

Translation of PowerPC/AltiVec
SIMD Macros to IA32/SSE/AVX

Peter Cromwell, Ian McConnell∗

N.A. Software Ltd

Revision 2.0; Released 25th September 2010

1 Introduction

1 Introduction

This document is aimed at experienced developers who needs to migrate their existing
vector-oriented C/C++ PowerPC AltiVec code to the Intel x86 (Intel Architecture 32-bit)
SSE (Streaming SIMD Extensions) extensions.

The SIMD facilities of the PowerPC/AltiVec chip can be accessed from C code using the
altivec.h header file. This makes the interface defined in the Motorola specification
AltiVec Technology Programming Interface Manual available through a set of macros that
target the SIMD assembly instructions.

This document accompanies a modified version of the altivec.h file (altivec2sse.h)
which uses the same Motorola interface but targets Intel processors with the SSE2 level of
SIMD support.

This can be done because, at the conceptual level, AltiVec and SSE are quite similar. They
are single instruction/multiple data (SIMD) vector units with 4×32 bit vectors that prefer
to be 16 byte aligned. The vectors are accessed through a C programming interface which
treats them as a special 128 bit data type with a set of function-like intrinsics. Intel used
the _mm_ prefix whereas AltiVec has vec_. Generally, there is a good correlation between
the two instruction sets with about two thirds of the most commonly used functions directly
translatable. For the remaining AltiVec instructions, many can be emulated with a few SSE
calls.

Places that are likely to require a programmer’s attention include:

• code for handling misaligned data

• use of instructions that saturate the result on overflow

• use of instructions in which the position of individual elements within a SIMD vector
matters (e.g. pack, perm).

In the first case, reading misaligned data is much simpler in SSE — you no longer need
to load two adjacent aligned vectors and extract the required elements, you just load an
unaligned vector with _mm_loadu_si128 or _mm_loadu_ps for integer or float data. The
last case is a problem caused by the change in endian format (see §4).

Note that the kind of translation provided (direct mapping, inline function, none) may vary
with the data type. If the instruction you want is not translated, check to see whether
switching between signed and unsigned, or changing the width of an integer type will help.

For more information on porting code between AltiVec and SSE see:

AltiVec/SSE Migration Guide,
http://developer.apple.com/documentation/performance/Conceptual/Accelerate_sse_migration/

SSE Performance Programming,
http://developer.apple.com/hardwaredrivers/ve/sse.html

∗This work was funded by Intel Corporation with whom copyright exists

altivec2sse #2 NASoftware 1

4 Endian issues

2 Requirements and use

You will need to have the standard header files xmmintrin.h and emmintrin.h installed on
your system to provide access to the SSE and SSE2 instructions.

Replace the original altivec.h header file you use for compiling on a PowerPC with the
file altivec2sse.h containing SSE translation macros.

Recompile your code on an Intel machine using the appropriate flag to enable the SSE exten-
sions, typically -msse2. Under VxWorks you may also need the flag -flax-vector-conversions
to remove superfluous type conversion errors.

3 Compiler dependency

In the Motorola specification, the same high-level function name is used with multiple data
types and the compiler selects the correct instruction based on the types of the arguments
the function is called with. The altivec.h header file has been derived from one that
was supplied with GCC. It makes use of some internal compiler macros to fake the function
overloading in the C interface. This is probably not portable between compilers so you may
need access to GCC. Fortunately, the compilers supplied for use on real-time systems or for
building DSP applications are often based on GCC.

4 Endian issues

AltiVec is big-endian and SSE is little-endian. Both units represent their data with IEEE-
754 floating point format, but the Intel architecture stores the results in little-endian order.
So, for the array

float data[4]= { 10.f,20.f,30.f,40.f };
vFloat v = _mm_loadu_ps(&data[0]);

the data in v will look like this:

v = {40.f,30.f,20.f,10.f}

On the PowerPC values stored in memory and values stored in a processor register are
represented in the same way. On Intel processors, the order of the bytes is reversed when
data are transferred between registers and memory.

If your code is pure SIMD so that you always apply identical operations to all elements
of a vector then this will not affect you. When the results are saved to memory, the Intel
architecture restores the byte order to what would be expected.

If you refer to left/right, high/low or even/odd locations within a vector and you are getting
incorrect results, this is very likely to be the source of the problem.

