
Order Number: 330234-002US

Intel® QuarkTM SoC X1000
Secure Boot
Programmer’s Reference Manual (PRM)

January 2015

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
2 Order Number: 330234-002US

Legal Lines and Disclaimers

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.
The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel, Intel® Quark™ and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 3

Intel® QuarkTM SoC X1000

Revision History

Date Revision Description

January 2015 002

Changes are indicated with change bars and include:
Updated:
• •Updated: EDKII Security: For auto usage of security lockdown policies on secure

SKU hardware
• •Updated: Sample Flash Layouts:

Added:
• •Added: Industry standard UEFI Secure Boot support
• •Added: Firmware update and firmware recovery assets
• •Added: EDKII Security: EDKII Rollback Protection Tasks

March 2014 001 First public release of document.

Intel® QuarkTM SoC X1000

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
4 Order Number: 330234-002US

Contents

1.0 Introduction ... 8
1.1 Product Documentation ... 8
1.2 Terminology... 9
1.3 Conventions... 9

2.0 Security Overview..10
2.1 Assets ..10
2.2 Asset Protection ..10
2.3 Secure Boot ..10
2.4 Asset Signing ..11
2.5 Implementation Note ...11

3.0 Secure Boot Overview ..12
3.1 Asset Signing and Authentication Process..13

3.1.1 Signing an Asset...13
3.1.2 Validating an Asset Signature ...13
3.1.3 Additional Authentication Steps ..14

3.2 RSA Keys..14
3.3 Key Handling During Stage 0...15
3.4 Storage of Stage 1 Public Key and Stage 1 Applications ..16

3.4.1 Key Module..16
3.4.2 Stage 1 Applications..16

3.4.2.1 Master Flash Header ..16
3.4.2.2 Stage 1 Applications ..16
3.4.2.3 Fixed Location Recovery Application...17

3.5 Stage 1 Execution Environment ...17
3.6 Memory Protection...17
3.7 Stage 0 Software Execution Overview/Flow ...18

4.0 Asset Protection...19
4.1 Reset Handling ..19
4.2 ROM Based Software - Hardware Root of Trust ..19
4.3 Hardware Based Authentication Key ...19
4.4 Cache Settings ..19
4.5 Isolated Memory Regions (IMR) ...19

4.5.1 IMR Usage During Boot Flow ..22
4.5.2 IMR Violation Behavior ..23
4.5.3 SMRAM and HMBOUND – Special IMRs...23
4.5.4 IMR Locking ...23

4.6 Rollback Protection - Security Version Numbers ...23
4.6.1 SVN Storage ..24
4.6.2 SVN Usage...24

4.7 Interrupts...24
4.8 SPI Flash Device - Protected Boot Block ..24
4.9 SPI Flash - Write Protect Mode ..25
4.10 4.10 Firmware Update and Firmware Recovery Assets ..25

5.0 SPI Flash Layout and Asset Signing Tools ..26
5.1 SPI Flash Layout Tool ...26

5.1.1 Overview...26
5.1.2 Pre-Requisites ..26
5.1.3 Image Generation...26
5.1.4 The Layout Configuration File ...27

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 5

Intel® QuarkTM SoC X1000

5.1.4.1 Main Descriptor Block .. 27
5.1.4.2 Standard Asset Descriptor Block ... 27
5.1.4.3 Master Flash Header Asset Descriptor Block.................................. 29
5.1.4.4 Debug Dump Asset Descriptor Block.. 29

5.2 Asset Signing Toolset... 30
5.2.1 Overview .. 30
5.2.2 Pre-Requisites.. 31
5.2.3 Using the Asset Signing Toolset.. 31

5.2.3.1 -i <input file> .. 31
5.2.3.2 -o <output file> (optional) ... 31
5.2.3.3 -b <body offset in hexadecimal> (optional).................................. 31
5.2.3.4 -s <svn>... 31
5.2.3.5 -x <svn index> .. 31
5.2.3.6 -k <key file>.. 31
5.2.3.7 -c (optional)... 32
5.2.3.8 -l (optional) ... 32

6.0 Stage 0 (Secure Boot) Execution Details.. 33
6.1 High Level Flow... 33

6.1.1 System Initialization ... 33
6.1.2 Key Module Authentication .. 34
6.1.3 Master Flash Header Processing ... 34
6.1.4 Fixed Location Recovery Application Validation ... 34
6.1.5 Stage 1 Handover .. 34
6.1.6 Handling of Failure to Validate any Application ... 35

6.2 Support Functions ... 35
6.2.1 Authentication Functions ... 35

6.2.1.1 Authenticate Key Module ... 35
6.2.1.2 Authenticate Module.. 35
6.2.1.3 Authenticate Header.. 36

6.2.2 Crypto Functions .. 36
6.3 Debug Support ... 36

6.3.1 Progress Codes and Non-Fatal Errors .. 36
6.3.2 Fatal Error Codes ... 38

7.0 EDKII Security... 39
7.1 Secure Boot (Secure SKU only) ... 39
7.2 Isolated Memory Regions (IMRs) ... 39
7.3 Legacy SPI Flash Protection .. 39

7.3.1 Legacy SPI Flash Range Protection ... 40
7.3.2 Legacy SPI Flash Update Protection .. 40

7.4 PCIe Option ROMs ... 40
7.5 Register Locking.. 40
7.6 Redundant Images .. 40
7.7 Limiting Boot Options... 41
7.8 Denial of Service/Compromise Prevention... 41
7.9 Memory Training Engine Lockdown .. 41
7.10 SMM Security Enhancements .. 41

7.10.1 SMRAM Caching ... 41
7.11 EDKII Rollback Protection Tasks (Secure SKU only).. 41

8.0 Bootloader Security ... 43
8.1 Asset Verification .. 43
8.2 Isolated Memory Regions (IMRs) ... 43
8.3 Kernel Setup and Boot Params IMR.. 44
8.4 Compressed Kernel Image IMR ... 44
8.5 Handoff.. 44

Intel® QuarkTM SoC X1000

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
6 Order Number: 330234-002US

9.0 OS Security ..45
9.1 Asset Verification...45
9.2 IMR Support ...45
9.3 Debug Interface ..46

A Master Flash Header Data Structure...47
A.1 MFH Format ..47

A.1.1 MFH Identifier ..47
A.1.2 Version ...47
A.1.3 Flags...48
A.1.4 Next Header Block ..48
A.1.5 Flash Item Count (m)..48
A.1.6 Boot Priority List Count (n)...48
A.1.7 Boot Index (0..n)..48
A.1.8 Flash Item (0..m) ...48

A.1.8.1 Type..48
A.1.8.2 Flash Item Address..49
A.1.8.3 Flash Item Length ...49
A.1.8.4 Reserved Field ..50

B Secure Boot Header Data Structures ..51
B.1 Security Header Data Structure ...52
B.2 RSA Public Key Data Structure...52
B.3 Security Version Number Indexing ...53

C Firmware Volume Overview ...54
C.1 Tools..55

C.1.1 Using FV Tools..55

D Sample Flash Layouts ..57

Figures

1 Chain of Trust in the Boot Flow...12
2 Digital Signing/Validation...14
3 Stage 0 Key Usage ...15
4 Example IMR Zone Accesses ..21
5 Signed Module Layout ...51
6 Generic 8 MB Flash Layout...57
7 Example 8 MB Flash Layout ...58
8 Generic 1 MB Flash Layout...59

Tables

1 Product Documentation .. 8
2 Terminology ... 9
3 IMR Usage During Boot Flow ..22
4 Progress Codes ..36
5 Non-Fatal Error Codes...37
6 Fatal Error Codes..38
7 Master Flash Header Format ..47
8 Flash Item Format ..48
9 List of Types ..49

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 7

Intel® QuarkTM SoC X1000

10 Security Header Data Structure.. 52
11 RSA Key Structure ... 52
12 SVN Index Allocation .. 53
13 General FV Layout.. 54

§ §

Intel® QuarkTM SoC X1000—Introduction

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
8 Order Number: 330234-002US

1.0 Introduction

The Intel® Quark SoC X1000 is the next generation secure, low-power Intel
Architecture (IA) System on a Chip (SoC) for deeply embedded applications. The Intel®
Quark SoC X1000 integrates the Intel® Quark Core plus all the required hardware
components to run off-the-shelf operating systems and to leverage the vast x86
software ecosystem.

This document describes the Intel® Quark SoC X1000’s “secure boot” functionality,
which are the mechanisms used to verify the authenticity and integrity of the software
executing on the platform prior to that software being loaded and run.

This document contains the following sections:
• Introduction (this section)
• Chapter 2.0, “Security Overview”
• Chapter 3.0, “Secure Boot Overview”
• Chapter 4.0, “Asset Protection”
• Chapter 5.0, “SPI Flash Layout and Asset Signing Tools”
• Chapter 6.0, “Stage 0 (Secure Boot) Execution Details”
• Chapter 7.0, “EDKII Security”
• Chapter 8.0, “Bootloader Security”
• Chapter 9.0, “OS Security”
• Appendix A, “Master Flash Header Data Structure”
• Appendix B, “Secure Boot Header Data Structures”
• Appendix C, “Firmware Volume Overview”
• Appendix D, “Sample Flash Layouts”

1.1 Product Documentation
Table 1 lists the documentation supporting this release.

Table 1. Product Documentation

Title Number

Intel® Quark SoC X1000 Secure Boot Programmer’s Reference Manual (this document) 330234

Intel® Quark SoC X1000 Datasheet 329676

Intel® Quark SoC X1000 Linux* Programmer’s Reference Manual 330235

Intel® Quark SoC X1000 Board Support Package (BSP) Build and Software User Guide 329687

Intel® Quark SoC X1000 Software Release Notes 330232

Intel® Quark SoC X1000 UEFI Firmware Writer’s Guide 330236

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 9

Introduction—Intel® QuarkTM SoC X1000

1.2 Terminology

1.3 Conventions
The following conventions are used in this manual:

• Courier font - code examples, command line entries, API names, parameters,
filenames, directory paths, and executables

• Bold text - graphical user interface entries and buttons

§ §

Table 2. Terminology

Term Description

FV Firmware Volume

HW RoT Hardware Root of Trust

IMR Isolated Memory Region

MFH Master Flash Header

PCD Platform Configuration Data

RoT Root of Trust

SH Security Header

SMM System Management Mode

SoC System on Chip

SVN Security Version Number

UEFI Unified Extensible Firmware Interface

Intel® QuarkTM SoC X1000—Security Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
10 Order Number: 330234-002US

2.0 Security Overview

This chapter provides a security overview.

2.1 Assets
In information security, computer security, and network security, an Asset is any data,
device, or other component of the environment that supports information-related
activities. Assets generally include hardware (e.g. servers and switches), software (e.g.
mission critical applications and support systems) and confidential information.

Source: http://en.wikipedia.org/wiki/Asset_(computer_security)

In the context of Intel® Quark SoC X1000, Asset Protection focuses on booting only
authenticated software, flash programming of only signed firmware updates, and
mechanisms to protect software and/or data from unwarranted access or updates.

Note: The Intel® Quark SoC X1000 does not contain any mechanisms for the protection of
confidential information and does not support protection of “Secret Assets”.

2.2 Asset Protection
There are a number of mechanisms provided by the Intel® Quark SoC X1000 to enable
the protection of assets. Some of these are provided by default within the SoC design
and others can be enabled by software when the system is running.

Chapter 4.0, “Asset Protection” describes the mechanisms provided by the Intel®
Quark SoC X1000 for the protection of assets.

2.3 Secure Boot
One of the most important assets to be protected on a secure platform is the software
being run on that platform. The Intel® Quark SoC X1000 provides mechanisms to
verify the authenticity and integrity of the software executing on the platform prior to
that software being loaded and run. This mode of operation is known as Secure Boot.

An overview of Secure Boot is provided in Chapter 3.0, “Secure Boot Overview”.

In-depth details of the ROM-based software that provides a Hardware Root of Trust are
provided in Chapter 6.0, “Stage 0 (Secure Boot) Execution Details”. HW RoT is used to
Secure Boot software executing form system flash.

