaCyDsaGenCbFunc, cpaCyDsaSignS(), cpaCyDsaSignRS()

CpaStatus cpaCyDsaSignS (const CpaInstanceHandle instanceHandle,
const
CpaCyDsaGenCbFunc pCb,

void * pCallbackTag,
const
CpaCyDsaSSignOpData * pOpData,

CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pS

)
Generate DSA S Signature.

This function performs FIPS 186-2 Change Notice 1 Section 5: s = (k^-1(SHA-1(M) + xr)) mod q

This function does not perform the SHA-1 digest, instead the caller MUST provide the message digest in
the request.

A response status of ok (protocolStatus == CPA_TRUE) means s != 0. A response status of not ok
(protocolStatus == CPA_FALSE) means s = 0.

If signature r has been generated in advance, then this function can be used to generate the signature s
once the message becomes available.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

7.7 Function Documentation

Reference Number: 320184, Revision -003 59

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pS DSA message signature s. On invocation the callback function will contain

this parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaSSignCbFunc is generated in
response to this function call. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyDsaSSignOpData, CpaCyDsaGenCbFunc, cpaCyDsaSignR(), cpaCyDsaSignRS()

CpaStatus cpaCyDsaSignRS (const CpaInstanceHandle instanceHandle,
const CpaCyDsaRSSignCbFunc pCb,
void * pCallbackTag,
const CpaCyDsaRSSignOpData * pOpData,
CpaBoolean * pProtocolStatus,
CpaFlatBuffer * pR,
CpaFlatBuffer * pS

)

7.7 Function Documentation

Reference Number: 320184, Revision -003 60

Generate DSA R & S Signature.

This function performs FIPS 186-2 Change Notice 1 Section 5:

r = (g^k mod p) mod q s = (k^-1(SHA-1(M) + xr)) mod q [this function does not perform the SHA-1 digest,
instead the caller MUST provide the message digest in the request]

A response status of ok (protocolStatus == CPA_TRUE) means r != 0 and s != 0.

A response status of not ok (protocolStatus == CPA_FALSE) means r = 0 or s = 0.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pProtocolStatus The result passes/fails the DSA protocol related checks.
[out] pR DSA message signature r.
[out] pS DSA message signature s.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

7.7 Function Documentation

Reference Number: 320184, Revision -003 61

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaRSSignCbFunc is generated
in response to this function call. For optimal performance, data pointers SHOULD be 8-byte
aligned.

See also:
CpaCyDsaRSSignOpData, CpaCyDsaRSSignCbFunc, cpaCyDsaSignR(), cpaCyDsaSignS()

CpaStatus cpaCyDsaVerify (const CpaInstanceHandle instanceHandle,
const CpaCyDsaVerifyCbFunc pCb,
void * pCallbackTag,
const CpaCyDsaVerifyOpData * pOpData,
CpaBoolean * pVerifyStatus

)
Verify DSA R & S Signature.

This function performs FIPS 186-2 Change Notice 1 Section 6: w = (s')^-1 mod q u1 = ((SHA-1(M'))w) mod
q u2 = ((r')w) mod q v = (((g)^u1 (y)^u2) mod p) mod q

A response status of ok (verifyStatus == CPA_TRUE) means v = r'. A response status of not ok
(verifyStatus == CPA_FALSE) means v != r'.

This function does not perform the SHA-1 digest, instead the caller MUST provide the message digest in
the request.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pVerifyStatus The verification passed or failed.

7.7 Function Documentation

Reference Number: 320184, Revision -003 62

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyDsaVerifyCbFunc is generated in
response to this function call. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyDsaVerifyOpData, CpaCyDsaVerifyCbFunc

CpaStatus cpaCyDsaQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyDsaStats * pDsaStats

)
Query statistics for a specific DSA instance.

This function will query a specific instance of the DSA implementation for statistics. The user MUST allocate
the CpaCyDsaStats structure and pass the reference to that structure into this function call. This function
writes the statistic results into the passed in CpaCyDsaStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:
This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pDsaStats Pointer to memory into which the statistics will be written.

7.7 Function Documentation

Reference Number: 320184, Revision -003 63

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyDsaStats

7.7 Function Documentation

Reference Number: 320184, Revision -003 64

8 Crypto Instance Maintainence API.
 [Cryptographic API.]

Collaboration diagram for Crypto Instance Maintainence API.:

8.1 Detailed Description

These functions specify the Instance Maintainence API for available Crypto Instances.

It's expected that these functions will only be called via a single system maintenance entity, rather than
individual clients

8.2 Functions

CpaStatus cpaCyStartInstance (CpaInstanceHandle instanceHandle)
Cryptographic Component Initialization and Start function.

•

CpaStatus cpaCyStopInstance (CpaInstanceHandle instanceHandle)
Cryptographic Component Stop function.

•

8.3 Function Documentation

CpaStatus cpaCyStartInstance (CpaInstanceHandle instanceHandle)
Cryptographic Component Initialization and Start function.

This function will initialize and start the Cryptographic component. It MUST be called before any other
crypto function is called. This function SHOULD be called only once (either for the very first time, or after an
cpaCyStopInstance call which succeeded) per instance. Subsequent calls will have no effect.

Context:
This function may sleep, and MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Reference Number: 320184, Revision -003 65

Parameters:
[out] instanceHandle Handle to an instance of this API to be initialized.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to shutdown and restart.

Precondition:
None.

Postcondition:
None

Note:
Note that this is a synchronous function and has no completion callback associated with it.

See also:
cpaCyStopInstance()

CpaStatus cpaCyStopInstance (CpaInstanceHandle instanceHandle)
Cryptographic Component Stop function.

This function will stop the Cryptographic component and free all system resources associated with it. The
client MUST ensure that all outstanding operations have completed before calling this function. The
recommended approach to ensure this is to deregister all session or callback handles before calling this
function. If outstanding operations still exist when this function is invoked, the callback function for each of
those operations will NOT be invoked and the shutdown will continue. If the component is to be restarted,
then a call to cpaCyStartInstance is required.

Context:
This function may sleep, and so MUST NOT be called in interrupt context.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Handle to an instance of this API to be shutdown.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed. Suggested course of action is to ensure requests are

not still being submitted and that all sessions are deregistered. If this
does not help, then forcefully remove the component from the system.

8.3 Function Documentation

Reference Number: 320184, Revision -003 66

Precondition:
The component has been initialized via cpaCyStartInstance

Postcondition:
None

Note:
Note that this is a synchronous function and has no completion callback associated with it.

See also:
cpaCyStartInstance()

8.3 Function Documentation

Reference Number: 320184, Revision -003 67

9 Key and Mask Generation API.
 [Cryptographic API.]

Collaboration diagram for Key and Mask Generation API.:

9.1 Detailed Description

These functions specify the API for key and mask generation operations.

9.2 Data Structures

struct _CpaCyKeyGenSslOpData
SSL data for key generation functions.

•

struct _CpaCyKeyGenTlsOpData
TLS data for key generation functions.

•

struct _CpaCyKeyGenMgfOpData
Key Generation Mask Generation Function (MGF) Data.

•

struct _CpaCyKeyGenStats
Key Generation Statistics.

•

9.3 Defines

#define CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES
SSL or TLS key generation random number length.

•

#define CPA_CY_KEY_GEN_SSL_TLS_SEED_LEN_IN_BYTES
TLS seed length.

•

9.4 Typedefs

typedef enum _CpaCyKeySslOp CpaCyKeySslOp
SSL Operation Types.

•

typedef _CpaCyKeyGenSslOpData CpaCyKeyGenSslOpData
SSL data for key generation functions.

•

typedef enum _CpaCyKeyTlsOp CpaCyKeyTlsOp
TLS Operation Types.

•

typedef _CpaCyKeyGenTlsOpData CpaCyKeyGenTlsOpData
TLS data for key generation functions.

•

typedef _CpaCyKeyGenMgfOpData CpaCyKeyGenMgfOpData
Key Generation Mask Generation Function (MGF) Data.

•

typedef _CpaCyKeyGenStats CpaCyKeyGenStats
Key Generation Statistics.

•

9.5 Enumerations

enum _CpaCyKeySslOp {
CPA_CY_KEY_SSL_OP_MASTER_SECRET_DERIVE,
CPA_CY_KEY_SSL_OP_KEY_MATERIAL_DERIVE,

•

Reference Number: 320184, Revision -003 68

CPA_CY_KEY_SSL_OP_USER_DEFINED
}

SSL Operation Types.
enum _CpaCyKeyTlsOp {
CPA_CY_KEY_TLS_OP_MASTER_SECRET_DERIVE,
CPA_CY_KEY_TLS_OP_KEY_MATERIAL_DERIVE,
CPA_CY_KEY_TLS_OP_CLIENT_FINISHED_DERIVE,
CPA_CY_KEY_TLS_OP_SERVER_FINISHED_DERIVE,
CPA_CY_KEY_TLS_OP_USER_DEFINED

}
TLS Operation Types.

•

9.6 Functions

CpaStatus cpaCyKeyGenSsl (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pKeyGenCb, void *pCallbackTag, const CpaCyKeyGenSslOpData
*pKeyGenSslOpData, CpaFlatBuffer *pGeneratedKeyBuffer)

SSL Key Generation Function.

•

CpaStatus cpaCyKeyGenTls (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pKeyGenCb, void *pCallbackTag, const CpaCyKeyGenTlsOpData
*pKeyGenTlsOpData, CpaFlatBuffer *pGeneratedKeyBuffer)

TLS Key Generation Function.

•

CpaStatus cpaCyKeyGenMgf (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pKeyGenCb, void *pCallbackTag, const CpaCyKeyGenMgfOpData
*pKeyGenMgfOpData, CpaFlatBuffer *pGeneratedMaskBuffer)

Mask Generation Function.

•

CpaStatus cpaCyKeyGenQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyKeyGenStats *pKeyGenStats)

Key and Mask generation statistics specific to an instance.

•

9.7 Data Structure Documentation

9.7.1 _CpaCyKeyGenSslOpData Struct Reference

Collaboration diagram for _CpaCyKeyGenSslOpData:

9.5 Enumerations

Reference Number: 320184, Revision -003 69

9.7.1.1 Detailed Description

SSL data for key generation functions.

This structure contains data for use in key generation operations for SSL. For specific SSL key generation
operations, the structure fields MUST be set as follows:

SSL Master-Secret Derivation: sslOp = CPA_CY_KEY_SSL_OP_MASTER_SECRET_DERIVE secret =
pre-master secret key seed = client_random + server_random userLabel = NULL

SSL Key-Material Derivation: sslOp = CPA_CY_KEY_SSL_OP_KEY_MATERIAL_DERIVE secret = master
secret key seed = server_random + client_random userLabel = NULL

(note that the client/server random order is reversed from that used for Master-Secret Derivation)

Notes: 1. Each of the client and server random numbers need to be of length
CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES. 2. In each of the above descriptions, +
indicates concatenation. 3. The label used is predetermined by the SSL operation in line with the SSL 3.0
specification, and can be overridden by using a user defined operation
CPA_CY_KEY_SSL_OP_USER_DEFINED and associated userLabel.

9.7.1.2 Data Fields

CpaCyKeySslOp sslOp
Indicate the SSL operation to be performed.

•

CpaFlatBuffer secret
Flat buffer containing a pointer to either the master or pre-master secret key.

•

CpaFlatBuffer seed
Flat buffer containing a pointer to the seed data.

•

Cpa32U generatedKeyLenInBytes
The requested length of the generated key in bytes.

•

CpaFlatBuffer userLabel
Optional flat buffer containing a pointer to a user defined label.

•

9.7.1 _CpaCyKeyGenSslOpData Struct Reference

Reference Number: 320184, Revision -003 70

9.7.1.3 Field Documentation

CpaCyKeySslOp _CpaCyKeyGenSslOpData::sslOp
Indicate the SSL operation to be performed.

CpaFlatBuffer _CpaCyKeyGenSslOpData::secret
Flat buffer containing a pointer to either the master or pre-master secret key.

The length field indicates the length of the secret key in bytes. Implementation-specific limits may apply to
this length.

CpaFlatBuffer _CpaCyKeyGenSslOpData::seed
Flat buffer containing a pointer to the seed data.

The length field needs to be equal to CPA_CY_KEY_GEN_SSL_TLS_SEED_LEN_IN_BYTES.

Cpa32U _CpaCyKeyGenSslOpData::generatedKeyLenInBytes
The requested length of the generated key in bytes.

Implementation-specific limits may apply to this length.

CpaFlatBuffer _CpaCyKeyGenSslOpData::userLabel
Optional flat buffer containing a pointer to a user defined label.

The length field indicates the length of the label in bytes. To use this field, the sslOp must be
CPA_CY_KEY_SSL_OP_USER_DEFINED, otherwise it is ignored and can be set to NULL.
Implementation-specific limits may apply to this length.

9.7.2 _CpaCyKeyGenTlsOpData Struct Reference

Collaboration diagram for _CpaCyKeyGenTlsOpData:

9.7.1 _CpaCyKeyGenSslOpData Struct Reference

Reference Number: 320184, Revision -003 71

9.7.2.1 Detailed Description

TLS data for key generation functions.

This structure contains data for use in key generation operations for TLS. For specific TLS key generation
operations, the structure fields MUST be set as follows:

TLS Master-Secret Derivation: tlsOp = CPA_CY_KEY_TLS_OP_MASTER_SECRET_DERIVE secret =
pre-master secret key seed = client_random + server_random userLabel = NULL

TLS Key-Material Derivation: tlsOp = CPA_CY_KEY_TLS_OP_KEY_MATERIAL_DERIVE secret = master
secret key seed = server_random + client_random userLabel = NULL

(note that the client/server random order is reversed from that used for Master-Secret Derivation)

TLS Client finished/Server finished tag Derivation: tlsOp =
CPA_CY_KEY_TLS_OP_CLIENT_FINISHED_DERIVE (Client) or
CPA_CY_KEY_TLS_OP_SERVER_FINISHED_DERIVE (server) secret = master secret key seed =
MD5(handshake_messages) + SHA-1(handshake_messages) userLabel = NULL

Notes: 1. Each of the client and server random seeds need to be of length
CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES. 2. In each of the above descriptions, +
indicates concatenation. 3. The label used is predetermined by the TLS operation in line with the TLS 1.0
specification, and can be overridden by using a user defined operation
CPA_CY_KEY_TLS_OP_USER_DEFINED and associated userLabel.

9.7.2.2 Data Fields

CpaCyKeyTlsOp tlsOp•
CpaFlatBuffer secret

Flat buffer containing a pointer to either the master or pre-master secret key.
•

CpaFlatBuffer seed
Flat buffer containing a pointer to the seed data.

•

Cpa32U generatedKeyLenInBytes
The requested length of the generated key in bytes.

•

CpaFlatBuffer userLabel
Optional flat buffer containing a pointer to a user defined label.

•

9.7.2.3 Field Documentation

CpaFlatBuffer _CpaCyKeyGenTlsOpData::secret
Flat buffer containing a pointer to either the master or pre-master secret key.

The length field indicates the length of the secret in bytes. Implementation-specific limits may apply to this
length.

CpaFlatBuffer _CpaCyKeyGenTlsOpData::seed
Flat buffer containing a pointer to the seed data.

The length field needs to be equal to CPA_CY_KEY_GEN_SSL_TLS_SEED_LEN_IN_BYTES.

Cpa32U _CpaCyKeyGenTlsOpData::generatedKeyLenInBytes
The requested length of the generated key in bytes.

9.7.2 _CpaCyKeyGenTlsOpData Struct Reference

Reference Number: 320184, Revision -003 72

Implementation-specific limits may apply to this length.

CpaFlatBuffer _CpaCyKeyGenTlsOpData::userLabel
Optional flat buffer containing a pointer to a user defined label.

The length field indicates the length of the label in bytes. To use this field, the tlsOp must be
CPA_CY_KEY_TLS_OP_USER_DEFINED, otherwise it is ignored and can be set to NULL.
Implementation-specific limits may apply to this length.

9.7.3 _CpaCyKeyGenMgfOpData Struct Reference

Collaboration diagram for _CpaCyKeyGenMgfOpData:

9.7.3.1 Detailed Description

Key Generation Mask Generation Function (MGF) Data.

This structure contains data relating to Mask Generation Function key generation operations.

9.7.3.2 Data Fields

CpaFlatBuffer seedBuffer
Caller MUST allocate a buffer and populate with the input seed data.

•

Cpa32U maskLenInBytes
The requested length of the generated mask in bytes.

•

9.7.3.3 Field Documentation

CpaFlatBuffer _CpaCyKeyGenMgfOpData::seedBuffer
Caller MUST allocate a buffer and populate with the input seed data.

For optimal performance the start of the seed SHOULD be allocated on an 8-byte boundary. The length
field represents the seed length in bytes. Implementation-specific limits may apply to this length.

Cpa32U _CpaCyKeyGenMgfOpData::maskLenInBytes
The requested length of the generated mask in bytes.

9.7.3 _CpaCyKeyGenMgfOpData Struct Reference

Reference Number: 320184, Revision -003 73

Implementation-specific limits may apply to this length.

9.7.4 _CpaCyKeyGenStats Struct Reference

9.7.4.1 Detailed Description

Key Generation Statistics.

This structure contains statistics on the key and mask generation operations. Statistics are set to zero when
the component is initialized, and are collected per instance.

9.7.4.2 Data Fields

Cpa32U numSslKeyGenRequests
Total number of successful SSL key generation requests.

•

Cpa32U numSslKeyGenRequestErrors
Total number of SSL key generation requests that had an error and could not be processed.

•

Cpa32U numSslKeyGenCompleted
Total number of SSL key generation operations that completed successfully.

•

Cpa32U numSslKeyGenCompletedErrors
Total number of SSL key generation operations that could not be completed successfully due
to errors.

•

Cpa32U numTlsKeyGenRequests
Total number of successful TLS key generation requests.

•

Cpa32U numTlsKeyGenRequestErrors
Total number of TLS key generation requests that had an error and could not be processed.

•

Cpa32U numTlsKeyGenCompleted
Total number of TLS key generation operations that completed successfully.

•

Cpa32U numTlsKeyGenCompletedErrors
Total number of TLS key generation operations that could not be completed successfully due
to errors.

•

Cpa32U numMgfKeyGenRequests
Total number of successful MGF key generation requests.

