
Order Number: 330235-003US

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

February 2015

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
2 Order Number: 330235-003US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.
The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel, Intel® Quark™ and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 3

Contents—Intel® Quark™ SoC X1000

Contents

1.0 Introduction ..7
1.1 About this Manual ...7
1.2 Introduction ...7
1.3 Related Documentation ..7
1.4 Terminology ...8
1.5 Conventions ...8

2.0 Platform Overview...9
2.1 Platform Synopsis ...9
2.2 SoC Features .. 10

3.0 Software Overview .. 11
3.1 High-Level Software Architecture Overview... 11
3.2 Linux* Support ... 12

3.2.1 Standard OS Drivers... 12
3.2.2 Host Bridge OS Drivers ... 12
3.2.3 Bootloader Host Bridge Drivers .. 12

3.3 User-Space Software Dependencies ... 12

4.0 Intel® Quark™ SoC X1000 Drivers ... 13
4.1 Overview ... 13
4.2 USB OHCI Controller Interface Driver ... 13
4.3 USB 2.0 EHCI Controller Interface Driver.. 14
4.4 USB Device Interface Driver ... 14
4.5 SD/MMC Controller Interface Driver ... 14
4.6 HSUART Interface Driver .. 15
4.7 SPI Interface Driver... 15
4.8 I2C* Interface Driver ... 16
4.9 GPIO Interface Driver .. 17
4.10 Ethernet Interface Driver (STMMAC) .. 18

4.10.1 VLAN .. 18

5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers .. 19
5.1 eSRAM Configuration Driver.. 19

5.1.1 Userspace API Reference... 19
5.1.2 Kernel API Reference .. 20

5.2 Isolated Memory Region Driver ... 21
5.2.1 IMR Run-time Kernel Protection.. 21

5.3 Thermal Driver.. 21

6.0 Legacy Block Driver ... 23
6.1 Legacy GPIO... 23

7.0 Expansion Drivers.. 24
7.1 AD7298 Driver .. 24
7.2 Bluetooth* Driver .. 25

7.2.1 Device Discovery.. 26
7.2.2 Service Discovery... 26
7.2.3 Establish Connection... 26
7.2.4 Ping ... 26

7.3 Wi-Fi* Driver .. 26
7.3.1 Enable/Disable WLAN Radio ... 27
7.3.2 Scan for Wi-Fi Networks .. 27
7.3.3 Configure a Wi-Fi Device ... 27

Intel® Quark™ SoC X1000—Contents

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
4 Order Number: 330235-003US

7.3.4 Generate wpa_supplicant File ...27
7.3.5 Connect to a Wi-Fi Network..27
7.3.6 Disconnect from a Wi-Fi Network ..27

7.4 3G Modem Driver ..28
7.4.1 Verify System Installation and Configuration ..29
7.4.2 Send an AT Command to HE910 with Microcom ..29
7.4.3 Use Minicom ..29
7.4.4 Request Model Identification ..29
7.4.5 Request Modem Capabilities ...29
7.4.6 Check Radio Access Network Registration...29
7.4.7 Check Signal Strength ...29
7.4.8 List all Available Networks..30
7.4.9 Send an SMS Text Message to 0871234567 ...30
7.4.10 Receive an SMS Text Message ..30
7.4.11 Place a Call to 0871234567..31
7.4.12 Receive a Call ..31
7.4.13 Hang Up..31
7.4.14 Configure Data Packet Connection (PPP) ..31
7.4.15 Enable Data Packet Connection (PPP) ..31
7.4.16 Obtain GPS Location..32

8.0 Sample Applications...33
8.1 Generic Buffer ...33
8.2 Generic Buffer High Resolution Timer ...34

9.0 Secure Boot Implementation ...36
9.1 Overview..36
9.2 Isolated Memory Regions..36
9.3 Bootloader Security..36

9.3.1 Asset Verification Flow...37
9.3.2 Isolated Memory Region Flow ...37

9.4 OS Security ..39
9.4.1 Linux* IMR setup..39
9.4.2 Debug Interface ...39

Figures
1 Intel® Quark™ SoC X1000 Block Diagram .. 9
2 Software Architecture Overview ...11
3 Multiplexing using Intel® Quark™ SoC X1000 SPI Driver..16
4 ADC Location in Software Stack ...24
5 Grub Secure Boot Flow..38

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 5

Contents—Intel® Quark™ SoC X1000

Tables
1 Product Documentation...7
2 Terminology ..8
3 Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers .. 13

Intel® Quark™ SoC X1000—Revision History

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
6 Order Number: 330235-003US

Revision History

§ §

Date Revision Description

February 2015 003

Updated:
• Section 4.6, “HSUART Interface Driver”
• Section 5.1, “eSRAM Configuration Driver”
• Section 9.2, “Isolated Memory Regions”
• Section 9.3.1, “Asset Verification Flow”
• Section 9.3.2, “Isolated Memory Region Flow”
• Section 9.4, “OS Security”

May 2014 002

Updates for software release 1.0.1 including:
• Modified Section 4.6 to change driver name from “RS232+DMA” to “UART+DMA” to be

more clear. See changebars for details.
• Updated with trademarked term: Intel® Quark™ SoC.

March 2014 001 First public release of document.

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 7

Introduction—Intel® Quark™ SoC X1000

1.0 Introduction

1.1 About this Manual
Intel® Quark™ SoC is a next generation secure, low-power Intel Architecture (IA)
System on a Chip (SoC) for deeply embedded applications. The Intel® Quark™ SoC
X1000 integrates the Intel® Quark™ Core plus all the required hardware components
to run off-the-shelf operating systems and to leverage the vast x86 software
ecosystem.

This document describes the architecture and usage of the Intel® Quark™ SoC X1000
Software for Linux* kernel 3.8.7 with Quark modifications.

1.2 Introduction
The Intel® Quark™ SoC X1000 Software is a set of silicon enabling software that
exposes silicon features to a run-time kernel and user-space in a convenient manner.
Drivers that have been extended to enable Intel® Quark™ SoC are described in terms
of standard driver interfaces. Drivers that have been created to expose a particular
silicon feature are detailed in terms of their specific in-kernel and/or user-space API.

Intel® Quark™ SoC has standard x86 environment enumeration with legacy block and
PCI enumeration mechanisms that are highly compatible with previous silicon
configurations. Where possible, commercial off-the-shelf (COTS) drivers have been
used and/or modified to achieve maximum compatability with minimum software code
churn.

1.3 Related Documentation
Table 1 lists the product documentation supporting this release.

Standard Linux* documentation can be found at: www.kernel.org/doc/

Table 1. Product Documentation

Title Number

Intel® Quark™ SoC X1000 Datasheet
[Datasheet]

329676

Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual 330234

Intel® Quark™ SoC X1000 Software Developer’s Manual for Linux* (this document) 330235

Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User Guide
[Build & SW User Guide]

329687

Intel® Quark™ SoC X1000 Software Release Notes 330232

Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide 330236

http://www.kernel.org/doc/

Intel® Quark™ SoC X1000—Introduction

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
8 Order Number: 330235-003US

1.4 Terminology

1.5 Conventions
The following conventions are used in this manual:

• Courier font - code examples, command line entries, API names, parameters,
filenames, directory paths, and executables.