The industry standard mechanism UEFI Secure Boot is used for UEFI executables that
are external to system flash, for example operating system boot loaders that are
resident on USB and SD/eMMC. An overview, example tools and further reading on
UEFI Secure Boot can be found at the EDKII SecurityPkg landing page http://
tianocore.sourceforge.net/wiki/SecurityPkg. Also a useful slide presentation can be
found at:
http://www.uefi.org/sites/default/files/resources/1_-
_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf

http://en.wikipedia.org/wiki/Asset_(computer_security)
http://tianocore.sourceforge.net/wiki/SecurityPkg
http://tianocore.sourceforge.net/wiki/SecurityPkg
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 11

Security Overview—Intel® QuarkTM SoC X1000

Overviews of how EDKII Firmware, Bootloader and OS reference software maintain a
Chain of Trust are contained in chapters Chapter 7.0, “EDKII Security”, Chapter 8.0,
“Bootloader Security” and Chapter 9.0, “OS Security”. These chapters reference the
relevant programmer’s reference manuals where further details can be obtained.

2.4 Asset Signing
Some assets, notably software applications that are authenticated before being allowed
to run and associated key material, require post-processing as part of the build flow in
order to add their signature prior to use on an Intel® Quark SoC X1000 based platform.

Chapter 5.0, “SPI Flash Layout and Asset Signing Tools” describes the post-processing
reference tools provided by Intel to carry out this asset signing.

2.5 Implementation Note

Note: Whilst the Intel® Quark SoC X1000 ROM software run from reset requires the first
software application that is loaded, prepared and signed in accordance with the
requirements set out in this document, it is open to the customer to decide upon an
appropriate mechanism for authenticating later stage applications. Chapter 7.0, “EDKII
Security”, Chapter 8.0, “Bootloader Security”, and Chapter 9.0, “OS Security” of this
document contain high-level details and links to the relevant documents detailing the
implementation details used in reference Intel® Quark SoC X1000 based solutions
provided by Intel.

§ §

Intel® QuarkTM SoC X1000—Secure Boot Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
12 Order Number: 330234-002US

3.0 Secure Boot Overview

For secure embedded applications, it is necessary to verify the authenticity and
integrity of software executing on the platform prior to that software being loaded and
run. This mode of operation is known as Secure Boot.

The boot flow starts with the authentication of the first stage boot loader executed
during the boot sequence prior to it being executed and is repeated all the way through
the boot sequence. The authentication process is iterative – execution stage N
authenticates execution stage N+1 which in turn authenticates execution stage N+2
and so on.

To begin this process, it is necessary to provide a known and secure point from which
the iterative authentication process can begin (this is referred to in this document as
Stage 0). This is known as establishing a root of trust. The Intel® Quark SoC X1000
establishes a Hardware Root of Trust by executing software contained within an on-die
ROM from the point of reset. This software is responsible for authenticating a Stage 1
application and passing control to it.

A typical boot flow showing the chain of trust is provided in Figure 1.

Note: If Grub Bootloader shown in Figure 1 is resident in system flash, Quark ROM HW RoT is
used to authenticate the Bootloader. Iif Bootloader is external to system flash then UEFI
Secure Boot is used to authenticate the Bootloader.

Figure 1. Chain of Trust in the Boot Flow

HW
RoT

(Stage 0)

EDKII
Firmware
(Stage 1, ...)

GRUB
Bootloader

Linux
Kernel

Reset
Vector

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 13

Secure Boot Overview—Intel® QuarkTM SoC X1000

The rest of this section applies to Quark specific HW RoT Secure Boot mechanism. It is
beyond the scope of this document to explain industry standard UEFI Secure Boot, the
reader is referred to the EDKII SecurityPkg landing page http://
tianocore.sourceforge.net/wiki/SecurityPkg and the overview slide presentation http://
www.uefi.org/sites/default/files/resources/1_-
_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf.

Note: Only Quark ROM HW RoT which protects flash resident boot loaders can stop a physical
attack (using flash programmer) from booting an unsigned boot loader. UEFI Secure
Boot protection of external media boot loaders is dependent on the unsigned UEFI
NVRAM area in system flash. TPM trusted boot maybe used after the fact to detect a
physical attack on the UEFI NVRAM area but the unsigned boot loader will still boot.

3.1 Asset Signing and Authentication Process
An industry standard mechanism is used for the digital signing of assets for Intel®
QuarkTM SoC X1000 platforms. There are two main steps used each in the signing and
authentication processes. For both processes, the first step involves calculating a
unique hash value of the asset using the SHA 256 algorithm. For the signing process,
the second step involves creating a signature of that hash value using RSA encryption.
For authentication, the second step involves RSA decryption of the signature for
validation by comparison with the calculated hash value. The RSA algorithm used is
RSA 2048 with the PKCS1-PSS padding scheme.

3.1.1 Signing an Asset

In the first stage of signing an asset, a SHA-256 hash value is calculated on the asset.
An encrypted copy of this hash value is then created using a Private Key and the RSA
algorithm. This is referred to as the signature of the asset. The signature is then added
to the asset (see Chapter 5.0, “SPI Flash Layout and Asset Signing Tools” for Intel®
Quark SoC X1000).

3.1.2 Validating an Asset Signature

The integrity of the asset can be verified by again calculating a SHA-256 hash value of
the asset. The signature that was attached to the asset is decrypted using the Public
Key associated with the key used to create the signature. If the decrypted signature
matches the calculated asset hash value, the asset is valid.

Figure 2 shows the digital signing/verification mechanism for an asset.

http://tianocore.sourceforge.net/wiki/SecurityPkg
http://tianocore.sourceforge.net/wiki/SecurityPkg
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf

Intel® QuarkTM SoC X1000—Secure Boot Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
14 Order Number: 330234-002US

3.1.3 Additional Authentication Steps

As part of the packaging of an asset together with its signature, a header is created
describing such details as the size of the asset, the algorithms used to hash and sign
the asset and key sizes. The header also contains a mechanism to prevent roll-back to
valid assets that may not be loaded because of, for example, a security vulnerability.
This mechanism is called Security Version Numbering, details of which are described
later in Section 4.6, “Rollback Protection - Security Version Numbers” on page 23.

In addition to checking the signature of an asset, the authentication software checks
the contents of the header and does not allow an asset that does not match its
requirements to be loaded.

3.2 RSA Keys
The signing algorithm used for the Secure Boot flow is RSA, with a key size of 2048
bits. The RSA algorithm uses a Private/Public key pair for the encryption/decryption
processes. The private key is used to encrypt a signature and should be known only to
the entity creating the signature. The public key is used to decrypt the signature and
can be generally distributed and used. Because the public key is associated directly
with the (secret) private key, anyone decrypting a signature with the public key can be
confident that it was encrypted by the appropriate signing party if the correct signature
is decrypted. Management of the Private key is paramount, as only the appropriate
signing party should have access to this key.

Figure 2. Digital Signing/Validation

Digital VerificationDigital Signing

Asset
Data Hash Function

HASH
10110001010

1001

En
cr

yp
t w

ith
 R

SA

Pr
iva

te
 K

ey

Signature
10001110101

00110

Asset
Data

Combine

Signed
Asset

Signed
Asset

Image
Asset

Signature
10001110101

00110

Ha
sh

Fu

nc
tio

n

HASH
10110001010

1001

De
cr

yp
t w

ith

RS
A

Pu
bli

c K
ey

HASH
10110001010

1001
==

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 15

Secure Boot Overview—Intel® QuarkTM SoC X1000

3.3 Key Handling During Stage 0
The Hardware Root of Trust (HW RoT) on Intel® QuarkTM SoC X1000 is made up of two
components:

• The software executed from the on-die ROM.
• The public half of the first RSA key (stored on-die) used in the Boot flow validation

process.

The on-die key, referred to as the Device Key, is programmed by the factory at Intel. If
this key were to be used directly in the verification of Stage 1 applications, then either
Intel or Original Equipment Manufacturers would have to sign all Stage 1 applications
on behalf of developers, which is not a feasible situation.

As a result, the Secure Boot code executing in Stage 0 is broken into two stages:
1. The authentication of an RSA Public key stored in SPI Flash.
2. The use of this key to then validate the Stage 1 application.

This second key is referred to as the Stage 1 Key. The private half of the Stage 1 Key is
held and managed by the developer and they use this to sign all of their Stage 1
applications. The public half of this key is submitted to Intel for signing with the private
half of the Device Key Pair (held and managed by Intel).

Note: For convenience during development, the software release includes a default Private
Key key.pem file. During development, all assets are signed with the default key that is
stored in the config directory. The default key cannot be used in a production system;
it is not secure due to its inclusion in the release package. Contact your Intel
representative for details.

Figure 3 illustrates the usage of both the Device Key and Stage 1 keys.

Figure 3. Stage 0 Key Usage

Stage 1 Key Pair

Public
Key

Private
Key

Device Key Pair

Public
Key

Private
Key

Is Used to Authenticate

Is Used to Generate

Is Signed With

Is Used to Authenticate Is Used to Generate

Signed Stage 1
Application

Signed Stage 1
Public Key

Intel® QuarkTM SoC X1000—Secure Boot Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
16 Order Number: 330234-002US

3.4 Storage of Stage 1 Public Key and Stage 1 Applications
Since the Stage 0 software operates from on-die ROM, it must know how to find the
Signed Stage 1 Public Key and Signed Stage 1 Applications in order to authenticate and
launch a Stage 1 Application.

The Stage 1 Public Key is stored in a structure known as the Key Module and is stored
at a fixed location in the Legacy SPI Flash device. It is possible to have multiple Stage 1
applications (for redundancy, fault handling, and so on), all of which are also stored in
the Legacy SPI Flash device and a mechanism for locating each of those images is
described below.

3.4.1 Key Module

The Key Module contains a signed copy of the public half of the Stage 1 Key to be used
during the authentication of Stage 1 applications. The location of the Key Module in
Legacy SPI Flash is fixed by the Stage 0 code implementation. Further details of where
to store it in SPI Flash and the usage of supplied tools to place the module in a Flash
image are contained in Chapter 5.0, “SPI Flash Layout and Asset Signing Tools” for
Intel® Quark SoC X1000.

Note: If a Secure Intel® Quark SoC X1000 attempts to boot from an SPI Flash device that
does not contain a valid Key Module at the required location, the system fails to boot
and instead enters an infinite idle loop.

3.4.2 Stage 1 Applications

3.4.2.1 Master Flash Header

The Intel® Quark SoC X1000 supports the ability to have multiple Stage 1 Applications
on an SPI Flash device (for redundancy, recovery, and so on) and does not require
those applications to be located at fixed addresses in the SPI Flash device. This affords
flexibility to developers but in turn, requires a mechanism for communicating the
location of the applications to the Stage 0 code. This is done using a structure known as
a Master Flash Header, which maps out the content of the SPI Flash device. The Master
Flash Header contains information on many types of application and data stores within
the Flash device, not just Stage 1 applications, but is used by the Stage 0 code
specifically to locate Signed Stage 1 applications.

3.4.2.2 Stage 1 Applications

Since there can be multiple Stage 1 applications stored in the Flash device, a priority
scheme must be applied to determine which one should be executed. The Stage 0 code
follows the list of assets in the Master Flash Header, attempting to authenticate each
Stage 1 application as they are found. As soon as the Stage 0 code succeeds in
authenticating a Stage 1 application, control passes to that application and the
remaining Stage 1 applications are not inspected.

The location of the Master Flash Header in Legacy SPI Flash is fixed by the Stage 0 code
implementation. Further details of the structure of the header, how to generate a
header, where to store it in SPI Flash and the usage of reference tools to place the
module and all Stage 1 applications in a Flash image are contained in Chapter 5.0, “SPI
Flash Layout and Asset Signing Tools” for Intel® Quark SoC X1000.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 17

Secure Boot Overview—Intel® QuarkTM SoC X1000

3.4.2.3 Fixed Location Recovery Application

Should all available Stage 1 applications fail to be authenticated, or indeed should the
Master Flash Header get corrupted in some way such that it is not possible for the
Stage 0 code to locate the applications, the Intel® Quark SoC X1000 provides a
mechanism whereby a developer can place a Stage 1 application at a known fixed
address. The Stage 0 code, if it fails to authenticate any Stage 1 application via the
Master Flash Header will finally attempt to locate and validate a Stage 1 application at a
fixed location. This is referred to as the Fixed Location Recovery Application and while it
could contain any Stage 1 application, it is anticipated that this application is typically
used as a final effort to get the system into a Recovery Mode.

The location of this application in Legacy SPI Flash is fixed by the Stage 0 code
implementation. Further details of where to store it in SPI Flash and the usage of
supplied tools to place the signed application in a Flash image are contained in
Chapter 5.0, “SPI Flash Layout and Asset Signing Tools” for Intel® Quark SoC X1000.