•

Cpa32U numMgfKeyGenRequestErrors
Total number of MGF key generation requests that had an error and could not be processed.

•

Cpa32U numMgfKeyGenCompleted
Total number of MGF key generation operations that completed successfully.

•

Cpa32U numMgfKeyGenCompletedErrors
Total number of MGF key generation operations that could not be completed successfully due
to errors.

•

9.7.4.3 Field Documentation

Cpa32U _CpaCyKeyGenStats::numSslKeyGenRequests
Total number of successful SSL key generation requests.

Cpa32U _CpaCyKeyGenStats::numSslKeyGenRequestErrors
Total number of SSL key generation requests that had an error and could not be processed.

Cpa32U _CpaCyKeyGenStats::numSslKeyGenCompleted
Total number of SSL key generation operations that completed successfully.

9.7.4 _CpaCyKeyGenStats Struct Reference

Reference Number: 320184, Revision -003 74

Cpa32U _CpaCyKeyGenStats::numSslKeyGenCompletedErrors
Total number of SSL key generation operations that could not be completed successfully due to errors.

Cpa32U _CpaCyKeyGenStats::numTlsKeyGenRequests
Total number of successful TLS key generation requests.

Cpa32U _CpaCyKeyGenStats::numTlsKeyGenRequestErrors
Total number of TLS key generation requests that had an error and could not be processed.

Cpa32U _CpaCyKeyGenStats::numTlsKeyGenCompleted
Total number of TLS key generation operations that completed successfully.

Cpa32U _CpaCyKeyGenStats::numTlsKeyGenCompletedErrors
Total number of TLS key generation operations that could not be completed successfully due to errors.

Cpa32U _CpaCyKeyGenStats::numMgfKeyGenRequests
Total number of successful MGF key generation requests.

Cpa32U _CpaCyKeyGenStats::numMgfKeyGenRequestErrors
Total number of MGF key generation requests that had an error and could not be processed.

Cpa32U _CpaCyKeyGenStats::numMgfKeyGenCompleted
Total number of MGF key generation operations that completed successfully.

Cpa32U _CpaCyKeyGenStats::numMgfKeyGenCompletedErrors
Total number of MGF key generation operations that could not be completed successfully due to errors.

9.8 Define Documentation

#define CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES
SSL or TLS key generation random number length.

Defines the permitted SSL or TLS random number length in bytes that may be used with the
cpaCyKeyGenSsl and cpaCyKeyGenTls functions. This is the length of the client or server random number
values.

See also:
cpaCyKeyGenSsl() cpaCyKeyGenTls()

#define CPA_CY_KEY_GEN_SSL_TLS_SEED_LEN_IN_BYTES
TLS seed length.

Defines the permitted SSL or TLS seed length in bytes that may be used with the cpaCyKeyGenSsl and
cpaCyKeyGenTls functions. This is the length of the seed value.

See also:
cpaCyKeyGenSsl() cpaCyKeyGenTls()

9.8 Define Documentation

Reference Number: 320184, Revision -003 75

9.9 Typedef Documentation

typedef enum _CpaCyKeySslOp CpaCyKeySslOp
SSL Operation Types.

Enumeration of the different SSL operations that can be specified in the CpaCyKeyGenSslOpData.

typedef struct _CpaCyKeyGenSslOpData CpaCyKeyGenSslOpData
SSL data for key generation functions.

This structure contains data for use in key generation operations for SSL. For specific SSL key generation
operations, the structure fields MUST be set as follows:

SSL Master-Secret Derivation: sslOp = CPA_CY_KEY_SSL_OP_MASTER_SECRET_DERIVE secret =
pre-master secret key seed = client_random + server_random userLabel = NULL

SSL Key-Material Derivation: sslOp = CPA_CY_KEY_SSL_OP_KEY_MATERIAL_DERIVE secret = master
secret key seed = server_random + client_random userLabel = NULL

(note that the client/server random order is reversed from that used for Master-Secret Derivation)

Notes: 1. Each of the client and server random numbers need to be of length
CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES. 2. In each of the above descriptions, +
indicates concatenation. 3. The label used is predetermined by the SSL operation in line with the SSL 3.0
specification, and can be overridden by using a user defined operation
CPA_CY_KEY_SSL_OP_USER_DEFINED and associated userLabel.

typedef enum _CpaCyKeyTlsOp CpaCyKeyTlsOp
TLS Operation Types.

Enumeration of the different TLS operations that can be specified in the CpaCyKeyGenTlsOpData.

typedef struct _CpaCyKeyGenTlsOpData CpaCyKeyGenTlsOpData
TLS data for key generation functions.

This structure contains data for use in key generation operations for TLS. For specific TLS key generation
operations, the structure fields MUST be set as follows:

TLS Master-Secret Derivation: tlsOp = CPA_CY_KEY_TLS_OP_MASTER_SECRET_DERIVE secret =
pre-master secret key seed = client_random + server_random userLabel = NULL

TLS Key-Material Derivation: tlsOp = CPA_CY_KEY_TLS_OP_KEY_MATERIAL_DERIVE secret = master
secret key seed = server_random + client_random userLabel = NULL

(note that the client/server random order is reversed from that used for Master-Secret Derivation)

TLS Client finished/Server finished tag Derivation: tlsOp =
CPA_CY_KEY_TLS_OP_CLIENT_FINISHED_DERIVE (Client) or
CPA_CY_KEY_TLS_OP_SERVER_FINISHED_DERIVE (server) secret = master secret key seed =
MD5(handshake_messages) + SHA-1(handshake_messages) userLabel = NULL

Notes: 1. Each of the client and server random seeds need to be of length
CPA_CY_KEY_GEN_SSL_TLS_RANDOM_LEN_IN_BYTES. 2. In each of the above descriptions, +

9.9 Typedef Documentation

Reference Number: 320184, Revision -003 76

indicates concatenation. 3. The label used is predetermined by the TLS operation in line with the TLS 1.0
specification, and can be overridden by using a user defined operation
CPA_CY_KEY_TLS_OP_USER_DEFINED and associated userLabel.

typedef struct _CpaCyKeyGenMgfOpData CpaCyKeyGenMgfOpData
Key Generation Mask Generation Function (MGF) Data.

This structure contains data relating to Mask Generation Function key generation operations.

typedef struct _CpaCyKeyGenStats CpaCyKeyGenStats
Key Generation Statistics.

This structure contains statistics on the key and mask generation operations. Statistics are set to zero when
the component is initialized, and are collected per instance.

9.10 Enumeration Type Documentation

enum _CpaCyKeySslOp
SSL Operation Types.

Enumeration of the different SSL operations that can be specified in the CpaCyKeyGenSslOpData.

Enumerator:
CPA_CY_KEY_SSL_OP_MASTER_SECRET_DERIVE Derive the master secret.
CPA_CY_KEY_SSL_OP_KEY_MATERIAL_DERIVE Derive the key material.
CPA_CY_KEY_SSL_OP_USER_DEFINED User Defined Operation for custom

labels.

enum _CpaCyKeyTlsOp
TLS Operation Types.

Enumeration of the different TLS operations that can be specified in the CpaCyKeyGenTlsOpData.

Enumerator:
CPA_CY_KEY_TLS_OP_MASTER_SECRET_DERIVE Derive the master secret using the TLS

PRF.
CPA_CY_KEY_TLS_OP_KEY_MATERIAL_DERIVE Derice the key material using the TLS

PRF.
CPA_CY_KEY_TLS_OP_CLIENT_FINISHED_DERIVE Derive the client finished tag using the

TLS PRF.
CPA_CY_KEY_TLS_OP_SERVER_FINISHED_DERIVE Derive the server finished tag using the

TLS PRF.
CPA_CY_KEY_TLS_OP_USER_DEFINED User Defined Operation for custom

labels.

9.11 Function Documentation

9.10 Enumeration Type Documentation

Reference Number: 320184, Revision -003 77

CpaStatus cpaCyKeyGenSsl (const CpaInstanceHandle instanceHandle,
const
CpaCyGenFlatBufCbFunc pKeyGenCb,

void * pCallbackTag,
const
CpaCyKeyGenSslOpData * pKeyGenSslOpData,

CpaFlatBuffer * pGeneratedKeyBuffer
)

SSL Key Generation Function.

This function is used for SSL key generation. The input seed is taken as a flat buffer and the generated key
is returned to caller in a flat destination data buffer.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pKeyGenCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged
in the callback.

[in] pKeyGenSslOpData Structure containing all the data needed to perform the SSL key
generation operation. The client code allocates the memory for this
structure. This component takes ownership of the memory until it is
returned in the callback.

[out] pGeneratedKeyBuffer Caller MUST allocate a sufficient buffer to hold the key generation
output. The data pointer SHOULD be aligned on an 8-byte
boundary. The length field passed in represents the size of the
buffer in bytes. The value that is returned is the size of the result
key in bytes. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.

9.11 Function Documentation

Reference Number: 320184, Revision -003 78

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
This function is only used to generate SSL keys from seed material.

See also:
CpaCyKeyGenSslOpData, CpaCyGenFlatBufCbFunc

CpaStatus cpaCyKeyGenTls (const CpaInstanceHandle instanceHandle,
const CpaCyGenFlatBufCbFunc pKeyGenCb,
void * pCallbackTag,
const CpaCyKeyGenTlsOpData * pKeyGenTlsOpData,
CpaFlatBuffer * pGeneratedKeyBuffer

)
TLS Key Generation Function.

This function is used for TLS key generation. The input seed is taken as a flat buffer and the generated key
is returned to caller in a flat destination data buffer.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pKeyGenCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged
in the callback.

[in] pKeyGenTlsOpData Structure containing all the data needed to perform the TLS key
generation operation. The client code allocates the memory for this

9.11 Function Documentation

Reference Number: 320184, Revision -003 79

structure. This component takes ownership of the memory until it is
returned in the callback.

[out] pGeneratedKeyBuffer Caller MUST allocate a sufficient buffer to hold the key generation
output. The data pointer SHOULD be aligned on an 8-byte
boundary. The length field passed in represents the size of the
buffer in bytes. The value that is returned is the size of the result
key in bytes. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
This function is only used to generate TLS keys from seed material.

See also:
CpaCyKeyGenTlsOpData, CpaCyGenFlatBufCbFunc

CpaStatus cpaCyKeyGenMgf (const CpaInstanceHandle instanceHandle,
const
CpaCyGenFlatBufCbFunc pKeyGenCb,

void * pCallbackTag,
const
CpaCyKeyGenMgfOpData * pKeyGenMgfOpData,

CpaFlatBuffer * pGeneratedMaskBuffer
)

Mask Generation Function.

This function is used for mask generation. The input seed is taken as a flat buffer and the generated mask
is returned to caller in a flat destination data buffer.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

9.11 Function Documentation

Reference Number: 320184, Revision -003 80

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pKeyGenCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned
unchanged in the callback.

[in] pKeyGenMgfOpData Structure containing all the data needed to perform the MGF key
generation operation. The client code allocates the memory for
this structure. This component takes ownership of the memory
until it is returned in the callback.

[out] pGeneratedMaskBuffer Caller MUST allocate a sufficient buffer to hold the generated
mask. The data pointer SHOULD be aligned on an 8-byte
boundary. The length field passed in represents the size of the
buffer in bytes. The value that is returned is the size of the
generated mask in bytes. On invocation the callback function will
contain this parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
This function is only used to generate a mask keys from seed material.

See also:
CpaCyKeyGenMgfOpData, CpaCyGenFlatBufCbFunc

CpaStatus cpaCyKeyGenQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyKeyGenStats * pKeyGenStats

)
Key and Mask generation statistics specific to an instance.

This function will query a specific instance for key and mask generation statistics. The user MUST allocate
the CpaCyKeyGenStats structure and pass the reference to that into this function call. This function will
write the statistic results into the passed in CpaCyKeyGenStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

9.11 Function Documentation

Reference Number: 320184, Revision -003 81

Context:
This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pKeyGenStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyKeyGenStats

9.11 Function Documentation

Reference Number: 320184, Revision -003 82

10 Crypto API Large Number.
 [Cryptographic API.]

Collaboration diagram for Crypto API Large Number.:

10.1 Detailed Description

These functions specify the Cryptographic API for Large Number Operations.

10.2 Data Structures

struct _CpaCyLnModExpOpData
Modular Exponentiation Function Operation Data.

•

struct _CpaCyLnModInvOpData
Modular Inversion Function Operation Data.

•

struct _CpaCyLnStats
Look Aside Cryptographic large number Statistics.

•

10.3 Typedefs

typedef _CpaCyLnModExpOpData CpaCyLnModExpOpData
Modular Exponentiation Function Operation Data.

•

typedef _CpaCyLnModInvOpData CpaCyLnModInvOpData
Modular Inversion Function Operation Data.

•

typedef _CpaCyLnStats CpaCyLnStats
Look Aside Cryptographic large number Statistics.

•

10.4 Functions

CpaStatus cpaCyLnModExp (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pLnModExpCb, void *pCallbackTag, const CpaCyLnModExpOpData
*pLnModExpOpData, CpaFlatBuffer *pResult)

Function to for Modular Exponentiation operations.

•

CpaStatus cpaCyLnModInv (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pLnModInvCb, void *pCallbackTag, const CpaCyLnModInvOpData
*pLnModInvOpData, CpaFlatBuffer *pResult)

Function for Modular Inversion operations.

•

CpaStatus cpaCyLnStatsQuery (const CpaInstanceHandle instanceHandle, CpaCyLnStats
*pLnStats)

Query statistics for large number operations.

•

10.5 Data Structure Documentation

Reference Number: 320184, Revision -003 83

10.5.1 _CpaCyLnModExpOpData Struct Reference

Collaboration diagram for _CpaCyLnModExpOpData:

10.5.1.1 Detailed Description

Modular Exponentiation Function Operation Data.

This structure lists the different items that are required in the cpaCyLnModExp function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
in the callback. The operation size in bits is equal to the size of whichever of the following is largest: the
modulus, the base or the exponent.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyLnModExp function, and before it has been returned in the callback, undefined behavior will
result. The values of the base, the exponent and the modulus MUST all be less than 2^4096, and the
modulus must not be equal to 0. All values in this structure are required to be in Most Significant Byte
first order, e.g. modulus.pData[0] = MSB.

10.5.1.2 Data Fields

CpaFlatBuffer modulus
Flat buffer containing a pointer to the modulus.

•

CpaFlatBuffer base
Flat buffer containing a pointer to the base.

•

CpaFlatBuffer exponent
Flat buffer containing a pointer to the exponent.

•

10.5.1.3 Field Documentation

CpaFlatBuffer _CpaCyLnModExpOpData::modulus
Flat buffer containing a pointer to the modulus.

10.5 Data Structure Documentation

Reference Number: 320184, Revision -003 84

This number may be up to 4096 bits in length. This number MUST be greater than zero.

CpaFlatBuffer _CpaCyLnModExpOpData::base
Flat buffer containing a pointer to the base.

The maximum size of the number may be up to 4096 bits in length. The number MUST be from 0 to 2^sz-1
(where sz = the operation size).

CpaFlatBuffer _CpaCyLnModExpOpData::exponent
Flat buffer containing a pointer to the exponent.

The maximum size of the number may be up to 4096 bits in length. The number MUST be from 0 to 2^sz-1
(where sz = the operation size).

10.5.2 _CpaCyLnModInvOpData Struct Reference

Collaboration diagram for _CpaCyLnModInvOpData:

10.5.2.1 Detailed Description

Modular Inversion Function Operation Data.

This structure lists the different items that are required in the cpaCyLnModInv function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
with the CpaCyLnModExpCbFunc structure. This structure is used to calculate: (1/pA) mod pB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyLnModInv function, and before it has been returned in the callback, undefined behavior will
result. Note the value pA and the value pB MUST NOT both be even numbers and MUST be less
than 2^4096. All values in this structure are required to be in Most Significant Byte first order, e.g.
A.pData[0] = MSB.

10.5.1 _CpaCyLnModExpOpData Struct Reference

Reference Number: 320184, Revision -003 85

10.5.2.2 Data Fields

CpaFlatBuffer A
Flat buffer containing a pointer to the value that will be inverted.

•

CpaFlatBuffer B
Flat buffer containing a pointer to the value that will be used as the modulus.

•

10.5.2.3 Field Documentation

CpaFlatBuffer _CpaCyLnModInvOpData::A
Flat buffer containing a pointer to the value that will be inverted.

This number may be up to 4096 bits in length. This number MUST NOT be zero and it MUST be co-prime
with B.

CpaFlatBuffer _CpaCyLnModInvOpData::B
Flat buffer containing a pointer to the value that will be used as the modulus.

This number MUST NOT be zero and it MUST be co-prime with A.

10.5.3 _CpaCyLnStats Struct Reference

10.5.3.1 Detailed Description

Look Aside Cryptographic large number Statistics.

This structure contains statistics on the Look Aside Cryptographic large number operations. Statistics are set
to zero when the component is initialized, and are collected per instance.

10.5.3.2 Data Fields

Cpa32U numLnModExpRequests
Total number of successful large number modular exponentiation requests.

•

Cpa32U numLnModExpRequestErrors
Total number of large number modular exponentiation requests that had an error and could
not be processed.

•

Cpa32U numLnModExpCompleted
Total number of large number modular exponentiation operations that completed
successfully.

•

Cpa32U numLnModExpCompletedErrors
Total number of large number modular exponentiation operations that could not be completed
successfully due to errors.

•

Cpa32U numLnModInvRequests
Total number of successful large number modular inversion requests.

•

Cpa32U numLnModInvRequestErrors
Total number of large number modular inversion requests that had an error and could not be
processed.

•

Cpa32U numLnModInvCompleted
Total number of large number modular inversion operations that completed successfully.

•

Cpa32U numLnModInvCompletedErrors
Total number of large number modular inversion operations that could not be completed
successfully due to errors.

•

10.5.2 _CpaCyLnModInvOpData Struct Reference

Reference Number: 320184, Revision -003 86

10.5.3.3 Field Documentation

Cpa32U _CpaCyLnStats::numLnModExpRequests
Total number of successful large number modular exponentiation requests.

Cpa32U _CpaCyLnStats::numLnModExpRequestErrors
Total number of large number modular exponentiation requests that had an error and could not be
processed.