• Bold text - graphical user interface entries and buttons

§ §

Table 2. Terminology

Term Description

ADC Analogue to Digital Converter

BSP Board Support Package - a set of silicon enabling software which enables and
enhances a run-time operating system kernel, such as Linux*.

DMA Direct Memory Access

EHCI Enhanced Host Controller Interface

eSRAM embedded SRAM

GIP Gateway Internet Protocol

GPIO General Purpose Input/Output

I2C* I-squared-C - a type of two wire communications bus

IMR Isolated Memory Region

LAN Local Area Network

MMC Multi Media Card

OHCI Open Host Controller Interface

PCH Platform Control Hub

SD Secure Digital Flash

SoC System on Chip

SPI Serial Peripheral Interconnect

STMMAC STMicroelectronics Media Access Controller

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VLAN Virtual LAN

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 9

Platform Overview—Intel® Quark™ SoC X1000

2.0 Platform Overview

2.1 Platform Synopsis
Intel® Quark™ SoC X1000 is a next generation, secure, low-power Intel Architecture
System on Chip (SoC) for deeply embedded applications. As shown in Figure 1, Intel®
Quark™ SoC X1000 is comprised of a Intel® Quark™ Core processor with a host bridge,
PCIe expansion, a range of I/O interfaces, DDR3 controller, and an eSRAM block.

Figure 1. Intel® Quark™ SoC X1000 Block Diagram

Intel® Quark™ SoC X1000—Platform Overview

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
10 Order Number: 330235-003US

2.2 SoC Features
The main features relevant to the Intel® Quark™ SoC X1000 Software are as follows:

• Intel® Quark™ Core
— Intel® Pentium® compatible instruction set architecture (ISA)
— Time stamp counter register (TSC)
— Local APIC (LAPIC)
— MSR compatability CPUID family = 0x5 revision = 0x09

• Host Bridge
— 512k of fast access embedded SRAM (eSRAM)
— 8 x memory protection regions, called Isolated Memory Regions (IMRs)
— Thermal Sensor

• Legacy block
— 8254 Programmable Interval Timer (PIT)
— 2 cascaded 8259 Programmable Interrupt Controllers (PIC)
— High Precision Event Timer (HPET)
— IO-APIC
— Real Time Clock (RTC)
— GPIO x 8 - 6 in suspend well - driving NMI, SCI, or SMI
— Legacy SPI and Boot ROM

• Intel® Quark™ SoC X1000
— OCHI USB Host controller
— EHCI USB Host controller
— USB Device controller
— 2 x 16550 UART with DMA enhancements
— 2 x SPI Master interface
— I2C* Master interface
— GPIO interface (non-legacy)
— 2 x 100 Mbit Ethernet with external PHY
— eMMC/MMC controller interface

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 11

Software Overview—Intel® Quark™ SoC X1000

3.0 Software Overview

3.1 High-Level Software Architecture Overview
The Intel® Quark™ SoC X1000 uses many off-the-shelf software components to enable
product features. This aim is pervasive throughout the system in terms of Intel®
Quark™ Core, Host Bridge, and SoC components.

Intel® Quark™ SoC X1000 has two key categories of software deliverables:
• Extensions to existing Linux* device drivers to enable the Intel® Quark™ SoC

X1000
• Creation of entirely new drivers for Host Bridge-related functions

Figure 2. Software Architecture Overview

Intel® Quark™ SoC X1000—Software Overview

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
12 Order Number: 330235-003US

3.2 Linux* Support

3.2.1 Standard OS Drivers

The software delivery supports Linux. Many of the I/O drivers, including USB, Ethernet,
UART, I2C, and SPI, are derived from existing upstream kernel components. (The
I2C/GPIO driver was created for Intel® Quark™ SoC X1000.) Driver modifications
maintain compatibility with existing software while enabling Intel® Quark™ SoC X1000
specific features.

See Table 3, “Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers” on page 13
for details.

3.2.2 Host Bridge OS Drivers

Host Bridge silicon enabling software is specific to the Intel® Quark™ SoC X1000 and
as such has no formal operating system interface that exactly matches the conceptual
paradigms. For this reason, Intel® Quark™ SoC X1000 specific APIs and user-space
interfaces via sysfs and proc have been developed for the IMR and eSRAM interface.

Details on the interfaces for IMR and eSRAM configuration are provided later in this
document.

3.2.3 Bootloader Host Bridge Drivers

In order to facilitate secure boot, the reference bootloader grub v 0.97 with EFI
extensions has been modified to support setup and teardown of IMRs as appropriate to
transition from UEFI to run-time OS. Section 9.0, “Secure Boot Implementation” on
page 36 describes this flow.

3.3 User-Space Software Dependencies
To facilitate exposure of silicon features, the user-space component of the runtime
reference OS requires the following utilities:

• ethtool - customized version of ethtool updated to include registers exported by
the Intel® Quark™ SoC X1000

• ptpd - Precision Time Protocol Daemon

These utilities are included with the Intel® Quark™ SoC X1000 yocto layer.

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 13

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

4.0 Intel® Quark™ SoC X1000 Drivers

System on a Chip in the context of Intel® Quark™ SoC X1000 refers to peripheral
hardware south of the host bridge interface. SoC software drivers bind the hardware
interfaces into standard Linux* sub-systems. Linux* kernel baseline of 3.8.7 (or
higher) is required to ensure proper integration and compatibility of upstream reused
kernel drivers.

4.1 Overview
Table 3 lists the hardware interfaces implemented on Intel® Quark™ SoC X1000 and
identifies whether the associated driver is one of the following:

• standard (unmodified) off-the-shelf driver
• modified version of off-the-shelf driver, enhanced to enable Intel® Quark™ SoC

X1000 specific features
Note: Refer to the software sources to determine the complete list of modified or

added files as compared to the Linux* kernel baseline 3.8.7.
• created to be Intel® Quark™ SoC X1000 specific

4.2 USB OHCI Controller Interface Driver
The standard Linux* OHCI driver is 100% compatible with Intel® Quark™ SoC X1000.
This driver provides full USB host control and arbitration of the USB in EHCI mode.

To load this driver in Linux* as root, type:
modprobe ohci_hcd

Table 3. Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers

Hardware Interface Standard
Linux* Driver

Modified
Linux* Driver

Intel® Quark™
SoC X1000

Specific Driver

USB OHCI Controller Interface X

USB 2.0 EHCI Controller Interface X

USB Device Interface X†

SD/MMC Controller Interface X

UART + DMA Interface X†

SPI Master Interface X

I2C Master Interface X

I2C/GPIO Interface X

Ethernet Interface X

† PCI vendor/device identifiers added for Intel® Quark™ SoC X1000.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
14 Order Number: 330235-003US

Once loaded, the OHCI driver provides access to USB 1.1 devices through either of the
USB host ports, thus enabling host controller interface with full speed and low speed
USB devices.

