(intel®> Quark”

Intel® Quark™ SoC X1000

Software Developer’s Manual for Linux*

October 2015

Document Number: 330235-004US

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling
1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel, Quark, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
2 Document Number: 330235-004US

http://www.intel.com/design/literature.htm

[|} ®
Contents—Intel® Quark™ SoC X1000 l n tel >

Contents
100 TR ' 1 f o Yo [o o 7
1.1 ADOUL thiS MAnUAL ... e e e eeeaeaaaas 7
1.2 g o Yo [o o o 7
1.3 Related DOCUMENTATION ...ttt ettt te et et ee e e e eeaeaaeaaaaeaaaaaaaannn 7
I =T ¢ o o V18 To] oo)Y P 8
IS T 0o 1 o V=T o) 1 T o = 8
2.0 Platform OVEeINVIEWV et ettt ettt et ettt et e e e e aaaasaaseaaaaaaannnn 9
P A Sl = L o] ¢ 0 4 IS/ aT0] o 1] 1 PP 9
2.2 S Yo T O == | 1 T 10
B.0 SOTEWAIE OVEIVIEWV ...ttt etee e ee et e teeteeteesasaaaaaeeaeeaaaaaaann 11
3.1 High-Level Software ArchiteCture OVEIVIEWot 11
G I [11)Gl U]'o] o Yo o 12
T2 I 7= g [F= Y o B @ ISR B 1 1Y 12
3.2.2 HOSE Bridge OS DIIVEIS ..nueniie ettt ettt e e e et e e re e eneanens 12
3.2.3 Bootloader HOSt Bridge DIriVerS. et 12
3.3 User-Space Software DependenCiesot 12
4.0 Intel® Quark™ SOC X1000 DIIVEISuuuiiiieaiiiiiiiieaeaaaaiieeeeeeaaaeieaee e e e e e e aeineeeeaeeaaeenees 13
O © 1V = 0V =1 13
4.2 USB OHCI Controller INterface DIiVerttt e e e eeenaes 13
4.3 USB 2.0 EHCI Controller INterface DIiVENoiiiiii it et ee e eeeaes 14
4.4 USB DeVice INTErface DIIVET ... e et ee e eeeeaeeaaaannns 14
4.5 SD/MMC CoNtroller INTErface DIiVeY e eeeeeeeeeaeennn 14
4.6 HSUART INTErface DIIVEN ... ettt et e et e et eeeeeeeeaeeaanaannnnes 15
A S T 10 (=T = oS T D 1 - 15
4.8 120" INEEITACE DIIVEL ..o e e e 16
4.9 (] L I Fa) (=T k=TT ST L)V 17
4.10 Ethernet Interface Driver (STMMAC) ... e 18
10 T Y L 18
4.11 Userspace 1/0 Subsystem (UIO) enabling for GPIOo i 19
5.0 Intel® Quark™ SoC X1000 HOSt Bridge DIiVErSuiiiieeiiiiieee e 20
5.1 eSRAM ConfigUration DIFIVENottt et ae e aaees 20
5.1.1 Userspace APl RefEreNCeo it 20
5.1.2 KerNel APl REFEIENCE ... e eeeeeaeanns 21
5.2 Isolated Memory RegiON DIVo 22
5.2.1 IMR Run-time Kernel ProteCliON. eeeeaeanns 22
LT T I o =T ¢ o g = LI T 1 22
(ST O I I=To F= Yoy VA = [o Tod 1l BT g V7= PP 24
6.1 [T 0 T Y03 Y €1 P 24
O I =5 q o =Yg 1 o] o I BT g V=T = T PP 26
0 R N B 2 e 1S B g V=T 26
7.2 153 18 T=Y o] f n Sl 0T ¢ V=Y S 27
2 R B -V ot I 1Yo 0 V=T oY 28
T7.2.2 SEIVICE DISCOVEIY ...ttt et ettt et et ettt ettt et et et e e et e eneanens 28
7.2.3 Establish CONNECHION......ooii ettt eeaa e eaieeeeeanns 28
022 = 1 o T 28
R T VAT T S 0 V= S 28
7.3.1 Enable/Disable WLAN RAGIOuuuiiii et eeeeeeeeeaaanns 29
7.3.2 Scan for Wi-Fi NetWOIKS ... e e 29
Intel® Quark™ SoC X1000
October 2015 Software Developer’s Manual for Linux*