Cpa32U _CpaCyLnStats::numLnModExpCompleted
Total number of large number modular exponentiation operations that completed successfully.

Cpa32U _CpaCyLnStats::numLnModExpCompletedErrors
Total number of large number modular exponentiation operations that could not be completed successfully
due to errors.

Cpa32U _CpaCyLnStats::numLnModInvRequests
Total number of successful large number modular inversion requests.

Cpa32U _CpaCyLnStats::numLnModInvRequestErrors
Total number of large number modular inversion requests that had an error and could not be processed.

Cpa32U _CpaCyLnStats::numLnModInvCompleted
Total number of large number modular inversion operations that completed successfully.

Cpa32U _CpaCyLnStats::numLnModInvCompletedErrors
Total number of large number modular inversion operations that could not be completed successfully due to
errors.

10.6 Typedef Documentation

typedef struct _CpaCyLnModExpOpData CpaCyLnModExpOpData
Modular Exponentiation Function Operation Data.

This structure lists the different items that are required in the cpaCyLnModExp function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is
returned in the callback. The operation size in bits is equal to the size of whichever of the following is
largest: the modulus, the base or the exponent.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyLnModExp function, and before it has been returned in the callback, undefined behavior
will result. The values of the base, the exponent and the modulus MUST all be less than 2^4096,
and the modulus must not be equal to 0. All values in this structure are required to be in Most
Significant Byte first order, e.g. modulus.pData[0] = MSB.

typedef struct _CpaCyLnModInvOpData CpaCyLnModInvOpData
Modular Inversion Function Operation Data.

10.5.3 _CpaCyLnStats Struct Reference

Reference Number: 320184, Revision -003 87

This structure lists the different items that are required in the cpaCyLnModInv function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is
returned with the CpaCyLnModExpCbFunc structure. This structure is used to calculate: (1/pA) mod pB.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyLnModInv function, and before it has been returned in the callback, undefined behavior
will result. Note the value pA and the value pB MUST NOT both be even numbers and MUST be
less than 2^4096. All values in this structure are required to be in Most Significant Byte first order,
e.g. A.pData[0] = MSB.

typedef struct _CpaCyLnStats CpaCyLnStats
Look Aside Cryptographic large number Statistics.

This structure contains statistics on the Look Aside Cryptographic large number operations.
Statistics are set to zero when the component is initialized, and are collected per instance.

10.7 Function Documentation

CpaStatus cpaCyLnModExp (const CpaInstanceHandle instanceHandle,
const CpaCyGenFlatBufCbFunc pLnModExpCb,
void * pCallbackTag,
const CpaCyLnModExpOpData * pLnModExpOpData,
CpaFlatBuffer * pResult

)
Function to for Modular Exponentiation operations.

This function may be used for modular exponentiation. It calculates: result = (base ^ exponent) mod
modulus.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pLnModExpCb Pointer to callback function to be invoked when the operation is

complete.
[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in

the callback.

10.6 Typedef Documentation

Reference Number: 320184, Revision -003 88

[in] pLnModExpOpData Structure containing all the data needed to perform the LN modular
exponentiation operation. The client code allocates the memory for
this structure. This component takes ownership of the memory until it
is returned in the callback.

[out] pResult Pointer to a flat buffer containing a pointer to memory allocated by the
client into which the result will be written. The size of the memory
required MUST be larger than or equal to the size required to store
the modulus. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized.

Postcondition:
None

Note:
When pLnModExpCb is non null, an asynchronous callback of type CpaCyLnModExpCbFunc is
generated in response to this function call. Any errors generated during processing are reported in
the structure returned in the callback.

See also:
CpaCyLnModExpOpData, CpaCyGenFlatBufCbFunc

CpaStatus cpaCyLnModInv (const CpaInstanceHandle instanceHandle,
const
CpaCyGenFlatBufCbFunc pLnModInvCb,

void * pCallbackTag,
const
CpaCyLnModInvOpData * pLnModInvOpData,

CpaFlatBuffer * pResult
)

Function for Modular Inversion operations.

This function may be used for modular Inversion. It calculates: result = (1/A) mod B.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:

10.7 Function Documentation

Reference Number: 320184, Revision -003 89

No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pLnModInvCb Pointer to callback function to be invoked when the operation is

complete.
[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in

the callback.
[in] pLnModInvOpData Structure containing all the data needed to perform the LN modular

inversion operation. The client code allocates the memory for this
structure. This component takes ownership of the memory until it is
returned in the callback.

[out] pResult Pointer to a flat buffer containing a pointer to memory allocated by the
client into which the result will be written. The size of the memory
required MUST be larger than or equal to the size required to store the
modulus. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized.

Postcondition:
None

Note:
When pLnModInvCb is non null, an asynchronous callback of type CpaCyLnModInvCbFunc is
generated in response to this function call. Any errors generated during processing are reported in
the structure returned in the callback.

See also:
CpaCyLnModInvOpData, CpaCyGenFlatBufCbFunc

CpaStatus cpaCyLnStatsQuery (const CpaInstanceHandle instanceHandle,
CpaCyLnStats * pLnStats

)
Query statistics for large number operations.

This function will query a specific instance handle for large number statistics. The user MUST allocate the
CpaCyLnStats structure and pass the reference to that structure into this function call. This function writes
the statistic results into the passed in CpaCyLnStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:

10.7 Function Documentation

Reference Number: 320184, Revision -003 90

This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pLnStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
Acceleration Services unit has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyLnStats

10.7 Function Documentation

Reference Number: 320184, Revision -003 91

11 Prime Number Test API.
 [Cryptographic API.]

Collaboration diagram for Prime Number Test API.:

11.1 Detailed Description

These functions specify the API for the prime number test operations.

For prime number generation, this API SHOULD be used in conjunction with the Random Number Generation
API.

11.2 Data Structures

struct _CpaCyPrimeTestOpData
Prime Test Operation Data.

•

struct _CpaCyPrimeStats
Prime Number Test Statistics.

•

11.3 Typedefs

typedef _CpaCyPrimeTestOpData CpaCyPrimeTestOpData
Prime Test Operation Data.

•

typedef _CpaCyPrimeStats CpaCyPrimeStats
Prime Number Test Statistics.

•

typedef void(* CpaCyPrimeTestCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean testPassed)

Definition of callback function invoked for cpaCyPrimeTest requests.

•

11.4 Functions

CpaStatus cpaCyPrimeTest (const CpaInstanceHandle instanceHandle, const
CpaCyPrimeTestCbFunc pCb, void *pCallbackTag, const CpaCyPrimeTestOpData *pOpData,
CpaBoolean *pTestPassed)

Prime Number Test Function.

•

11.5 Data Structure Documentation

11.5.1 _CpaCyPrimeTestOpData Struct Reference

Collaboration diagram for _CpaCyPrimeTestOpData:

Reference Number: 320184, Revision -003 92

11.5.1.1 Detailed Description

Prime Test Operation Data.

This structure contains the operation data for the cpaCyPrimeTest function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

All values in this structure are required to be in Most Significant Byte first order, e.g. primeCandidate.pData[0]
= MSB.

All numbers MUST be stored in big-endian order.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyPrimeTest function, and before it has been returned in the callback, undefined behavior will
result.

See also:
cpaCyPrimeTest()

11.5.1.2 Data Fields

CpaFlatBuffer primeCandidate
The prime number candidate to test.

•

CpaBoolean performGcdTest
A value of CPA_TRUE means perform a GCD Primality Test.

•

CpaBoolean performFermatTest
A value of CPA_TRUE means perform a Fermat Primality Test.

•

Cpa32U numMillerRabinRounds
Number of Miller Rabin Primality Test rounds.

•

CpaFlatBuffer millerRabinRandomInput
Flat buffer containing a pointer to an array of random numbers for Miller Rabin Primality

•

11.5.1 _CpaCyPrimeTestOpData Struct Reference

Reference Number: 320184, Revision -003 93

Tests.
CpaBoolean performLucasTest

An CPA_TRUE value means perform a Lucas Primality Test.
•

11.5.1.3 Field Documentation

CpaFlatBuffer _CpaCyPrimeTestOpData::primeCandidate
The prime number candidate to test.

CpaBoolean _CpaCyPrimeTestOpData::performGcdTest
A value of CPA_TRUE means perform a GCD Primality Test.

CpaBoolean _CpaCyPrimeTestOpData::performFermatTest
A value of CPA_TRUE means perform a Fermat Primality Test.

Cpa32U _CpaCyPrimeTestOpData::numMillerRabinRounds
Number of Miller Rabin Primality Test rounds.

Set to 0 to perform zero Miller Rabin tests. The maximum number of rounds supported is 50.

CpaFlatBuffer _CpaCyPrimeTestOpData::millerRabinRandomInput
Flat buffer containing a pointer to an array of random numbers for Miller Rabin Primality Tests.

The size of the array MUST match the requested number of rounds. Each random number MUST be
greater than 1 and less than the prime candidate - 1. Each random number MUST match the prime
candidate in size, with leading zeroes as necessary.

CpaBoolean _CpaCyPrimeTestOpData::performLucasTest
An CPA_TRUE value means perform a Lucas Primality Test.

11.5.2 _CpaCyPrimeStats Struct Reference

11.5.2.1 Detailed Description

Prime Number Test Statistics.

This structure contains statistics on the prime number test operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

11.5.2.2 Data Fields

Cpa32U numPrimeTestRequests
Total number of successful prime number test requests.

•

Cpa32U numPrimeTestRequestErrors
Total number of prime number test requests that had an error and could not be processed.

•

Cpa32U numPrimeTestCompleted
Total number of prime number test operations that completed successfully.

•

Cpa32U numPrimeTestCompletedErrors
Total number of prime number test operations that could not be completed successfully due
to errors.

•

Cpa32U numPrimeTestFailures•

11.5.1 _CpaCyPrimeTestOpData Struct Reference

Reference Number: 320184, Revision -003 94

Total number of prime number test operations that executed successfully but the outcome of
the test was that the number was not prime.

11.5.2.3 Field Documentation

Cpa32U _CpaCyPrimeStats::numPrimeTestRequests
Total number of successful prime number test requests.

Cpa32U _CpaCyPrimeStats::numPrimeTestRequestErrors
Total number of prime number test requests that had an error and could not be processed.

Cpa32U _CpaCyPrimeStats::numPrimeTestCompleted
Total number of prime number test operations that completed successfully.

Cpa32U _CpaCyPrimeStats::numPrimeTestCompletedErrors
Total number of prime number test operations that could not be completed successfully due to errors.

Cpa32U _CpaCyPrimeStats::numPrimeTestFailures
Total number of prime number test operations that executed successfully but the outcome of the test was
that the number was not prime.

11.6 Typedef Documentation

typedef struct _CpaCyPrimeTestOpData CpaCyPrimeTestOpData
Prime Test Operation Data.

This structure contains the operation data for the cpaCyPrimeTest function. The client MUST allocate the
memory for this structure and the items pointed to by this structure. When the structure is passed into the
function, ownership of the memory passes to the function. Ownership of the memory returns to the client
when this structure is returned in the callback function.

All values in this structure are required to be in Most Significant Byte first order, e.g.
primeCandidate.pData[0] = MSB.

All numbers MUST be stored in big-endian order.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyPrimeTest function, and before it has been returned in the callback, undefined behavior
will result.

See also:
cpaCyPrimeTest()

typedef struct _CpaCyPrimeStats CpaCyPrimeStats
Prime Number Test Statistics.

This structure contains statistics on the prime number test operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

11.5.2 _CpaCyPrimeStats Struct Reference

Reference Number: 320184, Revision -003 95

typedef void(* CpaCyPrimeTestCbFunc)(void *pCallbackTag, CpaStatus status, void *pOpData,
CpaBoolean testPassed)

Definition of callback function invoked for cpaCyPrimeTest requests.

This is the prototype for the cpaCyPrimeTest callback function.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag User-supplied value to help identify request.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pOpData Opaque pointer to the Operation data pointer supplied in request.
[in] testPassed A value of CPA_TRUE means the prime candidate is probably prime.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
cpaCyPrimeTest()

11.7 Function Documentation

CpaStatus cpaCyPrimeTest (const CpaInstanceHandle instanceHandle,
const CpaCyPrimeTestCbFunc pCb,
void * pCallbackTag,
const CpaCyPrimeTestOpData * pOpData,
CpaBoolean * pTestPassed

)

11.6 Typedef Documentation

Reference Number: 320184, Revision -003 96

Prime Number Test Function.

This function will test probabilistically if a number is prime. Refer to ANSI X9.80 2005 for details. The
primality result will be returned in the asynchronous callback.

The following combination of GCD, Fermat, Miller-Rabin, and Lucas testing is supported: (up to 1x GCD) +
(up to 1x Fermat) + (up to 50x Miller-Rabin rounds) + (up to 1x Lucas) For example: (1x GCD) + (25x
Miller-Rabin) + (1x Lucas); (1x GCD) + (1x Fermat); (50x Miller-rabin);

Tests are always performed in order of increasing complexity, for example GCD first, then Fermat, then
Miller-Rabin, and finally Lucas.

For all of the primality tests, the following prime number sizes (in bits) are supported: 160, 512, 768, 1024,
1536, 2048, 3072, 4096.

Candidate prime numbers MUST match these sizes accordingly, with leading zeroes present where
necessary.

When this prime number test is used in conjunction with combined Miller-Rabin and Lucas tests, it may be
used as a means of performing a self test operation on the random data generator.

A response status of ok (pass == CPA_TRUE) means all requested primality tests passed, and the prime
candidate is probably prime (the exact probability depends on the primality tests requested). A response
status of not ok (pass == CPA_FALSE) means one of the requested primality tests failed (the prime
candidate has been found to be composite).

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCb Callback function pointer. If this is set to a NULL value the function will

operate synchronously.
[in] pCallbackTag User-supplied value to help identify request.
[in] pOpData Structure containing all the data needed to perform the operation. The

client code allocates the memory for this structure. This component takes
ownership of the memory until it is returned in the callback.

[out] pTestPassed A value of CPA_TRUE means the prime candidate is probably prime.

11.7 Function Documentation

Reference Number: 320184, Revision -003 97

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pCb is non-NULL an asynchronous callback of type CpaCyPrimeTestCbFunc is generated in
response to this function call. * For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyPrimeTestOpData, CpaCyPrimeTestCbFunc

11.7 Function Documentation

Reference Number: 320184, Revision -003 98

12 Random Bit/Number Generation API.
 [Cryptographic API.]

Collaboration diagram for Random Bit/Number Generation API.:

12.1 Detailed Description

These functions specify the API for the Cryptographic Random Bit and Random number generation.

12.2 Data Structures

struct _CpaCyRandStats
Random Data Generator Statistics.

•

struct _CpaCyRandGenOpData
Random Bit/Number Generation Data.

•

struct _CpaCyRandSeedOpData
Random Generator Seed Data.

•

12.3 Defines

#define CPA_CY_RAND_SEED_LEN_IN_BYTES
Random Bit/Number Generator Seed Length.

•

12.4 Typedefs

typedef _CpaCyRandStats CpaCyRandStats
Random Data Generator Statistics.

•

typedef _CpaCyRandGenOpData CpaCyRandGenOpData
Random Bit/Number Generation Data.

•

typedef _CpaCyRandSeedOpData CpaCyRandSeedOpData
Random Generator Seed Data.

•

12.5 Functions

CpaStatus cpaCyRandGen (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pRandGenCb, void *pCallbackTag, const CpaCyRandGenOpData
*pRandGenOpData, CpaFlatBuffer *pRandData)

Random Bits or Number Generation Function.

•

CpaStatus cpaCyRandSeed (const CpaInstanceHandle instanceHandle, const
CpaCyGenericCbFunc pRandSeedCb, void *pCallbackTag, const CpaCyRandSeedOpData
*pSeedOpData)

Random Data Generator Seed Function.

•

CpaStatus cpaCyRandQueryStats (const CpaInstanceHandle instanceHandle, CpaCyRandStats
*pRandStats)

Query random number statistics specific to an instance.

•

Reference Number: 320184, Revision -003 99

12.6 Data Structure Documentation

12.6.1 _CpaCyRandStats Struct Reference

12.6.1.1 Detailed Description

Random Data Generator Statistics.

This structure contains statistics on the random data generation operations. Statistics are set to zero when the
component is initialized, and are collected per instance.

12.6.1.2 Data Fields

Cpa32U numRandNumRequests
Total number of successful random number generation requests.

•

Cpa32U numRandNumRequestErrors
Total number of random number generation requests that had an error and could not be
processed.

•

Cpa32U numRandNumCompleted
Total number of random number operations that completed successfully.

•

Cpa32U numRandNumCompletedErrors
Total number of random number operations that could not be completed successfully due to
errors.

•

Cpa32U numRandBitRequests
Total number of successful random bit generation requests.

•

Cpa32U numRandBitRequestErrors
Total number of random bit generation requests that had an error and could not be
processed.

•

Cpa32U numRandBitCompleted
Total number of random bit operations that completed successfully.

•

Cpa32U numRandBitCompletedErrors
Total number of random bit operations that could not be completed successfully due to errors.

•

Cpa32U numNumSeedRequests
Total number of seed operations requests.

•

Cpa32U numRandSeedCompleted
Total number of seed operations completed.

•

Cpa32U numNumSeedErrors
Total number of seed operation errors.

•

12.6.1.3 Field Documentation

Cpa32U _CpaCyRandStats::numRandNumRequests
Total number of successful random number generation requests.

Cpa32U _CpaCyRandStats::numRandNumRequestErrors
Total number of random number generation requests that had an error and could not be processed.

Cpa32U _CpaCyRandStats::numRandNumCompleted
Total number of random number operations that completed successfully.

Cpa32U _CpaCyRandStats::numRandNumCompletedErrors

12.6 Data Structure Documentation

Reference Number: 320184, Revision -003 100

Total number of random number operations that could not be completed successfully due to errors.

Cpa32U _CpaCyRandStats::numRandBitRequests
Total number of successful random bit generation requests.

Cpa32U _CpaCyRandStats::numRandBitRequestErrors
Total number of random bit generation requests that had an error and could not be processed.

Cpa32U _CpaCyRandStats::numRandBitCompleted
Total number of random bit operations that completed successfully.

Cpa32U _CpaCyRandStats::numRandBitCompletedErrors
Total number of random bit operations that could not be completed successfully due to errors.