A given USB port can be OHCI mode or EHCI mode, but not both.

4.3 USB 2.0 EHCI Controller Interface Driver
The standard Linux* EHCI driver is 100% compatible with Intel® Quark™ SoC X1000.
This driver has a prerequisite for the OHCI to be loaded before the EHCI driver is
loaded. Once loaded, the EHCI driver provides full host control and arbitration of the
USB in EHCI mode.

To load this driver in Linux* as root, type:
modprobe ohci_hcd

modprobe ehci_hcd

Once loaded, the EHCI driver provides access to High speed USB devices through either
of the Intel® Quark™ SoC X1000 host controller ports.

A given USB port can be OHCI mode or EHCI mode, but not both.

4.4 USB Device Interface Driver
The standard PCH UDC driver (with the addition of Intel® Quark™ SoC X1000 PCI
vendor/device identifiers) is 100% compatible with Intel® Quark™ SoC X1000.

Using the reference driver released in the software package, type:
modprobe pch_udc

This loads the hardware driver.

To have Intel® Quark™ SoC X1000 appear as a USB mass storage device, and
assuming a suitable file exists at
/media/mmc1/floppy.img, type:

modprobe g_mass_storage file=/media/mmc1/floppy.img

Intel® Quark™ SoC X1000 should then present to the USB host machine as a standard
USB mass storage device.

4.5 SD/MMC Controller Interface Driver
The standard Linux* MMC/SD driver (which includes SDIO support) is 100% compatible
with Intel® Quark™ SoC X1000. Once loaded, an MMC or SD storage device appears as
a standard Linux* block interface, upon which a file system can be formatted and
mounted.

This example loads the SDHCI PCI driver and MMC block device driver:
modprobe sdhci-pci

modprobe mmc_block

Once loaded, assuming the MMC card is partitioned and formatted, device entries
appear in /dev representing the partitions found on the MMC device.

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 15

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

4.6 HSUART Interface Driver

Note: In the Intel® Quark™ SoC X1000 Datasheet, this is referred to as the high speed UART.

The standard upstream 16550 PCI UART will work with Intel® Quark™ SoC X1000, with
the addition of the relevant PCI vendor/device strings. The Intel® Quark™ SoC X1000
UART interface is 100% compatible with the standard 16550 register interface,
however, the standard driver does not support DMA.

The FIFO depth is 16 bytes and hardware flow control is included. The Intel® Quark™
SoC X1000 has two UARTs.

Note: There is no support supplied for legacy I/O port access at addresses 0x3F8, 0x2F8,
0x3E8 or 0x2E8.

Inside the PCI configuration space of each UART, a second PCI BAR exists pointing to
the DMA resource range.

A SoC-specific driver called intel_quark_hsuart_dma is provided to enable DMA
operation. This driver is a thin glue layer that binds the upstream 16550 driver with the
upstream driver for the UART’s DMA controller.

This driver registers:
/dev/ttyS0

/dev/ttyS1

Note: In this release, DMA acceleration is available only on the UART TX channel, while the RX
channel always operates in PIO mode.

DMA operation is enabled by default. To disable DMA on a UART instance, add the
following kernel parameter:

• ttyS0 ==> intel_quark_hsuart_dma.uart1_dma
• ttyS1 ==> intel_quark_hsuart_dma.uart2_dma

Note: Refer to Erratum #98436, Inconsistent DMA numbering on UART devices for more
details.

4.7 SPI Interface Driver
The Intel® Quark™ SoC X1000 SPI interface exports a standard SPI interface from
kernel-space to user-space. Two SPI master interfaces are available on Intel® Quark™
SoC X1000. To increase the number of devices that Intel® Quark™ SoC X1000 can
communicate with simultaneously, GPIOs are used to achieve multiplexing (also called
muxing) of the SPI master interface.

This muxing approach allows Intel® Quark™ SoC X1000 to communicate with up to
four SPI slave interfaces, with a maximum of two slave devices at any one time as
shown in Figure 3.

To load Intel® Quark™ SoC X1000 SPI driver, type:
modprobe spi-pxa2xx.ko

modprobe spi-pxa2xx-pci

modprobe spidev.ko

Note: For non-MSI, type: modprobe spi-pxa2xx.ko enable_msi=0

GPIO pin selection is achieved by providing board-specific data in the file:
drivers/x86/platform/qrk/boardname.c

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
16 Order Number: 330235-003US

Once loaded, the master SPI driver populates entries in /dev as follows:
/dev/spidev0.0

/dev/spidev0.1

/dev/spidev1.0

/dev/spidev1.1

The format is /dev/spidevX.Y where:
• X indicates the master interface
• Y indicates the slave interface

4.8 I2C* Interface Driver
The I2C and GPIO components are contained within the same PCI function and share
resources as a consequence. The I2C register interface is 100% compatible with the
upstream i2c-designware-core driver.

Figure 3. Multiplexing using Intel® Quark™ SoC X1000 SPI Driver

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 17

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

This register interface is incorporated in the intel_qrk_gip driver, which provides a
standard I2C interface when loaded. The GIP interface can be loaded in either MSI or
non-MSI mode using the commands:

modprobe intel_qrk_gip

modprobe intel_qrk_gip enable_msi=0

In either case, loading this driver and using the command modprobe i2c-dev
populates:

/dev/i2c-0

Once populated, it is possible to communicate with downstream I2C devices using the
standard Linux* API to interact with the I2C bus.

To load the I2C driver in isolation (that is, without the GPIO enabling logic contained in
the GIP block), type.

modprobe intel_qrk_gip gpio=0

modprobe intel_qrk_gip gpio=0 enable_msi=0

4.9 GPIO Interface Driver

Note: This driver is different than the one described in Section 6.1, “Legacy GPIO” on
page 23.

The GPIO and I2C components are contained within the same PCI function and share
resources as a consequence. This GPIO interface is a new register interface and is
enabled by the GPIO section of the intel_qrk_gip device driver module.

In the Intel® Quark™ SoC X1000 Datasheet, these pins are referred to as GPIO[7:0].
These GPIO pins are interrupt-capable. They support rising/falling edge-triggered
interrupts (but not both) and high/low level-triggered interrupts.

To load the GPIO driver in isolation (that is, without the I2C enabling logic contained in
the GIP block) type:

modprobe intel_qrk_gip i2c=0

modprobe intel_qrk_gip i2c=0 enable_msi=0

Note: Enabling MSIs is recommended for improved performance.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
18 Order Number: 330235-003US

4.10 Ethernet Interface Driver (STMMAC)
The STMMAC driver upstream in the Linux* kernel is nearly entirely compatible with
Intel® Quark™ SoC X1000, with some minor updates to the DMA component of the
STMMAC driver. This update to STMMAC is based on modification of the upstream
driver.