Document Number: 330235-004US 3

®
n tel > Intel® Quark™ SoC X1000—Contents

7.3.3 Configure @ Wi-Fi DEVICEot eaeas 29

7.3.4 Generate wpa_supplicant File ... e 29

7.3.5 Connect to a Wi-Fi NetwoOrK 29

7.3.6 Disconnect from a Wi-Fi NetWOrK ... 29

4 . T C RV [To [T o g I 4)Y/ PP 30

7.4.1 Verify System Installation and Configurationccooiiiiiiiiiiiiiiii i 31

7.4.2 Send an AT Command to HE910 with MiCroComccoiiiiiiiiiiiiiiii i 31

3G T L=< Y/ o YT o o o 31

7.4.4 Request Model Identification oo 31

7.4.5 Request Modem Capabilities oo e 31

7.4.6 Check Radio Access Network Registration...........coviiiiiiiiiiii i 31

7.4.7 Check Signal Strength ... e 31

7.4.8 List all Available NEtWOIKS.. ...ttt aaeas 32

7.4.9 Send an SMS Text Message to 0123456789oiuiiieiiiiiiiiii et eieaeeas 32

7.4.10 Receive an SMS TeXt MESSA0E ...ttt aae e aaaeens 32

7.4.11 Place a Call t0 0871234567uuueueieee ettt ettt aneaeeas 33

7.4.12 ReCeiVE @ Call .o e 33

8 T - 1 T 7 o 33

7.4.14 Configure Data Packet Connection (PPP) ... 33

7.4.15 Enable Data Packet Connection (PPP) ...t 33

7.4.16 ODbtain GPS LOCAtION.ttt e aaae e 34

8.0 Sample AP Pl CATIONS 35

8.1 GENEIIC BUI O L e 35

8.2 Generic Buffer High ResolUtion Timer ..o e eaneaas 36

9.0 Secure Boot IMplementation ...t 38

L I @ V7 V1= 38

9.2 [KYo] F= U =To 1Y =T o [0] 1V 2= T [o o S 38

L T = oo} (o= T (=T g ST =T ol B 1 | 1Y S 38

9.3.1 Asset Verification FIOW.. ... e 39

9.3.2 Isolated Memory ReQION FIOWooiiiii e eanea s 39

1S B @ S TS T ol U | 1 Y PP 41

9.4.1 LiNUX™ IMR S UD -ttt ettt ettt et et ettt et e et e et e e e e e ae e as 41
Figures

1 Intel® Quark™ SoC X1000 BIOCK DIaQrammottt et et et ere e aeeans 9

2 Software ArChiteCture OVEIVIEW.ttt aaaeens 11

3 Multiplexing using Intel® Quark™ SoC X1000 SPI DFIVETc.uuieeeeeeeeeeee e 16

4 ADC Location in SOftware STacCKo e 26

5 Grub SECUIre BOOT FIOW ittt ettt ettt e ettt e e e e naeas 40

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

a4

Document Number: 330235-004US

Contents—Intel® Quark™ SoC X1000

Tables
RN 5] oo LU [a0 To Yot U o =T g | = 1 o 1 7
D22 I =Y g 28] 1] oo 8
3 Intel® Quark™ SoC X1000 Hardware Interfaces and DriVersc..oviiiiiiiiiiiiiiiiieeieeiieeenn 13
4 Intel® Quark™ SoC GPIO Interface Pin Table ... 18
5 Intel® Quark™ SoC Legacy GPIO Interface Pin Tablecooiiiiii i 25
Intel® Quark™ SoC X1000
October 2015 Software Developer’s Manual for Linux*

Document Number: 330235-004US 5

intel.