In the case of a vector register, the entire vector is byte swapped: not only are the bytes
representing each element reversed, but also the order of the elements within a vector. The

altivec2sse #2 NASoftware 2

5 Efficiency issues

first is essentially invisible to the programmer but the second affects the indexing in the
vector. Any instruction that addresses a particular element in a vector will access the wrong
location. For example, it interchanges left and right shifts when permuting elements.

In general, a macro does have sufficient context to determine whether the elements of a vec-
tor register should be indexed in register order or memory order. The following instructions
have been implemented with both register order and memory order versions. By default
you will get the register order implementation, which is a literal translation of the AltiVec
macro. If you define the macro MEMORY_ORDER before reading in altivec.h you will get the
memory order implementation, which reverses the indexing order.

• splat: vec_splat

• merge: vec_merge, vec_mergel

• shift octet: vec_slo, vec_sro

• multiply even/odd: vec_mule, vec_mulo

• unpack: vec_unpackh, vec_unpackl.

Fortunately, one of the main uses of the AltiVec permute unit is in loading and storing
misaligned data but, as mentioned above, SSE provides easier ways to do this.

5 Efficiency issues

Do not expect your highly tuned AltiVec code to be translated into high-performance SSE.
You will get a quick and easy first cut.

In AltiVec you can gain a speed advantage by unrolling up to eight-way in parallel. On x86,
there are fewer registers and unrolling may overflow the register file causing a large number
of extra loads. In this case returning to the simpler, unrolled code may give a performance
advantage.

If you want high-performance SSE, you may need to re-examine your algorithm to account
for the out-of-order execution and fewer registers. Some of the issues are discussed below.

Whether an AltiVec instruction maps onto a single SIMD instruction, a sequence of SIMD
instructions, or a serial implementation can depend on the datatype. You may be able to
switch to a faster instruction by changing the width or signed/unsigned condition of an
integer.

AltiVec logical shift and arithmetic shift instructions operate independently on each ele-
ment of a SIMD vector, but the SSE equivalents shift all elements by the same amount.
The AltiVec behaviour is simulated with serial implementations. If you do not need this
generality, you will get better performance by changing your code to call the SSE functions.

altivec2sse #2 NASoftware 3

7 Instructions that are simulated

6 Accuracy and rounding

Any algorithm using floating point calculations being ported from the AltiVec to SSE should
be tested for numerical accuracy. While both processors store their data with IEEE-754
floating point format, the AltiVec design is based upon a fused multiply add. The Intel
processor separates these into a multiply and an add operation and so may incur an extra
rounding step.

The Intel processor does, however, support more rounding modes (nearest, zero, Inf and
-Inf) compared to the round to nearest of the AltiVec.

7 Instructions that are simulated

Each of the following AltiVec instructions has no direct SSE equivalent but its effect has been
produced by combining sequences of SIMD instructions, or with a serial implementation
that processes each element of the vector in turn. Whether simlulation is necessary may
depend on the data type: some AltiVec instructions have direct translations for some but
not all of signed/unsigned, char, short, and int.

7.1 Instructions with SIMD simulations

• absolute value: vec_abs, vec_abss

• average: vavguw, vavgsb, vavgsh, vavgsw

• rounding: vrfiz, vrfip, vrfim, vrfin

• type conversion: vcfsx, vctsxs

• unsigned comparison: vcmpgtub, vcmpgtuh, vcmpgtuw

• bounds checking: vcmpbfp

• logical nor: vnor

• maximum: vmaxsb, vmaxuh, vmaxuw, vmaxsw, vmaxfp

• minimum: vminsb, vminuh, vminuw, vminsw, vminfp

• select: vec_sel

• shift octet: vslo, vsro

• splat: vspltb, vsplth, vspltw, vspltf.

• approximation: vec_expte, vec_loge

• unsigned type conversion: vec_vcfux, vec_vctuxs

altivec2sse #2 NASoftware 4

9 Instructions Added at Release 2

Cache hints are also ignored. The LRU variants vec_ldl and vec_stl of the load and store
instructions that mark cache lines as ‘least recently used’ are #defined to the ordinary
vec_ld and vec_st.

7.2 Instructions with serial simulations

• load/store by element: vec_lde, vec_ste

• multiply even/odd: vec_mule, vec_mulo

• multiply–sum: vec_msum

• pack/unpack: vec_pack, vupkhsb, vupkhsh, vupklhsb, vupklsh

• logical shift: vslb, vslh, vslw, vsrb, vsrh, vsrw

• arithmetic shift: vsrab, vsrah, vsraw

• rotate: vrlb, vrlh, vrlw

• long shift: vec_sll, vec_srl.

