

Document Number: 528591, Revision: 0.8.0

Using OpenOCD and Source Level
Debug on Intel® Quark SoC X1000

Application Note

November 2013

Introduction

Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
Application Note November 2013
2 Document Number: 528591, Revision: 0.8.0

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied
and no license, express or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor
family, not across different processor families. Go to: http://www.intel.com/products/processor_number/

Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by
Intel that have not been made commercially available to the public, i.e., announced, launched or shipped. They are never to be
used as “commercial” names for products. Also, they are not intended to function as trademarks.

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm�
http://www.intel.com/products/processor_number/�

Introduction

 Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
November 2013 Application Note
Document Number: 528591, Revision: 0.8.0 3

Contents
1 Introduction ...4

1.1 Terminology ..4

2 Prerequisites ..5

3 Debugging ...6
3.1 OpenOCD ..6
3.2 GDB ...7
3.3 Eclipse ..8

Tables

Table 1. Terminology ...4

Revision History

Date Revision Description

November 2013 0.8.0 Updated text to replace code name with official product name.

July 2013 0.6 Initial release.

Introduction

Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
Application Note November 2013
4 Document Number: 528591, Revision: 0.8.0

1 Introduction
This document explains briefly how to use OpenOCD with Eclipse* or GDB for source
level debugging of the Intel® Quark SoC X1000.

You may see references in the code to product codenames:

• Intel® Quark SoC X1000 (formerly codenamed Clanton)

• Intel® Quark Core (formerly codenamed Lakemont Core)

Note: This document is not a complete guide to source level debugging. Its purpose is to
enable you to begin debugging the Linux* kernel on the Intel® Quark SoC X1000 at
source level using OpenOCD with GDB or Eclipse.

For a complete set of supporting documentation, please visit the website for your
specific JTAG hardware. The board has been tested with the following:

• Olimex* ARM-USB-OCD-H

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/

• TinCanTools* FLYSWATTER2

http://www.tincantools.com/wiki/Compiling_OpenOCD

1.1 Terminology

Table 1. Terminology

Term Description

Eclipse An integrated development environment (IDE) comprising a base
workspace and an extensible plug-in system for customizing the
environment.

GDB GNU* Debugger is the standard debugger for the GNU operating
system.

JTAG Joint Test Action Group (JTAG) is the common name for the IEEE
1149.1 Standard Test Access Port and Boundary-Scan Architecture.
Debuggers communicate on chips with JTAG to perform operations
like single stepping and breakpointing.

OpenOCD Free and Open On-Chip Debugger.

vmlinux A statically linked executable file that contains the Linux kernel in one
of the object file formats supported by Linux (such as ELF, COFF and
a.out).

https://www.olimex.com/Products/ARM/JTAG/ARM-USB-OCD-H/�
http://www.tincantools.com/wiki/Compiling_OpenOCD�

Prerequisites

 Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
November 2013 Application Note
Document Number: 528591, Revision: 0.8.0 5

2 Prerequisites
Please refer to the OpenOCD section of the Intel® Quark SoC X1000 Board Support
Package (BSP) Build Guide and complete the instructions before attempting the steps
outlined in this document.

Required software:

• Linux* host system (running Eclipse/GDB/OpenOCD)

• Quark-patched OpenOCD

• GDB

• Eclipse (Juno tested) with CDT Plugin Installed (Main + Optional Features)

• Quark Kernel compiled with debug symbols

Required hardware:

• OpenOCD supported JTAG debugger.
For example:
− Olimex* ARM-USB-OCD-H
− TinCanTools* FLYSWATTER2

Debugging

Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
Application Note November 2013
6 Document Number: 528591, Revision: 0.8.0

3 Debugging

3.1 OpenOCD
The first step to enable source level debug is to connect your JTAG debugger to the
board and run OpenOCD with the correct interface configuration file for your JTAG
debugger. The example below uses an "olimex-arm-usb-ocd-h" JTAG debugger.

sudo ./openocd -f interface/olimex-arm-usb-ocd-h.cfg -f board/clanton_board.cfg

It is possible to use OpenOCD as a standalone tool for basic debugging. You can
connect to the OpenOCD session using telnet and issue commands (this step is not
required for source level debug). This can be seen in the following screenshot.

Debugging

 Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
November 2013 Application Note
Document Number: 528591, Revision: 0.8.0 7

3.2 GDB
It is possible to perform source level debug using GDB by connecting to OpenOCD’s
internal GDB server. OpenOCD must be running as shown in the previous section.

Run GDB pointing to a debug symbol compiled Quark Kernel vmlinux file:

gdb /path/to/vmlinux

Connect to the OpenOCD internal GDB server and halt the board:

(gdb) target remote localhost:3333

monitor halt

continue

ctrl + c

The screenshot below shows these steps in operation. After they are completed, the
board is ready to be source level debugged using GDB.

Debugging

Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
Application Note November 2013
8 Document Number: 528591, Revision: 0.8.0

3.3 Eclipse
It is also possible to perform source level debug using Eclipse with the CDT GDB
Hardware Debugger plug-in. The following configuration is required to enable source
level debugging of the board in the Eclipse environment.

Go to the debug configurations menu, and add a new launch configuration under GDB
hardware debugging, as shown below.

Debugging

 Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
November 2013 Application Note
Document Number: 528591, Revision: 0.8.0 9

Set application to the debug symbol enabled vmlinux kernel file.

Debugging

Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
Application Note November 2013
10 Document Number: 528591, Revision: 0.8.0

Enable Use remote target and set the host name and port number.

Select Halt and add the commands: set remotetimeout 20 and monitor halt.

Eclipse is now set up to perform source level debug on the board as shown below.

Debugging

 Using OpenOCD and Source Level Debug on Intel® Quark SoC X1000
November 2013 Application Note
Document Number: 528591, Revision: 0.8.0 11

§

	1 Introduction
	1.1 Terminology

	2 Prerequisites
	3 Debugging
	3.1 OpenOCD
	3.2 GDB
	3.3 Eclipse