Cpa32U _CpaCyRandStats::numNumSeedRequests
Total number of seed operations requests.

Cpa32U _CpaCyRandStats::numRandSeedCompleted
Total number of seed operations completed.

Cpa32U _CpaCyRandStats::numNumSeedErrors
Total number of seed operation errors.

12.6.2 _CpaCyRandGenOpData Struct Reference

12.6.2.1 Detailed Description

Random Bit/Number Generation Data.

This structure lists the different items that are required in the cpaCyRandGen function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
with the callback.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyRandGen function, and before it has been returned in the callback, undefined behavior will
result.

12.6.2.2 Data Fields

CpaBoolean generateBits
When set to CPA_TRUE then the cpaCyRandGen function will generate random bits which
will comply with the ANSI X9.82 Part 1 specification.

•

Cpa32U lenInBytes
Specifies the length in bytes of the data returned.

•

12.6.2.3 Field Documentation

CpaBoolean _CpaCyRandGenOpData::generateBits

12.6.1 _CpaCyRandStats Struct Reference

Reference Number: 320184, Revision -003 101

When set to CPA_TRUE then the cpaCyRandGen function will generate random bits which will comply with
the ANSI X9.82 Part 1 specification.

When set to CPA_FALSE random numbers will be produced from the random bits generated by the
hardware. This will be spec compliant in terms of the probability of the random nature of the number
returned.

Cpa32U _CpaCyRandGenOpData::lenInBytes
Specifies the length in bytes of the data returned.

If the data returned is a random number, then it is implicit that the random number will fall into the following
range: Expressed mathematically, the range is [2^(lenInBytes*8 - 1) to 2^(lenInBytes*8) - 1]. This is
equivalent to "1000...0000" to "1111...1111" which requires (lenInBytes * 8) bits to represent. The maximum
number of random bytes that can be requested is 65535 bytes.

12.6.3 _CpaCyRandSeedOpData Struct Reference

Collaboration diagram for _CpaCyRandSeedOpData:

12.6.3.1 Detailed Description

Random Generator Seed Data.

This structure lists the different items that required in the cpaCyRandSeed function. The client MUST allocate
the memory for this structure. When the structure is passed into the function, ownership of the memory
passes to the function. Ownership of the memory returns to the client when this structure is returned with the
callback.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyRandSeed function, and before it has been returned in the callback, undefined behavior will
result.

12.6.3.2 Data Fields

CpaBoolean seedUpdate
When set to CPA_TRUE then the cpaCyRandSeed function will update (combine) the
specified seed with the stored seed.

•

12.6.2 _CpaCyRandGenOpData Struct Reference

Reference Number: 320184, Revision -003 102

CpaFlatBuffer seedData
Data for use in either seeding or performing a seed update.

•

12.6.3.3 Field Documentation

CpaBoolean _CpaCyRandSeedOpData::seedUpdate
When set to CPA_TRUE then the cpaCyRandSeed function will update (combine) the specified seed with
the stored seed.

When set to CPA_FALSE, the cpaCyRandSeed function will completely discard all existing entropy in the
hardware and replace with the specified seed.

CpaFlatBuffer _CpaCyRandSeedOpData::seedData
Data for use in either seeding or performing a seed update.

The data that is pointed to are random bits and as such do not have an endian order. For optimal
performance the data SHOULD be 8-byte aligned. The length of the seed data is in bytes. This MUST
currently be equal to CPA_CY_RAND_SEED_LEN_IN_BYTES.

12.7 Define Documentation

#define CPA_CY_RAND_SEED_LEN_IN_BYTES
Random Bit/Number Generator Seed Length.

Defines the permitted seed length in bytes that may be used with the cpaCyRandSeed function.

See also:
cpaCyRandSeed

12.8 Typedef Documentation

typedef struct _CpaCyRandStats CpaCyRandStats
Random Data Generator Statistics.

This structure contains statistics on the random data generation operations. Statistics are set to zero when
the component is initialized, and are collected per instance.

typedef struct _CpaCyRandGenOpData CpaCyRandGenOpData
Random Bit/Number Generation Data.

This structure lists the different items that are required in the cpaCyRandGen function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is
returned with the callback.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyRandGen function, and before it has been returned in the callback, undefined behavior
will result.

12.6.3 _CpaCyRandSeedOpData Struct Reference

Reference Number: 320184, Revision -003 103

typedef struct _CpaCyRandSeedOpData CpaCyRandSeedOpData
Random Generator Seed Data.

This structure lists the different items that required in the cpaCyRandSeed function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is
returned with the callback.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyRandSeed function, and before it has been returned in the callback, undefined behavior
will result.

12.9 Function Documentation

CpaStatus cpaCyRandGen (const CpaInstanceHandle instanceHandle,
const CpaCyGenFlatBufCbFunc pRandGenCb,
void * pCallbackTag,
const CpaCyRandGenOpData * pRandGenOpData,
CpaFlatBuffer * pRandData

)
Random Bits or Number Generation Function.

This function is used to request the generation of random bits or a random number. The generated data
and the length of the data will be returned to the caller in an asynchronous callback function. If random
number generation is selected, the random bits generated by the hardware will be converted to a random
number that is compliant to the ANSI X9.82 Part 1 specification.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pRandGenCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag

12.8 Typedef Documentation

Reference Number: 320184, Revision -003 104

Opaque User Data for this specific call. Will be returned unchanged in
the callback.

[in] pRandGenOpData Structure containing all the data needed to perform the random
bit/number operation. The client code allocates the memory for this
structure. This component takes ownership of the memory until it is
returned in the callback.

[out] pRandData Pointer to the memory allocated by the client where the random data
will be written to. For optimal performance, the data pointed to
SHOULD be 8-byte aligned. There is no endianness associated with
the random data. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources. One reason may be for an

entropy test failing.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pRandGenCb is non-NULL an asynchronous callback of type CpaCyRandGenCbFunc is
generated in response to this function call. Any errors generated during processing are reported as
part of the callback status code. Entropy testing and reseeding are performed automatically by this
function.

See also:
CpaCyGenFlatBufCbFunc, CpaCyRandGenOpData, cpaCyRandSeed().

CpaStatus cpaCyRandSeed (const CpaInstanceHandle instanceHandle,
const
CpaCyGenericCbFunc pRandSeedCb,

void * pCallbackTag,
const
CpaCyRandSeedOpData * pSeedOpData

)
Random Data Generator Seed Function.

This function is used to either seed or perform a seed update on the random data generator. Replacing the
seed with a user supplied seed value, or performing a seed update are completely optional operations. If
seeding is specified, it has the effect or disregarding all existing entropy within the random data generator
and replacing with the specified seed. If performing a seed update, then the specified seed is mixed into the
stored seed. The seed length MUST be equal to CPA_CY_RAND_SEED_LEN_IN_BYTES.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

12.9 Function Documentation

Reference Number: 320184, Revision -003 105

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pRandSeedCb Pointer to callback function to be invoked when the operation is complete. If

this is set to a NULL value the function will operate synchronously.
[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in the

callback.
[in] pSeedOpData Structure containing all the data needed to perform the random generator

seed operation. The client code allocates the memory for this structure.
This component takes ownership of the memory until it is returned in the
callback.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pRandSeedCn is non-NULL an asynchronous callback of type CpaCyRandSeedCbFunc is
generated in response to this function call. Any errors generated during processing are reported as
part of the callback status code. Entropy testing and reseeding are performed automatically by the
cpaCyRandGen function.

See also:
CpaCyGenericCbFunc, CpaCyRandSeedOpData, cpaCyRandGen()

CpaStatus cpaCyRandQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyRandStats * pRandStats

)
Query random number statistics specific to an instance.

This function will query a specific instance for random number statistics. The user MUST allocate the
CpaCyRandStats structure and pass the reference to that into this function call. This function will write the

12.9 Function Documentation

Reference Number: 320184, Revision -003 106

statistic results into the passed in CpaCyRandStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:
This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pRandStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyRandStats

12.9 Function Documentation

Reference Number: 320184, Revision -003 107

13 Public Key Encryption RSA API.
 [Cryptographic API.]

Collaboration diagram for Public Key Encryption RSA API.:

13.1 Detailed Description

These functions specify the API for Public Key Encryption (cryptography) RSA operations.

The PKCS #1 V2.1 specification is supported, however the support is limited to "two-prime" mode. RSA
multi-prime is not supported.

13.2 Data Structures

struct _CpaCyRsaPublicKey
RSA Public Key Structure.

•

struct _CpaCyRsaPrivateKeyRep1
RSA Private Key Structure For Representation 1.

•

struct _CpaCyRsaPrivateKeyRep2
RSA Private Key Structure For Representation 2.

•

struct _CpaCyRsaPrivateKey
RSA Private Key Structure.

•

struct _CpaCyRsaKeyGenOpData
RSA Key Generation Data.

•

struct _CpaCyRsaEncryptOpData
RSA Encryption Primitive Operation Data.

•

struct _CpaCyRsaDecryptOpData
RSA Decryption Primitive Operation Data.

•

struct _CpaCyRsaStats
RSA Statistics.

•

13.3 Typedefs

typedef enum _CpaCyRsaVersion CpaCyRsaVersion
RSA Version.

•

typedef _CpaCyRsaPublicKey CpaCyRsaPublicKey
RSA Public Key Structure.

•

typedef _CpaCyRsaPrivateKeyRep1 CpaCyRsaPrivateKeyRep1
RSA Private Key Structure For Representation 1.

•

typedef _CpaCyRsaPrivateKeyRep2 CpaCyRsaPrivateKeyRep2
RSA Private Key Structure For Representation 2.

•

typedef enum _CpaCyRsaPrivateKeyRepType CpaCyRsaPrivateKeyRepType
RSA private key representation type.

•

typedef _CpaCyRsaPrivateKey CpaCyRsaPrivateKey
RSA Private Key Structure.

•

typedef _CpaCyRsaKeyGenOpData CpaCyRsaKeyGenOpData
RSA Key Generation Data.

•

typedef _CpaCyRsaEncryptOpData CpaCyRsaEncryptOpData•

Reference Number: 320184, Revision -003 108

RSA Encryption Primitive Operation Data.
typedef _CpaCyRsaDecryptOpData CpaCyRsaDecryptOpData

RSA Decryption Primitive Operation Data.
•

typedef _CpaCyRsaStats CpaCyRsaStats
RSA Statistics.

•

typedef void(* CpaCyRsaKeyGenCbFunc)(void *pCallbackTag, CpaStatus status, void
*pKeyGenOpData, CpaCyRsaPrivateKey *pPrivateKey, CpaCyRsaPublicKey *pPublicKey)

Definition of the RSA key generation callback function.

•

13.4 Enumerations

enum _CpaCyRsaVersion { CPA_CY_RSA_VERSION_TWO_PRIME }
RSA Version.

•

enum _CpaCyRsaPrivateKeyRepType {
CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_1,
CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2

}
RSA private key representation type.

•

13.5 Functions

CpaStatus cpaCyRsaGenKey (const CpaInstanceHandle instanceHandle, const
CpaCyRsaKeyGenCbFunc pRsaKeyGenCb, void *pCallbackTag, const CpaCyRsaKeyGenOpData
*pKeyGenOpData, CpaCyRsaPrivateKey *pPrivateKey, CpaCyRsaPublicKey *pPublicKey)

Generate RSA keys.

•

CpaStatus cpaCyRsaEncrypt (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pRsaEncryptCb, void *pCallbackTag, const CpaCyRsaEncryptOpData
*pEncryptOpData, CpaFlatBuffer *pOutputData)

Perform the RSA encrypt (or verify) primitive operation on the input data.

•

CpaStatus cpaCyRsaDecrypt (const CpaInstanceHandle instanceHandle, const
CpaCyGenFlatBufCbFunc pRsaDecryptCb, void *pCallbackTag, const CpaCyRsaDecryptOpData
*pDecryptOpData, CpaFlatBuffer *pOutputData)

Perform the RSA decrypt (or sign) primitive operation on the input data.

•

CpaStatus cpaCyRsaQueryStats (const CpaInstanceHandle instanceHandle, CpaCyRsaStats
*pRsaStats)

Query statistics for a specific RSA instance.

•

13.6 Data Structure Documentation

13.6.1 _CpaCyRsaPublicKey Struct Reference

Collaboration diagram for _CpaCyRsaPublicKey:

13.3 Typedefs

Reference Number: 320184, Revision -003 109

13.6.1.1 Detailed Description

RSA Public Key Structure.

This structure contains the two components which comprise the RSA public key as defined in the PKCS #1
V2.1 standard. All values in this structure are required to be in Most Significant Byte first order, e.g.
modulusN.pData[0] = MSB.

13.6.1.2 Data Fields

CpaFlatBuffer modulusN
The modulus (n).

•

CpaFlatBuffer publicExponentE
The public exponent (e).

•

13.6.1.3 Field Documentation

CpaFlatBuffer _CpaCyRsaPublicKey::modulusN
The modulus (n).

For key generation operations, the client MUST allocate the memory for this parameter and it's value is
generated. For encrypt operations this parameter is an input.

CpaFlatBuffer _CpaCyRsaPublicKey::publicExponentE
The public exponent (e).

N.B. This value is not generated by this interface. It MUST be specified by the client. For key generation
operations this pointer will be assigned to the public exponent parameter from the
CpaCyRsaKeyGenOpData structure. For other operations this is an input.

13.6.1 _CpaCyRsaPublicKey Struct Reference

Reference Number: 320184, Revision -003 110

13.6.2 _CpaCyRsaPrivateKeyRep1 Struct Reference

Collaboration diagram for _CpaCyRsaPrivateKeyRep1:

13.6.2.1 Detailed Description

RSA Private Key Structure For Representation 1.

This structure contains the first representation that can be used for describing the RSA private key,
represented by the tuple of the modulus (n) and the private exponent (d). All values in this structure are
required to be in Most Significant Byte first order, e.g. modulusN.pData[0] = MSB.

13.6.2.2 Data Fields

CpaFlatBuffer modulusN
The modulus (n).

•

CpaFlatBuffer privateExponentD
The private exponent (d).

•

13.6.2.3 Field Documentation

CpaFlatBuffer _CpaCyRsaPrivateKeyRep1::modulusN
The modulus (n).

For key generation operations the memory MUST be allocated by the client and the value is generated. For
other operations this is an input. Permitted lengths are: 1024 bits (128 bytes) 1536 bits (192 bytes), 2048
bits (256 bytes), 3072 bits (384 bytes) or 4096 bits (512 bytes).

CpaFlatBuffer _CpaCyRsaPrivateKeyRep1::privateExponentD
The private exponent (d).

For key generation operations the memory MUST be allocated by the client and the value is generated. For
other operations this is an input. NOTE: It is important that the value D is big enough. It is STRONGLY
recommended that this value is at least half the length of the modulus N to protect against the Wiener
attack.

13.6.2 _CpaCyRsaPrivateKeyRep1 Struct Reference

Reference Number: 320184, Revision -003 111

13.6.3 _CpaCyRsaPrivateKeyRep2 Struct Reference

Collaboration diagram for _CpaCyRsaPrivateKeyRep2:

13.6.3.1 Detailed Description

RSA Private Key Structure For Representation 2.

This structure contains the second representation that can be used for describing the RSA private key. The
quintuple of p, q, dP, dQ, and qInv (explained below and in the spec) are required for the second
representation. The optional sequence of triplets are not included. All values in this structure are required to
be in Most Significant Byte first order, e.g. prime1P.pData[0] = MSB.

13.6.3.2 Data Fields

CpaFlatBuffer prime1P
The first large prime (p).

•

CpaFlatBuffer prime2Q
The second large prime (q).

•

CpaFlatBuffer exponent1Dp
The first factor CRT exponent (dP).

•

CpaFlatBuffer exponent2Dq
The second factor CRT exponent (dQ).

•

CpaFlatBuffer coefficientQInv
The (first) Chinese Remainder Theorem (CRT) coefficient (qInv).

•

13.6.3.3 Field Documentation

CpaFlatBuffer _CpaCyRsaPrivateKeyRep2::prime1P
The first large prime (p).

13.6.3 _CpaCyRsaPrivateKeyRep2 Struct Reference

Reference Number: 320184, Revision -003 112

CpaFlatBuffer _CpaCyRsaPrivateKeyRep2::prime2Q
The second large prime (q).

CpaFlatBuffer _CpaCyRsaPrivateKeyRep2::exponent1Dp
The first factor CRT exponent (dP).

d mod (p-1).

CpaFlatBuffer _CpaCyRsaPrivateKeyRep2::exponent2Dq
The second factor CRT exponent (dQ).

d mod (q-1).

CpaFlatBuffer _CpaCyRsaPrivateKeyRep2::coefficientQInv
The (first) Chinese Remainder Theorem (CRT) coefficient (qInv).

(inverse of q) mod p.

13.6.4 _CpaCyRsaPrivateKey Struct Reference

Collaboration diagram for _CpaCyRsaPrivateKey:

13.6.4 _CpaCyRsaPrivateKey Struct Reference

Reference Number: 320184, Revision -003 113

13.6.4.1 Detailed Description

RSA Private Key Structure.

This structure contains the two representations that can be used for describing the RSA private key. The
privateKeyRepType will be used to identify which representation is to be used. Typically, using the second
representation results in faster decryption operations.

13.6.4.2 Data Fields

CpaCyRsaVersion version
Indicates the version of the PKCS #1 specification that is supported.

•

CpaCyRsaPrivateKeyRepType privateKeyRepType
This value is used to identify which of the private key representation types in this structure is
relevant.

•

CpaCyRsaPrivateKeyRep1 privateKeyRep1
This is the first representation of the RSA private key as defined in the PKCS #1 V2.1
specification.

•

CpaCyRsaPrivateKeyRep2 privateKeyRep2
This is the second representation of the RSA private key as defined in the PKCS #1 V2.1
specification.

•

13.6.4.3 Field Documentation

CpaCyRsaVersion _CpaCyRsaPrivateKey::version
Indicates the version of the PKCS #1 specification that is supported.

N.B. This applies to both representations.

CpaCyRsaPrivateKeyRepType _CpaCyRsaPrivateKey::privateKeyRepType
This value is used to identify which of the private key representation types in this structure is relevant.