In addition to the necessary DMA enumerating descriptors in STMMAC, additional
Intel® Quark™ SoC X1000 specific silicon-enabling enhancements have been made to
the standard STMMAC. The enhancements include:

• VLAN
— Hardware filtering has been added
— Maximum number of hardware filtered VLAN tags is 16
— Tag ID range 0 - 15

The following commands demonstrate how to load the STMMAC in either MSI or
non-MSI mode.

modprobe stmmac

modprobe stmmac enable_msi=0

Note: MSI mode is enabled by default.

4.10.1 VLAN

The standard Linux* commands ip or vconfig can be used to add or remove hardware
accelerated VLAN tag filtering entries in STMMAC.

The following commands demonstrate how to add VLAN # 5:
vconfig add eth0 5

ifconfig eth0.5 xxx.yyy.zzz.qqq

Once setup is complete, VLAN frames with tag ID 5 are processed by Intel® Quark™
SoC X1000 while other ethernet frames with different tags are not processed by
hardware and do not raise interrupts to the core.

To remove a hardware filtered VLAN interface, enter the command:
vconfig rem eth0.5

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 19

Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000

5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers

Host Bridge Drivers in the context of Intel® Quark™ SoC X1000 refer to drivers for
silicon functionality that are part of the Host Bridge interface on Intel® Quark™ SoC
X1000. This functionality is exposed via a side-band driver that arbitrates access to the
various components using the Host Bridge interface.

The side-band driver provides access to the following blocks of functionality:
• eSRAM
• Isolated Memory Regions
• Thermal

5.1 eSRAM Configuration Driver
Intel® Quark™ SoC X1000 contains a set of embedded SRAM (eSRAM). There is 512
kilobytes of eSRAM sub-divided into 128 pages of four kilobytes each. eSRAM can be
configured in “block” mode or in a per-page manner, and eSRAM can exist in an overlay
or as a contiguous chunk of memory in the address space.

eSRAM is a fast access low-latency memory that has been measured on Intel® Quark™
SoC X1000 to be approximately 3x faster than DDR, in terms of CPU wait-states and
access times.

For Linux* enabling purposes, eSRAM has been configured in a per-page overlay mode.
This approach allows overlay of specific regions of memory. For example, the interrupt
descriptor table or arbitrary interrupt service routines (ISRs) can be locked into eSRAM.

Kernel virtual addresses can be can be mapped into eSRAM. The minimum granularity
for any map operation is 4 kilobytes, hence any other data within the same 4 kilobyte
address range is also mapped.

Note: Unmapping is neither supported nor advised due to potential coherency issues when
flushing eSRAM back to DRAM.

Warning: Due to the eSRAM hardware architecture, there is a time window during the page
overlaying process whereby the DRAM page itself is not accessible. As a consequence,
users should avoid overlaying pages containing symbols used by the driver’s page-
populate routine. A fully comprehensive list may be obtained by analyzing the
subroutine call graph of intel_qrk_esram_page_populate_atomic().

5.1.1 Userspace API Reference

A sysfs interface has been provided to configure eSRAM mappings.
• /sys/devices/platform/intel-qrk-esram/map_range

— Allows overlaying of a kernel page given its virtual address
— Allows viewing of all current overlaid pages

• /sys/devices/platform/intel-qrk-esram/stats

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
20 Order Number: 330235-003US

— Gives a status overview of current eSRAM state
— Number of free pages
— Other miscellaneous data

Note: At the time of writing, the map_range interface only allows overlaying one page at a
time.

5.1.1.1 Example showing eSRAM stat usage

root@clanton:~# cat /sys/devices/platform/intel-qrk-esram/stats

esram-pgpool : 0x19f8fc00

esram-pgpool.free : 127

esram-pgpool.flushing : 127

esram-ctrl : 0x047f3f91

esram-ctrl.ecc : enabled

esram-ctrl.ecc-theshold : 63

esram-ctrl.pages : 128

esram-ctrl.dram-flush-priority : 2

esram-block : 0x00000000

free page : 127

used page : 1

refresh : 675000ms

page enable retries : 0

page disable retries : 0

ecc next page : 126

5.1.1.2 Example of Mapping a Virtual Address into eSRAM

The following examples shows how to overlay the page where printk is defined into
eSRAM.

root@quark:~# cat /proc/kallsyms | grep " printk$"

c12bb89b T printk

[Inspect page @ 0xc12bb000 to ensure it is safe to overlay]

root@quark:~# echo 0xc12bb000 > /sys/devices/platform/intel-qrk-esram/map_rang

e

root@quark:~# cat /sys/devices/platform/intel-qrk-esram/map_range

sysfs

 Page virt 0xc12bb000 phys 0x012bb000

 Refcount 1

5.1.2 Kernel API Reference

An API to map kernel address ranges is available.

5.1.2.1 intel_qrk_esram_map_range

Map 4kB increments at given address to eSRAM. Maps any arbitrary kernel virtual
address from vaddr to vaddr + size bytes. This mapping is then named mapname.

int intel_qrk_esram_map_range(void * vaddr, u32 size, char * mapname);

• vaddr: Virtual address to start mapping (must be 4k aligned)

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 21

Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000

• size: Size to map from - aligned to a 4 kilobyte boundary
• mapname: Mapping symbolic name shown in sysfs
• return 0 success < 0 failure

5.2 Isolated Memory Region Driver
Isolated Memory Region (IMR) allocation and assignments are detailed in the Intel®
Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual. In Linux* a run-time
interface provides an convenient method to view IMR allocations.

This interface shows the IMR allocations provided as part of the secure boot reference
code on the Intel® Quark™ SoC X1000.

5.2.1 IMR Run-time Kernel Protection

root@clanton:~# cat /sys/devices/platform/intel-qrk-imr/stat

imr - id : 0

info : System Reserved Region

occupied : yes

locked : yes

size : 4344 kb

hi addr (phy): 0x0143dc00

lo addr (phy): 0x01000000

hi addr (vir): 0xc143dc00

lo addr (vir): 0xc1000000

read mask : 0x80000001

write mask : 0xc0000001

5.3 Thermal Driver
Linux* provides a standard thermal driver interface. Intel® Quark™ SoC X1000 hooks
its particular thermal silicon into this Linux* sub-system. Since Intel® Quark™ SoC
X1000 does not require external cooling, the thermal driver is minimalistic in design,
with no associated thermal cooling device attached to the one and only thermal zone.

Intel® Quark™ SoC X1000 hardware is set up to automatically shutdown on critical
temperature detection. The trip points described below are set in the driver and cannot
be changed.

Linux* provides an entire sub-system dedicated to triggering events based on hot and
critical events. The task of the thermal driver is to provide the minimum level of silicon
support to drive these events.