Intel® Quark™ SoC X1000—Revision History

Revision History

Date Revision Description
Updated:
= Section 1.1, “About this Manual”
= Section 1.4, “Terminology”
e Section 2.2, “SoC Features”
- Section 4.0, “Intel® Quark™ SoC X1000 Drivers” (introduction paragraph)
= Section 4.1, “Overview”
e Section 4.2, “USB OHCI Controller Interface Driver”
e Section 4.3, “USB 2.0 EHCI Controller Interface Driver”
= Section 4.4, “USB Device Interface Driver”
e Section 4.5, “SD/MMC Controller Interface Driver”
= Section 4.6, “HSUART Interface Driver”
e Section 4.7, “SPI Interface Driver”
e Section 4.8, “12C* Interface Driver”
* Section 4.9, “GPIO Interface Driver”
= Section 4.10, “Ethernet Interface Driver (STMMAC)”
e Section 5.1, “eSRAM Configuration Driver”
October 2015 004 = Section 5.1.1.1, “Example showing eSRAM stat usage”
= Section 5.1.1.2, “Example of Mapping a Virtual Address into eSRAM”
e Section 5.2.1, “IMR Run-time Kernel Protection”
* Section 5.3, “Thermal Driver”
= Section 6.1, “Legacy GPIO”
e Section 7.1, “AD7298 Driver”
= Section 7.2, “Bluetooth™* Driver”
e Section 7.4, “3G Modem Driver”
e Section 7.4.9, “Send an SMS Text Message to 0123456789”
= Section 7.4.15, “Enable Data Packet Connection (PPP)”
= Section 8.0, “Sample Applications”
e Section 9.1, “Overview”
* Section 9.2, “Isolated Memory Regions”
e Section 9.4.1, “Linux* IMR setup”
= Moved “Debug Interface” from Section 9.4.2 to Section 9.4.1.3, “Debug Interface”
Added:
= Section 4.11, “Userspace 1/0 Subsystem (UIO) enabling for GP10”
Updated:
e Section 4.6, “HSUART Interface Driver”
e Section 5.1, “eSRAM Configuration Driver”
February 2015 003 * Section 9.2, “Isolated Memory Regions”
e Section 9.3.1, “Asset Verification Flow”
e Section 9.3.2, “Isolated Memory Region Flow”
= Section 9.4, “OS Security”
Updates for software release 1.0.1 including:
May 2014 002 = Modified Section 4.6 to change driver name from “RS232+DMA” to “UART+DMA” to be
more clear. See changebars for details.
- Updated with trademarked term: Intel® Quark™ SoC.
March 2014 001 First public release of document.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

6

Document Number: 330235-004US

Introduction—Intel® Quark™ SoC X1000

1.0

Introduction

1.1

1.2

1.3

Table 1.

October 2015

About this Manual

Intel® Quark™ SoC is a next generation secure, low-power Intel Architecture (1A)
System on a Chip (SoC) for deeply embedded applications. The Intel® Quark™ SoC
X1000 integrates the Intel® Quark™ Core plus all the required hardware components
to run off-the-shelf operating systems and to leverage the vast x86 software
ecosystem.

This document describes the architecture and usage of the Intel® Quark™ SoC X1000
Software for Linux* kernel 3.14 with Quark modifications.

Introduction

The Intel® Quark™ SoC X1000 Software is a set of silicon enabling software that
exposes silicon features to a run-time kernel and user-space in a convenient manner.
Drivers that have been extended to enable Intel® Quark™ SoC are described in terms
of standard driver interfaces. Drivers that have been created to expose a particular
silicon feature are detailed in terms of their specific in-kernel and/or user-space API.

Intel® Quark™ SoC has standard x86 environment enumeration with legacy block and
PCI enumeration mechanisms that are highly compatible with previous silicon
configurations. Where possible, commercial off-the-shelf (COTS) drivers have been

used and/or modified to achieve maximum compatibility with minimum software code
churn.

Related Documentation

Table 1 lists the product documentation supporting this release.