When performing key generation operations for Type 2 representations, memory must also be allocated for
the type 1 representations, and values for both will be returned.

CpaCyRsaPrivateKeyRep1 _CpaCyRsaPrivateKey::privateKeyRep1
This is the first representation of the RSA private key as defined in the PKCS #1 V2.1 specification.

For key generation operations the memory for this structure is allocated by the client and the specific values
are generated. For other operations this is an input parameter

CpaCyRsaPrivateKeyRep2 _CpaCyRsaPrivateKey::privateKeyRep2
This is the second representation of the RSA private key as defined in the PKCS #1 V2.1 specification.

For key generation operations the memory for this structure is allocated by the client and the specific values
are generated. For other operations this is an input parameter.

13.6.4 _CpaCyRsaPrivateKey Struct Reference

Reference Number: 320184, Revision -003 114

13.6.5 _CpaCyRsaKeyGenOpData Struct Reference

Collaboration diagram for _CpaCyRsaKeyGenOpData:

13.6.5.1 Detailed Description

RSA Key Generation Data.

This structure lists the different items that are required in the cpaCyRsaGenKey function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
in the CpaCyRsaKeyGenCbFunc callback function.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyRsaGenKey function, and before it has been returned in the callback, undefined behavior will
result. All values in this structure are required to be in Most Significant Byte first order, e.g.
prime1P.pData[0] = MSB.

The following limitations on the permutations of the supported bit lengths of p, q and n apply: {p, q, n} = {512,
512, 1024} or {768, 768, 1536} or {1024, 1024, 2048} or {1536, 1536, 3072} or {2048, 2048,4096}.

13.6.5.2 Data Fields

CpaFlatBuffer prime1P
A large random prime number (p).

•

CpaFlatBuffer prime2Q
A large random prime number (q).

•

Cpa32U modulusLenInBytes
The bit length of the modulus (n).

•

CpaCyRsaVersion version
Indicates the version of the PKCS #1 specification that is supported.

•

CpaCyRsaPrivateKeyRepType privateKeyRepType•

13.6.5 _CpaCyRsaKeyGenOpData Struct Reference

Reference Number: 320184, Revision -003 115

This value is used to identify which of the private key representation types is required to be
generated.

CpaFlatBuffer publicExponentE
The public exponent (e).

•

13.6.5.3 Field Documentation

CpaFlatBuffer _CpaCyRsaKeyGenOpData::prime1P
A large random prime number (p).

This MUST be created by the client. Permitted bit lengths are: 512, 1024 or 2048 bits. Limitations apply -
refer to the description above for details.

CpaFlatBuffer _CpaCyRsaKeyGenOpData::prime2Q
A large random prime number (q).

This MUST be created by the client. Permitted bit lengths are: 512, 768, 1024, 1536 or 2048 bits.
Limitations apply - refer to the description above for details. If the private key representation type is
2, then this pointer will be assigned to the relevant structure member of the representation 2 private
key.

Cpa32U _CpaCyRsaKeyGenOpData::modulusLenInBytes
The bit length of the modulus (n).

This is the modulus length for both the private and public keys. The length of the modulus N parameter for
the private key representation 1 structure and the public key structures will be assigned to this value.
References to the strength of RSA actually refer to this bit length. Recommended minimum is 1024 bits.
Permitted lengths are: 1024 bits (128 bytes), 1536 bits (192 bytes), 2048 bits (256 bytes), 3072 bits (384
bytes) or 4096 bits (512 bytes). Limitations apply - refer to description above for details.

CpaCyRsaVersion _CpaCyRsaKeyGenOpData::version
Indicates the version of the PKCS #1 specification that is supported.

N.B. This applies to both representations.

CpaCyRsaPrivateKeyRepType _CpaCyRsaKeyGenOpData::privateKeyRepType
This value is used to identify which of the private key representation types is required to be generated.

CpaFlatBuffer _CpaCyRsaKeyGenOpData::publicExponentE
The public exponent (e).

13.6.6 _CpaCyRsaEncryptOpData Struct Reference

Collaboration diagram for _CpaCyRsaEncryptOpData:

13.6.5 _CpaCyRsaKeyGenOpData Struct Reference

Reference Number: 320184, Revision -003 116

13.6.6.1 Detailed Description

RSA Encryption Primitive Operation Data.

This structure lists the different items that are required in the cpaCyRsaEncrypt function. As the RSA
encryption primitive and verification primitive operations are mathematically identical this structure may also
be used to perform an RSA verification primitive operation. When performing an RSA encryption primitive
operation, the input data is the message and the output data is the cipher text. When performing an RSA
verification primitive operation, the input data is the signature and the output data is the message. The client
MUST allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is returned
in the CpaCyRsaEncryptCbFunc callback function.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyRsaEncrypt function, and before it has been returned in the callback, undefined behavior will
result. All values in this structure are required to be in Most Significant Byte first order, e.g.
inputData.pData[0] = MSB.

13.6.6.2 Data Fields

CpaCyRsaPublicKey * pPublicKey
Pointer to the public key.

•

CpaFlatBuffer inputData
The input data that the RSA encryption primitive operation is performed on.

•

13.6.6 _CpaCyRsaEncryptOpData Struct Reference

Reference Number: 320184, Revision -003 117

13.6.6.3 Field Documentation

CpaCyRsaPublicKey* _CpaCyRsaEncryptOpData::pPublicKey
Pointer to the public key.

CpaFlatBuffer _CpaCyRsaEncryptOpData::inputData
The input data that the RSA encryption primitive operation is performed on.

The data pointed to is an integer that MUST be in big- endian order. The value MUST be between 0 and the
modulus n - 1.

13.6.7 _CpaCyRsaDecryptOpData Struct Reference

Collaboration diagram for _CpaCyRsaDecryptOpData:

13.6.6 _CpaCyRsaEncryptOpData Struct Reference

Reference Number: 320184, Revision -003 118

13.6.7.1 Detailed Description

RSA Decryption Primitive Operation Data.

This structure lists the different items that are required in the cpaCyRsaDecrypt function. As the RSA
decryption primitive and signature primitive operations are mathematically identical this structure may also be
used to perform an RSA signature primitive operation. When performing an RSA decryption primitive
operation, the input data is the cipher text and the output data is the message text. When performing an RSA
signature primitive operation, the input data is the message and the output data is the signature. The client
MUST allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to he function. Ownership of the memory returns to the client when this structure is returned
in the CpaCyRsaDecryptCbFunc callback function.

13.6.7 _CpaCyRsaDecryptOpData Struct Reference

Reference Number: 320184, Revision -003 119

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCyRsaDecrypt function, and before it has been returned in the callback, undefined behavior will
result. All values in this structure are required to be in Most Significant Byte first order, e.g.
inputData.pData[0] = MSB.

13.6.7.2 Data Fields

CpaCyRsaPrivateKey * pRecipientPrivateKey
Pointer to the recipient's RSA private key.

•

CpaFlatBuffer inputData
The input data that the RSA decryption primitive operation is performed on.

•

13.6.7.3 Field Documentation

CpaCyRsaPrivateKey* _CpaCyRsaDecryptOpData::pRecipientPrivateKey
Pointer to the recipient's RSA private key.

CpaFlatBuffer _CpaCyRsaDecryptOpData::inputData
The input data that the RSA decryption primitive operation is performed on.

The data pointed to is an integer that MUST be in big- endian order. The value MUST be between 0 and the
modulus n - 1.

13.6.8 _CpaCyRsaStats Struct Reference

13.6.8.1 Detailed Description

RSA Statistics.

This structure contains statistics on the RSA operations. Statistics are set to zero when the component is
initialized, and are collected per instance.

13.6.8.2 Data Fields

Cpa32U numRsaKeyGenRequests
Total number of successful RSA key generation requests.

•

Cpa32U numRsaKeyGenRequestErrors
Total number of RSA key generation requests that had an error and could not be processed.

•

Cpa32U numRsaKeyGenCompleted
Total number of RSA key generation operations that completed successfully.

•

Cpa32U numRsaKeyGenCompletedErrors
Total number of RSA key generation operations that could not be completed successfully due
to errors.

•

Cpa32U numRsaEncryptRequests
Total number of successful RSA encrypt operation requests.

•

Cpa32U numRsaEncryptRequestErrors
Total number of RSA encrypt requests that had an error and could not be processed.

•

Cpa32U numRsaEncryptCompleted
Total number of RSA encrypt operations that completed successfully.

•

Cpa32U numRsaEncryptCompletedErrors
Total number of RSA encrypt operations that could not be completed successfully due to
errors.

•

13.6.7 _CpaCyRsaDecryptOpData Struct Reference

Reference Number: 320184, Revision -003 120

Cpa32U numRsaDecryptRequests
Total number of successful RSA decrypt operation requests.

•

Cpa32U numRsaDecryptRequestErrors
Total number of RSA decrypt requests that had an error and could not be processed.

•

Cpa32U numRsaDecryptCompleted
Total number of RSA decrypt operations that completed successfully.

•

Cpa32U numRsaDecryptCompletedErrors
Total number of RSA decrypt operations that could not be completed successfully due to
errors.

•

13.6.8.3 Field Documentation

Cpa32U _CpaCyRsaStats::numRsaKeyGenRequests
Total number of successful RSA key generation requests.

Cpa32U _CpaCyRsaStats::numRsaKeyGenRequestErrors
Total number of RSA key generation requests that had an error and could not be processed.

Cpa32U _CpaCyRsaStats::numRsaKeyGenCompleted
Total number of RSA key generation operations that completed successfully.

Cpa32U _CpaCyRsaStats::numRsaKeyGenCompletedErrors
Total number of RSA key generation operations that could not be completed successfully due to errors.

Cpa32U _CpaCyRsaStats::numRsaEncryptRequests
Total number of successful RSA encrypt operation requests.

Cpa32U _CpaCyRsaStats::numRsaEncryptRequestErrors
Total number of RSA encrypt requests that had an error and could not be processed.

Cpa32U _CpaCyRsaStats::numRsaEncryptCompleted
Total number of RSA encrypt operations that completed successfully.

Cpa32U _CpaCyRsaStats::numRsaEncryptCompletedErrors
Total number of RSA encrypt operations that could not be completed successfully due to errors.

Cpa32U _CpaCyRsaStats::numRsaDecryptRequests
Total number of successful RSA decrypt operation requests.

Cpa32U _CpaCyRsaStats::numRsaDecryptRequestErrors
Total number of RSA decrypt requests that had an error and could not be processed.

Cpa32U _CpaCyRsaStats::numRsaDecryptCompleted
Total number of RSA decrypt operations that completed successfully.

Cpa32U _CpaCyRsaStats::numRsaDecryptCompletedErrors
Total number of RSA decrypt operations that could not be completed successfully due to errors.

13.6.8 _CpaCyRsaStats Struct Reference

Reference Number: 320184, Revision -003 121

13.7 Typedef Documentation

typedef enum _CpaCyRsaVersion CpaCyRsaVersion
RSA Version.

This enumeration lists the version identifier for the PKCS #1 V2.1 standard.

Note:
Multi-prime (more than two primes) is not supported.

typedef struct _CpaCyRsaPublicKey CpaCyRsaPublicKey
RSA Public Key Structure.

This structure contains the two components which comprise the RSA public key as defined in the PKCS #1
V2.1 standard. All values in this structure are required to be in Most Significant Byte first order, e.g.
modulusN.pData[0] = MSB.

typedef struct _CpaCyRsaPrivateKeyRep1 CpaCyRsaPrivateKeyRep1
RSA Private Key Structure For Representation 1.

This structure contains the first representation that can be used for describing the RSA private key,
represented by the tuple of the modulus (n) and the private exponent (d). All values in this structure are
required to be in Most Significant Byte first order, e.g. modulusN.pData[0] = MSB.

typedef struct _CpaCyRsaPrivateKeyRep2 CpaCyRsaPrivateKeyRep2
RSA Private Key Structure For Representation 2.

This structure contains the second representation that can be used for describing the RSA private key. The
quintuple of p, q, dP, dQ, and qInv (explained below and in the spec) are required for the second
representation. The optional sequence of triplets are not included. All values in this structure are required to
be in Most Significant Byte first order, e.g. prime1P.pData[0] = MSB.

typedef enum _CpaCyRsaPrivateKeyRepType CpaCyRsaPrivateKeyRepType
RSA private key representation type.

This enumeration lists which PKCS V2.1 representation of the private key is being used.

typedef struct _CpaCyRsaPrivateKey CpaCyRsaPrivateKey
RSA Private Key Structure.

This structure contains the two representations that can be used for describing the RSA private key. The
privateKeyRepType will be used to identify which representation is to be used. Typically, using the second
representation results in faster decryption operations.

typedef struct _CpaCyRsaKeyGenOpData CpaCyRsaKeyGenOpData
RSA Key Generation Data.

This structure lists the different items that are required in the cpaCyRsaGenKey function. The client MUST
allocate the memory for this structure. When the structure is passed into the function, ownership of the
memory passes to the function. Ownership of the memory returns to the client when this structure is
returned in the CpaCyRsaKeyGenCbFunc callback function.

13.7 Typedef Documentation

Reference Number: 320184, Revision -003 122

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyRsaGenKey function, and before it has been returned in the callback, undefined behavior
will result. All values in this structure are required to be in Most Significant Byte first order, e.g.
prime1P.pData[0] = MSB.

The following limitations on the permutations of the supported bit lengths of p, q and n apply: {p, q, n} =
{512, 512, 1024} or {768, 768, 1536} or {1024, 1024, 2048} or {1536, 1536, 3072} or {2048, 2048,4096}.

typedef struct _CpaCyRsaEncryptOpData CpaCyRsaEncryptOpData
RSA Encryption Primitive Operation Data.

This structure lists the different items that are required in the cpaCyRsaEncrypt function. As the RSA
encryption primitive and verification primitive operations are mathematically identical this structure may also
be used to perform an RSA verification primitive operation. When performing an RSA encryption primitive
operation, the input data is the message and the output data is the cipher text. When performing an RSA
verification primitive operation, the input data is the signature and the output data is the message. The
client MUST allocate the memory for this structure. When the structure is passed into the function,
ownership of the memory passes to the function. Ownership of the memory returns to the client when this
structure is returned in the CpaCyRsaEncryptCbFunc callback function.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyRsaEncrypt function, and before it has been returned in the callback, undefined behavior
will result. All values in this structure are required to be in Most Significant Byte first order, e.g.
inputData.pData[0] = MSB.

typedef struct _CpaCyRsaDecryptOpData CpaCyRsaDecryptOpData
RSA Decryption Primitive Operation Data.

This structure lists the different items that are required in the cpaCyRsaDecrypt function. As the RSA
decryption primitive and signature primitive operations are mathematically identical this structure may also
be used to perform an RSA signature primitive operation. When performing an RSA decryption primitive
operation, the input data is the cipher text and the output data is the message text. When performing an
RSA signature primitive operation, the input data is the message and the output data is the signature. The
client MUST allocate the memory for this structure. When the structure is passed into the function,
ownership of the memory passes to he function. Ownership of the memory returns to the client when this
structure is returned in the CpaCyRsaDecryptCbFunc callback function.

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCyRsaDecrypt function, and before it has been returned in the callback, undefined behavior
will result. All values in this structure are required to be in Most Significant Byte first order, e.g.
inputData.pData[0] = MSB.

typedef struct _CpaCyRsaStats CpaCyRsaStats
RSA Statistics.

This structure contains statistics on the RSA operations. Statistics are set to zero when the component is
initialized, and are collected per instance.

typedef void(* CpaCyRsaKeyGenCbFunc)(void *pCallbackTag, CpaStatus status, void *pKeyGenOpData,
CpaCyRsaPrivateKey *pPrivateKey, CpaCyRsaPublicKey *pPublicKey)

13.7 Typedef Documentation

Reference Number: 320184, Revision -003 123

Definition of the RSA key generation callback function.

This is the prototype for the RSA key generation callback function. The callback function pointer is passed
in as a parameter to the cpaCyRsaGenKey function. It will be invoked once the request has completed.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag Opaque value provided by user while making individual function calls.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] pKeyGenOpData Structure with output params for callback.
[in] pPrivateKey Structure which contains pointers to the memory into which the generated

private key will be written.
[in] pPublicKey Structure which contains pointers to the memory into which the generated

public key will be written. The pointer to the public exponent (e) that is
returned in this structure is equal to the input public exponent.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:
None

See also:
CpaCyRsaPrivateKey, CpaCyRsaPublicKey, cpaCyRsaGenKey()

13.8 Enumeration Type Documentation

enum _CpaCyRsaVersion
RSA Version.

This enumeration lists the version identifier for the PKCS #1 V2.1 standard.

Note:

13.8 Enumeration Type Documentation

Reference Number: 320184, Revision -003 124

Multi-prime (more than two primes) is not supported.

Enumerator:
CPA_CY_RSA_VERSION_TWO_PRIME The version supported is

"two-prime".

enum _CpaCyRsaPrivateKeyRepType
RSA private key representation type.

This enumeration lists which PKCS V2.1 representation of the private key is being used.

Enumerator:
CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_1 The first representation of the RSA private

key.
CPA_CY_RSA_PRIVATE_KEY_REP_TYPE_2 The second representation of the RSA

private key.

13.9 Function Documentation

CpaStatus cpaCyRsaGenKey (const CpaInstanceHandle instanceHandle,
const CpaCyRsaKeyGenCbFunc pRsaKeyGenCb,
void * pCallbackTag,
const CpaCyRsaKeyGenOpData * pKeyGenOpData,
CpaCyRsaPrivateKey * pPrivateKey,
CpaCyRsaPublicKey * pPublicKey

)
Generate RSA keys.

This function will generate private and public keys for RSA as specified in the PKCS #1 V2.1 standard. Both
representation types of the private key may be generated.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pRsaKeyGenCb

13.9 Function Documentation

Reference Number: 320184, Revision -003 125

Pointer to the callback function to be invoked when the operation is
complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in
the callback.

[in] pKeyGenOpData Structure containing all the data needed to perform the RSA key
generation operation. The client code allocates the memory for this
structure. This component takes ownership of the memory until it is
returned in the callback.

[out] pPrivateKey Structure which contains pointers to the memory into which the
generated private key will be written.