8 Instructions that are ignored

The following AltiVec instructions are #defined to be empty macros, or zero if they return
a value. You will not get an error by using them — they will just be ignored.

• cache touches: vec_dss, vec_dssall, vec_dst, vec_dstst, vec_dstt, vec_dststt

• status register: vec_mfvscr, vec_mtvscr.

9 Instructions Added at Release 2

The following AltiVec instructions do not have direct SSE equivalents and were not imple-
mented at Release 1 — they gave an ‘undefined reference’ error on linking code that uses
them. For convenience, they have now all been given C implementations.

For most of these instructions the position of individual elements within the vector matters
(see §4) or the AltiVec instructions saturate the result on overflow. In the first case a
programmer should analyse the code to ensure the correct order of elements is used; in the
second case it may be possible to substitute the non-saturated version of an instruction at
a modest efficiency gain.

• include carry: vec_addc, vec_subc

• saturate result: vec_vaddsws, vec_vadduws, vec_madds, vec_mradds, vec_msums,
vec_vsubsws, vec_vsubuws

• saturated pack: vec_vpkshus, vec_vpkswus, vec_vpkuwus

altivec2sse #2 NASoftware 5

10 Benchmarks

• saturated sum across vector: vec_sums, vec_sum2s, vec_sum4s

• pack/unpack pixels: vec_packpx, vec_vupkhpx, vec_vupklpx

• multiply low and add: vec_mladd

• create shift vectors for unaligned data: vec_lvsl, vec_lvsr

• permutation: vec_perm,

• double shift: vec_sld.

10 Benchmarks

We give here examples of PowerPC/Altivec vector codes as run on PowerPC and then on
Intel using the altivec2sse.h include file. The systems used to provide timings are:

Linux/Intel: an Intel Core 2 (T7200), 2GHz, 4Mb cache.

Linux/PPC: a MPC8641HPCN board (7448), 1.5GHz.

These have different clock speeds; we factor this out by giving the number of clock cy-
cles used per vector element.

10.1 Vector Add

The AltiVec code to sum two arrays of floating point vectors

float *block_out,*block_in1,*block_in2;
for (i = 0; i <v_length; i += 4) {
vector float Avf32,Bvf32,Rvf32;
Avf32 = vec_ld(0,&block_in1[i]);
Bvf32 = vec_ld(0,&block_in2[i]);
Rvf32 = vec_add(Avf32,Bvf32);
vec_st(Rvf32,0,&block_out[i]);
}

will run on SSE with the inclusion of altivec2sse.h.

#define MEMORY_ORDER
#include "altivec2sse.h"

Timings in instruction cycles per array element are given below.

altivec2sse #2 NASoftware 6

10 Benchmarks

Vector length Linux/Intel Linux/PPC
000256 1.1 1.5
001024 1.2 1.5
004096 1.8 3.4
016384 1.8 3.4
065536 1.9 6.0
131072 1.8 21.3

Timings in µseconds:

Vector length Linux/Intel Linux/PPC
000256 0.1 0.3
001024 0.6 1.0
004096 3.6 9.2
016384 14.7 36.7
065536 61.8 261.2
131072 120.2 1859.0

10.2 Vector Sine

Model AltiVec code to calculate the sine of an array of floating point numbers while taking
account of the vector length of four might look like:

float *block_out,*block_in;
for (i = 0; i <v_length; i += 4) {
vector float Avf32,Rvf32;
Avf32 = vec_ld(0,&block_in[i]);
Rvf32 = vsin(Avf32);
vec_st(Rvf32,0,&block_out[i]);
}

A fast vector sine algorithm is given in ”A Fast, Vectorizable Algorithm for Producing Single-
Precision Sine-Cosine Pairs” available from http://arxiv.org/pdf/cs.MS/0406049