Product Documentation

Title Number
® ™

I[g::asr?eueat;k SoC X1000 Datasheet 329676
Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual 330234
Intel® Quark™ SoC X1000 Software Developer’s Manual for Linux* (this document) 330235
Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User Guide 320687
[Build & SW User Guide]
Intel® Quark™ SoC X1000 Software Release Notes 330232
Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide 330236

Standard Linux* documentation can be found at: www.kernel.org/doc/

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 7

http://www.kernel.org/doc/

[} ®
l n tel Intel® Quark™ SoC X1000—Introduction

1.4 Terminology
Table 2. Terminology
Term Description
ADC Analogue to Digital Converter
BSP Board Support Pa_ckage - aset of silicon enabling softwa_re which enables and
enhances a run-time operating system kernel, such as Linux*.
DMA Direct Memory Access
EDK EFI Developer Kit
EFI Extensible Firmware Interface
EHCI Enhanced Host Controller Interface
eSRAM embedded SRAM
GIP GPIO 12C Peripheral
GPIO General Purpose Input/Output
12Cc* I-squared-C - a type of two wire communications bus
IMR Isolated Memory Region
LAN Local Area Network
MMC Multi Media Card
OHCI Open Host Controller Interface
PCH Platform Control Hub
SD Secure Digital Flash
SoC System on Chip
SPI Serial Peripheral Interconnect
SRAM Static Random Access Memory
STMMAC STMicroelectronics Media Access Controller
UART Universal Asynchronous Receiver/Transmitter
usB Universal Serial Bus
VLAN Virtual LAN
1.5 Conventions

The following conventions are used in this manual:

« Courier font - code examples, command line entries, APl names, parameters,
filenames, directory paths, and executables.

= Bold text - graphical user interface entries and buttons

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
8 Document Number: 330235-004US

[®
Platform Overview—Intel® Quark™ SoC X1000 I n tel >

2.0 Platform Overview

2.1 Platform Synopsis

Intel® Quark™ SoC X1000 is a next generation, secure, low-power Intel Archltecture

System on Chip (SoC) for deeply embedded applications. As shown in Figure 1, Intel®

Quark™ SoC X1000 is comprised of a Intel® Quark™ Core processor with a host bridge,
PCle expansion, a range of 1/0 interfaces, DDR3 controller, and an eSRAM block.

Figure 1. Intel® Quark™ SoC X1000 Block Diagram

Intel® Quark™
Core

Host Bridge

DDR3
Memory
Controller

Legacy Bridge

Old9yeD;l

o
o

!

Intel® Quark™ SoC X1000
October 2015 Software Developer’'s Manual for Linux*
Document Number: 330235-004US 9

[} ®
l n tel > Intel® Quark™ SoC X1000—Platform Overview

2.2 SoC Features

The main features relevant to the Intel® Quark™ SoC X1000 Software are as follows:
< Intel® Quark™ Core

— Intel® Pentium®

compatible instruction set architecture (I1SA)
— Time stamp counter register (TSC)
— Local APIC (LAPIC)
— MSR compatability CPUID family = 0x5 revision = 0x09
= Host Bridge
— 512k of fast access embedded SRAM (eSRAM)
— 8 x memory protection regions, called Isolated Memory Regions (IMRs)
— Thermal Sensor
= Legacy block
— 8254 Programmable Interval Timer (PIT)
— 2 cascaded 8259 Programmable Interrupt Controllers (PIC)
— High Precision Event Timer (HPET)
— I0-APIC
— Real Time Clock (RTC)
— GPIO x 8 - 6 in suspend well - driving NMI, SCI, or SMI
— Legacy SPI and Boot ROM
- Intel® Quark™ SoC X1000
— OCHI USB Host controller
— EHCI USB Host controller
— USB Device controller
— 2 x 16550 UART with DMA enhancements
— 2 x SPI Master interface
— 12C* Master interface
— 8 x GPIO interface (non-legacy)
— 2 x 100 Mbit Ethernet with external PHY
— eMMC/MMC controller interface

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
10 Document Number: 330235-004US

Software Overview—Intel® Quark™ SoC X1000

3.0 Software Overview

3.1 High-Level Software Architecture Overview

The Intel® Quark™ SoC X1000 uses many off-the-shelf software components to enable
product features. This aim is pervasive throughout the system in terms of Intel
Quark™ Core, Host Bridge, and SoC components.