Note: If a secure Intel® Quark SoC X1000 cannot authenticate any Stage 1 applications,
including the Fixed Location Recovery Application, the system fails to boot and instead
enters an infinite idle loop.

3.5 Stage 1 Execution Environment
The Intel® Quark SoC X1000 contains 512 KBytes of on-die embedded SRAM, referred
to as eSRAM. This SRAM can be used for code and/or data storage and is available from
system startup.

As part of the boot flow, the Stage 0 software configures the eSRAM, transfers the
Stage 1 Application from SPI Flash to the eSRAM, authenticates it and then passes
control to that application, running from eSRAM.

The configuration of eSRAM and the addresses used within the eSRAM for storage and
execution of the Stage 1 Application are fixed by the Stage 0 code implementation.

This means that there is a requirement for Stage 1 Applications to be built to be run
from a specific address range in the memory map. This requirement feeds into the
configuration of build tools used to generate Stage 1 applications. Further details of the
relevant requirements and settings are described in the Intel® Quark SoC X1000 UEFI
Firmware Writer’s Guide.

3.6 Memory Protection
The Intel® Quark SoC X1000 contains a mechanism for protecting memory from
unwanted access by system agents (for example, some I/O peripheral attempting to
write to a portion of memory that contains execution code and that should only be
accessible to the core). This mechanism is referred to as Isolated Memory Regions
(IMRs). Eight Isolated Memory Regions are supported and are used as part of the
Secure Boot flow to ensure software that has been authenticated cannot be modified
after it has been authenticated by any system agent other than the core. Further
details of IMR settings and usage during Secure Boot are contained in Chapter 4.0,
“Asset Protection.”

Intel® QuarkTM SoC X1000—Secure Boot Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
18 Order Number: 330234-002US

3.7 Stage 0 Software Execution Overview/Flow
The following is a high-level overview of the flow of execution of the Stage 0 code:
1. The system is taken out of reset.
2. Embedded SRAM is configured.
3. An Isolated Memory Region is configured to protect the eSRAM address range.
4. The Key Module is copied to eSRAM, authenticated and the Stage 1 Public Key

extracted.
a. If authentication fails, the system enters an infinite idle loop.

5. A check is done to see if a Master Flash Header exists.
a. If it does exist, flow continues from step 6.
b. If it does not exist, flow continues from step 9.

6. The Master Flash Header is searched for the first Signed Stage 1 application.
7. The Signed Stage 1 application is copied to eSRAM.
8. An attempt is made to authenticate the Stage 1 application.

a. If authentication is successful, execution is passed to that application and Stage
0 is complete.

b. If authentication fails, the Master Flash Header is searched for the next Signed
Stage 1 application. If an application is found, flow continues from step 7.
If no application is found, flow continues from step 9.

9. The Fixed Location Recovery Application is copied to eSRAM.
10. An attempt is made to authenticate the application.

a. If authentication is successful, execution is passed to that application and Stage
0 is complete.

b. If authentication fails, the system enters an infinite idle loop.

Further details of the Stage 0 software execution are contained in Chapter 6.0,
“Stage 0 (Secure Boot) Execution Details”.

§ §

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 19

Asset Protection—Intel® QuarkTM SoC X1000

4.0 Asset Protection

As mentioned in the overview, in information security, computer security and network
security is an Asset is any data, device, or other component of the environment that
supports information-related activities. Assets generally include hardware (for
example, servers and switches), software (for example, mission-critical applications
and support systems) and confidential information.

This chapter provides an overview of the mechanisms provided by the Intel® Quark
SoC X1000 to protect assets in software applications throughout the boot flow as well
as describing the specific steps taken by Stage 0 (ROM) software to protect Stage 1
application software.

4.1 Reset Handling
The design of the Intel® Quark SoC X1000 ensures that upon receipt of resets and S3
exit triggers, the ROM Based Stage 0 Software is run in all cases.

4.2 ROM Based Software - Hardware Root of Trust
The root of trust in the Intel® Quark SoC X1000 is a hardware root of trust by virtue of
the fact that the first code executed after reset is ROM based. This software (using the
hardware-based Device Key as the first part of the flow) authenticates the next piece of
software before allowing it to run. Details of this ROM-based software are described in
Chapter 3.0, “Secure Boot Overview” and Chapter 6.0, “Stage 0 (Secure Boot)
Execution Details”.

4.3 Hardware Based Authentication Key
Software applications are signed and authenticated using RSA public/private key pairs.
The very first key used in the boot flow is stored in the Intel® Quark SoC X1000
hardware. Details of this key and its use are described in Chapter 3.0, “Secure Boot
Overview” and Chapter 6.0, “Stage 0 (Secure Boot) Execution Details”.

4.4 Cache Settings
During early reset handling, the Intel® Quark Core cache is invalidated and disabled. To
minimize boot time, the regions of memory covering the Secure Boot ROM and eSRAM
(as configured by the Stage 0 software) are cached. It is the responsibility of Stage 1
applications to reconfigure these cache settings as appropriate to the particular
application.

4.5 Isolated Memory Regions (IMR)
The Intel® Quark SoC X1000 supports a mechanism to protect memory regions from
unwarranted access by agents in the system that should not have access to that
memory. For example, resource tables used to convey information from BIOS to an OS

Intel® QuarkTM SoC X1000—Asset Protection

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
20 Order Number: 330234-002US

should not be capable of being directly modified by the hardware of a peripheral device
(for example, by DMA transfer). This protection mechanism is referred to as Isolated
Memory Regions.

The Intel® Quark SoC X1000 supports eight general purpose IMRs. These IMRs are
configured during the boot flow and are used to protect both software applications that
are being authenticated (to ensure software that is authenticated is unchanged, for
example, by a peripheral changing content after the validation, when it is run). IMRs
are configured to indicate which system agents (the CPU, peripheral devices, Remote
Management Unit and so on) are allowed to read from the memory region or write to
that memory region. The memory region is defined by a start and end address pair and
has a 1 KB resolution.

In a configuration where two IMRs overlap, only agents that are enabled by both IMRs
are allowed access to the overlapping address range.

Figure 4 illustrates the behavior of three IMRs showing regions of memory with no IMR
restrictions, non-overlapping IMR (IMR C) and overlapping IMRs (A & B).

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 21

Asset Protection—Intel® QuarkTM SoC X1000

Figure 4. Example IMR Zone Accesses

Intel® QuarkTM SoC X1000—Asset Protection

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
22 Order Number: 330234-002US

4.5.1 IMR Usage During Boot Flow

Software applications and critical data used during the boot flow fall into two
categories, data that is protected for a relevant portion of the boot flow and data that
must be protected during the life of the system.

Table 3. IMR Usage During Boot Flow

IMR ROM Stage 1 Stage 2 Grub Linux* Run-time

0 -

Compressed
EDKII stage 2
Uncompressed
EDKII stage 2
Boot time services
Grub Image
Stack/Data area
(EDKII stage 1
post memory
initialization)

Compressed
EDKII stage 2
Uncompressed
EDKII stage 2
Boot time services
Grub Image
Stack/Data area

Compressed
EDKII stage 2
Uncompressed
EDKII stage 2
Boot time services
Grub Image
Stack/Data area

-

1 - - - Boot Params -

2 -

Shadowed Quark
SoC Remote
Management Unit
main execution
binary (EDKII
stage 1 post
memory
initialization)

- -

Uncompressed
Kernel
Read only &
initialized data
section

3 -

Low SMRAM
(EDKII stage 1
post memory
initialization)

- - -

4 -

eSRAM protection
during late stage
1 and early stage
2 phases
(EDKII stage 1
post memory
initialization)

- - -

5 -

AP Startup vector
(EDKII stage 1
post memory
initialization)

Legacy S3
memory ; AP
Startup vector

Legacy S3
memory ; AP
Startup vector

Legacy S3
memory ; AP
Startup vector

6 -

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory. (EDKII
stage 1 post
memory
initialization)

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

7

eSRAM
protection during
ROM phase
(EDKII stage 1)

eSRAM protection
during early stage
1 phase
(EDKII stage 1
pre memory
initialization)

-
Compressed
Kernel
OS Image

-

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 23

Asset Protection—Intel® QuarkTM SoC X1000

4.5.2 IMR Violation Behavior

In addition to configuring the settings for individual Isolated Memory Regions, the IMR
hardware must be configured to enable the reporting of IMR Violations (by setting the
EnableIMRInt bit in the BIMRVCTL register). Setting this bit results in the Intel®
Quark SoC X1000 being reset upon detection of an IMR violation. Stage 0 ROM
software sets this configuration bit and it is recommended that later stage software
does not change this setting.

4.5.3 SMRAM and HMBOUND – Special IMRs

As per typical Intel Architecture design, the Intel® Quark SoC X1000 defines a register
named HMBOUND that enables firmware to define the amount of DRAM currently on the
system through the specification of the top of that memory region. Any attempt by an
agent in the system to access a memory address above the value set by HMBOUND
results in an HMBOUND-IMR Violation. System behavior in the event of HMBOUND
violations shall be identical to standard IMR violations.

Also per typical Intel Architecture design, the Intel® Quark SoC X1000 defines an
operating mode called System Management Mode (SMM) with which is associated an
area of memory that is only available for use when in SMM and is called SMRAM. Any
attempt by a system agent to access this memory or any attempt by the Core CPU to
access this memory when not in SMM results in an SMRAM-IMR Violation. System
behavior in the event of SMRAM violations shall be identical to standard IMR violations.

Further details on configuring HMBOUND can be found in the Intel® Quark SoC X1000
Datasheet.

Further details on SMM and configuring SMRAM can be found in the Intel® Quark SoC
X1000 UEFI Firmware Writer’s Guide.

4.5.4 IMR Locking

As mentioned in Section 4.5.1, “IMR Usage During Boot Flow” on page 22, IMRs can be
used for a limited period of time (Temporary IMR) or for the life of a system
(Permanent IMR). Once a Permanent IMR has been configured, it should be locked to
ensure protection is maintained for the life of the system.

Temporary IMRs should not be locked during usage to allow the IMR to be reused.
However, to protect against potential attacks whereby an IMR is used to block
legitimate access to memory, before the OS boot software hands off to the OS runtime,
all unused IMRs must be disabled and locked.

Further details on IMRs, their configuration and a description and list of system agents
that can be impacted by IMR setup can be found in the Intel® Quark SoC X1000
Datasheet.

4.6 Rollback Protection - Security Version Numbers
During the life of a product, it is possible for a product vendor, when releasing a new
software version, to want to prevent systems rolling back to a previous release. For
example, when a security vulnerability is identified in the earlier version. The earlier
version of software is signed with valid keys and passes all of the validation tests on the
headers associated with that software. Therefore, a mechanism is required to indicate
to systems that they should not run “older” versions of software. This mechanism is
referred to as Security Version Numbers (SVNs).

Intel® QuarkTM SoC X1000—Asset Protection

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
24 Order Number: 330234-002US

The Intel® Quark SoC X1000 supports the concept of having an array of Security
Version Numbers, with each number being associated with a specific asset. The Secure
Boot ROM Code claims the first three SVNs, used for:

• SVN0: Key Module
• SVN1: Stage 1 Software Applications
• SVN2: Fixed Location Recovery Application

SVN15 the last SVN is claimed by firmware and is used for firmware update and
recovery assets. The firmware update and recovery assets need to be signed so that
they can be authenticated by the Quark ROM HW RoT.

4.6.1 SVN Storage

The SVN Array is stored at a fixed location in the Legacy SPI Flash Device, physical
address FFFD0000h in the Intel® Quark SoC X1000 memory map. This allows for a
maximum of 32 KB of storage space up to the next fixed location in the memory map
(which is the Key Module).

Note: The address range selected for the SVN Array should fall within the Protected Boot
Block area of the SPI Flash Device used. It is recommended that the Protected Boot
Block mechanism be enabled by Bootloader software to ensure that this protection is
applied to the SVN Array.

4.6.2 SVN Usage

Each SVN is a 32-bit integer. When validating a signed asset, the validation software
compares the SVN stored at the relevant offset in the SVN Array with the SVN stored in
the Secure Boot Header of the asset being authenticated. If the SVNs match or the SVN
attached to the asset is higher than that in the array, the asset validation can proceed.
If the asset SVN is lower than SVN from the SVN array, validation is deemed to have
failed.

Note: Updating the SVN array is the responsibility of UEFI firmware.