The code is reproduced below

vector float vsin(vector float v)
{
vector float s1,s2,c1,c2,fixmag1;
vector float vzero = VEC_CONST(0.0);
vector float vone = VEC_CONST(1.0);
vector float vtwo = VEC_CONST(2.0);
vector float vhalfpi = VEC_CONST(1.0/(2.0*3.1415926536));
vector float v_ss1 = VEC_CONST(1.5707963268);
vector float v_ss2 = VEC_CONST(-0.6466386396);
vector float v_ss3 = VEC_CONST(0.0679105987);
vector float v_ss4 = VEC_CONST(-0.0011573807);
vector float v_cc1 = VEC_CONST(-1.2341299769);

altivec2sse #2 NASoftware 7

10 Benchmarks

vector float v_cc2 = VEC_CONST(0.2465220241);
vector float v_cc3 = VEC_CONST(-0.0123926179);

vector float x1 = vec_madd(v,vhalfpi,vzero);
/* q1=x/2pi reduced onto (-0.5,0.5),q2=q1**2 */
vector float q1 = vec_nmsub(vec_round(x1),vone,x1);
vector float q2 = vec_madd(q1,q1,vzero);
s1= vec_madd(q1,
vec_madd(q2,
vec_madd(q2,vec_madd(q2,v_ss4,v_ss3),v_ss2),
v_ss1),
vzero);
c1= vec_madd(q2,
vec_madd(q2,vec_madd(q2,v_cc3,v_cc2),v_cc1),
vone);
/* now,do one out of two angle-doublings to get sin & cos theta/2 */
c2 = vec_nmsub(s1,s1,vec_madd(c1,c1,vzero));
s2 = vec_madd(vtwo,vec_madd(s1,c1,vzero),vzero);
/* now,cheat on the correction for magnitude drift...
if the pair has drifted to (1+e)*(cos,sin),
the next iteration will be (1+e)**2*(cos,sin)
which is,for small e,(1+2e)*(cos,sin).
However,on the (1+e) error iteration,
sin**2+cos**2=(1+e)**2=1+2e also,
so the error in the square of this term
will be exactly the error in the magnitude of the next term.
Then,multiply final result by (1-e) to correct */
/* must use this method with un-normalized series,since magnitude error is large
*/
fixmag1 = Reciprocal(vec_madd(s2,s2,vec_madd(c2,c2,vzero)));
c1 = vec_nmsub(s2,s2,vec_madd(c2,c2,vzero));
s1 = vec_madd(vtwo,vec_madd(s2,c2,vzero),
vzero);
return vec_madd(s1,fixmag1,vzero);
}

When compiling on a PowerPC machine, the -faltivec option to GCC allows the construct

vector float vzero = (vector float)(0.);

This shorthand is not supported by Intel/SSE version of GCC so it may be necessary to
manually edit the code to use the more general form

vector float vzero = {0.,0.,0.,0.};

The general form should work on both AltiVec and SSE versions of GCC, but in the above
code a macro has been used to switch notations:

#ifdef ALTIVEC

altivec2sse #2 NASoftware 8

11 AVX Considerations

#define VEC_CONST(x) (vector float)(x))
#else
#define VEC_CONST(x) {(x),(x),(x),(x)}
#endif

The benchmark results for this code, in machine cycles per array element are

Vector length Linux/Intel Linux/PPC
000256 29.7 27.1
001024 30.2 27.0
004096 30.3 27.1
016384 30.3 28.5
065536 31.9 28.5
131072 30.6 31.8

The timings in µseconds:

Vector length Linux/Intel Linux/PPC
000256 3.9 4.6
001024 17.5 18.5
004096 61.7 74.1
016384 246.5 311.7
065536 983.7 1247.0
131072 1961.3 2779.5

10.3 Fourier Transform

To illustrate the conversion process on a typical FFT routine we use a 1024 point FFT
module (a Stockham algorithm) which forms part of the N.A. Software multi-algorithm
FFT suite. Results for this routine are:

Linux/Intel Linux/PPC
Cycles/elt 30.0 29.5
µseconds 30.7 20.1

11 AVX Considerations

This section discusses the extent to which the altivec.h can be used on systems with the
Advanced Vector Extension (AVX) instructions, and any performance benefits which may
derive from AVX. We find that:

• The limitation of the registers to 128 bits makes it very difficult within an include file
such as altivec.h to make use of the wider AVX registers.

• However, the GCC 4.4 compiler already provides substantial support for AVX. In partic-
ular, nearly all mappings provided in this version of altivec.h are efficiently mapped
by GCC onto the appropriate AVX instructions.

altivec2sse #2 NASoftware 9

11 AVX Considerations

• The fused multiply-add AVX instruction is available in , and when supported by AVX
hardware, should be added.

11.1 AVX Features

Summarising the features of AVX is best done by quoting from http://en.wikipedia.
org/wiki/Advanced_Vector_Extensions

1. The size of the SIMD vector registers is increased from 128-bits XMM registers to
256-bits registers called YMM0 - YMM15.