Intel® Quark™ SoC X1000 has two key categories of software deliverables:

- Extensions to existing Linux* device drivers to enable the Intel® Quark™ SoC
X1000

= Creation of entirely new drivers for Host Bridge-related functions

Figure 2. Software Architecture Overview
User-space
L fa
v v
Network
Serial . /proc
GPIO Li [sys
Y .
Block + FS Linux Kernel
Ethernet
SPI APIC + IO/APIC
12C LPC e?mm
GPIO 8259
USE Host + Device 8254 Thermal
UART HPET
eMMC/MMC
5 5 Y
v v v
SoC Hardware Legacy Blodk Hardware Host Bridge Hardware
Intel® Quark™ SoC Hardware

Intel® Quark™ SoC X1000
October 2015 Software Developer’s Manual for Linux*

Document Number: 330235-004US

9

u @>
l n tel Intel® Quark™ SoC X1000—Software Overview

3.2

3.2.1

3.2.2

3.2.3

3.3

Linux™ Support

Standard OS Drivers

The software delivery supports Linux. Many of the 1/0 drivers, including USB, Ethernet,
UART, 12C, and SPI, are derived from existing upstream kernel components. (The
12C/GPIO driver was created for Intel® Quark™ SoC X1000.) Driver modifications
maintain compatibility with existing software while enabling Intel® Quark™ SoC X1000
specific features.

See Table 3, “Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers” on page 9
for details.

Host Bridge OS Drivers

Host Bridge silicon enabling software is specific to the Intel® Quark™ SoC X1000 and
as such has no formal operating %/stem interface that exactly matches the conceptual
paradigms. For this reason, Intel™ Quark™ SoC X1000 specific APls and user-space
interfaces via sysfs and proc have been developed for the IMR and eSRAM interface.

Details on the interfaces for IMR and eSRAM configuration are provided later in this
document.

Bootloader Host Bridge Drivers

In order to facilitate secure boot, the reference bootloader grub v 0.97 with EFI
extensions has been modified to support setup and teardown of IMRs as appropriate to
transition from UEFI to run-time OS. Section 9.0, “Secure Boot Implementation” on
page 9 describes this flow.

User-Space Software Dependencies
To facilitate exposure of silicon features, the user-space component of the runtime
reference OS requires the following utilities:

= ethtool - customized version of ethtool updated to include registers exported by
the Intel® Quark™ SoC X1000

e ptpd - Precision Time Protocol Daemon

These utilities are included with the Intel® Quark™ SoC X1000 yocto layer.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

10

Document Number: 330235-004US

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

4.0

Intel® Quark™ SoC X1000 Drivers

4.1

Table 3.

4.2

October 2015

System on a Chip in the context of Intel® Quark™ SoC X1000 refers to peripheral
hardware south of the host bridge interface. SoC software drivers bind the hardware
interfaces into standard Linux* sub-systems. Linux* kernel baseline of 3.14 (or higher)
is required to ensure proper integration and compatibility of upstream reused kernel
drivers.

Overview
Table 3 lists the hardware interfaces implemented on Intel® Quark™ SoC X1000 and
identifies whether the associated driver is one of the following:

« standard (unmodified) off-the-shelf driver

- modified version of off-the-shelf driver, enhanced to enable Intel® Quark™ SoC
X1000 specific features

Note: Refer to the software sources to determine the complete list of modified or
added files as compared to the Linux* kernel baseline 3.14.

- created to be Intel® Quark™ SoC X1000 specific

Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers

. Intel® Quark™
Hardware Interface . Standar_d . MOd'f'efj SoC X1000
Linux* Driver Linux* Driver T .
Specific Driver

USB OHCI Controller Interface

USB 2.0 EHCI Controller Interface

USB Device Interface

SD/MMC Controller Interface

UART + DMA Interface

X | X| X| X

SPI Master Interface

12C/GPIO Interface X

Intel Legacy Block GP1O

x

IMRs

Ethernet Interface

USB OHCI Controller Interface Driver

The standard Linux* OHCI driver is compatible with Intel® Quark™ SoC X1000. This
driver provides full USB host control and arbitration of the USB in OHCI mode.