• Hot trip point: 95 degrees Celsius
The thermal driver incrementally polls the thermal sensor and when this theshold is
exceeded, a hot trip event is propagated into the thermal sub-system.

• Critical trip point: 104 degrees Celsius
The Linux* thermal sub-system triggers a graceful system shutdown if the critical
trip threshold is reached.

• Hardware failover critical temperature: 105 degrees Celsius
As a precautionary measure, Intel® Quark™ SoC X1000 silicon is configured to
drive a shutdown signal at 105 degrees Celsius. Assumption is that software polling
should catch an over-temperature situation when temperature meets or exceeds
the critical trip point (104 degrees Celsius). A one degree over-limit from the

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
22 Order Number: 330235-003US

maximum specified critical temperature forces embedded hardware to take
preventative action and drive a shutdown signal directly.

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 23

Legacy Block Driver—Intel® Quark™ SoC X1000

6.0 Legacy Block Driver

The LPC address space contained within Intel® Quark™ SoC X1000 legacy block has
the following component that has been enabled in the Linux* run-time:

• Legacy GPIO

In order to enable this silicon functionality, a small modification is necessary to LPC
enabling software in Linux, adding appropriate PCI vendor/device.

6.1 Legacy GPIO

Note: This driver is different than the one described in Section 4.9, “GPIO Interface Driver”
on page 17.

Intel® Quark™ SoC X1000 contains eight GPIOs within the legacy bridge. These GPIO
pins are interrupt-capable. They support rising/falling/both edge-triggered interrupts.

These legacy GPIOs provide the ability to drive GPE events and hence to resume an
Intel® Quark™ SoC X1000 device in a low-power state.

There are:
• 6 GPIO pins in the resume power well

In the Intel® Quark™ X1000 Datasheet, these pins are referred to as
GPIO_SUS[5:0].
The GPIOs in the resume well can be used to drive a General Purpose Event (GPE)
through the ACPI sub-system that subsequently takes the Intel® Quark™ SoC
X1000 out of a low-power state.

• 2 GPIO pins in the core well
In the Intel® Quark™ X1000 Datasheet, these pins are referred to as GPIO[9:8].

The eight legacy GPIO are indexed in the range [0,7] and can be accessed from user-
space through sysfs interface.

The commands below demonstrate how to drive a signal to the first legacy GPIO:
root@clanton# echo 0 > /sys/class/gpio/export # Reserve first legacy GPIO

root@clanton# echo "out" > /sys/class/gpio/gpio0/direction # Set as output

root@clanton# echo "1" > /sys/class/gpio/gpio0/value # Drive logical one

§ §

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
24 Order Number: 330235-003US

7.0 Expansion Drivers

This section describes drivers that are included with the Intel® Quark™ SoC X1000
Software package to enable board-specific functionality.

• AD7298 Driver
• Bluetooth* Driver (requires mini-PCIe card)
• Wi-Fi* Driver (requires mini-PCIe card)
• 3G Modem Driver (requires mini-PCIe card)

7.1 AD7298 Driver
The Analog Devices* AD7298 is a 12-bit, low power, 8-channel, successive
approximation ADC with an internal temperature sensor. The LS-ADC does not provide
a user-space interface directly, it is provided by the IIO subsystem in the Linux* kernel.
The ADC registers with the IIO subsystem as an IIO ADC device driver. As such, it
makes calls to functions on the IIO kernel API and provides callbacks which can be
used by the IIO subsystem to invoke driver operations.

To load the drivers for the AD7298, perform the following sequence:
• Enable GPIO driver:

modprobe intel_qrk_gip

modprobe gpio_sch

• Enable IIO support:
modprobe industrialio

Figure 4. ADC Location in Software Stack

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 25

Expansion Drivers—Intel® Quark™ SoC X1000

• Enable SPI driver:
modprobe spi-pxa2xx

• Enable AD7298 driver:
modprobe ad7298

After the driver loading sequence is complete, the AD7298 driver enables the following
data points via the Industrial I/O (IIO) kernel API directly read from the ADC chip.

• Provide the RAW voltage at the input in the range 0 - 4095 representing the
voltage range 0 to +5 Volts
/sys/bus/iio/devices/iio:device0/in_voltage[0-7]_raw

/sys/bus/iio/devices/iio:device0/in_voltage0_raw

/sys/bus/iio/devices/iio:device0/in_voltage1_raw

etc

• Scaling value to apply to the raw voltage input
/sys/bus/iio/devices/iio:device0/in_voltage_scale

• Temperature offset
/sys/bus/iio/devices/iio:device0/in_temp0_offset

• Raw instantaneous temperature of the ADC die
/sys/bus/iio/devices/iio:device0/in_temp0_raw

• Temperature scaling factor
/sys/bus/iio/devices/iio:device0/in_temp0_scale

Other data points are provided by the Linux* IIO API but are out of scope for this
document.

Using the above values, it is possible to calculate the real instantaneous voltage in
milli-Volts at a given voltage input using the following formula:

(Raw value * scale value) / 1000 = Vin0 actual input voltage in mV

Using the above values, it is possible to calculate the internal die temperature on the
AD7298, in milli-degrees Celsius using the following formula:

((in_temp0_offset + in_temp0_raw) * in_temp0_scale) = Tdie

7.2 Bluetooth* Driver
Bluetooth functionality is provided by a mini-PCIe card connected to the mini-PCIe slot
on the platform. The following cards have been validated with the Intel® Quark™ SoC
X1000 Software:

• Intel® Centrino® Wireless-N 135 card
• Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module (Dual Band Wi-Fi, 2.4 and

5 GHz)

A requirement exists to include the firmware for the card in the root filesystem at the
following path:

/lib/firmware/iwlwifi-135-6.ucode (Intel® Centrino® Wireless-N 135)
or
/lib/firmware/iwlwifi-6000g2a-6.ucode (Intel® Centrino® Advanced-N 6205)

The following drivers must be loaded to enable USB-bluetooth components:
modprobe ehci-hcd

modprobe ohci-hcd

modprobe ehci-pci

modprobe btusbl

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
26 Order Number: 330235-003US

Once loaded, the sysfs entry below should appear:
/sys/module/bluetooth

The following user-space components are required:
bluetoothd

hciconfig

hcitool

7.2.1 Device Discovery

hciconfig <BT DEVICE NAME> noscan

hciconfig <BT DEVICE NAME>

Expected UP_RUNNING

hcitool scan --flush

hciconfig <BT DEVICE NAME> piscan

7.2.2 Service Discovery

sdptool browse <BT_2_BD_ADDR>

7.2.3 Establish Connection

hcitool dc <BT_ADDR>

hcitool cc <BT_ADDR>

hcitool con

hcitool dc <BT_ADDR>

7.2.4 Ping

l2ping -c 5 <BT_ADDR>

7.3 Wi-Fi* Driver
Wi-Fi functionality is provided by a mini-PCIe card connected to the mini-PCIe slot. The
Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module (Dual Band Wi-Fi, 2.4 and
5 GHz) has been validated with the Intel® Quark™ SoC X1000 Software.