This option offers little advantage emulating AltiVec instructions as these are defined
to be 128 bits by the API.

2. Non-destructive instructions. The AVX instruction set allows all two-operand XMM
instructions to be modified into non-destructive three-operand forms where the desti-
nation register is different from both source registers. For example a:=a+b is replaced
by c:=a+b so that register a is unchanged after the instruction.

This feature is examined in more detail in §11.3.

3. The alignment requirement of SIMD memory operands is relaxed.

This option may help, but for misaligned data AltiVec requires you to load two ad-
jacent aligned vectors and extract the required elements. Emulating this misaligned
access may be possible, but it will always be slow and, in general, it is better for the
programmer to use the appropriate AVX load/store instructions.

11.2 AVX support in GCC

GCC 4.4.x supports Intel AVX with the -mavx flag. This version of GCC requires binutils
2.19.51.0.1.

The header file altivec.h does not directly include any SSE or AVX assembler instructions;
instead we rely upon GCC intrinsics to generate the appropriate assembler. For instance,
the AltiVec instruction vec_add calls the function _mm_add_ps (for float arguments), which
in turn, calls __builtin_ia32_addps. This then generates the appropriate SSE (addps)
or AVX (vaddps) instructions depending upon whether GCC is passed the -msse4 or -mavx
flags.

Take a simple example:

#include "altivec.h"

vector float Avf32, Bvf32, Rvf32;
Avf32 = vec_ld(0, block_in1);
Bvf32 = vec_ld(0, block_in2);
Rvf32 = vec_add(Avf32, Bvf32);

when compiled with a version of GCC that supports both SSE and AVX instructions sets

altivec2sse #2 NASoftware 10

11 AVX Considerations

gcc-4.4 -O3 -S -flax-vector-conversions vadd.c -msse4

produces this assembler output:

movaps (%edx), %xmm0
addps (%eax), %xmm0
movl %esp, %eax
andl $-16, %eax
movaps %xmm0, (%eax)

Using the same compiler and options, but targeting the AVX extensions:

gcc-4.4 -O3 -S -flax-vector-conversions vadd.c -mavx

produces

vmovaps (%edx), %xmm0
vaddps (%eax), %xmm0, %xmm0
movl %esp, %eax
andl $-16, %eax
vmovaps %xmm0, (%eax)

GCC is generating the correct AVX instructions, though it is only using the 128 bit XMM
registers. As a result of this feature of GCC, it is not necessary to insert explicit AVX
instructions into the IA version of altivec.h. However, we note again that given the 128
bit AltiVec API, the 256 bit YMM registers are of little direct use without manual recoding.

11.3 Register Pressure: Help from GCC

In altivec.h we use the GCC intrinsics vec_ which gives us some type protection, but
also leaves the assignment of data to XMM registers up to the compiler. Obviously, thr
details of this will depend upon the internals of the compiler, but it is useful to ask the
question. “Do the non-destructive instructions of AVX give the compiler more freedom to
assign results?”. We test this by considering some example codes (the codes themselves are
listed in the Appendix).

11.3.1 4×4 Matrix Multiply

Appendix A gives AltiVec code for a 4×4 float matrix multiply. This was compiled with
altivec.h and the results analysed with the Intel Architecture Code Analyzer (iaca.sh)
available from
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/.

First, we tell GCC to just use SSE instructions:

gcc-4.4 -O3 -mtune=core2 -flax-vector-conversions vmatmul.c -msse4 && ./iaca.sh
-32 a.out

produces

altivec2sse #2 NASoftware 11

11 AVX Considerations

Total Throughput: 43 Cycles; Throughput Bottleneck: Port2_ALU, Port3_ALU, Port4
Total number of Uops bound to ports: 201
Data Dependency Latency: 32 Cycles; Performance Latency: 63 Cycles

Now if we tell the compiler to use the AVX instructions

gcc-4.4 -O3 -mtune=core2 -flax-vector-conversions vmatmul.c -mavx && ./iaca.sh
-32 a.out

produces

Total Throughput: 34 Cycles; Throughput Bottleneck: Port2_ALU, Port3_ALU
Total number of Uops bound to ports: 169
Data Dependency Latency: 32 Cycles; Performance Latency: 53 Cycles

GCC is still using the 128 bit XMM registers, but with the AVX instruction set is able to
use the non-destructive three-operand forms to gain performance.

Note that we have not modified altivec.h nor the original source as we have only changed
the compiler flags to GCC.