4.7 Interrupts
As part of the Secure Boot ROM software execution, interrupts are disabled during the
validation of Stage 1 applications. It is recommended during each phase of the boot
flow that only interrupts that are required to support the boot flow are enabled and that
they remain enabled only for as long as they are required.

4.8 SPI Flash Device - Protected Boot Block
SPI Flash devices contain regions that support the concept of Boot Block Protection,
whereby the device can be configured not to allow any erase or write attempts until a
reset occurs. This protection can mitigate both against accidental attempts to update
the device as well as malicious attempts to change contents.

The specific mechanism to enable the protection, as well as the number and size of
blocks, is flash device dependent and outside the scope of this document.

It is recommended that:
• Boot Block Protection be enabled by Stage 1 Bootloader applications.
• At a minimum, the following resources be contained within protected boot blocks:

— Key Module

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 25

Asset Protection—Intel® QuarkTM SoC X1000

— SVA Area
— Fixed Location Recovery Application

4.9 SPI Flash - Write Protect Mode
Intel architecture devices support a mechanism that allows access to SPI Flash devices
attached to the legacy port to be put into Write Protect Mode. In this mode, attempts to
erase or write to any sector of the Flash device are disabled by hardware. This
protection can mitigate both against mistaken attempts to update the device, as well as
malicious attempts to change contents. The protection is enabled by UEFI Firmware
once it determines that it has completed any updates it may make to the Flash device.

Details of the steps to achieve this protection are contained in Chapter 8.0, “Bootloader
Security”.

4.10 4.10 Firmware Update and Firmware Recovery Assets
On Secure SKU hardware firmware update and recovery assets are required to be
authenticated by Quark ROM HW RoT. This applies to systems just using Quark ROM
HW RoT Secure Boot and systems using a combination of Quark ROM HW RoT Secure
Boot and UEFI Secure Boot. Given this requirement firmware update and recovery
assets must be signed (see Chapter 5). The spi flash tools (see Quark BSP guide)
create a spi flash binary image for manufacture as well as signed firmware update and
firmware recovery assets.

UEFI Secure boot does not specify how firmware update or recovery assets should be
protected for a UEFI Secure Boot enabled systems; the protection of these assets is the
responsibility platform owner. On Quark Embedded systems the Quark ROM HW RoT
provides this protection. See "Required for Secure Firmware Updates" at link:

http://www.uefi.org/sites/default/files/resources/1_-
_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf

§ §

http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf
http://www.uefi.org/sites/default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf

Intel® QuarkTM SoC X1000—SPI Flash Layout and Asset Signing Tools

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
26 Order Number: 330234-002US

5.0 SPI Flash Layout and Asset Signing Tools

Intel® Quark SoC based platforms contain legacy SPI flash which is used to boot the
platform. In Non-Secure Boot mode, SPI flash contains reset code and boot images. In
Secure Boot mode, SPI flash contains signed boot images.

The process of integrating multiple modules together into an Quark-compatible SPI
Flash image can be managed using the SPI Flash Layout tools.

The Asset Signing Tool provides a method for the SPI Flash Layout tool to sign modules.
It can also be used as a standalone tool to sign modules individually.

The SPI Flash layout and Asset Signing tools provide a simple and flexible method to
create a Secure Boot and Non-Secure Boot Quark-compatible SPI Flash image.

5.1 SPI Flash Layout Tool

5.1.1 Overview

The SPI Flash Layout tool enables a user to create a custom flash image with the ability
to:

• Select modules and state the address at which they will reside in the SPI flash
image.

• Specify if a asset(s) is to be signed by the asset signing tool.
• Specify if the asset(s) is to be wrapped with a firmware volume.

Note: The SPI Flash device occupies the very top of the address space (4GB) on each Intel®
QuarkTM SoC X1000 based platform. This means that all addresses used in the
layout.conf are in the range <top of physical address range - size of flash> to <top of
physical address range>. For example, for an 8Mb SPI part, the valid address range
would be 0xFF800000 - 0xFFFFFFFF. The range of valid addresses will change
depending on the size of the SPI part being used.

5.1.2 Pre-Requisites

Before using the SPI Flash Layout tool, the steps in the Intel® Quark SoC X1000 Board
Support Package (BSP) Build and Software User Guide must have been completed. See
the section “Creating a flash image” for details.

5.1.3 Image Generation

Once a valid layout.conf has been created the SPI Flash Tools can be used to generate
a binary which will be laid out in accordance with the supplied layout.conf file. Once the
binary is created the Platform Data Tool must be used to insert a valid platform data
section into the binary. The process of using both of these tools is outlined in detail in
the Build and Software User Guide document.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 27

SPI Flash Layout and Asset Signing Tools—Intel® QuarkTM SoC X1000

Note: If the user wishes to change the layout.conf file and regenerate an image, they must
first run a make clean before running make again.

5.1.4 The Layout Configuration File

The user designs the flash layout using a layout.conf configuration file, which
contains the following descriptor blocks:

• Main Descriptor Block
• Standard Asset Descriptor Block
• Master Flash Header Asset Descriptor Block
• Debug Dump Asset Descriptor Block

5.1.4.1 Main Descriptor Block

This block of the layout.conf file defines the size of the SPI flash image (Flash.bin).

Example 1. Main Descriptor Block

5.1.4.1.1 Size

Size of the SPI flash in bytes. Only values of 4M or 8M are supported.

5.1.4.1.2 Type

Type field global indicates that this descriptor block definition applies to the entire
layout.conf file.

5.1.4.2 Standard Asset Descriptor Block

The following is an example of a standard layout descriptor block. Each field is
described below the example.

Example 2. Standard Asset Descriptor Block

5.1.4.2.1 Asset Name

The first field in the [boot_stage1_image1] example is the asset descriptor name. This
is a text description of the asset descriptor block and is surrounded by square brackets.
This name is unique and its sole purpose is user readability and organization of the
layout.conf file.

[main]

size=8388608

type=global

[boot_stage1_image1]

address=0xffec0000

item_file=modules/boot_stage1.fv

fvwrap=no

guid=none

sign=yes

boot_index=0

type=mfh.host_fw_stage1_signed

svn_index=1

Intel® QuarkTM SoC X1000—SPI Flash Layout and Asset Signing Tools

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
28 Order Number: 330234-002US

5.1.4.2.2 Address

The address field takes a hexadecimal value that specifies where the asset file is
placed in the generated SPI Flash image.

5.1.4.2.3 Fvwrap

The fvwrap field specifies if an asset is to be wrapped in a Firmware Volume. This field
has two option values ‘yes’ or ‘no’.

The SPI FLash Layout tool uses the Firmware Volume Tools from the EDK2 Basetools
package to provide firmware volume wrapping. For information on how to achieve this
manually, refer to the Using FV Tools section in Appendix C, “Firmware Volume
Overview”.

An overview of the Firmware Volume format can be found in Appendix C, “Firmware
Volume Overview”.

5.1.4.2.4 Guid

The guid field specifies the firmware volume name when the fvwrap field value is set to
‘yes’.

A guid is a Globally Unique Identifier. A 128-bit value used to name an entity uniquely.
In this case, it is used as the FV Name.

The guid field value is specified in the following format:
‘XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’ or ‘none’

5.1.4.2.5 Sign

The sign field specifies if an asset is to be signed or not. This field has two option
values ‘yes’ or ‘no’.

Note: When the layout tool finds an asset that needs to be signed, it calls the Asset Signing
Toolset to sign the asset before adding it to the SPI Flash image. An in-depth
description of the Asset Signing Toolset can be found in Section 5.2.

5.1.4.2.6 Boot_Index

The boot_index specifies the Master Flash Header boot index value for a bootable
asset. This is an integer value. For more information on this value, refer to the Boot
Index (0..n) section in Appendix A, “Master Flash Header Data Structure”.

If an asset does not require a boot index, its value can be set to ‘none’.

5.1.4.2.7 Type

The type field, indicates to the SPI Flash Layout tool the type of asset that is being
described. Upon Image generation the asset is then tagged in the MFH with this type
value. MFH types can be found in Table 9 in Appendix A, “Master Flash Header Data
Structure”. In the case of an asset that is not to be included in the MFH, any value can
be provided.

5.1.4.2.8 svn_index

The svn_index field has an integer value from 0-15 or ‘none’.

A Security Version Number must be supplied for a signed asset, for more information
on Security Version Numbers, refer to Security Version Number Indexing in
Appendix B, “Secure Boot Header Data Structures”.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 29

SPI Flash Layout and Asset Signing Tools—Intel® QuarkTM SoC X1000

Note: The SVN Index must align to the correct MFH type. Refer to Table 10 in Appendix A,
“Master Flash Header Data Structure” for SVN Index allocation.

Note: A SVN area module and a Key Module asset must be present in the SPI Flash image for
Secure Boot to work. The SVN module must be placed at address 0xfffd0000. The Key
Module must be placed at address 0xfffd8000 for an 8 MB part.

5.1.4.3 Master Flash Header Asset Descriptor Block

The Master Flash Header serves as a table of contents for SPI flash. It contains the
location and size of each element in the flash. A full in-depth description of the Master
Flash Header can be found in Appendix A, “Master Flash Header Data Structure”.

The following is an example of a Master Flash Header asset descriptor block. Each field
is described following the example.

Note: To include a Master Flash Header in the SPI Flash image, first a MFH block must be
included in the layout.conf file.

Example 3. Master Flash Header Asset Descriptor Block

5.1.4.3.1 Version

The version field value is a 32 bit hexadecimal number.

5.1.4.3.2 Flags

The flags field value is a 32 bit hexadecimal number that can be used in the Master
Flash Header as flags. Currently, this value is reserved and unused.

5.1.4.3.3 Address

The address field takes a hexadecimal value that specifies where the Master Flash
Header is placed in the generated SPI Flash image.

Note: The Master Flash header must be placed at address 0xfff08000 for an 8 MB part.

5.1.4.3.4 Type

The type field indicates to the SPI Flash Layout tool what type of asset is being
specified. In this case, this value must be ‘mfh’, informing the tool that we want an MFH
to be created and placed at the provided address.

Note: To include an asset in the Master Flash Header, each asset descriptor block must
include an MFH type value.

5.1.4.4 Debug Dump Asset Descriptor Block

This non-standard asset descriptor block is used to dump or place the current
layout.conf file into the generated SPI Flash image. This is a useful debug feature and
may be extended in the future.

[MFH]

version=0x1

flags=0x0

address=0x708000

type=mfh

Intel® QuarkTM SoC X1000—SPI Flash Layout and Asset Signing Tools

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
30 Order Number: 330234-002US

The following is an example of a Layout Conf Dump Asset descriptor block. Each field is
described following the example.

Example 4. Debug Dump Asset Descriptor Block

5.1.4.4.1 Address

The address field takes a hexadecimal value that specifies where the layout.conf file
dump is placed in the generated SPI Flash image.

5.1.4.4.2 Type

The type field indicates to the SPI Flash Layout tool what type of asset is being
specified. In this case the type value of mfh.build_information is required.

5.1.4.4.3 Meta

The meta field must contain the value layout. No other values are supported.

5.2 Asset Signing Toolset

5.2.1 Overview

The Asset Signing Toolset enables a user to generate the Secure Boot Header for an
asset and can be prepended to an asset or saved as a stand-alone file.

For information on the Secure Boot Header, refer to Appendix B, “Secure Boot Header
Data Structures”.

The Asset Signing Toolset performs the following functions:
• Prepends the Security Header (64 Bytes) portion of the Secure Boot Header.
• Applies a padding from the Security Header to a user specified offset.
• Generates a SHA256 hash of the user provided binary.
• The RSA 2048 signature is generated using the SHA256 hash and the user provided

Private Key.
Note: For convenience during development, the software release includes a

default Private Key key.pem file. During development, all assets are signed
with the default key that is stored in the config directory. The default key
cannot be used in a production system; it is not secure due to its inclusion
in the release package. Contact your Intel representative for details.

• The RSA Public Key and the RSA Signature portion of the Secure Boot Header is
then added to the resulting signed binary.

The toolset provides two ways to sign files:
1. Prefixing the file with the security header. This produces a .signed file which is a

combination of the header and the original file.
2. Producing a “standalone” signature file, .csbh file, next to the original file.

[LAYOUT.CONF_DUMP]

address=0xffcff000

type=mfh.build_information

meta=layout

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 31

SPI Flash Layout and Asset Signing Tools—Intel® QuarkTM SoC X1000

In the current release:
• assets in the SPI flash support .signed files only.
• assets on SD/USB support .csbh files only.