To load this driver in Linux* as root, type:
modprobe ohci_hcd

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

[} ®
l n tel > Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

4.4

4.5

Once loaded, the OHCI driver provides access to USB 1.1 devices through either of the
USB host ports, thus enabling host controller interface with full speed and low speed
USB devices.

USB 2.0 EHCI Controller Interface Driver

The standard Linux* EHCI driver is compatible with Intel® Quark™ SoC X1000. This
driver has a prerequisite for the OHCI to be loaded before the EHCI driver is loaded.
Once loaded, the EHCI driver provides full host control and arbitration of the USB in
EHCI mode.

To load this driver in Linux* as root, type:
modprobe ehci_pci
modprobe ohci_hcd

Once loaded, the EHCI driver provides access to High speed USB devices through either
of the Intel® Quark™ SoC X1000 host controller ports.

USB Device Interface Driver

The standard PCH UDC driver (with the addition of Intel® Quark™ SoC X1000 PCI
vendor/device identifiers and quirks) is compatible with Intel® Quark™ SoC X1000.

Using the reference driver released in the software package, type:
modprobe pch_udc
This loads the hardware driver.

To have the Intel® Quark™ SoC X1000 appear as a USB mass storage device to the
USB host machine, and assuming a suitable file exists at
/media/mmcl/floppy. img, type:

modprobe g_mass_storage file=/media/mmcl/floppy.img

To have the Intel® Quark™ SoC X1000 appear as a serial device to the USB host
machine, type:

modprobe g_serial

SD/MMC Controller Interface Driver

The standard Linux* MMC/SD driver (with the addition of Intel® Quark™ SoC X1000
quirks) is compatible with Intel® Quark™ SoC X1000. Once loaded, an MMC or SD
storage device appears as a standard Linux* block interface, upon which a file system
can be formatted and mounted.

This example loads the SDHCI PCI driver and MMC block device driver:
modprobe sdhci-pci
modprobe mmc_block

Once loaded, assuming the MMC card is partitioned and formatted, device entries
appear in /dev representing the partitions found on the MMC device.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

10

Document Number: 330235-004US

. ®
Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000 l n tel >

4.6

Note:

Note:

Note:

4.7

October 2015

HSUART Interface Driver

In the Intel® Quark™ SoC X1000 Datasheet, this is referred to as the high speed UART.

The standard upstream 16550 PCI UART will work with Intel® Quark™ SoC X1000, with
the addition of the relevant PCI vendor/device strings. The Intel® Quark™ SoC X1000
UART interface is 100% compatible with the standard 16550 register interface,
however, the standard driver does not support DMA.

The FIFO depth is 16 bytes and hardware flow control is included. The Intel® Quark™
SoC X1000 has two UARTS.

There is no support supplied for legacy 1/0 port access at addresses Ox3F8, Ox2F8,
Ox3ES8 or Ox2ES8.

Inside the PCI configuration space of each UART, a second PCI BAR exists pointing to
the DMA resource range.

A SoC-specific driver called intel _quark hsuart_dma is provided to enable DMA
operation. This driver is a thin glue layer that binds the upstream 16550 driver with the
upstream driver for the UART’s DMA controller.

This driver registers:
/dev/ttySO
/dev/ttyS1

DMA operation is enabled by default. To disable DMA on a UART instance, add the
following kernel parameter:

e ttySO === intel_quark_hsuart_dma.uartO_dma =0
e ttyS1 === intel_quark_hsuart_dma.uartl_dma = 0

SPI Interface Driver

The Intel® Quark™ SoC X1000 SPI interface exports a standard SPI interface from
kernel-space to user-space. Two SPI master interfaces are available on Intel® Quark™
SoC X1000. To increase the number of devices that Intel® Quark™ SoC X1000 can
communicate with simultaneously, GPIOs are used to achieve multiplexing (also called
muxing) of the SPI master interface.