Performance could be further improved by use of a fused multiply-add operation which
is used a lot in the matrix multiple (vec_madd). Currently GCC does not support this
through its intrinsic functions (and nor does current AVX hardware) but in due course
AVX assembler could be added to altivec.h to support it.

11.3.2 Vector Sine

Taking a moderately complicated AltiVec algorithm to calculate the vector sine function
(See Appendix B)

gcc-4.4 -O3 -mtune=core2 -flax-vector-conversions vsin.c -msse4 && ./iaca.sh
-32 a.out

produces

Total Throughput: 31 Cycles; Throughput Bottleneck: Port1
Total number of Uops bound to ports: 102
Data Dependency Latency: 132 Cycles; Performance Latency: 136 Cycles

Now if we tell the compiler to use the AVX instructions

gcc-4.4 -O3 -mtune=core2 -flax-vector-conversions vsin.c -mavx && ./iaca.sh -32
a.out

produces

Total Throughput: 31 Cycles; Throughput Bottleneck: Port1
Total number of Uops bound to ports: 91
Data Dependency Latency: 129 Cycles; Performance Latency: 135 Cycles

In this case, the improvement is slight. Many of the instructions require loading constants,
limiting the compilers options.

altivec2sse #2 NASoftware 12

11 AVX Considerations

11.4 Benchmarks on AVX machine

All the previous results have been run on the Intel Architecture Code Analyzer (iaca.sh).
Wegive here results run on a 1.6GHz Sandy Bridge 64-bit processor with 4 cores and 4096KB
cache.

The test code was compiled with the command line:

gcc-4.4 -flax-vector-conversions -mavx -march=native -mfpmath=sse -O3

Timings were made by using the Time Stamp Counter RDTSC and by repeating each function
1000 times. The fastest number of clock cycles was then reported.

The results below were also repeated with -msse4 instead of -mavx, but the results were
found to be identical.

11.4.1 Inner Product

An inner product function was implemented in C as

for (i = 0; i < 32; i++)
res += a[i] * b[i];

Here a and b are arrays of 32 floats (32 bits). This same function was implemented in both
AltiVec code, as given in Appendix C, and SSE code using

acc = _mm_add_ps(acc, _mm_mul_ps(A, B));

The AltiVec code also tested the new implementations of vec_perm and vec_lvsl which is
commonly used for unaligned loads.

The result were:

Cycles
Altivec 53

C 160
SSE/AVX 37

The SSE timings may be improved by using 256-bit AVX operations, but we needed to stay
with the 128-bit API of AltiVec.

11.4.2 4×4 matrix transpose

SSE provides a convenient macro for transposing a 4×4 matrix:

_MM_TRANSPOSE4_PS(vaT[0], vaT[1], vaT[2], vaT[3]);

AltiVec, on the other hand, relies heavily on vec_perm to do the same operation

/* vec_perm() part 1 */
vtmp[0] = vec_perm(va[0], va[2], vpat1);
vtmp[1] = vec_perm(va[1], va[3], vpat1);

altivec2sse #2 NASoftware 13

11 AVX Considerations

vtmp[2] = vec_perm(va[0], va[2], vpat2);
vtmp[3] = vec_perm(va[1], va[3], vpat2);

/* vec_perm() part 2 */
vaT[0] = vec_perm(vtmp[0], vtmp[1], vpat3);
vaT[1] = vec_perm(vtmp[0], vtmp[1], vpat4);
vaT[2] = vec_perm(vtmp[2], vtmp[3], vpat3);
vaT[3] = vec_perm(vtmp[2], vtmp[3], vpat4);

The timings are

Cycles
Altivec 32

SSE/AVX 32

and indicate that we have an efficient implementation of vec_perm.

11.4.3 Multiply two 4×4 matrices

Appendix A gives an example of a 4×4 matrix multiply using AltiVec instruction. As a
SSE implementation was not readily available, the function was written in C in a way that
would allow GCC’s automatic vectorization to optimize the code:

for (i = 0; i < 4; i++) {
float ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);

}

The results are

Cycles
Altivec 58

C 32

11.4.4 Vector Sine

Appendix B has a fast vector sine algorithm using AltiVec instructions. There is no straight-
forward implementation of a sine function in SSE code so this was simply coded in C as

for (i = 0; i < len; i++) {
out[i] = sin(x[i]);

Again the results below were for an array of 32 floats:

Cycles
Altivec 645

C 965

altivec2sse #2 NASoftware 14

11 AVX Considerations

Ian: I do not understand this example. Did the Altivec code not run using
altivec.h? What does your comparison mean?

altivec2sse #2 NASoftware 15

A 4x4 Matrix Multiply

A 4x4 Matrix Multiply

Taken from http://developer.apple.com/hardwaredrivers/ve/algorithms.html#Matrix_
Multiplication.

typedef vector float vFloat;

void MultiplyMatrix4x4(const vFloat *A, const vFloat *B, vFloat *C)
{
//Load the matrix rows
vector float A1 = vec_ld(0, A);
vector float A2 = vec_ld(1 * sizeof(vector float), A);
vector float A3 = vec_ld(2 * sizeof(vector float), A);
vector float A4 = vec_ld(3 * sizeof(vector float), A);

vector float B1 = vec_ld(0, B);
vector float B2 = vec_ld(1 * sizeof(vector float), B);
vector float B3 = vec_ld(2 * sizeof(vector float), B);
vector float B4 = vec_ld(3 * sizeof(vector float), B);

vector float zero = (vector float) vec_splat_u32(0);
vector float C1, C2, C3, C4;

//Do the first scalar x vector multiply for each row
C1 = vec_madd(vec_splat(A1, 0), B1, zero);
C2 = vec_madd(vec_splat(A2, 0), B1, zero);
C3 = vec_madd(vec_splat(A3, 0), B1, zero);
C4 = vec_madd(vec_splat(A4, 0), B1, zero);

//Accumulate in the second scalar x vector multiply for each row
C1 = vec_madd(vec_splat(A1, 1), B2, C1);
C2 = vec_madd(vec_splat(A2, 1), B2, C2);
C3 = vec_madd(vec_splat(A3, 1), B2, C3);
C4 = vec_madd(vec_splat(A4, 1), B2, C4);

//Accumulate in the third scalar x vector multiply for each row
C1 = vec_madd(vec_splat(A1, 2), B3, C1);
C2 = vec_madd(vec_splat(A2, 2), B3, C2);
C3 = vec_madd(vec_splat(A3, 2), B3, C3);
C4 = vec_madd(vec_splat(A4, 2), B3, C4);

//Accumulate in the fourth scalar x vector multiply for each row
C1 = vec_madd(vec_splat(A1, 3), B4, C1);
C2 = vec_madd(vec_splat(A2, 3), B4, C2);
C3 = vec_madd(vec_splat(A3, 3), B4, C3);
C4 = vec_madd(vec_splat(A4, 3), B4, C4);

altivec2sse #2 NASoftware 16

B Vector Sine Algorithm

//Store out the result
vec_st(C1, 0 * sizeof(vector float), C);
vec_st(C2, 1 * sizeof(vector float), C);
vec_st(C3, 2 * sizeof(vector float), C);
vec_st(C4, 3 * sizeof(vector float), C);

}

B Vector Sine Algorithm

A fast vector sine algorithm is given in ”A Fast, Vectorizable Algorithm for Producing Single-
Precision Sine-Cosine Pairs” available from http://arxiv.org/pdf/cs.MS/0406049

The code is reproduced below

vector float vsin(vector float v)
{
vector float s1, s2, c1, c2, fixmag1;
vector float vzero = VEC_CONST(0.0);
vector float vone = VEC_CONST(1.0);
vector float vtwo = VEC_CONST(2.0);
vector float vhalfpi = VEC_CONST(1.0/(2.0*3.1415926536));
vector float v_ss1 = VEC_CONST(1.5707963268);
vector float v_ss2 = VEC_CONST(-0.6466386396);
vector float v_ss3 = VEC_CONST(0.0679105987);
vector float v_ss4 = VEC_CONST(-0.0011573807);
vector float v_cc1 = VEC_CONST(-1.2341299769);
vector float v_cc2 = VEC_CONST(0.2465220241);
vector float v_cc3 = VEC_CONST(-0.0123926179);

vector float x1 = vec_madd(v, vhalfpi, vzero);
/* q1=x/2pi reduced onto (-0.5,0.5), q2=q1**2 */
vector float q1 = vec_nmsub(vec_round(x1), vone, x1);
vector float q2 = vec_madd(q1, q1, vzero);
s1= vec_madd(q1,

vec_madd(q2,
vec_madd(q2, vec_madd(q2, v_ss4, v_ss3), v_ss2),
v_ss1),

vzero);
c1= vec_madd(q2,

vec_madd(q2, vec_madd(q2, v_cc3, v_cc2), v_cc1),
vone);