A requirement exists to include the firmware for the Intel® Centrino® Advanced-N
6205 Wi-Fi Radio Module in the root filesystem at the following path:

/lib/firmware/iwlwifi-6000g2a-6.ucode

Latest firmware for this card can be downloaded from:
http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

To load a driver for the Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module, type
the following command:

modprobe iwlwifi

After a successful load of this driver, the following sysfs path is available:
/sys/class/net/wlan0

http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 27

Expansion Drivers—Intel® Quark™ SoC X1000

7.3.1 Enable/Disable WLAN Radio

• Get the index of the device
rfkill list

• Disable radio
rfkill block 0

• Enable radio
rfkill unblock 0

7.3.2 Scan for Wi-Fi Networks

wlist wlan0 scan

7.3.3 Configure a Wi-Fi Device

Enter the command:
edit /etc/network/interfaces

Add the following:
auto wlan0

iface wlan0 inet static

address <IP ADDRESS>

netmask <NETMASK>

wireless_mode managed

wireless_essid <SSID_NAME>

wpa-driver wext

wpa-conf /etc/wpa_supplicant.conf

7.3.4 Generate wpa_supplicant File

This file is used to configure a protected Wi-Fi network.

Generate the WPA Passphrase:
wpa_passphrase essid <PassPhrase>

Generate the wpa_supplicant.conf file:
network={

ssid="essid"

#psk=<PassPhrase>

psk=<Result from last command>

}

7.3.5 Connect to a Wi-Fi Network

ifup wlan0

7.3.6 Disconnect from a Wi-Fi Network

ifdown wlan0

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
28 Order Number: 330235-003US

7.4 3G Modem Driver
GSM/3G communications functionality can be provided by a mini-PCIe card connected
to the mini-PCIe slot. The Telit* HE910 mini-PCIe module (specifically, the functionality
for GSM Voice and SMS communications, and HSPA+ data communications) has been
validated with the Intel® Quark™ SoC X1000 Software.

Driver Requirements:
• Telit* HE910 requires USB2.0 support in kernel
• Telit* HE910 requires PPP (point-to-point protocol) support in kernel
• Use of active GPS antenna needs external circuit for powering antenna's amplifier

Software tool requirements:
• minicom - for running scripts

Can be compiled as ipk package
• microcom - handy for executing simple AT commands

Microcom is a part of busybox package.
If it is not installed, it can be enabled in yocto using the command:
bitbake busybox -c menuconfig

then re-installed as ipk package.
• pppd - Point-to-point protocol

ppp is used for data packet connection. It can be enabled in yocto as an image
feature "ppp"

To load the drivers, perform the following sequence:
• Enable USB controllers:

modprobe ehci-hcd

modprobe ohci-hcd

modprobe ehci-pci

• Enable Communication Device Class Abstract Control Model interface:
modprobe cdc-acm

References

1. HE910/UE910 AT Commands Reference Guide
http://www.telit.com/module/infopool/download.php?id=4092

2. GPS Application Note
http://www.telit.com/module/infopool/download.php?id=5442

3. DVI Application Note - I2S communication with Maxim 9867 codec
http://www.telit.com/module/infopool/download.php?id=4094

4. Hardware guide
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200

5. Minicom manual
http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

http://www.telit.com/module/infopool/download.php?id=4092
http://www.telit.com/module/infopool/download.php?id=5442
http://www.telit.com/module/infopool/download.php?id=4094
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200
http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 29

Expansion Drivers—Intel® Quark™ SoC X1000

7.4.1 Verify System Installation and Configuration

dmesg | grep ttyACM

/dev/ttyACM<X>

- list of port devices created by cdc-acm driver

The serial port used for communicating with the 3G modem is /dev/ttyACM0

7.4.2 Send an AT Command to HE910 with Microcom

echo -ne "ATE1\r" | microcom -X -t 500 /dev/ttyACM0

7.4.3 Use Minicom

Starting minicom:
minicom -D /dev/ttyACM0

AT commands can be sent to the modem from minicom's console by typing.

For HE910 AT commands reference guide, see: References [1]

For detailed minicom guide, see: References [5]

7.4.4 Request Model Identification

AT+GMM

Expected:
HE910

OK

7.4.5 Request Modem Capabilities

AT+GCAP

Expected:
+GCAP: +CGSM,+DS,+FCLASS,+MS,+ES

OK

7.4.6 Check Radio Access Network Registration

AT+CREG?

Expected sample:
0,1

- registered to home network

Note: Result may vary, depending on condition. For details / see: references [1]

7.4.7 Check Signal Strength

AT+CSQ

Expected sample:
+CSQ: 11,2

OK

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
30 Order Number: 330235-003US

7.4.8 List all Available Networks

AT+COPS=?

Expected sample:
+COPS: (2,"Vodafone IRL",,"27201",2),(2,"Vodafone IRL",,"27201",0),

(3,"O2 - IRL",,"27202",2),(3,"IRL 05",,"27205",2),

(3,"IRL-METEOR",,"27203",2),(3,"O2 - IRL",,"27202",0),

(3,"IRL-METEOR",,"27203",0),,(0-4),(0,2)

7.4.9 Send an SMS Text Message to 0871234567

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Start sending the text message, specifying the number to send to.
AT+CMGS="0871234567"

The modem returns a > prompt. Type the message and press Ctrl-z.
> Hello World

After the Ctrl-z, the modem pauses for a few seconds and the following response is
returned:

+CMGS: <n>

OK

7.4.10 Receive an SMS Text Message

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Select SIM card memory as SMS storage
AT+CPMS="SM"

Expected:
OK

After entering the following command, all messages are printed:
AT+CMGL="ALL"

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 31

Expansion Drivers—Intel® Quark™ SoC X1000

7.4.11 Place a Call to 0871234567

Switch to voice mode
AT+FCLASS=8

Expected:
OK

Dial the number
ATD0871234567

Expected:
OK

7.4.12 Receive a Call

Switch to voice mode
AT+FCLASS=8

Once modem is called
RING

Message is printed on console.

Call can be answered with following command
ATS0=1

7.4.13 Hang Up

AT+CHUP

Expected:
OK

7.4.14 Configure Data Packet Connection (PPP)

There are many PPP configuration guides available in the internet.

Configuration may vary depending on service provider.

Example guide:

 https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd

7.4.15 Enable Data Packet Connection (PPP)

Once ppp is configured, ppp connection can be established with the command:
pon

Connection can be tested with:
ping www.google.com

Release the connection with:
poff

https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd
http://www.google.com

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
32 Order Number: 330235-003US

7.4.16 Obtain GPS Location

Make sure that GPS antenna is connected to the Telit* HE910 mini-PCIe module.