5.2.2 Pre-Requisites

Before using the Asset Signing Toolset, the steps in the Intel® Quark SoC X1000 Board
Support Package (BSP) Build and Software User Guide, in the section “Signing Files”
must have been completed.

5.2.3 Using the Asset Signing Toolset

The asset signing toolset has the following command line options.

5.2.3.1 -i <input file>

The binary file to be signed.

5.2.3.2 -o <output file> (optional)

The output file. If no filename is provided, the tool will use the input filename, including
the path, and append .signed (default) or .csbh (if -c option is used).

5.2.3.3 -b <body offset in hexadecimal> (optional)

This is the hexadecimal offset between the Security Header and the asset body. A
minimum value of 588 bytes (0x24C) is required.

Warning: The Body Offset for Stage1 modules must match the expected Stage1 header size. This
is to ensure the Stage1 entry point builds to the correct address.

5.2.3.4 -s <svn>

The Security Version Number (SVN) is a field used to prevent roll-back of software
images to previous versions that may have a security vulnerability. This number is
compared to a stored value on the platform and the image will only load if the value is
equal to or greater than that stored on the platform.

5.2.3.5 -x <svn index>

You must select the appropriate SVN index for your asset based on the allocation
described in Section B.3, “Security Version Number Indexing” on page 53.

5.2.3.6 -k <key file>

The Asset Signing tool uses an industry standard PEM file to specify the RSA Private
Key that is required by the RSA 2048 signing process.

Note: For convenience during development, the software release includes a default Private
Key key.pem file. During development, all assets are signed with the default key that is
stored in the config directory. The default key cannot be used in a production system;
it is not secure due to its inclusion in the release package. Contact your Intel
representative for details.

Intel® QuarkTM SoC X1000—SPI Flash Layout and Asset Signing Tools

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
32 Order Number: 330234-002US

Intel does not provide the key file for a production system. You must create the
appropriate RSA 2048 key pair for the boot stage that the asset belongs to and provide
the private half here. Key creation is a one-time process. See Chapter 3.0, “Secure
Boot Overview” for details on the secure boot flow and the different keys required.

5.2.3.7 -c (optional)

Note: In the current release, assets on SD/USB support standalone .csbh files only.

Use this option to create a standalone security header that does not contain the input
binary file.
If -c is not used, the tool creates a .signed file by default.

5.2.3.8 -l (optional)

The tool reads the input file into memory to create the signature and creates the
header (including the padding) in memory. To prevent unexpected behavior, the size of
the output file has been limited to 1 GB.

This option disables the output file size check.

Example 5. Signing Tool Usage

§ §

./sign -i component1.bin -b 0x400 -s 0x01 -x 0x00 -k key.pem

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 33

Stage 0 (Secure Boot) Execution Details—Intel® QuarkTM SoC X1000

6.0 Stage 0 (Secure Boot) Execution Details

This chapter provides a more detailed step-by-step description of the flow of execution
carried out by Stage 0 ROM code.

6.1 High Level Flow

6.1.1 System Initialization

1. System comes out of reset in 16-bit mode
2. Invalidate Cache (wbinvd)
3. Transition to Flat 32-Bit Protected mode
4. Disable cache
5. Disable NMI
6. Disable SMI
7. Read NON-STICKY WRITE-ONCE register.

a. If FORCE-CR bit is set, issue CF9 warm reset.
8. Read STICKY WRITE-ONCE register.

a. If FORCE-WR bit is set, issue CF9 cold reset.
9. Read HMBOUND register.

a. If Lock bit set, write 1 to HMBOUND_LOCK bit of the STICKY READ-WRITE DEBUG
register and issue CF9 warm reset.

10. Set HMBOUND register HOST IO BOUNDARY setting to equate to address 0x80080000.
11. Enable IMR Violation Reporting.
12. Set ESRAMPGCTRL_BLOCK register to configure all 512K eSRAM in block mode to

base address 0x80000000.
13. Test the ESRAMPGCTRL_BLOCK register to confirm that the setting was successful.

a. If the BLOCK_ENABLE_PG bit is clear, write 1 to ESRAM_LOCK bit of the STICKY
READ-WRITE DEBUG register and issue CF9 warm reset.

14. Set the Stack Pointer to the top of eSRAM.
Note: The space reserved for stack usage at this point is the top 64K of eSRAM.

15. Enable cache mode 6 for ROM address range (128K starting at 0xFFFE0000).
16. Enable cache mode 6 for sSRAM address range (512K starting at 0x80000000).
17. Write a StackSentinel flag into the stack space, 8K from the base of the stack

space. (This sentinel is checked before transfer of execution into a Stage 1
application.)
Note: The remaining 8K of the space reserved for stack usage is reserved for

Crypto Library and Debug usage.
18. Initialize Crypto Library/Debug memory.

Intel® QuarkTM SoC X1000—Stage 0 (Secure Boot) Execution Details

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
34 Order Number: 330234-002US

19. Enable SPI Flash to Main Memory DMA.

6.1.2 Key Module Authentication

20. DMA Copy the Key Module from SPI Flash to eSRAM.
21. Validate the Key Module using the Authenticate Key Module function.

a. If the Key Module fails to validate, go to step 36.

6.1.3 Master Flash Header Processing

22. Test if a Master Flash Header:Identifier is located at the relevant address in the SPI
Flash.
a. If the Identifier is not at this location, go to step 29.

23. Check Master Flash Header:BootPriorityListCount.
a. If Count > Maximum Count Allowed go to step 29.

Note: The defined maximum of Boot Priority List items is 24, and we check that this value is
valid. However, in order to speed up the boot process the Intel® Quark SoC X1000 will
only process the first four items in the Boot Priority List. This can be seen in step 27.

24. Check the FlashItem pointed to by the first entry in the BootPriorityList.
a. If the Item Type is not Host Firmware Stage 1 Signed, go to step 27.

25. DMA Copy the Flash Item from the SPI Flash to eSRAM.
26. Validate the Flash Item using the Authenticate Module function.

a. If the Flash Item passes validation, go to step 31.
27. Increment the count of the Flash Items tested.

a. If the count >= 4 go to step 29.
28. Check the next FlashItem in the BootPriorityList.

a. If the Item Type is Host Firmware Stage 1 Signed, go to step 25.
b. If the Item Type is not Host Firmware Stage 1 Signed, go to step 27.

6.1.4 Fixed Location Recovery Application Validation

29. DMA Copy the Fixed Location Recovery Application from SPI Flash to eSRAM.
30. Validate the Fixed Location Recovery Application using the Authenticate Module

function.
a. If the Fixed Location Recovery Application passes validation, go to step 36.

6.1.5 Stage 1 Handover

31. Calculate the Entry Point into the authenticated module.
32. Check that the Entry Point falls inside the size of the Application as authenticated.

a. If the check fails, go to step 36.
33. Check the StackSentinel has the value programmed in step 17.

a. If the check fails, go to step 36.
34. Jump to the Entry Point of the authenticated application.
35. If execution returns from the application (which it should not), continue to step 36.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 35

Stage 0 (Secure Boot) Execution Details—Intel® QuarkTM SoC X1000

6.1.6 Handling of Failure to Validate any Application

36. Store a Fatal Error Code in the debug memory indicating the cause for failing to
validate an application.

37. Enter an infinite idle loop.

6.2 Support Functions
This section details support functions used by the Stage 0 ROM Code.

6.2.1 Authentication Functions

6.2.1.1 Authenticate Key Module

1. Test that the index of the key being authenticated is within bounds.
a. If the test fails, return from the function with a Fatal: Invalid Key Bank return

value.
2. Call the Authenticate Header function and check the return value.

a. If validation fails, return from the function with a Fatal: Key Module Validation
Fail return value.

3. Read in the Device Key hash value from the Intel® Quark SoC X1000 fuse bank.
4. Call the Generate SHA 256 function to generate a hash of the Key Modulus field of

the Secure Boot Header.
5. Compare the generated hash value with that read from the fuses.

a. If the test fails, return from function with a Fatal: Key Compare Fail return value.
6. Call the Generate SHA 256 Secure Module function to generate a hash of the Key

Module.
7. Call the Validate RSA 2048 Signature function passing in the generated hash and

module signature.
a. If the validation succeeds, return from the function with a No Error return value.
b. If the validation fails, return from the function with a Fatal: Key Module

Validation Fail return value.

6.2.1.2 Authenticate Module

1. Call the Authenticate Header function and check the return value.
a. If validation fails, return from the function with a False return value.

2. Compare the key in the header with the key being used for validation.
a. If the comparison fails, return from function with a False return value.

3. Call the Generate SHA 256 Secure Module function to generate a hash of the
Module.

4. Call the Validate RSA 2048 Signature function passing in the generated hash and
module signature.
a. If the validation succeeds, return from the function with a True return value.
b. If the validation fails, return from the function with a False return value.

Intel® QuarkTM SoC X1000—Stage 0 (Secure Boot) Execution Details

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
36 Order Number: 330234-002US

6.2.1.3 Authenticate Header

Note: For each of the steps below, if the test fails, the function returns a False value. This will
not be called out for each step.
1. Check that the header Identifier is the correct value (05F435348h).
2. Check that the header Version is the correct value (000000001h).
3. Check that the Security Version Index is within bounds (<16).
4. Check that the Security Version Index matches the type of module being

authenticated, that is:
a. Key Module requires Index 0
b. Stage 1 Application requires Index 1
c. Fixed Address Recovery Application requires Index 2

5. Check that the header Security Version Number is greater than or equal to the
Intel® Quark SoC X1000 Security Version Number stored at the Security Version
Index.

6. Check that the header Hash Algorithm is Hash 256.
7. Check that the header Crypto Algorithm is RSA 2048.
8. Check that the header Signature Size is 256 bytes.

6.2.2 Crypto Functions

The following cryptographic functions are supported in the Stage 0 code:
• Generate SHA 256
• Generate SHA 256 Secure Module
• Validate RSA 2048 Signature

6.3 Debug Support
The Stage 0 software, as ROM based code, cannot assume any platform related
features, such as COM Port support, are present. The manner in which the ROM code
indicates progress and flags errors is done via a fixed memory address being written to
with progress and error codes. These codes can be read from memory using a JTAG
debugger when debugging any issues with the validation of Stage 1 applications.

The fixed memory addresses used for the codes during Stage 0 code execution are:
• Progress and non-fatal errors: 8007000Ch
• Fatal Errors: 80070010h

6.3.1 Progress Codes and Non-Fatal Errors

Table 4. Progress Codes (Sheet 1 of 2)

Definition Code Number

PROGRESS START 100

PROGRESS KEY MODULE VALID 101

PROGRESS FOUND MFH 102

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 37

Stage 0 (Secure Boot) Execution Details—Intel® QuarkTM SoC X1000

PROGRESS BOOT INDEX VALID 103

PROGRESS MODULE VALID LOOP 104

PROGRESS STAGE1 SIGNED 105

PROGRESS STAGE1 NOT SIGNED 106

PROGRESS BOOT ITEM LIMIT 107

PROGRESS VALID MODULE FOUND 108

PROGRESS TRYING FIXED RECOVERY 109

PROGRESS MODULE HEADER VALIDATION PASS 120

PROGRESS RSA SIGNATURE VALID 121

PROGRESS RSA SIGNATURE INVALID 122

PROGRESS DATA SHA-256 GENERATED 123

PROGRESS SECURE MODULE SHA-256 GENERATED 124

PROGRESS START DMA COPY 125

PROGRESS DMA COPY COMPLETE 126

PROGRESS DMA COPY SIDEBAND SENT 127

Table 4. Progress Codes (Sheet 2 of 2)

Definition Code Number

Table 5. Non-Fatal Error Codes

Definition Code Number

ERROR MAGIC NUMBER FAIL 11

ERROR VERSION CHECK FAIL 12

ERROR SVN CHECK FAIL 13

ERROR HASH ALGORITHM CHECK FAIL 14

ERROR CRYPTO ALGORITHM CHECK FAIL 15

ERROR KEY SIZE CHECK FAIL 16

ERROR SIGNATURE SIZE CHECK FAIL 17

ERROR RSA KEY SIZE FAIL 18

ERROR RSA MODULUS SIZE FAIL 19

ERROR RSA EXPONENT SIZE FAIL 20

ERROR RSA MODULE VALIDATION FAIL 21

ERROR RSA KEY MISMATCH 22

ERROR INSUFFICIENT CRYPTO MEM 23

ERROR REQUIRED SVN MISMATCH 24

ERROR UNEXPECTED VAL PHASE 25

ERROR SVN INDEX OUT OF BOUNDS 26

Intel® QuarkTM SoC X1000—Stage 0 (Secure Boot) Execution Details

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
38 Order Number: 330234-002US

6.3.2 Fatal Error Codes

§ §

Table 6. Fatal Error Codes

Definition Code Number

FATAL NO VALID MODULES 1

FATAL PUNIT DMA TIMEOUT 2

FATAL MEM TEST FAIL 3

FATAL ACPI TIMER ERROR 4

FATAL UNEX RETURN FROM RUNTIME 5

FATAL ERROR DMA TIMEOUT 6

FATAL OUT OF BOUNDS MODULE ENTRY 7

FATAL MODULE SIZE EXCEEDS MEMORY 8

FATAL KEY MODULE FUSE COMPARE FAIL 9

FATAL KEY MODULE VALIDATION FAIL 10

FATAL STACK CORRUPT 11

FATAL INVALID KEYBANK NUM 12

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 39

EDKII Security—Intel® QuarkTM SoC X1000

7.0 EDKII Security

This chapter describes the enhancements made to the Intel® Quark SoC X1000 UEFI
firmware when running on Secure SKU hardware and built with UEFI Secure Boot build
option (see the Intel® Quark SoC X1000 Board Support Package (BSP) Build and
Software User Guide in Table 1) to make it more robust and resistant to attacks and
failures. UEFI firmware automatically detects when running on secure SKU hardware
and follows the security policies in the following subsections. These enhancements are
designed to reduce the risk of a system becoming non-bootable or compromised.