/* now, do one out of two angle-doublings to get sin & cos theta/2 */
c2 = vec_nmsub(s1, s1, vec_madd(c1, c1, vzero));
s2 = vec_madd(vtwo, vec_madd(s1, c1, vzero), vzero);
/* must use this method with un-normalized series,

altivec2sse #2 NASoftware 17

C Inner Product

since magnitude error is large */
fixmag1 = Reciprocal(vec_madd(s2,s2,vec_madd(c2,c2,vzero)));
c1 = vec_nmsub(s2, s2, vec_madd(c2, c2, vzero));
s1 = vec_madd(vtwo, vec_madd(s2, c2, vzero), vzero);
return vec_madd(s1, fixmag1, vzero);

}

C Inner Product

This implementation taken from http://lists.xiph.org/pipermail/speex-dev/2004-January/
000865.html

static float inner_prod(float *a, float *b, int len)
{
int i;
float sum;

int a_aligned = (((unsigned long)a) & 15) ? 0 : 1;
int b_aligned = (((unsigned long)b) & 15) ? 0 : 1;

__vector float MSQa, LSQa, MSQb, LSQb;
__vector unsigned char maska, maskb;
__vector float vec_a, vec_b;
__vector float vec_result;

vec_result = (__vector float)vec_splat_u8(0);

if ((!a_aligned) && (!b_aligned)) {
// This (unfortunately) is the common case.
maska = vec_lvsl(0, a);
maskb = vec_lvsl(0, b);

MSQa = vec_ld(0, a);
MSQb = vec_ld(0, b);

for (i = 0; i < len; i+=8) {

a += 4;
LSQa = vec_ld(0, a);
vec_a = vec_perm(MSQa, LSQa, maska);

b += 4;
LSQb = vec_ld(0, b);
vec_b = vec_perm(MSQb, LSQb, maskb);

altivec2sse #2 NASoftware 18

C Inner Product

vec_result = vec_madd(vec_a, vec_b, vec_result);

a += 4;
MSQa = vec_ld(0, a);
vec_a = vec_perm(LSQa, MSQa, maska);

b += 4;
MSQb = vec_ld(0, b);
vec_b = vec_perm(LSQb, MSQb, maskb);

vec_result = vec_madd(vec_a, vec_b, vec_result);

}
} else if (a_aligned && b_aligned) {

for (i = 0; i < len; i+=8) {
vec_a = vec_ld(0, a);
vec_b = vec_ld(0, b);
vec_result = vec_madd(vec_a, vec_b, vec_result);
a += 4; b += 4;
vec_a = vec_ld(0, a);
vec_b = vec_ld(0, b);
vec_result = vec_madd(vec_a, vec_b,

vec_result);
a += 4; b += 4;

}

} else if (a_aligned) {
maskb = vec_lvsl(0, b);
MSQb = vec_ld(0, b);

for (i = 0; i < len; i+=8) {

vec_a = vec_ld(0, a);
a += 4;

b += 4;
LSQb = vec_ld(0, b);
vec_b = vec_perm(MSQb, LSQb, maskb);

vec_result = vec_madd(vec_a, vec_b, vec_result);

vec_a = vec_ld(0, a);
a += 4;

b += 4;

altivec2sse #2 NASoftware 19

C Inner Product

MSQb = vec_ld(0, b);
vec_b = vec_perm(LSQb, MSQb, maskb);

vec_result = vec_madd(vec_a, vec_b, vec_result);
}

} else if (b_aligned) {
maska = vec_lvsl(0, a);
MSQa = vec_ld(0, a);

for (i = 0; i < len; i+=8) {

a += 4;
LSQa = vec_ld(0, a);
vec_a = vec_perm(MSQa, LSQa, maska);

vec_b = vec_ld(0, b);
b += 4;

vec_result = vec_madd(vec_a, vec_b, vec_result);

a += 4;
MSQa = vec_ld(0, a);
vec_a = vec_perm(LSQa, MSQa, maska);

vec_b = vec_ld(0, b);
b += 4;

vec_result = vec_madd(vec_a, vec_b, vec_result);
}

}

vec_result = vec_add(vec_result, vec_sld(vec_result, vec_result, 8));
vec_result = vec_add(vec_result, vec_sld(vec_result, vec_result, 4));
vec_ste(vec_result, 0, &sum);

return sum;
}

altivec2sse #2 NASoftware 20