[out] pPublicKey Structure which contains pointers to the memory into which the
generated public key will be written. The pointer to the public exponent
(e) that is returned in this structure is equal to the input public exponent.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pRsaKeyGenCb is non-NULL, an asynchronous callback of type is generated in response to
this function call. Any errors generated during processing are reported as part of the callback status
code. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyRsaKeyGenOpData, CpaCyRsaKeyGenCbFunc, cpaCyRsaEncrypt(),
cpaCyRsaDecrypt()

CpaStatus cpaCyRsaEncrypt (const CpaInstanceHandle instanceHandle,
const CpaCyGenFlatBufCbFunc pRsaEncryptCb,
void * pCallbackTag,
const CpaCyRsaEncryptOpData * pEncryptOpData,
CpaFlatBuffer * pOutputData

)
Perform the RSA encrypt (or verify) primitive operation on the input data.

This function will perform an RSA encryption primitive operation on the input data using the specified RSA
public key. As the RSA encryption primitive and verification primitive operations are mathematically identical
this function may also be used to perform an RSA verification primitive operation.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:

13.9 Function Documentation

Reference Number: 320184, Revision -003 126

None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pRsaEncryptCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in
the callback.

[in] pEncryptOpData Structure containing all the data needed to perform the RSA encryption
operation. The client code allocates the memory for this structure. This
component takes ownership of the memory until it is returned in the
callback.

[out] pOutputData Pointer to structure into which the result of the RSA encryption primitive
is written. The client MUST allocate this memory. The data pointed to is
an integer in big-endian order. It's value will be between 0 and the
modulus n - 1. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pRsaEncryptCb is non-NULL an asynchronous callback of type is generated in response to
this function call. Any errors generated during processing are reported as part of the callback status
code. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyGenFlatBufCbFunc CpaCyRsaEncryptOpData cpaCyRsaGenKey() cpaCyRsaDecrypt()

13.9 Function Documentation

Reference Number: 320184, Revision -003 127

CpaStatus cpaCyRsaDecrypt (const CpaInstanceHandle instanceHandle,
const
CpaCyGenFlatBufCbFunc pRsaDecryptCb,

void * pCallbackTag,
const
CpaCyRsaDecryptOpData * pDecryptOpData,

CpaFlatBuffer * pOutputData
)

Perform the RSA decrypt (or sign) primitive operation on the input data.

This function will perform an RSA decryption primitive operation on the input data using the specified RSA
private key. As the RSA decryption primitive and signing primitive operations are mathematically identical
this function may also be used to perform an RSA signing primitive operation.

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pRsaDecryptCb Pointer to callback function to be invoked when the operation is

complete. If this is set to a NULL value the function will operate
synchronously.

[in] pCallbackTag Opaque User Data for this specific call. Will be returned unchanged in
the callback.

[in] pDecryptOpData Structure containing all the data needed to perform the RSA decrypt
operation. The client code allocates the memory for this structure. This
component takes ownership of the memory until it is returned in the
callback.

[out] pOutputData Pointer to structure into which the result of the RSA decryption primitive
is written. The client MUST allocate this memory. The data pointed to is
an integer in big-endian order. It's value will be between 0 and the
modulus n - 1. On invocation the callback function will contain this
parameter in it's pOut parameter.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.

13.9 Function Documentation

Reference Number: 320184, Revision -003 128

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
When pRsaDecryptCb is non-NULL an asynchronous callback is generated in response to this
function call. Any errors generated during processing are reported as part of the callback status
code. For optimal performance, data pointers SHOULD be 8-byte aligned.

See also:
CpaCyRsaDecryptOpData, CpaCyGenFlatBufCbFunc, cpaCyRsaGenKey(),
cpaCyRsaEncrypt()

CpaStatus cpaCyRsaQueryStats (const CpaInstanceHandle instanceHandle,
CpaCyRsaStats * pRsaStats

)
Query statistics for a specific RSA instance.

This function will query a specific instance for RSA statistics. The user MUST allocate the CpaCyRsaStats
structure and pass the reference to that into this function call. This function will write the statistic results into
the passed in CpaCyRsaStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:
This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
This function is synchronous and blocking.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pRsaStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.

13.9 Function Documentation

Reference Number: 320184, Revision -003 129

CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner and no asynchronous callback will be generated.

See also:
CpaCyRsaStats

13.9 Function Documentation

Reference Number: 320184, Revision -003 130

14 Symmetric Cipher and Hash Crypto API
 [Cryptographic API.]

Collaboration diagram for Symmetric Cipher and Hash Crypto API:

14.1 Detailed Description

These functions specify the Cryptographic Component API for symmetric cipher, hash, and combined cipher
and hash operations.

14.2 Data Structures

struct _CpaCySymCipherSetupData
Symmetric Cipher Setup Data.

•

struct _CpaCySymHashNestedModeSetupData
Hash Mode Nested Setup Data.

•

struct _CpaCySymHashAuthModeSetupData
Hash Auth Mode Setup Data.

•

struct _CpaCySymHashSetupData
Hash Setup Data.

•

struct _CpaCySymSessionSetupData
Session Setup Data.

•

struct _CpaCySymOpData
Cryptographic Component Operation Data.

•

struct _CpaCySymStats
Cryptographic Component Statistics.

•

14.3 Typedefs

typedef void * CpaCySymSessionCtx
Cryptographic component symmetric session context handle.

•

typedef enum _CpaCySymPacketType CpaCySymPacketType
Packet type for the cpaCySymPerformOp function.

•

typedef enum _CpaCySymOp CpaCySymOp
Types of operations supported by the cpaCySymPerformOp function.

•

typedef enum _CpaCySymCipherAlgorithm CpaCySymCipherAlgorithm
Cipher algorithms.

•

typedef enum _CpaCySymCipherDirection CpaCySymCipherDirection
Symmetric Cipher Direction.

•

typedef _CpaCySymCipherSetupData CpaCySymCipherSetupData
Symmetric Cipher Setup Data.

•

typedef enum _CpaCySymHashMode CpaCySymHashMode
Symmetric Hash mode.

•

typedef enum _CpaCySymHashAlgorithm CpaCySymHashAlgorithm
Hash algorithms.

•

typedef _CpaCySymHashNestedModeSetupData CpaCySymHashNestedModeSetupData
Hash Mode Nested Setup Data.

•

typedef _CpaCySymHashAuthModeSetupData CpaCySymHashAuthModeSetupData•

Reference Number: 320184, Revision -003 131

Hash Auth Mode Setup Data.
typedef _CpaCySymHashSetupData CpaCySymHashSetupData

Hash Setup Data.
•

typedef enum _CpaCySymAlgChainOrder CpaCySymAlgChainOrder
Algorithm Chaining Operation Ordering.

•

typedef _CpaCySymSessionSetupData CpaCySymSessionSetupData
Session Setup Data.

•

typedef _CpaCySymOpData CpaCySymOpData
Cryptographic Component Operation Data.

•

typedef _CpaCySymStats CpaCySymStats
Cryptographic Component Statistics.

•

typedef void(* CpaCySymCbFunc)(void *pCallbackTag, CpaStatus status, const CpaCySymOp
operationType, void *pOpData, CpaBufferList *pDstBuffer, CpaBoolean verifyResult)

Definition of callback function.

•

14.4 Enumerations

enum _CpaCySymPacketType {
CPA_CY_SYM_PACKET_TYPE_FULL,
CPA_CY_SYM_PACKET_TYPE_PARTIAL,
CPA_CY_SYM_PACKET_TYPE_LAST_PARTIAL

}
Packet type for the cpaCySymPerformOp function.

•

enum _CpaCySymOp {
CPA_CY_SYM_OP_CIPHER,
CPA_CY_SYM_OP_HASH,
CPA_CY_SYM_OP_ALGORITHM_CHAINING

}
Types of operations supported by the cpaCySymPerformOp function.

•

enum _CpaCySymCipherAlgorithm {
CPA_CY_SYM_CIPHER_NULL,
CPA_CY_SYM_CIPHER_ARC4,
CPA_CY_SYM_CIPHER_AES_ECB,
CPA_CY_SYM_CIPHER_AES_CBC,
CPA_CY_SYM_CIPHER_AES_CTR,
CPA_CY_SYM_CIPHER_AES_CCM,
CPA_CY_SYM_CIPHER_AES_GCM,
CPA_CY_SYM_CIPHER_DES_ECB,
CPA_CY_SYM_CIPHER_DES_CBC,
CPA_CY_SYM_CIPHER_3DES_ECB,
CPA_CY_SYM_CIPHER_3DES_CBC,
CPA_CY_SYM_CIPHER_3DES_CTR

}
Cipher algorithms.

•

enum _CpaCySymCipherDirection {
CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT,
CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT

}
Symmetric Cipher Direction.

•

enum _CpaCySymHashMode {
CPA_CY_SYM_HASH_MODE_PLAIN,
CPA_CY_SYM_HASH_MODE_AUTH,
CPA_CY_SYM_HASH_MODE_NESTED

}
Symmetric Hash mode.

•

14.3 Typedefs

Reference Number: 320184, Revision -003 132

enum _CpaCySymHashAlgorithm {
CPA_CY_SYM_HASH_MD5,
CPA_CY_SYM_HASH_SHA1,
CPA_CY_SYM_HASH_SHA224,
CPA_CY_SYM_HASH_SHA256,
CPA_CY_SYM_HASH_SHA384,
CPA_CY_SYM_HASH_SHA512,
CPA_CY_SYM_HASH_AES_XCBC,
CPA_CY_SYM_HASH_AES_CCM,
CPA_CY_SYM_HASH_AES_GCM

}
Hash algorithms.

•

enum _CpaCySymAlgChainOrder {
CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER,
CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH

}
Algorithm Chaining Operation Ordering.

•

14.5 Functions

CpaStatus cpaCySymSessionCtxGetSize (const CpaInstanceHandle instanceHandle, const
CpaCySymSessionSetupData *pSessionSetupData, Cpa32U *pSessionCtxSizeInBytes)

Cryptographic Symmetric Session Context Size Get Function.

•

CpaStatus cpaCySymInitSession (const CpaInstanceHandle instanceHandle, const
CpaCySymCbFunc pSymCb, const CpaCySymSessionSetupData *pSessionSetupData,
CpaCySymSessionCtx pSessionCtx)

Cryptographic Component Symmetric Session Initialization Function.

•

CpaStatus cpaCySymRemoveSession (const CpaInstanceHandle instanceHandle,
CpaCySymSessionCtx pSessionCtx)

Cryptographic Component Symmetric Session Remove Function.

•

CpaStatus cpaCySymPerformOp (const CpaInstanceHandle instanceHandle, void *pCallbackTag,
const CpaCySymOpData *pOpData, const CpaBufferList *pSrcBuffer, CpaBufferList *pDstBuffer,
CpaBoolean *pVerifyResult)

Cryptographic Component Symmetric Operation Perform Function.

•

CpaStatus cpaCySymQueryStats (const CpaInstanceHandle instanceHandle, CpaCySymStats
*pSymStats)

Query symmetric cryptographic statistics for a specific instance.

•

14.6 Data Structure Documentation

14.6.1 _CpaCySymCipherSetupData Struct Reference

14.6.1.1 Detailed Description

Symmetric Cipher Setup Data.

This structure contains data relating to Cipher (Encryption and Decryption) to set up a session.

14.6.1.2 Data Fields

CpaCySymCipherAlgorithm cipherAlgorithm
Cipher algorithm and mode.

•

Cpa32U cipherKeyLenInBytes
Cipher key length in bytes.

•

14.4 Enumerations

Reference Number: 320184, Revision -003 133

Cpa8U * pCipherKey
Cipher key.

•

CpaCySymCipherDirection cipherDirection
This parameter determines if the cipher operation is an encrypt or a decrypt operation.

•

14.6.1.3 Field Documentation

CpaCySymCipherAlgorithm _CpaCySymCipherSetupData::cipherAlgorithm
Cipher algorithm and mode.

Cpa32U _CpaCySymCipherSetupData::cipherKeyLenInBytes
Cipher key length in bytes.

For AES it can be 128 bits (16 bytes), 192 bits (24 bytes) or 256 bits (32 bytes). For the CCM mode of
operation, the only supported key length is 128 bits (16 bytes).

Cpa8U* _CpaCySymCipherSetupData::pCipherKey
Cipher key.

CpaCySymCipherDirection _CpaCySymCipherSetupData::cipherDirection
This parameter determines if the cipher operation is an encrypt or a decrypt operation.

14.6.2 _CpaCySymHashNestedModeSetupData Struct Reference

14.6.2.1 Detailed Description

Hash Mode Nested Setup Data.

This structure contains data relating to a hash session in CPA_CY_SYM_HASH_MODE_NESTED mode

14.6.2.2 Data Fields

Cpa8U * pInnerPrefixData
A pointer to a buffer holding the Inner Prefix data.

•

Cpa32U innerPrefixLenInBytes
The inner prefix length in bytes.

•

CpaCySymHashAlgorithm outerHashAlgorithm
The hash algorithm used for the outer hash.

•

Cpa8U * pOuterPrefixData
A pointer to a buffer holding the Outer Prefix data.

•

Cpa32U outerPrefixLenInBytes
The outer prefix length in bytes.

•

14.6.2.3 Field Documentation

Cpa8U* _CpaCySymHashNestedModeSetupData::pInnerPrefixData
A pointer to a buffer holding the Inner Prefix data.

For optimal performance the prefix data SHOULD be 8-byte aligned. This data is prepended to the data
being hashed before the inner hash operation is performed.

14.6.1 _CpaCySymCipherSetupData Struct Reference

Reference Number: 320184, Revision -003 134

Cpa32U _CpaCySymHashNestedModeSetupData::innerPrefixLenInBytes
The inner prefix length in bytes.

The maximum size the prefix data can be is 255 bytes.

CpaCySymHashAlgorithm _CpaCySymHashNestedModeSetupData::outerHashAlgorithm
The hash algorithm used for the outer hash.

Note: The inner hash algorithm is provided in the hash context.

Cpa8U* _CpaCySymHashNestedModeSetupData::pOuterPrefixData
A pointer to a buffer holding the Outer Prefix data.

For optimal performance the prefix data SHOULD be 8-byte aligned. This data is prepended to the output
from the inner hash operation before the outer hash operation is performed.

Cpa32U _CpaCySymHashNestedModeSetupData::outerPrefixLenInBytes
The outer prefix length in bytes.

The maximum size the prefix data can be is 255 bytes.

14.6.3 _CpaCySymHashAuthModeSetupData Struct Reference

14.6.3.1 Detailed Description

Hash Auth Mode Setup Data.

This structure contains data relating to a hash session in CPA_CY_SYM_HASH_MODE_AUTH mode

14.6.3.2 Data Fields

Cpa8U * authKey
Authentication key pointer.

•

Cpa32U authKeyLenInBytes
Length of the authentication key in bytes.

•

Cpa32U aadLenInBytes
The length of the additional authenticated data (AAD) in bytes.

•

14.6.3.3 Field Documentation

Cpa8U* _CpaCySymHashAuthModeSetupData::authKey
Authentication key pointer.

Cpa32U _CpaCySymHashAuthModeSetupData::authKeyLenInBytes
Length of the authentication key in bytes.

The key length MUST be less than or equal to the block size of the algorithm. It is the clients
responsibility to ensure that the key length is compliant with the standard being used. For example
RFC 2104, FIPS 198a. For the CCM mode of operation, the only supported key length is 128 bits
(16 bytes).

14.6.2 _CpaCySymHashNestedModeSetupData Struct Reference

Reference Number: 320184, Revision -003 135

Cpa32U _CpaCySymHashAuthModeSetupData::aadLenInBytes
The length of the additional authenticated data (AAD) in bytes.

This is only required for CCM and GCM modes of operation. For CCM, this is the length of the B blocks
(including B0) that contain l(a) encoded, a itself, and any necessary padding. For GCM, this is the length of
A. In all cases, the maximum permitted value is 240 bytes.

14.6.4 _CpaCySymHashSetupData Struct Reference

Collaboration diagram for _CpaCySymHashSetupData:

14.6.4.1 Detailed Description

Hash Setup Data.

This structure contains data relating to a hash session. The fields hashAlgorithm, hashMode and
digestResultLenInBytes are common to all three hash modes and MUST be set for each mode.

14.6.4.2 Data Fields

CpaCySymHashAlgorithm hashAlgorithm
Hash algorithm.

•

CpaCySymHashMode hashMode
Mode of the hash operation.

•

Cpa32U digestResultLenInBytes
Length of the digest to be returned.

•

CpaCySymHashAuthModeSetupData authModeSetupData
Authentication Mode Setup Data.

•

CpaCySymHashNestedModeSetupData nestedModeSetupData
Nested Hash Mode Setup Data Only valid for mode
CPA_CY_SYM_MODE_HASH_NESTED.

•

14.6.3 _CpaCySymHashAuthModeSetupData Struct Reference

Reference Number: 320184, Revision -003 136

14.6.4.3 Field Documentation

CpaCySymHashAlgorithm _CpaCySymHashSetupData::hashAlgorithm
Hash algorithm.

For mode CPA_CY_SYM_MODE_HASH_NESTED, this is the inner hash algorithm.

CpaCySymHashMode _CpaCySymHashSetupData::hashMode
Mode of the hash operation.

Valid options include plain, auth or nested hash mode.

Cpa32U _CpaCySymHashSetupData::digestResultLenInBytes
Length of the digest to be returned.

If the verify option is set this specifies the length of the digest to be compared for the session

CpaCySymHashAuthModeSetupData _CpaCySymHashSetupData::authModeSetupData
Authentication Mode Setup Data.

Only valid for mode CPA_CY_SYM_MODE_HASH_AUTH

CpaCySymHashNestedModeSetupData _CpaCySymHashSetupData::nestedModeSetupData
Nested Hash Mode Setup Data Only valid for mode CPA_CY_SYM_MODE_HASH_NESTED.

14.6.5 _CpaCySymSessionSetupData Struct Reference

Collaboration diagram for _CpaCySymSessionSetupData:

14.6.4 _CpaCySymHashSetupData Struct Reference

Reference Number: 320184, Revision -003 137

14.6.5.1 Detailed Description

Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

14.6.5.2 Data Fields

CpaCyPriority sessionPriority
Priority of this session.

•

CpaCySymOp symOperation
Operation: cipher, hash, auth cipher or chained.

•

CpaCySymCipherSetupData cipherSetupData
Cipher Setup Data for the session.