Initialize GPS module:
AT$GPSNVRAM=15,0

Expected:
OK

Enable GPS:
AT$GPSP=1

Expected:
OK

The GPS location is updated after a certain amount of time (a few seconds up to a few
minutes), depending on GPS signal strength and previously stored GPS data.

GPS location can be obtained with:
AT$GPSACP

Expected sample:
$GPSACP:

152324.000,5267.1849N,00854.8107W,3.00,310.0,3,000.00,0.00,0.00,200412,05

OK

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 33

Sample Applications—Intel® Quark™ SoC X1000

8.0 Sample Applications

This section describes sample applications that can be used with the Intel® Quark™
SoC drivers.

8.1 Generic Buffer
generic_buffer is a sample application that demonstrates how to retrieve buffered
samples from an ADC driver via the Industrial I/O (IIO) sysfs interface.

This particular example uses the AD7298 ADC driver (see Section 7.1), however, other
IIO ADC drivers may also be used.

This example uses the IIO sysfs trigger option, which allows an application or script to
explicitly trigger each sampling event, by writing a dedicated file under sysfs. This
gives the application control over the timing and quantity of samples collected from the
ADC. However, as each trigger incurs the overhead of a system call, this method is not
recommended where maximum sampling rates are needed.

Perform the steps below to use generic_buffer for gathering buffered samples from
the desired ADC driver:
1. Load the necessary kernel modules:

modprobe ad7298

modprobe iio-trig-sysfs

2. Enable a sysfs trigger that allows us to trigger the driver from user-space to
collect a new set of samples from the selected ADC channels:
echo 0 > /sys/bus/iio/devices/iio_sysfs_trigger/add_trigger

3. Select the ADC channels that you want to sample. Here's a suggested list:
echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_timestamp_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_current0_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_current1_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_avg_react_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_power0_factor_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_avg_react_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_power1_factor_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_voltage0_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_voltage1_rms_en

Intel® Quark™ SoC X1000—Sample Applications

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
34 Order Number: 330235-003US

4. Run the data collection sample application with the following parameters:
./generic_buffer -s -w 2000 -c 1 -n ad7298 -t sysfstrig0 -l 2000 -o
output.csv

where:

The expected result is an output file with header line and 2000 lines of samples. One
column contains a timestamp value, expressed in nanoseconds, which should show that
the samples are approximately 3300 microseconds apart on average (which translates
into a sample rate of approximately 300 Hz). This 3300 microsecond interval is
comprised of the 2000 microsecond delay specified, as well as the overhead incurred in
the execution of the trigger via sysfs.

8.2 Generic Buffer High Resolution Timer
This application is similar to the generic_buffer application described in Section 8.1,
however, it uses a different IIO trigger option, called the High-Resolution Timer trigger.
When configured and enabled, this trigger operates at kernel level, using a
high-resolution timer interrupt source (if available) to trigger IIO sampling at a desired
frequency.

The trigger frequency is set via sysfs. The trigger is associated with the IIO ADC driver
and, when buffered sampling is enabled for that driver, the trigger automatically starts
firing at the desired frequency and runs until the buffered sampling is later disabled.
1. Load the necessary kernel module:

modprobe iio-trig-hrtimer

2. Instantiate the hrtimer trigger:
echo 0 > /sys/bus/iio/devices/iio_hrtimer_trigger/add_trigger

3. Enable the set of ADC channels to be sampled as described in Section 8.1, step 3.
4. Run the data collection sample application with the following parameters:

./generic_buffer_hrtimer -f 100 -p 10 -c 1 -n ad7298 -t hrtimer_trig0 -o
output.csv

where:

-s Use a sysfs-type trigger.

-w 2000 Delay for 2000 microseconds between each invocation of the trigger.

-c 1 Collect 1 set of samples. Buffered samples are output after each set.

-n ad7298 Name of the IIO device to use.

-t sysfstrig0 Name of the IIO trigger to use.

-l 2000 Number of samples to collect in each set.

-o output.csv Name of output file to save buffered samples to in CSV format.

-f 100 Sampling frequency - number of samples to collect per second

-p 10 Sampling duration in seconds

-c 1 Collect 1 set of samples. Buffered samples are output after each set.

-n ad7298 Name of the IIO device to use.

-t hrtimer_trig0 Name of the IIO trigger to use.

-o output.csv Name of output file to save buffered samples to in CSV format.

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 35

Sample Applications—Intel® Quark™ SoC X1000

The expected result is an output file with header line and approximately 1000 lines of
samples. One column contains a timestamp value, expressed in nanoseconds, which
should show that the samples are approximately 10000 microseconds apart on
average.

§ §

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
36 Order Number: 330235-003US

9.0 Secure Boot Implementation

9.1 Overview
A key feature of the Intel® Quark™ SoC X1000 is the concept of secure boot. Secure
boot means that only authenticated software that has been cryptographically verified
can be run on a Intel® Quark™ SoC X1000 system.

The concept is predicated on a root-of-trust (RoT) from the reset vector, through to the
run-time kernel. Each phase of the boot verifies the next phase of the boot, before
handing off to that phase.

In this way, Intel® Quark™ SoC X1000 reference software stack provides a mechanism
to ensure only authenticated software can be booted on a Intel® Quark™ SoC X1000
system.

There are two variants of Intel® Quark™ SoC X1000:
• Secure boot enabled (called secure SKU)
• Non-secure boot enabled (called base SKU or non-secure SKU)

Both variants enable Isolated Memory Regions (IMRs) during boot, through bootloader
and kernel. However, only the secure SKU of Intel® Quark™ SoC X1000 requires
cryptographic authentication of images in order to boot.

9.2 Isolated Memory Regions
IMRs are used extensively by grub and Linux* to provide extra security during boot.
IMRs can be used to define fine-grained access masks to defined memory regions.
These access masks prevent bus masters, from accessing particular memory regions
based on the definitions of access rights for a given memory region associated with an
IMR.

Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for a
detailed description of IMR settings throughout the boot process.

9.3 Bootloader Security
The reference second stage bootloader solution carries out two important functions in
terms of secure boot:

• Asset verification
— Kernel
— Bootloader config file - grub.conf

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 37

Secure Boot Implementation—Intel® Quark™ SoC X1000

— InitRD
• IMR setup/teardown

— IMR setup for kernel boot params
— IMR setup for compressed kernel image

This reference solution maintains a chain of trust through bootloader into kernel by
ensuring that all assets executed have been validated and encapsulated within an IMR.

9.3.1 Asset Verification Flow

Grub verifies any kernel, init-ramdisk or grub configuration file, it relies upon in secure
boot mode.