This muxing approach allows Intel® Quark™ SoC X1000 to communicate with up to
four SPI slave interfaces, with a maximum of two slave devices at any one time as
shown in Figure 3.

To load Intel® Quark™ SoC X1000 SPI driver, type:
modprobe spi-pxa2xx-platform
modprobe spi-pxa2xx-pci
modprobe spidev

GPIO pin selection is achieved by providing board-specific data in the file:
drivers/platform/x86/intel-quark/<boardname>.c

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 11

. ®
l n tel Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Once loaded, the master SPI driver populates entries in /dev as follows:
/dev/spidev0.0
/dev/spidev0.1
/dev/spidevl.0
/dev/spidevl.1l
The format is /dev/spidevX.Y where:
= X indicates the master interface

« Y indicates the slave interface

Figure 3. Multiplexing using Intel® Quark™ SoC X1000 SPI Driver

SP1Slave 0 5Pl Slave 1

SPI Driver

MOSI MISO SCK CS MOSI MISO SCK CS

SPI0

MOsI
MISO
SCK

SPI Slave 2 SPI Slave 3

SPI1

MOSI MISO SCK CS MOSI MISO SCK CS

MOsI
MISO|

GPIO Block

SPI0:CS0
SPI0:C51

SPI1:CS0
SPI1:CS1

4.8 12C* Interface Driver

The 12C and GPIO components are contained within the same PCI function and share
resources as a consequence. The 12Cc register interface is 100% compatible with the
upstream i2c-designware-core driver.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
12 Document Number: 330235-004US

. ®
Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000 l n tel

4.9

Note:

Note:

October 2015

This register interface is incorporated in the intel_qrk_gip driver, which provides a
standard 12C interface when loaded. The GIP interface can be loaded in either MSI or
non-MSI mode using the commands:

modprobe intel_qrk_gip

or

modprobe intel_qrk_gip enable_msi=0

In either case, loading this driver and using the command modprobe i2c-dev
populates:
/dev/i2c-0

Once populated, it is possible to communicate with downstream 12C devices using the
standard Linux* API to interact with the 12C bus.

To load the 12C driver in isolation (that is, without the GPIO enabling logic contained in
the GIP block), type:

modprobe intel_qrk_gip gpio=0
or
modprobe intel_qrk_gip gpio=0 enable_msi=0

The GIP block defaults the 12C devices to fast mode operation (400 kHz). To set to the
standard mode operation (100 kHz), type:
modprobe intel_qrk_gip i2c_std_mode=1

Alternatively, you can set the i2c_std_mode parameter to “1” in the platform data
(intel_qgrk_gip_get_pdata) section of the Intel® Quark™ SoC X1000 Software.

GPIO Interface Driver

This driver is different from the one described in Section 6.1, “Legacy GP1O” on page 9.

The GPI10 and 1°C components are contained within the same PCI function and share
resources as a consequence. This GPIO interface is a new register interface and is
enabled by the GPIO section of the intel_qrk_gip device driver module.

In the Intel® Quark™ SoC X1000 Datasheet, these pins are referred to as GPIO[7:0].
These GPIO pins are interrupt-capable. They support rising/falling edge-triggered
interrupts (but not both edged interrupts) and high/low level-triggered interrupts.

To load the GPIO driver in isolation (that is, without the 1°C enabling logic contained in
the GIP block) type:

modprobe intel_qrk_gip i2c=0

or

modprobe intel_qrk_gip i2c=0 enable_msi=0

MSIs are enabled by default. Disabling MSls is not recommended for performance
reasons.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 13

intel.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Table 4. Intel® Quark™ SoC GPIO Interface Pin Table
Linux GPIO Well Pin Name

gpio8 Core GPIO[0]
gpio9 Core GPIO[1]
gpiol0 Core GPIO[2]
gpioll Core GPIO[3]
gpiol2 Core GPIO[4]
gpiol3 Core GPIO[5]
gpiol4 Core GPIO[6]
gpiol5 Core GPIO[7]

4.10 Ethernet Interface Driver (STMMAC)

Note:

4.10.1

The STMMAC driver upstream in the Linux* kernel is nearly entirely compatible with
Intel® Quark™ SoC X1000, with some minor updates to the DMA component of the
STMMAC driver. This update to STMMAC is based on modification of the upstream
driver.