•

CpaCySymHashSetupData hashSetupData
Hash Setup Data for a session.

•

CpaCySymAlgChainOrder algChainOrder
If this operation data structure relates to an algorithm chaining session then this parameter
determines the order the chained operations are performed in.

•

14.6.5 _CpaCySymSessionSetupData Struct Reference

Reference Number: 320184, Revision -003 138

14.6.5.3 Field Documentation

CpaCyPriority _CpaCySymSessionSetupData::sessionPriority
Priority of this session.

CpaCySymOp _CpaCySymSessionSetupData::symOperation
Operation: cipher, hash, auth cipher or chained.

CpaCySymCipherSetupData _CpaCySymSessionSetupData::cipherSetupData
Cipher Setup Data for the session.

This member is ignored for the CPA_CY_SYM_OP_HASH operation.

CpaCySymHashSetupData _CpaCySymSessionSetupData::hashSetupData
Hash Setup Data for a session.

This member is ignored for the CPA_CY_SYM_OP_CIPHER operation

CpaCySymAlgChainOrder _CpaCySymSessionSetupData::algChainOrder
If this operation data structure relates to an algorithm chaining session then this parameter determines the
order the chained operations are performed in.

If this structure does not relate to an algorithm chaining session then this parameter will be ignored.

14.6.6 _CpaCySymOpData Struct Reference

14.6.6.1 Detailed Description

Cryptographic Component Operation Data.

This structure contains data relating to performing cryptographic processing on a data buffer. This request is
used with cpaCySymPerformOp() call for performing cipher, hash, auth cipher or a combined hash and
cipher operation.

See also:
CpaCySymPacketType

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to the
cpaCySymPerformOp function, and before it has been returned in the callback, undefined behavior
will result.

14.6.6.2 Data Fields

CpaCySymSessionCtx pSessionCtx
Handle for the initialized session context.

•

CpaCySymPacketType packetType
Selects the perform operation packet type, i.e.

•

Cpa8U * pIv
Initialization Vector or Counter.

•

Cpa32U ivLenInBytes
Cipher IV length in bytes.

•

14.6.5 _CpaCySymSessionSetupData Struct Reference

Reference Number: 320184, Revision -003 139

Cpa32U cryptoStartSrcOffsetInBytes
Starting point for cipher processing - given as number of bytes from start of data in the source
buffer.

•

Cpa32U messageLenToCipherInBytes
The message length, in bytes, of the source buffer that the crypto operation will be computed
on.

•

Cpa32U hashStartSrcOffsetInBytes
Starting point for hash processing - given as number of bytes from start of packet in source
buffer.

•

Cpa32U messageLenToHashInBytes
The message length, in bytes, of the source buffer that the hash will be computed on.

•

Cpa8U * pDigestResult
Pointer to the location where the digest result either exists or will be inserted.

•

Cpa8U * pAdditionalAuthData
Pointer to Additional Authenticated Data (AAD) needed for authenticated cipher mechanisms
- CCM and GCM.

•

CpaBoolean digestVerify
Compute the digest and compare it to the digest contained at the location pointed to by
pDigestResult.

•

14.6.6.3 Field Documentation

CpaCySymSessionCtx _CpaCySymOpData::pSessionCtx
Handle for the initialized session context.

CpaCySymPacketType _CpaCySymOpData::packetType
Selects the perform operation packet type, i.e.

Complete packet, a partial packet, or the final packet in a multi-part partial packet.

Cpa8U* _CpaCySymOpData::pIv
Initialization Vector or Counter.

For block ciphers in CBC, CCM, and GCM mode this contains a pointer to the Initialization Vector (IV)
value. For CCM this is the A0 block, while for GCM this is the Y0 block. For block ciphers in CTR mode this
contains a pointer to the Counter. For optimum performance, the data pointed to SHOULD be 8-byte
aligned. The IV/Counter will be updated after every partial crypto operation

Cpa32U _CpaCySymOpData::ivLenInBytes
Cipher IV length in bytes.

Determines the amount of valid IV data pointed to by the pIv parameter.

Cpa32U _CpaCySymOpData::cryptoStartSrcOffsetInBytes
Starting point for cipher processing - given as number of bytes from start of data in the source buffer.

The result of the cipher operation will be written back into the output buffer starting at this location.

Cpa32U _CpaCySymOpData::messageLenToCipherInBytes
The message length, in bytes, of the source buffer that the crypto operation will be computed
on.

14.6.6 _CpaCySymOpData Struct Reference

Reference Number: 320184, Revision -003 140

This must be a multiple to the block size if a block cipher is being used. This is also the same as
the result length. Note: There are limitations on this length for partial operations. Refer to the
cpaCySymPerformOp function description for details. Note: On some implementations, this
length may be limited to a 16-bit value (65535 bytes).

Cpa32U _CpaCySymOpData::hashStartSrcOffsetInBytes
Starting point for hash processing - given as number of bytes from start of packet in source buffer.

Note: for CCM and GCM modes of operation set the pAdditionalAuthData field instead.

Cpa32U _CpaCySymOpData::messageLenToHashInBytes
The message length, in bytes, of the source buffer that the hash will be computed on.

Note: There are limitations on this length for partial operations. Refer to the cpaCySymPerformOp function
description for details. Note: for CCM and GCM modes of operation set the pAdditionalAuthData field
instead. Note: On some implementations, this length may be limited to a 16-bit value (65535 bytes).

Cpa8U* _CpaCySymOpData::pDigestResult
Pointer to the location where the digest result either exists or will be inserted.

At session registration time, the client specified the digest result length with the digestResultLenInBytes
member of the CpaCySymHashSetupData structure. The client must allocate at least
digestResultLenInBytes of physically contiguous memory at this location. For partial packet processing this
pointer will be ignored for all but the final partial operation. NOTE: The digest result will overwrite any data
at this location.

Cpa8U* _CpaCySymOpData::pAdditionalAuthData
Pointer to Additional Authenticated Data (AAD) needed for authenticated cipher mechanisms - CCM and
GCM.

For other authentication mechanisms this pointer is ignored. The length of the data pointed to by this field is
set up for the session in the CpaCySymHashAuthModeSetupData structure as part of the
cpaCySymInitSession function call.

CpaBoolean _CpaCySymOpData::digestVerify
Compute the digest and compare it to the digest contained at the location pointed to by pDigestResult.

This option is only valid for full packets and for final partial packets. The number of bytes to be compared is
indicated by the digest output length for the session. The digest computed will not be written back to the
buffer. NOTE: This is not supported for hash mode CPA_CY_SYM_HASH_MODE_NESTED

14.6.7 _CpaCySymStats Struct Reference

14.6.7.1 Detailed Description

Cryptographic Component Statistics.

This structure contains statistics on the Symmetric Cryptographic operations. Statistics are set to zero when
the component is initialized.

14.6.7 _CpaCySymStats Struct Reference

Reference Number: 320184, Revision -003 141

14.6.7.2 Data Fields

Cpa32U numSessionsInitialized
Number of session initialized.

•

Cpa32U numSessionsRemoved
Number of sessions removed.

•

Cpa32U numSessionErrors
Number of session initialized and removed errors.

•

Cpa32U numSymOpRequests
Number of successful symmetric crypto operation requests.

•

Cpa32U numSymOpRequestErrors
Number of crypto operation requests that had an error and could not be processed.

•

Cpa32U numSymOpCompleted
Number of crypto operations that completed successfully.

•

Cpa32U numSymOpCompletedErrors
Number of crypto operations that could not be completed successfully due to errors.

•

Cpa32U numSymOpVerifyFailures
Number of crypto operations that completed successfully, but the result of the digest
verification test was that it failed.

•

14.6.7.3 Field Documentation

Cpa32U _CpaCySymStats::numSessionsInitialized
Number of session initialized.

Cpa32U _CpaCySymStats::numSessionsRemoved
Number of sessions removed.

Cpa32U _CpaCySymStats::numSessionErrors
Number of session initialized and removed errors.

Cpa32U _CpaCySymStats::numSymOpRequests
Number of successful symmetric crypto operation requests.

Cpa32U _CpaCySymStats::numSymOpRequestErrors
Number of crypto operation requests that had an error and could not be processed.

Cpa32U _CpaCySymStats::numSymOpCompleted
Number of crypto operations that completed successfully.

Cpa32U _CpaCySymStats::numSymOpCompletedErrors
Number of crypto operations that could not be completed successfully due to errors.

Cpa32U _CpaCySymStats::numSymOpVerifyFailures
Number of crypto operations that completed successfully, but the result of the digest verification test was
that it failed.

N.B. This does not indicate an "error" condition.

14.6.7 _CpaCySymStats Struct Reference

Reference Number: 320184, Revision -003 142

14.7 Typedef Documentation

typedef void* CpaCySymSessionCtx
Cryptographic component symmetric session context handle.

Handle to a cryptographic session context. The memory for this handle is allocated by the client. The size of
the memory that the client needs to allocate is determined by a call to the cpaCySymSessionCtxGetSize
function. The session context memory is initialized with a call to the cpaCySymInitSession function. This
memory MUST not be freed until a call to cpaCySymRemoveSession has completed successfully.

typedef enum _CpaCySymPacketType CpaCySymPacketType
Packet type for the cpaCySymPerformOp function.

Enumeration which is used to indicate to the symmetric crypto perform function what type of packet the
operation is required to be invoked on. The permitted types are a full packet, a partial packet, or the last
part of a multi-part partial packet. Multi-part cipher and hash operations are useful when processing needs
to be performed on a message which is available to the client in multiple parts (for example due to network
fragmentation of the packet).

Note:
Partial packet processing is only supported for in-place cipher or in-place hash or in-place
authentication operations. It does not apply to hash mode nested or algorithm chaining operations.
The term "in-place operations" means that the result of the cipher or hash is written back into the
source buffer.

See also:
cpaCySymPerformOp()

typedef enum _CpaCySymOp CpaCySymOp
Types of operations supported by the cpaCySymPerformOp function.

This enumeration lists different types of operations supported by the cpaCySymPerformOp function. The
operation type is defined during session registration and cannot be changed for a session once it has been
setup.

See also:
cpaCySymPerformOp

typedef enum _CpaCySymCipherAlgorithm CpaCySymCipherAlgorithm
Cipher algorithms.

This enumeration lists supported cipher algorithms and modes.

typedef enum _CpaCySymCipherDirection CpaCySymCipherDirection
Symmetric Cipher Direction.

This enum indicates the cipher direction (encryption or decryption).

typedef struct _CpaCySymCipherSetupData CpaCySymCipherSetupData
Symmetric Cipher Setup Data.

This structure contains data relating to Cipher (Encryption and Decryption) to set up a session.

14.7 Typedef Documentation

Reference Number: 320184, Revision -003 143

typedef enum _CpaCySymHashMode CpaCySymHashMode
Symmetric Hash mode.

This enum indicates the Hash Mode.

typedef enum _CpaCySymHashAlgorithm CpaCySymHashAlgorithm
Hash algorithms.

This enumeration lists supported hash algorithms.

typedef struct _CpaCySymHashNestedModeSetupData CpaCySymHashNestedModeSetupData
Hash Mode Nested Setup Data.

This structure contains data relating to a hash session in CPA_CY_SYM_HASH_MODE_NESTED mode

typedef struct _CpaCySymHashAuthModeSetupData CpaCySymHashAuthModeSetupData
Hash Auth Mode Setup Data.

This structure contains data relating to a hash session in CPA_CY_SYM_HASH_MODE_AUTH mode

typedef struct _CpaCySymHashSetupData CpaCySymHashSetupData
Hash Setup Data.

This structure contains data relating to a hash session. The fields hashAlgorithm, hashMode and
digestResultLenInBytes are common to all three hash modes and MUST be set for each mode.

typedef enum _CpaCySymAlgChainOrder CpaCySymAlgChainOrder
Algorithm Chaining Operation Ordering.

This enum defines the ordering of operations for algorithm chaining.

typedef struct _CpaCySymSessionSetupData CpaCySymSessionSetupData
Session Setup Data.

This structure contains data relating to setting up a session. The client needs to complete the information in
this structure in order to setup a session.

typedef struct _CpaCySymOpData CpaCySymOpData
Cryptographic Component Operation Data.

This structure contains data relating to performing cryptographic processing on a data buffer. This request
is used with cpaCySymPerformOp() call for performing cipher, hash, auth cipher or a combined hash and
cipher operation.

See also:
CpaCySymPacketType

Note:
If the client modifies or frees the memory referenced in this structure after it has been submitted to
the cpaCySymPerformOp function, and before it has been returned in the callback, undefined
behavior will result.

typedef struct _CpaCySymStats CpaCySymStats

14.7 Typedef Documentation

Reference Number: 320184, Revision -003 144

Cryptographic Component Statistics.

This structure contains statistics on the Symmetric Cryptographic operations. Statistics are set to zero when
the component is initialized.

typedef void(* CpaCySymCbFunc)(void *pCallbackTag, CpaStatus status, const CpaCySymOp
operationType, void *pOpData, CpaBufferList *pDstBuffer, CpaBoolean verifyResult)

Definition of callback function.

This is the callback function prototype. The callback function is registered by the application using the
cpaCySymInitSession() function call.

Context:
This callback function can be executed in a context that DOES NOT permit sleeping to occur.

Assumptions:
None

Side-Effects:
None

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] pCallbackTag Opaque value provided by user while making individual function call.
[in] status Status of the operation. Valid values are CPA_STATUS_SUCCESS and

CPA_STATUS_FAIL.
[in] operationType Identifies the operation type that was requested in the cpaCySymPerformOp

function.
[in] pOpData Pointer to structure with input parameters.
[in] pDstBuffer Caller MUST allocate a sufficiently sized destination buffer to hold the data

output. For out-of-place processing the data outside the crypto regions in the
source buffer are copied into the destination buffer. To perform "in-place"
processing set the pDstBuffer parameter in cpaCySymPerformOp function to
point at the same location as pSrcBuffer. For optimum performance, the data
pointed to SHOULD be 8-byte aligned.

[in] verifyResult This parameter is valid when the digestVerify option is set in the
CpaCySymOpData structure. A value of CPA_TRUE indicates that the
compare succeeded. A value of CPA_FALSE indicates that the compare
failed for an unspecified reason.

Return values:
None

Precondition:
Component has been initialized.

Postcondition:
None

Note:

14.7 Typedef Documentation

Reference Number: 320184, Revision -003 145

None

See also:
cpaCySymInitSession(), cpaCySymRemoveSession()

14.8 Enumeration Type Documentation

enum _CpaCySymPacketType
Packet type for the cpaCySymPerformOp function.

Enumeration which is used to indicate to the symmetric crypto perform function what type of packet the
operation is required to be invoked on. The permitted types are a full packet, a partial packet, or the last
part of a multi-part partial packet. Multi-part cipher and hash operations are useful when processing needs
to be performed on a message which is available to the client in multiple parts (for example due to network
fragmentation of the packet).

Note:
Partial packet processing is only supported for in-place cipher or in-place hash or in-place
authentication operations. It does not apply to hash mode nested or algorithm chaining operations.
The term "in-place operations" means that the result of the cipher or hash is written back into the
source buffer.

See also:
cpaCySymPerformOp()

Enumerator:
CPA_CY_SYM_PACKET_TYPE_FULL Perform an operation on a full packet.
CPA_CY_SYM_PACKET_TYPE_PARTIAL Perform a partial operation and maintain the

state of the partial operation within the session.

This is used for either the first or subsequent
packets within a partial packet flow.

CPA_CY_SYM_PACKET_TYPE_LAST_PARTIAL Complete the last part of a multi-part operation.

enum _CpaCySymOp
Types of operations supported by the cpaCySymPerformOp function.

This enumeration lists different types of operations supported by the cpaCySymPerformOp function. The
operation type is defined during session registration and cannot be changed for a session once it has been
setup.

See also:
cpaCySymPerformOp

Enumerator:
CPA_CY_SYM_OP_CIPHER Cipher only operation on the data.
CPA_CY_SYM_OP_HASH Hash only operation on the data.
CPA_CY_SYM_OP_ALGORITHM_CHAINING Chain any cipher with any hash operation.

The order depends on the value in the
CpaCySymAlgChainOrder enum.

enum _CpaCySymCipherAlgorithm

14.8 Enumeration Type Documentation

Reference Number: 320184, Revision -003 146

Cipher algorithms.

This enumeration lists supported cipher algorithms and modes.

Enumerator:
CPA_CY_SYM_CIPHER_NULL NULL cipher algorithm.

No mode applies to the NULL algorithm.
CPA_CY_SYM_CIPHER_ARC4 (A)RC4 cipher algorithm
CPA_CY_SYM_CIPHER_AES_ECB AES algorithm in ECB mode.
CPA_CY_SYM_CIPHER_AES_CBC AES algorithm in CBC mode.
CPA_CY_SYM_CIPHER_AES_CTR AES algorithm in Counter mode.
CPA_CY_SYM_CIPHER_AES_CCM AES algorithm in CCM mode.

This authenticated cipher is only supported when the hash
mode is also set to CPA_CY_SYM_HASH_MODE_AUTH.
When this cipher algorithm is used the
CPA_CY_SYM_HASH_AES_CCM element of the
CpaCySymHashAlgorithm enum MUST be used to set up
the related CpaCySymHashSetupData structure in the
session context.

CPA_CY_SYM_CIPHER_AES_GCM AES algorithm in GCM mode.

This authenticated cipher is only supported when the hash
mode is also set to CPA_CY_SYM_HASH_MODE_AUTH.
When this cipher algorithm is used the
CPA_CY_SYM_HASH_AES_GCM element of the
CpaCySymHashAlgorithm enum MUST be used to set up
the related CpaCySymHashSetupData structure in the
session context.

CPA_CY_SYM_CIPHER_DES_ECB DES algorithm in ECB mode.
CPA_CY_SYM_CIPHER_DES_CBC DES algorithm in CBC mode.
CPA_CY_SYM_CIPHER_3DES_ECB Triple DES algorithm in ECB mode.
CPA_CY_SYM_CIPHER_3DES_CBC Triple DES algorithm in CBC mode.
CPA_CY_SYM_CIPHER_3DES_CTR Triple DES algorithm in CTR mode.

enum _CpaCySymCipherDirection
Symmetric Cipher Direction.

This enum indicates the cipher direction (encryption or decryption).