Note: There is a secure lockdown build option that can be used to force the following security
policies if the UEFI firmware is not running on secure SKU hardware.

7.1 Secure Boot (Secure SKU only)
The Intel® Quark SoC X1000 UEFI firmware is split into two firmware volumes (Stage1
Firmware Volume and Stage2 Firmware Volume). The Stage1 Firmware Volume
continues the chain of trust by first authenticating the Stage2 Firmware Volume (via a
call to the ROM code to perform the authentication) before passing control to it. This
Quark ROM HW RoT Secure Boot is continued all the way up to the OS.

The Quark ROM HW RoT Secure Boot is supplemented by industry standard UEFI
Secure Boot. UEFI Secure Boot allows a Quark Secure SKU system to trust an UEFI
application boot loader resident external to the system flash, for example on a USB
Drive or SD Card. Please refer to the Security Enhancements chapter of the Intel®
Quark SoC X1000 UEFI Firmware Writer’s Guide for more information on UEFI Secure
Boot.

Intel only supports UEFI Secure Boot on Secure SKU hardware since the Quark ROM
HW RoT is required for secure firmware updates and firmware recovery.

7.2 Isolated Memory Regions (IMRs)
The UEFI firmware uses IMRs to protect sensitive assets during and after the boot
process. Please refer to the Security Enhancements chapter of the Intel® Quark SoC
X1000 UEFI Firmware Writer’s Guide for a detailed description of the assets protected
by the UEFI firmware.

Refer to Section 4.5 for the system level design using IMRs.

7.3 Legacy SPI Flash Protection
The UEFI firmware (capsule mechanism) is the only software mechanism allowed to
update/recover the legacy SPI flash. In addition, the UEFI firmware is the only software
module allowed to update the legacy SPI flash NVRAM area where UEFI
EFI_VARIABLE_NON_VOLATILE variables are stored. To enforce this, the UEFI firmware
implements SPI flash protection as described in the following sub-sections.

Intel® QuarkTM SoC X1000—EDKII Security

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
40 Order Number: 330234-002US

7.3.1 Legacy SPI Flash Range Protection

The UEFI firmware is responsible for protecting legacy SPI flash from malicious updates
as early as possible in the boot flow. After protecting the legacy SPI flash ranges, the
settings are locked and a reset is required to unlock. This is equivalent to the
“protected boot block” mechanism supported by SPI flash chips but implemented by
the legacy SPI controller.

7.3.2 Legacy SPI Flash Update Protection

The UEFI firmware is the only software module allowed to update the legacy SPI flash
NVRAM area where UEFI EFI_VARIABLE_NON_VOLATILE variables are stored. However,
the legacy SPI flash NVRAM area cannot be protected as in Section 7.3.1 because this
area may be updated during UEFI firmware boot and also at runtime (UEFI runtime
variable support). To enforce the policy of the UEFI firmware being the only software
module allowed to update this area, the legacy SPI flash controller is configured to
generate an SMI on any attempt to write to the legacy SPI flash. Thus UEFI firmware
traps any attempts to update the legacy SPI flash.

Please refer to the Security Enhancements chapter of the Intel® Quark SoC X1000 UEFI
Firmware Writer’s Guide for a detailed description of legacy SPI flash protection by the
UEFI firmware.

7.4 PCIe Option ROMs
For added security, Intel recommends that UEFI firmware does not load PCIe Option
ROMs from any plug in PCIe cards. Instead, any option ROMs required are built into the
UEFI firmware image.

This is typical for embedded systems where the onboard firmware is capable of
initializing any hardware it needs.

If the only option is to have the PCIe Option ROM resident on a PCIe Card then UEFI
firmware only allows option ROMs to be loaded if they are signed UEFI Secure Boot
executables. Please refer to the Security Enhancements chapter of the Intel® Quark
SoC X1000 UEFI Firmware Writer’s Guide for more information on UEFI Secure Boot.

7.5 Register Locking
Certain Intel® Quark SoC X1000 registers are responsible for setting up critical system
operating features. Once set up, these registers can be locked to prevent malicious
changing of their settings to compromise or hang the system. A reset is required to
unlock these registers.

Please refer to the Security Enhancements chapter of the Intel® Quark SoC X1000 UEFI
Firmware Writer’s Guide for a full list of registers locked by the UEFI firmware.

7.6 Redundant Images
It is important that corrupt legacy SPI flash images or legacy SPI flash images that fail
to authenticate (secure SKU) should not leave the system un-recoverable. The UEFI
firmware achieves this by providing redundant Stage1 Firmware images. Please refer to
Section 3.4, “Storage of Stage 1 Public Key and Stage 1 Applications” on page 16 for a
detailed description of how redundant stage1 images are implemented to further
enhance the system.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 41

EDKII Security—Intel® QuarkTM SoC X1000

Note: To find the specific placement of EDK and Bootloader Applications in Legacy SPI Flash
for any particular release of software, refer to the layout.conf file contained within
that release. See “The Layout Configuration File” on page 27 for further details.

7.7 Limiting Boot Options
Intel® Quark™ SoC UEFI firmware only supports booting an image (OS bootloader/
UEFI application) from a known location in legacy SPI flash. This removes the risk of
unknown UEFI applications/drivers being loaded from USB/eMMC/SD/UEFI shell and
causing unexpected system behavior or even compromising the system.

This restriction can be removed if UEFI Secure boot is enabled and provisioned and the
boot loader executable is signed, thus allowing boot loaders to be resident on other
media (USB/eMMC/SD). Please refer to the Security Enhancements chapter of the
Intel® Quark SoC X1000 UEFI Firmware Writer’s Guide for more information on UEFI
Secure Boot.

7.8 Denial of Service/Compromise Prevention
Some Intel® Quark SoC X1000 features have been identified as security concerns that
could result in a denial of service or system compromise either accidently or
maliciously. Where possible, UEFI firmware enhancements have been identified to
reduce or remove these threats. For example, Intel® Quark SoC X1000 provides the
ability to block the SMI pin, thus preventing SMIs for various configured events. The
UEFI firmware is responsible for making sure this SMI pin remains unblocked.

Please refer to the Security Enhancements chapter of the Intel® Quark SoC X1000 UEFI
Firmware Writer’s Guide for details of the changes made by UEFI firmware to avoid
these security threats.

7.9 Memory Training Engine Lockdown
As part of DDR3 memory initialization code, the UEFI firmware makes use of a
hardware engine to assist in the training of memory. Once DDR3 memory initialization
is complete, UEFI firmware locks the hardware training engine to prevent further
training sequences being initiated.

7.10 SMM Security Enhancements

7.10.1 SMRAM Caching

SMRAM caching is always disabled by hardware for the secure SKU regardless of the
settings for the MTRRs/SMRR. This is to enhance SMM security due to caching issues.
The UEFI firmware sets up SMRAM as un-cached for the non-secure SKU also to
enhance its security.

As periodic SMIs are not used, SMIs in general should be very infrequent. Therefore,
un-cached SMRAM is not expected to have a major system performance impact.

7.11 EDKII Rollback Protection Tasks (Secure SKU only)
EDKII has a part to play in the Quark ROM HW RoT mechanism in Section 4.6.

The responsibility of UEFI Firmware is to maintain the SVN Array mentioned in Section
4.6 and to ensure no image in Intel® Quark™ SoC Firmware Update Capsule has an
SVN that would be rejected by Quark ROM HW RoT during secure boot.

Intel® QuarkTM SoC X1000—EDKII Security

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
42 Order Number: 330234-002US

Please refer to the Security Enhancements chapter of the Intel® Quark SoC X1000 UEFI
Firmware Writer’s Guidefor more information.

§ §

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 43

Bootloader Security—Intel® QuarkTM SoC X1000

8.0 Bootloader Security

The “2nd stage bootloader” reference solution carries out two important functions in
terms of secure boot:

• Asset verification
• Kernel
• Bootloader config file - grub.conf
• InitRD

• IMR setup/teardown
• IMR setup for kernel boot parameters
• IMR setup for compressed kernel image

This reference solution maintains a chain of trust through bootloader into the kernel by
ensuring that all assets executed have been authenticated and encapsulated within an
IMR.

8.1 Asset Verification
The grub utility verifies any kernel, init-ramdisk or grub configuration file that it
relies upon in secure boot mode.

For each one of the assets kernel, initrd or grub.conf in secure boot mode, grub
requires a corresponding signature for the associated asset.

Before trusting the contents of grub.conf, or executing a kernel and initrd, grub
makes a call to the Quark SoC X1000 asset verification routine, which validates, via
Intel® Quark SoC X1000 secure boot callback, the authenticity of the relevant asset.

8.2 Isolated Memory Regions (IMRs)
Intel® Quark SoC X1000 hardware provides the capability to configure IMRs to allow/
deny access by certain system agents to programmed memory ranges. Thus, an area
of memory that is only for use by the host processor can be protected from other DMA
agents in the system. The SoC’s reference bootloader uses two IMRs so as to ensure an
unbroken chain of trust from the reset vector, through bootloader and onto kernel.

Since all of the kernel code does not sit in contiguous memory, care has been taken in
our reference solution, to place an IMR around both the kernel bzImage and the
“legacy” setup code that sits in low memory.

For both IMRs used by grub, the flow is to set up the IMR around the relevant section
of memory and subsequently load critical data into the IMR protected memory, thus
ensuring no window exists when critical data is not IMR protected.

Intel® QuarkTM SoC X1000—Bootloader Security

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
44 Order Number: 330234-002US

8.3 Kernel Setup and Boot Params IMR
The grub utility, the reference bootloader solution, sets up an IMR around the “real
mode” kernel header, which in the reference solution is allocated from the address
greater than 0x10000. The address that grub loads the compressed kernel to is
determined by a call to EFI’s AllocatePages() BootTimeService function.

IMR1 is used for the purposes of kernel setup and boot params.

This IMR spans a contiguous range from the base address derived from the EFI
provided base address to the maximum extent of the setup structure.

8.4 Compressed Kernel Image IMR
The grub utility, the reference bootloader solution, sets up an IMR around the
compressed kernel image (bzImage). IMR7 is used for this purpose. The address that
grub loads the compressed kernel to is determined by a call to EFI’s
AllocatePages() function.

The grub utility sets up the IMR and then loads the data into memory.

8.5 Handoff
Once IMRs have been placed around the assets specified in the grub.conf file and the
authenticity of the kernel and optionally initrd has been verified, grub hands control
to the IMR protected bzImage.

From this point on, it is the responsibility of the Linux* kernel to maintain system
security.

§ §

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 45

OS Security—Intel® QuarkTM SoC X1000

9.0 OS Security

The reference OS solution for Intel® Quark SoC X1000 adds IMR protection to the
uncompressed kernel as well as bringing the system to a final state in terms of IMR
protection.

