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1 Introduction 
This document explains briefly how to use OpenOCD with Eclipse* or GDB for source 
level debugging of the Intel® Quark SoC X1000.  

You may see references in the code to product codenames: 

• Intel® Quark SoC X1000 (formerly codenamed Clanton) 

• Intel® Quark Core (formerly codenamed Lakemont Core) 

Note: This document is not a complete guide to source level debugging. Its purpose is to 
enable you to begin debugging the Linux* kernel on the Intel® Quark SoC X1000 at 
source level using OpenOCD with GDB or Eclipse. 

For a complete set of supporting documentation, please visit the website for your 
specific JTAG hardware. The board has been tested with the following:  

• Olimex* ARM-USB-OCD-H 

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/  

• TinCanTools* FLYSWATTER2 

http://www.tincantools.com/wiki/Compiling_OpenOCD  

1.1 Terminology 

Table 1. Terminology 

Term Description 

Eclipse An integrated development environment (IDE) comprising a base 
workspace and an extensible plug-in system for customizing the 
environment.  

GDB GNU* Debugger is the standard debugger for the GNU operating 
system.  

JTAG Joint Test Action Group (JTAG) is the common name for the IEEE 
1149.1 Standard Test Access Port and Boundary-Scan Architecture. 
Debuggers communicate on chips with JTAG to perform operations 
like single stepping and breakpointing. 

OpenOCD Free and Open On-Chip Debugger. 

vmlinux A statically linked executable file that contains the Linux kernel in one 
of the object file formats supported by Linux (such as ELF, COFF and 
a.out).  

 

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/�
http://www.tincantools.com/wiki/Compiling_OpenOCD�
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2 Prerequisites 
Please refer to the OpenOCD section of the Intel® Quark SoC X1000 Board Support 
Package (BSP) Build Guide and complete the instructions before attempting the steps 
outlined in this document. 

Required software: 

• Linux* host system (running Eclipse/GDB/OpenOCD) 

• Quark-patched OpenOCD   

• GDB 

• Eclipse (Juno tested) with CDT Plugin Installed (Main + Optional Features) 

• Quark Kernel compiled with debug symbols  

Required hardware: 

• OpenOCD supported JTAG debugger.  
For example: 
− Olimex* ARM-USB-OCD-H 
− TinCanTools* FLYSWATTER2 
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3 Debugging 

3.1 OpenOCD 
The first step to enable source level debug is to connect your JTAG debugger to the 
board and run OpenOCD with the correct interface configuration file for your JTAG 
debugger. The example below uses an "olimex-arm-usb-ocd-h" JTAG debugger. 

sudo ./openocd -f interface/olimex-arm-usb-ocd-h.cfg -f board/clanton_board.cfg 

 

It is possible to use OpenOCD as a standalone tool for basic debugging. You can 
connect to the OpenOCD session using telnet and issue commands (this step is not 
required for source level debug). This can be seen in the following screenshot. 
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3.2 GDB 
It is possible to perform source level debug using GDB by connecting to OpenOCD’s 
internal GDB server. OpenOCD must be running as shown in the previous section.  

Run GDB pointing to a debug symbol compiled Quark Kernel vmlinux file: 

gdb /path/to/vmlinux 

Connect to the OpenOCD internal GDB server and halt the board: 

(gdb) target remote localhost:3333 

monitor halt 

continue 

ctrl + c 

The screenshot below shows these steps in operation. After they are completed, the 
board is ready to be source level debugged using GDB. 
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3.3 Eclipse 
It is also possible to perform source level debug using Eclipse with the CDT GDB 
Hardware Debugger plug-in. The following configuration is required to enable source 
level debugging of the board in the Eclipse environment. 

Go to the debug configurations menu, and add a new launch configuration under GDB 
hardware debugging, as shown below.  
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Set application to the debug symbol enabled vmlinux kernel file. 
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Enable Use remote target and set the host name and port number.  

 

Select Halt and add the commands: set remotetimeout 20 and monitor halt. 

 

 

Eclipse is now set up to perform source level debug on the board as shown below. 
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