Enumerator:
CPA_CY_SYM_CIPHER_DIRECTION_ENCRYPT Encrypt

Data.
CPA_CY_SYM_CIPHER_DIRECTION_DECRYPT Decrypt

Data.

enum _CpaCySymHashMode
Symmetric Hash mode.

This enum indicates the Hash Mode.

Enumerator:
CPA_CY_SYM_HASH_MODE_PLAIN Plain hash.

14.8 Enumeration Type Documentation

Reference Number: 320184, Revision -003 147

CPA_CY_SYM_HASH_MODE_AUTH Authenticated hash - HMAC & AES_XCBC_MAC
algorithms.

This mode MUST also be set to make use of the AES
GCM and AES CCM algorithms.

CPA_CY_SYM_HASH_MODE_NESTED Nested hash.

enum _CpaCySymHashAlgorithm
Hash algorithms.

This enumeration lists supported hash algorithms.

Enumerator:
CPA_CY_SYM_HASH_MD5 MD5 algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_SHA1 128 bit SHA algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_SHA224 224 bit SHA algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_SHA256 256 bit SHA algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_SHA384 384 bit SHA algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_SHA512 512 bit SHA algorithm.

Supported in all 3 hash modes
CPA_CY_SYM_HASH_AES_XCBC AES XCBC algorithm.

This is only supported in the hash mode
CPA_CY_SYM_HASH_MODE_AUTH.

CPA_CY_SYM_HASH_AES_CCM AES algorithm in CCM mode.

This authenticated cipher requires that the hash mode is set
to CPA_CY_SYM_HASH_MODE_AUTH. When this hash
algorithm is used, the CPA_CY_SYM_CIPHER_AES_CCM
element of the CpaCySymCipherAlgorithm enum MUST be
used to set up the related CpaCySymCipherSetupData
structure in the session context.

CPA_CY_SYM_HASH_AES_GCM AES algorithm in GCM mode.

This authenticated cipher requires that the hash mode is set
to CPA_CY_SYM_HASH_MODE_AUTH. When this hash
algorithm is used, the CPA_CY_SYM_CIPHER_AES_GCM
element of the CpaCySymCipherAlgorithm enum MUST be
used to set up the related CpaCySymCipherSetupData
structure in the session context.

enum _CpaCySymAlgChainOrder
Algorithm Chaining Operation Ordering.

14.8 Enumeration Type Documentation

Reference Number: 320184, Revision -003 148

This enum defines the ordering of operations for algorithm chaining.

Enumerator:
CPA_CY_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER Perform the hash operation followed by the

cipher operation.

If it is required that the result of the hash (i.e.
The digest) is going to be included in the
data to be ciphered, then: a) The digest
MUST be placed in the destination buffer at
the location corresponding to the end of the
data region to be hashed
(hashStartSrcOffsetInBytes +
messageLenToHashInBytes), i.e. there must
be no gaps between the start of the digest
and the end of the data region to be hashed.
b) The messageLenToCipherInBytes
member of the CpaCySymOpData structure
must be equal to the overall length of the
plain text, the digest length and any
(optional) trailing data that is to be included.
c) The messageLenToCipherInBytes must
be a multiple to the block size if a block
cipher is being used.

+-------------------------+ | Plaintext |
+-------------------------+
<-messageLenToHashInBytes->

+-------------------------+--------+------+ | Plaintext
| Digest | Tail |
+-------------------------+--------+------+
<--------messageLenToCipherInBytes-------->

+---+ | Cipher
Text | +---+

CPA_CY_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH Perform the cipher operation followed by the
hash operation, i.e.

The hash operation will work on the cipher
text result of the cipher operation

14.9 Function Documentation

CpaStatus cpaCySymSessionCtxGetSize (const CpaInstanceHandle instanceHandle,
const
CpaCySymSessionSetupData
*

pSessionSetupData,

Cpa32U * pSessionCtxSizeInBytes
)

Cryptographic Symmetric Session Context Size Get Function.

This function is used by the client to determine the size of the memory it must allocate in order to store the
session context. This MUST be called before the client allocates the memory for the session context and

14.9 Function Documentation

Reference Number: 320184, Revision -003 149

before the client calls the cpaCySymInitSession function.

Context:
This is a synchronous function that can not sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pSessionSetupData Pointer to session setup data which contains parameters which

are static for a given cryptographic session such as operation
type, mechanisms, and keys for cipher and/or hash operations.

[out] pSessionCtxSizeInBytes The amount of memory in bytes required to hold the Session
Context.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
This is a synchronous function and has no completion callback associated with it.

See also:
CpaCySymSessionSetupData cpaCySymInitSession(), cpaCySymPerformOp()

CpaStatus cpaCySymInitSession (const CpaInstanceHandle instanceHandle,
const CpaCySymCbFunc pSymCb,
const
CpaCySymSessionSetupData * pSessionSetupData,

CpaCySymSessionCtx pSessionCtx
)

14.9 Function Documentation

Reference Number: 320184, Revision -003 150

Cryptographic Component Symmetric Session Initialization Function.

This function is used by the client to initialize an asynchronous completion callback function for the
symmetric crypto operations. Clients MAY register multiple callback functions using this function. The
callback function is identified by the combination of userContext, pSymCb and session context,
pSessionCtx. The session context is the handle to the session and needs to be be passed when processing
calls. Callbacks on completion of operations within a session are guaranteed to be in the same order they
were submitted in.

Context:
This is a synchronous function and it cannot sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pSymCb Pointer to callback function to be registered. Set to NULL if the

cpaCySymPerformOp function is required to work in a synchronous
manner.

[in] pSessionSetupData Pointer to session setup data which contains parameters which are
static for a given cryptographic session such as operation type,
mechanisms, and keys for cipher and/or hash operations.

[out] pSessionCtx Pointer to the memory allocated by the client to store the session
context. This will be initialized with this function. This value needs to
be passed to subsequent processing calls.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
This is a synchronous function and has no completion callback associated with it.

14.9 Function Documentation

Reference Number: 320184, Revision -003 151

See also:
CpaCySymSessionCtx, CpaCySymCbFunc, CpaCySymSessionSetupData,
cpaCySymRemoveSession(), cpaCySymPerformOp()

CpaStatus cpaCySymRemoveSession (const CpaInstanceHandle instanceHandle,
CpaCySymSessionCtx pSessionCtx

)
Cryptographic Component Symmetric Session Remove Function.

This function will remove a previously initialized session context and the installed callback handler function.
Removal will fail if outstanding calls still exist for the initialized session handle. The client needs to retry the
remove function at a later time. The memory for the session context MUST not be freed until this call has
completed successfully.

Context:
This is a synchronous function that can not sleep. It can be executed in a context that does not
permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
No.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in,out] pSessionCtx Session context to be removed..

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resources.

Precondition:
The component has been initialized via cpaCyStartInstance function.

Postcondition:
None

Note:
Note that this is a synchronous function and has no completion callback associated with it.

See also:
CpaCySymSessionCtx, cpaCySymInitSession()

14.9 Function Documentation

Reference Number: 320184, Revision -003 152

CpaStatus cpaCySymPerformOp (
const
CpaInstanceHandle instanceHandle,

void * pCallbackTag,
const
CpaCySymOpData * pOpData,

const CpaBufferList * pSrcBuffer,
CpaBufferList * pDstBuffer,
CpaBoolean * pVerifyResult

)
Cryptographic Component Symmetric Operation Perform Function.

Performs a cipher, hash or combined (cipher and hash) operation on the source data buffer using
supported symmetric key algorithms and modes. This function maintains cryptographic state between calls
for the partial crypto operations. If a partial crypto operation is being performed, then on a per-session
basis, the next part of the multi-part message can be submitted prior to previous parts being completed, the
only limitation being that all parts must be performed in sequential order. If for any reason a client wishes to
terminate the partial packet processing on the session (for example if a packet fragment was lost) then the
client MUST remove the session.

When performing block based operations on a partial packet (excluding the final partial packet), the data
that is to be operated on MUST be a multiple of the block size of the algorithm being used.

Partial packet processing is only supported for in-place cipher or in-place hash operations. It does not apply
to nested hash mode or algorithm chaining. The data on which the partial packet operation is to be
performed MUST NOT be chained. There MUST be sufficient space in the buffer to store the result of the
partial packet operation.

The term "in-place" means that the result of the crypto operation is written into the source buffer. The term
"out-of-place" means that the result of the crypto operation is written into the destination buffer. To perform
"in-place" processing set the pDstBuffer parameter to point at the same location as the pSrcBuffer
parameter

Context:
When called as an asynchronous function it cannot sleep. It can be executed in a context that does
not permit sleeping. When called as a synchronous function it may sleep. It MUST NOT be
executed in a context that DOES NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes when configured to operate in synchronous mode.

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[in] pCallbackTag Opaque data that will be returned to the client in the callback.
[in] pOpData

14.9 Function Documentation

Reference Number: 320184, Revision -003 153

Pointer to a structure containing request parameters. The client code
allocates the memory for this structure. This component takes ownership
of the memory until it is returned in the callback.

[in] pSrcBuffer Caller MUST allocate source buffer and populate with data. For optimum
performance, the data pointed to SHOULD be 8-byte aligned. For block
ciphers, the data passed in MUST be a multiple of the relevant block size.
i.e. Padding WILL NOT be applied to the data.

[out] pDstBuffer Caller MUST allocate a sufficiently sized destination buffer to hold the
data output. For out-of-place processing the data outside the crypto
regions in the source buffer are copied into the destination buffer. To
perform "in-place" processing set the pDstBuffer parameter in
cpaCySymPerformOp function to point at the same location as pSrcBuffer.
For optimum performance, the data pointed to SHOULD be 8-byte
aligned.

[out] pVerifyResult In synchronous mode, this parameter is returned when the digestVerify
option is set in the CpaCySymOpData structure. A value of CPA_TRUE
indicates that the compare succeeded. A value of CPA_FALSE indicates
that the compare failed for an unspecified reason.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_RETRY Resubmit the request.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_RESOURCE Error related to system resource.

Precondition:
The component has been initialized via cpaCyStartInstance function. A Cryptographic session has
been previously setup using the cpaCySymInitSession() function call.

Postcondition:
None

Note:
When in asynchronous mode, a callback of type CpaCySymCbFunc is generated in response to
this function call. Any errors generated during processing are reported as part of the callback status
code. Partial packet processing is only supported for in-place cipher or in-place hash operations
(meaning when the output of the cipher or hash is written back into the source buffer).

See also:
CpaCySymOpData, cpaCySymInitSession(), cpaCySymRemoveSession()

CpaStatus cpaCySymQueryStats (const CpaInstanceHandle instanceHandle,
CpaCySymStats * pSymStats

)
Query symmetric cryptographic statistics for a specific instance.

This function will query a specific instance for statistics. The user MUST allocate the CpaCySymStats
structure and pass the reference to that into this function call. This function will write the statistic results into
the passed in CpaCySymStats structure.

Note: statistics returned by this function do not interrupt current data processing and as such can be slightly
out of sync with operations that are in progress during the statistics retrieval process

Context:

14.9 Function Documentation

Reference Number: 320184, Revision -003 154

This is a synchronous function and it can sleep. It MUST NOT be executed in a context that DOES
NOT permit sleeping.

Assumptions:
None

Side-Effects:
None

Blocking:
Yes

Reentrant:
No

Thread-safe:
Yes

Parameters:
[in] instanceHandle Instance handle.
[out] pSymStats Pointer to memory into which the statistics will be written.

Return values:
CPA_STATUS_SUCCESS Function executed successfully.
CPA_STATUS_FAIL Function failed.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

Precondition:
Component has been initialized.

Postcondition:
None

Note:
This function operates in a synchronous manner, i.e. No asynchronous callback will be generated.

See also:
CpaCySymStats

14.9 Function Documentation

Reference Number: 320184, Revision -003 155

	Table of Contents
	1 CPA API
	1.1 Detailed Description
	1.2 Modules

	2 Base Data Types [CPA API]
	2.1 Detailed Description
	2.2 Data Structures
	2.3 Defines
	2.4 Typedefs
	2.5 Enumerations
	2.6 Data Structure Documentation
	2.6.1 _CpaFlatBuffer Struct Reference
	2.6.2 _CpaBufferList Struct Reference
	2.6.3 _CpaInstanceInfo Struct Reference

	2.7 Define Documentation
	2.8 Typedef Documentation
	2.9 Enumeration Type Documentation

	3 CPA Type Definition [CPA API]
	3.1 Detailed Description
	3.2 Defines
	3.3 Typedefs
	3.4 Enumerations
	3.5 Define Documentation
	3.6 Typedef Documentation
	3.7 Enumeration Type Documentation

	4 Cryptographic API. [CPA API]
	4.1 Detailed Description
	4.2 Modules

	5 Cryptographic Common API. [Cryptographic API.]
	5.1 Detailed Description
	5.2 Typedefs
	5.3 Enumerations
	5.4 Functions
	5.5 Typedef Documentation
	5.6 Enumeration Type Documentation
	5.7 Function Documentation

	6 Public Key Encryption Diffie-Hellman API. [Cryptographic API.]
	6.1 Detailed Description
	6.2 Data Structures
	6.3 Typedefs
	6.4 Functions
	6.5 Data Structure Documentation
	6.5.1 _CpaCyDhPhase1KeyGenOpData Struct Reference
	6.5.2 _CpaCyDhPhase2SecretKeyGenOpData Struct Reference
	6.5.3 _CpaCyDhStats Struct Reference

	6.6 Typedef Documentation
	6.7 Function Documentation

	7 Public Key Encryption DSA API. [Cryptographic API.]
	7.1 Detailed Description
	7.2 Data Structures
	7.3 Typedefs
	7.4 Functions
	7.5 Data Structure Documentation
	7.5.1 _CpaCyDsaPParamGenOpData Struct Reference
	7.5.2 _CpaCyDsaGParamGenOpData Struct Reference
	7.5.3 _CpaCyDsaYParamGenOpData Struct Reference
	7.5.4 _CpaCyDsaRSignOpData Struct Reference
	7.5.5 _CpaCyDsaSSignOpData Struct Reference
	7.5.6 _CpaCyDsaRSSignOpData Struct Reference
	7.5.7 _CpaCyDsaVerifyOpData Struct Reference
	7.5.8 _CpaCyDsaStats Struct Reference

	7.6 Typedef Documentation
	7.7 Function Documentation

	8 Crypto Instance Maintainence API. [Cryptographic API.]
	8.1 Detailed Description
	8.2 Functions
	8.3 Function Documentation

	9 Key and Mask Generation API. [Cryptographic API.]
	9.1 Detailed Description
	9.2 Data Structures
	9.3 Defines
	9.4 Typedefs
	9.5 Enumerations
	9.6 Functions
	9.7 Data Structure Documentation
	9.7.1 _CpaCyKeyGenSslOpData Struct Reference
	9.7.2 _CpaCyKeyGenTlsOpData Struct Reference
	9.7.3 _CpaCyKeyGenMgfOpData Struct Reference
	9.7.4 _CpaCyKeyGenStats Struct Reference

	9.8 Define Documentation
	9.9 Typedef Documentation
	9.10 Enumeration Type Documentation
	9.11 Function Documentation

	10 Crypto API Large Number. [Cryptographic API.]
	10.1 Detailed Description
	10.2 Data Structures
	10.3 Typedefs
	10.4 Functions
	10.5 Data Structure Documentation
	10.5.1 _CpaCyLnModExpOpData Struct Reference
	10.5.2 _CpaCyLnModInvOpData Struct Reference
	10.5.3 _CpaCyLnStats Struct Reference

	10.6 Typedef Documentation
	10.7 Function Documentation

	11 Prime Number Test API. [Cryptographic API.]
	11.1 Detailed Description
	11.2 Data Structures
	11.3 Typedefs
	11.4 Functions
	11.5 Data Structure Documentation
	11.5.1 _CpaCyPrimeTestOpData Struct Reference
	11.5.2 _CpaCyPrimeStats Struct Reference

	11.6 Typedef Documentation
	11.7 Function Documentation

	12 Random Bit/Number Generation API. [Cryptographic API.]
	12.1 Detailed Description
	12.2 Data Structures
	12.3 Defines
	12.4 Typedefs
	12.5 Functions
	12.6 Data Structure Documentation
	12.6.1 _CpaCyRandStats Struct Reference
	12.6.2 _CpaCyRandGenOpData Struct Reference
	12.6.3 _CpaCyRandSeedOpData Struct Reference

	12.7 Define Documentation
	12.8 Typedef Documentation
	12.9 Function Documentation

	13 Public Key Encryption RSA API. [Cryptographic API.]
	13.1 Detailed Description
	13.2 Data Structures
	13.3 Typedefs
	13.4 Enumerations
	13.5 Functions
	13.6 Data Structure Documentation
	13.6.1 _CpaCyRsaPublicKey Struct Reference
	13.6.2 _CpaCyRsaPrivateKeyRep1 Struct Reference
	13.6.3 _CpaCyRsaPrivateKeyRep2 Struct Reference
	13.6.4 _CpaCyRsaPrivateKey Struct Reference
	13.6.5 _CpaCyRsaKeyGenOpData Struct Reference
	13.6.6 _CpaCyRsaEncryptOpData Struct Reference
	13.6.7 _CpaCyRsaDecryptOpData Struct Reference
	13.6.8 _CpaCyRsaStats Struct Reference

	13.7 Typedef Documentation
	13.8 Enumeration Type Documentation
	13.9 Function Documentation

	14 Symmetric Cipher and Hash Crypto API [Cryptographic API.]
	14.1 Detailed Description
	14.2 Data Structures
	14.3 Typedefs
	14.4 Enumerations
	14.5 Functions
	14.6 Data Structure Documentation
	14.6.1 _CpaCySymCipherSetupData Struct Reference
	14.6.2 _CpaCySymHashNestedModeSetupData Struct Reference
	14.6.3 _CpaCySymHashAuthModeSetupData Struct Reference
	14.6.4 _CpaCySymHashSetupData Struct Reference
	14.6.5 _CpaCySymSessionSetupData Struct Reference
	14.6.6 _CpaCySymOpData Struct Reference
	14.6.7 _CpaCySymStats Struct Reference

	14.7 Typedef Documentation
	14.8 Enumeration Type Documentation
	14.9 Function Documentation