Specifically, the reference OS solution:
• Places an IMR around executable sections of the kernel image.
• Tears down any IMRs that are not required for the run-time system.
• Locks any unlocked IMRs.
• Provides a convenient debug interface to view the size, extent and state of each

IMR.

9.1 Asset Verification
No specific support has been included to call back into the asset verification routine
from Linux*, although there is no technical blockage to such an interface being made
available.

Linux* assumes that all the assets it executes, either directly inside the kernel or via an
initrd, have been pre-verified by the previous boot stage. Therefore, Linux* does not
make any specific callback to the SoC’s secure boot verification mechanism.

•

9.2 IMR Support
During boot and before the unneeded boot-time IMRs are torn down, the OS kernel
allocates an additional IMR to cover the physical address range of the kernel from the
symbol “_text” to the symbol “__init_end”, which represents a contiguous physical
address range of executable kernel data.

Once executable kernel data is IMR-protected, the OS kernel tears down unneeded
boot-time IMRs. At this point, the run-time IMR configuration should be:

• IMR0 - unused
• IMR1 - unused
• IRM2 - runtime kernel
• IRM3 - unused
• IRM4 - unused
• IRM5 - Legacy S3 memory
• IMR6 - ACPI NVS, Run Time Code, Run Time Data, Reserved memory, ACPI reclaim

memory
• IMR7 - unused

Intel® QuarkTM SoC X1000—OS Security

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
46 Order Number: 330234-002US

9.3 Debug Interface
For the purposes of system debug, an interface is provided in /sys to view the setup
of the IMRs on a booted reference Intel® Quark SoC X1000 system.

Read data from /sys/devices/platform/intel-qrk-imr/stat to view the
address range of each IMR[0-7] and its state, in the run time system.

§ §

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 47

Master Flash Header Data Structure—Intel® QuarkTM SoC X1000

Appendix A Master Flash Header Data Structure

This appendix provides Master Flash Header (MFH) data structure details.

A.1 MFH Format

Note: The MFH is in little-Endian format.

A.1.1 MFH Identifier

The Identifier is a fixed value for identifying the Master Flash Header. Its value is
always set to 05F4D4648h corresponding to “_MFH” in ascii characters. This can be
used to speed up parsing by means of quickly detecting if a MFH is not present.

A.1.2 Version

The Version field indicates the revision of the Master Flash Header is present. If the
format of the Master Flash Header changes, this number is incremented. The current
version is 00000001h.

Table 7. Master Flash Header Format

Offset
(hex) Byte 3 Byte 2 Byte 1 Byte 0

0x00 Intel® Quark SoC X1000 MFH Identifier

0x04 Version

0x08 Flags

0x0C Next Header Block

0x10 Flash Item Count m

0x14 Boot Priority List Count n

0x18 Boot Index 0

0x1C Boot Index 1

…

0x18 + 0x04(n-1) Boot Index n-1

0x18 + 0x04(n) Flash Item 0 [0x10 Bytes]

0x18 + 0x04(n) + 0x10 Flash Item 1 [0x10 Bytes]

…

0x18 + 0x04(n) + 0x10(m-1) Flash Item m-1 [0x10 Bytes]

Intel® QuarkTM SoC X1000—Master Flash Header Data Structure

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
48 Order Number: 330234-002US

A.1.3 Flags

32 bits are reserved in the Master Flash Header for later use as flags. All bits are
currently reserved and should be written as 0.

A.1.4 Next Header Block

Reserved for future use, where multiple MFHs can be used should the first MFH have
insufficient space to describe all items in the Flash device. This should be set to
00000000h.

A.1.5 Flash Item Count (m)

The Flash Item Count field indicates how many flash items are contained within this
header block. This is the value m in the Master Flash Header Format table.

A.1.6 Boot Priority List Count (n)

The Boot Priority List Count field indicates how many bootable flash items are present.
This is the value n in the Master Flash Header Format table, and it is always equal or
less than the number of Flash Items m.

A.1.7 Boot Index (0..n)

The Boot Index fields are the n 32-bit values following the Boot Priority List Count field,
where n is the value contained in Boot Priority List Count. Each value is the index,
starting from 0, of a flash item in this header block that describes a host firmware
application from which to boot.

A.1.8 Flash Item (0..m)

The Flash Item fields describe the location and attributes of various items that are
stored in flash. Following is a description of the Flash Item; each instance in the Master
Flash Header follows this format.

A.1.8.1 Type

The Type field indicates the contents of the elements described by this Flash Item. The
value will be one of the values contained in Table 9.

Table 8. Flash Item Format

Offset
(hex) Byte 3 Byte 2 Byte 1 Byte 0

0x00 Type

0x04 Flash Item Address

0x08 Flash Item Length

0x0C Rsvd

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 49

Master Flash Header Data Structure—Intel® QuarkTM SoC X1000

A.1.8.2 Flash Item Address

This is the absolute address of the flash item in the system’s overall 4G address space.
In the Intel® Quark SoC X1000 Secure SKU, the SPI flash contents shall be located just
below the 4G boundary.

A.1.8.3 Flash Item Length

This field indicates the length in bytes of the given flash item.

Table 9. List of Types

Value Type layout.conf Type Notes

0x00000000 Host Firmware Stage 1 host_fw_stage1 Eg. EDKII PEI phase

0x00000001 Host Firmware Stage 1
Signed host_fw_stage1_signed A signed stage 1

0x00000002 rsvd

0x00000003 Host Firmware Stage 2 host_fw_stage2 e.g. EDKII DXE phase

0x00000004 Host Firmware Stage 2
Signed host_fw_stage2_signed A signed stage 2

0x00000005 Host Firmware Stage 2
Configuration mfh.host_fw_stage2_conf

0x00000006 Host Firmware Stage 2
Signed Configuration

mfh.host_fw_stage2_conf_sign
ed Signed stage 2 configuration

0x00000007 Host Firmware Parameters mfh.host_fw_parameters BIOS settings, “CMOS”, etc.
read/write settings

0x00000008 Host Recovery Firmware mfh.host_recovery_fw Recovery application used in
case of asset corruption.

0x00000009 Host Recovery Firmware
Signed mfh.host_recovery_fw_signed

0x0000000A rsvd

0x0000000B Bootloader mfh.bootloader Grub etc.

0x0000000C Bootloader Signed mfh.bootloader_signed

0x0000000D Bootloader Configuration mfh.bootloader_conf Grub.conf for example

0x0000000E Bootloader signed
configuration mfh.bootloader_conf_signed

0x0000000F rsvd

0x00000010 Kernel mfh.kernel Linux* kernel, etc.

0x00000011 Kernel Signed mfh.kernel_signed A signed Kernel

0x00000012 RAM Disk mfh.ramdisk

0x00000013 RAM Disk Signed mfh.ramdisk_signed

0x00000014 rsvd

0x00000015 Loadable Program mfh.loadable_program An executable run by host
firmware (e.g. EDK payload)

0x00000016 Loadable Program Signed mfh.loadable_program_signed An executable run by host
firmware (e.g. EDK payload)

0x00000017 rsvd

0x00000018 Build Information mfh.build_information Free form, human-readable
description of the build contents.

Intel® QuarkTM SoC X1000—Master Flash Header Data Structure

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
50 Order Number: 330234-002US

A.1.8.4 Reserved Field

This is a reserved field for future use. An example is storing the version number of a
flash item.

§ §

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 51

Secure Boot Header Data Structures—Intel® QuarkTM SoC X1000

Appendix B Secure Boot Header Data Structures

A Secure Boot Header (SBH) is prepended to an asset during the signing process to
create a Signed Module. Within a signed module, the asset can also be referred to as
the body of the module.

The Secure Boot Header is made up of three individual components:
• Security Header
• RSA Public Key
• RSA Signature

Figure 5 shows a signed module and includes the three components of an SBH.

Figure 5. Signed Module Layout

Security Header

RSA Public Key Structure

RSA Signature

Body

64 bytes

268 bytes

S
ecure B

oot H
eader

256 bytes

Intel® QuarkTM SoC X1000—Secure Boot Header Data Structures

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
52 Order Number: 330234-002US

B.1 Security Header Data Structure

B.2 RSA Public Key Data Structure
The RSA Key structure immediately follows the Security Header; it contains key
description fields and the key itself, and conforms to the following specification for
Intel® Quark SoC X1000 A0.

Table 10. Security Header Data Structure

Byte Offset Name Description

0x0 Identifier (4 bytes) Value must be set to 0x5F435348 corresponding to "_CSH"
in ASCII.

0x4 Version (4 bytes) Version of the Security Header definition used, must be
00000001h for Intel® Quark SoC X1000.

0x8 Module Size in bytes (4 bytes)
Size of the entire module. Module Size = (Size of SH (128
bytes) + Size of Signature (256 bytes) + Public Signature
Key (260 bytes)+ Size of Body (multiple of 64 bytes).

0xC Security Version Number Index
(4 bytes) Index of the SVN to use for validation of signed module.

0x10 Security Version Number
(4 bytes)

Value used to prevent Roll-back prevention of software
modules.

0x14 Reserved Module ID (4 bytes) Currently unused for Intel® Quark SoC X1000.

0x18 Reserved Module Vendor
(4 bytes)

Vendor identifier. Set to 00008086 for Intel® QuarkTM SoC
X1000.

0x1C Reserved Date (4 bytes) BCD representation of signing date as yyyymmdd, where
yyyy=4 digit year, mm=1-12, dd=1-31. Currently unused.

0x20 Module Header Size in Bytes
(4 bytes)

Total length of the header including the crypto fields for the
public key and signature in bytes.

0x24 Hashing Algorithm (4 bytes) Hashing algorithm used for signing. SHA-256 = 00000001h

0x28 Crypto Algorithm (4 bytes) Crypto algorithm used for signing. RSA 2048 = 00000001h

0x2C Key Size in Bytes (4 bytes) Logical Size of key in bytes.

0x30 Signature Size Bytes (4 bytes) Total length of the signature including any padding
optionally added.

0x34 Reserved Next Header pointer
(4 bytes)

32-bit pointer to the next secure boot module in chain of
trust. Currently unused.

0x38 - 0x3F Reserved Reserved for future use; must be all zeros.

Table 11. RSA Key Structure

Byte Offset Name Description

0x0 Modulus Size Bytes (4 bytes) Size of the Public Key Modulus in bytes.

0x4 Exponent Size Bytes (4 bytes) Size of the public key exponent in bytes.

0x8 Modulus (256 bytes) Public key modulus data.

0x108 Exponent (4 bytes) Public key exponent data.

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 53

Secure Boot Header Data Structures—Intel® QuarkTM SoC X1000

B.3 Security Version Number Indexing
The Security Header (SH) contains a Security Version Number (SVN) Index, as
documented above. This index allows the authentication function to determine which
SVN to use as part of authentication.

Each asset is free to use whatever index it wishes with the following restrictions
enforced by Stage 0 ROM code: indices 0, 1, and 2 are reserved for the Key Module,
Stage 1 Applications, and Fixed Location Recovery Application respectively and must be
used for those application types.

Reference SVN index values, as used in Intel software are listed in Table 12.

The maximum SVN index supported is 15 (16 SVNs in total).

§ §

Table 12. SVN Index Allocation

SVN Index Fixed by Hardware Asset

0 Y Key Module

1 Y EDKII Stage 1 firmware application

2 Y Fixed Location EDKII Recovery application

3 N EDKII Stage 2 firmware application

4 N Bootloader

5 N Bootloader Config

6 N Kernel

7 N Ramdisk

15 N

Update capsule
Note: The update capsule itself is checked against SVN index 15.

Capsule contents have their own SVN which is also checked.
For example, a Bootloader payload will be checked against
SVN index 4.

Intel® QuarkTM SoC X1000—Firmware Volume Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
54 Order Number: 330234-002US

Appendix C Firmware Volume Overview

A Firmware Volume (FV), as defined by the EFI PI specification (http://sourceforge.net/
apps/mediawiki/tianocore/index.php?title=EDK_II_Specifications), is a logical firmware
device. A FV requires a file system, the default one being the Firmware File System
(FFS).

An FV, along with one or more file systems, enables a file level interface to FLASH
storage.

The general FV Layout is shown in the following table, further details can be found on
the site referenced above.