Grub executes the boot logic given to it in grub.conf. The grub.conf file specifies the
boot configuration. The grub.conf file also specifies where to find boot assets.
Supported locations are:

• SPI Flash
• SD/USB mass storage device

In secure boot mode, grub will:
• Parse the master flash header to identify the location of grub.conf
• Read in the contents of grub.conf
• Verify grub.conf against a cryptographic signature
• For the selected menu entry in the grub.conf file

— Search for the assetand its signature
— Verify the asset against the asset signature

For any of the previous steps, a failure to find an asset or an asset signature, or a
failure to verify an asset against an asset signature, will result in grub falling back to a
restricted shell exporting a minimal amount of available commands.

9.3.2 Isolated Memory Region Flow

Grub is booted by EDK with IMRs already configured around a number of assets.

As part of the reference secure boot solution, grub will read a Linux* kernel image from
SPI flash or from USB/MMC mass storage.

Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for
the IMR setup flow in grub.

Grub subsequently verifies bzImage against the cryptographic key for bzImage once
the compressed image is placed within the IMR protection region.

Finally, assuming verification succeeds, control is handed from grub to the compressed
kernel image with which is wrapped by an IMR, restricting access to CPU read/write
only.

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
38 Order Number: 330235-003US

Note: On secure SKUs, grub requires an accompanying signature file in order to
successfully boot. For details, see the [Build & SW User Guide].

Figure 5. Grub Secure Boot Flow

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 39

Secure Boot Implementation—Intel® Quark™ SoC X1000

9.4 OS Security
The reference OS solution for Intel® Quark™ SoC X1000 adds IMR protection to the
uncompressed kernel as well as bringing the system to a final state in terms of IMR
protection.

Specifically, the reference OS solution:
• Places an IMR around executable sections of the kernel image.
• Tears down any IMRs that are not required for the run-time system.
• Locks any unlocked IMRs.
• Provides a convenient debug interface to view the size, extent, and state of each

IMR.

Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for a
detailed breakdown of IMR state at the OS boot/runtime stage.

9.4.1 Linux* IMR setup

9.4.1.1 Default behaviour

The reference IMR run-time solution on Intel® Quark™ SoC X1000 has the following
default behavior:

• allocates an IMR region for the kernel executable sections
• tears down IMRs that are not needed at run-time
• locks all IMRs.

9.4.1.2 IMR setup options

The following options modify the default behaviour of the IMR setup flow. These options
can only be passed to the kernel command line at boot time through grub, and are
typically only used for debugging or development purposes.

An option is provided by the IMR driver not to lock all IMRs by
default.intel_qrk_imr.imr_lock=0

With IMRs unlocked, it is possible for a user to manually modify the IMR setup in the
system.

A second paramater disables IMR allocation altogether.
intel_qrk_imr.imr_enable=0

imr_enable parameter has higher priority than imr_lock. When imr_enable=0 the driver
does the following:

• does not allocate any IMR region for the kernel
• tears down all the unlocked IMRs.

9.4.2 Debug Interface

For the purposes of system debug, an interface is provided in /sys to view the setup of
the IMRs on a booted reference Intel® Quark™ SoC X1000 system.

Read data from /sys/devices/platform/intel-qrk-imr to view the address
range of each IMR[0-7] and its state, in the run-time system.

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* February 2015
40 Order Number: 330235-003US

§ §

Intel® Quark™ SoC X1000
February 2015 Software Developer’s Manual for Linux*
Order Number: 330235-003US 41

Secure Boot Implementation—Intel® Quark™ SoC X1000

	Intel® Quark™ SoC X1000Software Developer’s Manual for Linux*
	Legal Disclaimer
	Contents
	Figures
	Tables

	Revision History
	1.0 Introduction
	1.1 About this Manual
	1.2 Introduction
	1.3 Related Documentation
	1.4 Terminology
	1.5 Conventions

	2.0 Platform Overview
	2.1 Platform Synopsis
	2.2 SoC Features

	3.0 Software Overview
	3.1 High-Level Software Architecture Overview
	3.2 Linux* Support
	3.2.1 Standard OS Drivers
	3.2.2 Host Bridge OS Drivers
	3.2.3 Bootloader Host Bridge Drivers

	3.3 User-Space Software Dependencies

	4.0 Intel® Quark™ SoC X1000 Drivers
	4.1 Overview
	4.2 USB OHCI Controller Interface Driver
	4.3 USB 2.0 EHCI Controller Interface Driver
	4.4 USB Device Interface Driver
	4.5 SD/MMC Controller Interface Driver
	4.6 HSUART Interface Driver
	4.7 SPI Interface Driver
	4.8 I2C* Interface Driver
	4.9 GPIO Interface Driver
	4.10 Ethernet Interface Driver (STMMAC)
	4.10.1 VLAN

	5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers
	5.1 eSRAM Configuration Driver
	5.1.1 Userspace API Reference
	5.1.1.1 Example showing eSRAM stat usage
	5.1.1.2 Example of Mapping a Virtual Address into eSRAM

	5.1.2 Kernel API Reference
	5.1.2.1 intel_qrk_esram_map_range

	5.2 Isolated Memory Region Driver
	5.2.1 IMR Run-time Kernel Protection

	5.3 Thermal Driver

	6.0 Legacy Block Driver
	6.1 Legacy GPIO

	7.0 Expansion Drivers
	7.1 AD7298 Driver
	7.2 Bluetooth* Driver
	7.2.1 Device Discovery
	7.2.2 Service Discovery
	7.2.3 Establish Connection
	7.2.4 Ping

	7.3 Wi-Fi* Driver
	7.3.1 Enable/Disable WLAN Radio
	7.3.2 Scan for Wi-Fi Networks
	7.3.3 Configure a Wi-Fi Device
	7.3.4 Generate wpa_supplicant File
	7.3.5 Connect to a Wi-Fi Network
	7.3.6 Disconnect from a Wi-Fi Network

	7.4 3G Modem Driver
	7.4.1 Verify System Installation and Configuration
	7.4.2 Send an AT Command to HE910 with Microcom
	7.4.3 Use Minicom
	7.4.4 Request Model Identification
	7.4.5 Request Modem Capabilities
	7.4.6 Check Radio Access Network Registration
	7.4.7 Check Signal Strength
	7.4.8 List all Available Networks
	7.4.9 Send an SMS Text Message to 0871234567
	7.4.10 Receive an SMS Text Message
	7.4.11 Place a Call to 0871234567
	7.4.12 Receive a Call
	7.4.13 Hang Up
	7.4.14 Configure Data Packet Connection (PPP)
	7.4.15 Enable Data Packet Connection (PPP)
	7.4.16 Obtain GPS Location

	8.0 Sample Applications
	8.1 Generic Buffer
	8.2 Generic Buffer High Resolution Timer

	9.0 Secure Boot Implementation
	9.1 Overview
	9.2 Isolated Memory Regions
	9.3 Bootloader Security
	9.3.1 Asset Verification Flow
	9.3.2 Isolated Memory Region Flow

	9.4 OS Security
	9.4.1 Linux* IMR setup
	9.4.1.1 Default behaviour
	9.4.1.2 IMR setup options

	9.4.2 Debug Interface