Table 13. General FV Layout (Sheet 1 of 2)

0 15 16 31

Zero Vector

Zero Vector

Zero Vector

Zero Vector

File System GUID

File System GUID

File System GUID

File System GUID

Size

Size

Signature (“_FVH”)

Attributes

Header Length Checksum

Extended Header Offset Reserved Revision

First Block Map Entry Num Blocks

First Block Map Entry Length

…

N Block Map Entry Num Blocks

N Block Map Entry Length

FV Name GUID

FV Name GUID

FV Name GUID

KEY: FV Header Optional FV
Extended Header FFS Files

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK_II_Specifications
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EDK_II_Specifications

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 55

Firmware Volume Overview—Intel® QuarkTM SoC X1000

C.1 Tools
EDK II provides a Toolchain for processing EDK II content as a separate project called
“BaseTools”, among which are a set of FV generation tools. BaseTools are available
under BSD license and can be run on Windows*/MacOS*/Linux*.

Tools required for FV generation/parsing are:
• GenFw – Genfw is mainly used to process a PE32 image to get the expected image

data or image file. PE32 is a general-purpose image format that contains, among
other information, data identifying the target environment for execution of the
image.

• GenSec – GenSec generates valid EFI_SECTION type files that conform to the
firmware file section defined in the PI specification, from PE32/PE32+/COFF image
files or other binary files. This utility produces a file that is the section header
concatenated with the contents of the input file. It does not validate that the
contents of the input file match the section added.

• GenFfs – GenFfs generates FFS files for inclusion in a firmware volume. FFS file is
the file system file for the firmware storage defined in Volume 3 of the PI 1.0
specification. This utility aggregates all of the file components into a single,
correctly formed FFS file.

• GenFv – GenFv generates a PI firmware volume image or a UEFI capsule image
from the PI firmware files or the binary files that conforms to the firmware volume
image format defined in PI specification or uefi capsule image format defined in the
UEFI specification.

• VolInfo – Displays the contents of a firmware volume

C.1.1 Using FV Tools

To manually wrap a module with a firmware volume, the following tools must be used in
the specified order:

• GenFw
• GenSec
• GenFfs
• GenFv

FV Name GUID

Extended Header Size

First Extended Entry Size

First Extended Entry Type

…

N Extended Entry Size

First Extended Entry Type

N number of FFS Files

Table 13. General FV Layout (Sheet 2 of 2)

0 15 16 31

KEY: FV Header Optional FV
Extended Header FFS Files

Intel® QuarkTM SoC X1000—Firmware Volume Overview

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
56 Order Number: 330234-002US

The following example demonstrates the manual FV wrap process on a grub.efi
module:

Example 6. Sample FV Wrapping Process

§ §

GenFw grub.efi -o grub.efi.fw -e UEFI_APPLICATION

GenSec -s EFI_SECTION_PE32 grub.efi.fw -o grub.efi.fw.pe32

GenFfs -o image.ffs -t EFI_FV_FILETYPE_APPLICATION -g B43BD3E1-64D1-4744-9394-
D0E1C4DE8C87 -i grub.efi.fw.pe32

GenFv -i inf/grub.efi.inf -o grub.efi.fv

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 57

Sample Flash Layouts—Intel® QuarkTM SoC X1000

Appendix D Sample Flash Layouts

Figure 6 depicts a standard generic 8 MB SPI-flash layout. The addresses within the
diagram are relative to the start of SPI flash device address range.

Note: Any addresses in bold are fixed addresses.

Figure 6. Generic 8 MB Flash Layout

Fixed Location Reco very
A pplication

Signed Stage 1 A p plication (s)

Protected
Boo tb lock

0 0 80 0 00 0h

0 0 7E 0 00 0h

00 7 9 0 0 00h

25 6K

12 8K

00 5 0 0 0 00h

Signed Stage 2 A p plication (s)

0 0 75 0 00 0h

A dd ress range cla im ed b y
RO M code

FLA SH

Sign ed Key M od ule32K

0 0 7D 8 0 00h

25 6K

M aste r F lash H eader32K

00 7 0 8 0 00h

00 7 1 0 0 00h

25 6K

Signed Stage N A pp licatio n(s)

V ariab le M odu le
Types, S ize s & S tart

A dd resse s as
d efin ed w ith in M FH

S igned GRU B

Signed K ern el

S igne d In it RA M D isk

V ariable M o dule
Typ es, S izes & Start

A d dresses as
defined w ithin M FH

00 0 0 0 0 00h

SVN A rea3 2K

0 0 7D 0 0 00h

Intel® QuarkTM SoC X1000—Sample Flash Layouts

Intel® QuarkTM SoC X1000 Secure Boot
Programmer’s Reference Manual January 2015
58 Order Number: 330234-002US

Figure 7 depicts a example 8 MB SPI-flash layout.

Note: Any addresses in bold are fixed addresses.

Note: The image sizes depicted here for Firmware, for example, Recovery, Stage1, Stage2
have reserved enough space to allow an image to grow if required. Images much
smaller in size may well be used in the final product.

Figure 7. Example 8 MB Flash Layout

0050 0000h

Signed Init RAMDisk

Signed Kernel

Signed GRUB

0000 0000h

0006 4000h

350K

Fixed Location Recovery
Application

Signed Stage 1 Application
(MFH Boot Index = 1)

Protected
Bootblock

0080 0000h

007E 0000h

0079 0000h

256K

128K

Signed Stage 2 Application

0075 0000h

0070 0000h

Address space claimed by
ROM code

FLASH

Signed Key Module32K
007D 8000h

256K

256K

Master Flash Header32K
0070 8000h

0071 0000h

128K

SVN Area32K

007D 0000h

704K

0073 0000h

NV Storage

Platform Data Area128K

32K

Signed Stage 1 Application
(MFH Boot Index = 0)

006C 0000h

0068 0000h

256K

0050 0000h

1536K

Signed Grub.conf

0005 7800h
8K

Spare

RMU Binary

Spare

Intel® QuarkTM SoC X1000 Secure Boot
January 2015 Programmer’s Reference Manual
Order Number: 330234-002US 59

Sample Flash Layouts—Intel® QuarkTM SoC X1000

Figure 8 depicts a generic 1 MB flash layout.

Note: Any addresses in bold are fixed addresses.

§ §

Figure 8. Generic 1 MB Flash Layout

F i x e d L o c a t i o n R e c o v e r y
A p p l ic a t i o n

P r o t e c t e d
B o o t b lo c k

0 0 8 0 0 0 0 0 h

0 0 7 E 0 0 0 0 h

0 0 7 9 0 0 0 0 h

2 5 6 K

1 2 8 K

0 0 7 0 0 0 0 0 h

A d d r e s s r a n g e c l a i m e d b y
R O M c o d e

F L A S H

S ig n e d K e y M o d u le3 2 K

S i g n e d S t a g e 1 A p p l i c a t i o n (s)

0 0 7 D 8 0 0 0 h

5 1 2 K

3 2 K

M a s t e r F l a s h H e a d e r3 2 K
0 0 7 0 8 0 0 0 h

0 0 7 1 0 0 0 0 h

S V N A r e a3 2 K

0 0 7 D 0 0 0 0 h

	Secure Boot PRM
	Legal Disclaimer
	Revision History
	Contents
	Figures
	Tables

	1.0 Introduction
	1.1 Product Documentation
	1.2 Terminology
	1.3 Conventions

	2.0 Security Overview
	2.1 Assets
	2.2 Asset Protection
	2.3 Secure Boot
	2.4 Asset Signing
	2.5 Implementation Note

	3.0 Secure Boot Overview
	3.1 Asset Signing and Authentication Process
	3.1.1 Signing an Asset
	3.1.2 Validating an Asset Signature
	3.1.3 Additional Authentication Steps

	3.2 RSA Keys
	3.3 Key Handling During Stage 0
	3.4 Storage of Stage 1 Public Key and Stage 1 Applications
	3.4.1 Key Module
	3.4.2 Stage 1 Applications
	3.4.2.1 Master Flash Header
	3.4.2.2 Stage 1 Applications
	3.4.2.3 Fixed Location Recovery Application

	3.5 Stage 1 Execution Environment
	3.6 Memory Protection
	3.7 Stage 0 Software Execution Overview/Flow

	4.0 Asset Protection
	4.1 Reset Handling
	4.2 ROM Based Software - Hardware Root of Trust
	4.3 Hardware Based Authentication Key
	4.4 Cache Settings
	4.5 Isolated Memory Regions (IMR)
	4.5.1 IMR Usage During Boot Flow
	4.5.2 IMR Violation Behavior
	4.5.3 SMRAM and HMBOUND – Special IMRs
	4.5.4 IMR Locking

	4.6 Rollback Protection - Security Version Numbers
	4.6.1 SVN Storage
	4.6.2 SVN Usage

	4.7 Interrupts
	4.8 SPI Flash Device - Protected Boot Block
	4.9 SPI Flash - Write Protect Mode
	4.10 4.10 Firmware Update and Firmware Recovery Assets

	5.0 SPI Flash Layout and Asset Signing Tools
	5.1 SPI Flash Layout Tool
	5.1.1 Overview
	5.1.2 Pre-Requisites
	5.1.3 Image Generation
	5.1.4 The Layout Configuration File
	5.1.4.1 Main Descriptor Block
	5.1.4.2 Standard Asset Descriptor Block
	5.1.4.3 Master Flash Header Asset Descriptor Block
	5.1.4.4 Debug Dump Asset Descriptor Block

	5.2 Asset Signing Toolset
	5.2.1 Overview
	5.2.2 Pre-Requisites
	5.2.3 Using the Asset Signing Toolset
	5.2.3.1 -i <input file>
	5.2.3.2 -o <output file> (optional)
	5.2.3.3 -b <body offset in hexadecimal> (optional)
	5.2.3.4 -s <svn>
	5.2.3.5 -x <svn index>
	5.2.3.6 -k <key file>
	5.2.3.7 -c (optional)
	5.2.3.8 -l (optional)

	6.0 Stage 0 (Secure Boot) Execution Details
	6.1 High Level Flow
	6.1.1 System Initialization
	6.1.2 Key Module Authentication
	6.1.3 Master Flash Header Processing
	6.1.4 Fixed Location Recovery Application Validation
	6.1.5 Stage 1 Handover
	6.1.6 Handling of Failure to Validate any Application

	6.2 Support Functions
	6.2.1 Authentication Functions
	6.2.1.1 Authenticate Key Module
	6.2.1.2 Authenticate Module
	6.2.1.3 Authenticate Header

	6.2.2 Crypto Functions

	6.3 Debug Support
	6.3.1 Progress Codes and Non-Fatal Errors
	6.3.2 Fatal Error Codes

	7.0 EDKII Security
	7.1 Secure Boot (Secure SKU only)
	7.2 Isolated Memory Regions (IMRs)
	7.3 Legacy SPI Flash Protection
	7.3.1 Legacy SPI Flash Range Protection
	7.3.2 Legacy SPI Flash Update Protection

	7.4 PCIe Option ROMs
	7.5 Register Locking
	7.6 Redundant Images
	7.7 Limiting Boot Options
	7.8 Denial of Service/Compromise Prevention
	7.9 Memory Training Engine Lockdown
	7.10 SMM Security Enhancements
	7.10.1 SMRAM Caching

	7.11 EDKII Rollback Protection Tasks (Secure SKU only)

	8.0 Bootloader Security
	8.1 Asset Verification
	8.2 Isolated Memory Regions (IMRs)
	8.3 Kernel Setup and Boot Params IMR
	8.4 Compressed Kernel Image IMR
	8.5 Handoff

	9.0 OS Security
	9.1 Asset Verification
	9.2 IMR Support
	9.3 Debug Interface

	Appendix A Master Flash Header Data Structure
	A.1 MFH Format
	A.1.1 MFH Identifier
	A.1.2 Version
	A.1.3 Flags
	A.1.4 Next Header Block
	A.1.5 Flash Item Count (m)
	A.1.6 Boot Priority List Count (n)
	A.1.7 Boot Index (0..n)
	A.1.8 Flash Item (0..m)
	A.1.8.1 Type
	A.1.8.2 Flash Item Address
	A.1.8.3 Flash Item Length
	A.1.8.4 Reserved Field

	Appendix B Secure Boot Header Data Structures
	B.1 Security Header Data Structure
	B.2 RSA Public Key Data Structure
	B.3 Security Version Number Indexing

	Appendix C Firmware Volume Overview
	C.1 Tools
	C.1.1 Using FV Tools

	Appendix D Sample Flash Layouts