In addition to the necessary DMA enumerating descriptors in STMMAC, additional
Intel® Quark™ SoC X1000 specific silicon-enabling enhancements have been made to
the standard STMMAC. The enhancements include:

< VLAN
— Hardware filtering has been added
— Maximum number of hardware filtered VLAN tags is 16
— Tag ID range O - 15

The following commands demonstrate how to load the STMMAC in either MSI or
non-MSI mode.

modprobe stmmac

modprobe stmmac_pci

or

modprobe stmmac

modprobe stmmac_pci enable _msi = 0

MSI mode is enabled by default.

VLAN

The standard Linux* commands ip or vconfig can be used to add or remove hardware
accelerated VLAN tag filtering entries in STMMAC.

The following commands demonstrate how to add VLAN # 5:
veconfig add enp0s20f6 5
ifconfig enp0s20f6.5 xxx.yyy.zzz.qqq

Once setup is complete, VLAN frames with tag ID 5 are processed by Intel® Quark™
SoC X1000 while other Ethernet frames with different tags are not processed by
hardware and do not raise interrupts to the core.

To remove a hardware filtered VLAN interface, enter the command:
vconfig rem enp0s20f6.5

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

14

Document Number: 330235-004US

. ®
Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000 l n tel

4.11

Note:

Note:

October 2015

Userspace 1/0 Subsystem (U10O) enabling for GPIO

A UIO interface is added to the Intel Quark SoC GPIO Interface Driver and Intel Quark
SoC Legacy GPIO Driver. This allows the user to bypass the default gpiolib sysfs
methods.

To enable this interface, make the following kernel configuration changes:
CONFIG_INTEL_QRK_GIP = m
CONFIG_GPIO_SCH = m

CONFIG_INTEL_QRK_GPIO_UIO = y

The UIO interface is non-coherent with the default gpiolib sysfs methods. The UIO
interface is not able to make atomic changes to the GPIO registers but the default
gpiolib sysfs methods are able to. Changes made by the default gpiolib sysfs
methods would be overwritten by the UIO interface in a race condition.

The current driver architecture requires the Intel Quark SoC GPIO Interface Driver and
Intel Quark SoC Legacy GPIO Driver to be built as modules to enable the UIO interface.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 15

. ®
Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000 l n tel >

5.0

Intel® Quark™ SoC X1000 Host Bridge Drivers

51

Note:

Warning:

51.1

October 2015

Host Bridge Drivers in the context of Intel® Quark™ SoC X1000 refer to drivers for
silicon functionality that are part of the Host Bridge interface on Intel® Quark™ SoC
X1000. This functionality is exposed via a side-band driver that arbitrates access to the
various components using the Host Bridge interface.
The side-band driver provides access to the following blocks of functionality:

e eSRAM

= Isolated Memory Regions

e Thermal

eSRAM Configuration Driver

Intel® Quark™ SoC X1000 contains a set of embedded SRAM (eSRAM). There is 512
kilobytes of eSRAM sub-divided into 128 pages of four kilobytes each. eSRAM can be
configured in a per-page manner, and eSRAM can exist in an overlay of memory in the
address space.

eSRAM is a fast access low-latency memory that has been measured on Intel® Quark™
SoC X1000 to be approximately 3x faster than DDR, in terms of CPU wait-states and
access times.

For Linux* enabling purposes, eSRAM has been configured in a per-page overlay mode.
This approach allows overlay of specific regions of memory. For example, the interrupt
descriptor table or arbitrary interrupt service routines (ISRs) can be locked into eSRAM.

Kernel virtual addresses can be can be mapped into eSRAM. The minimum granularity
for any map operation is 4 kilobytes, hence any other data within the same 4 kilobyte
address range is also mapped.

Unmapping is neither supported nor advised due to potential coherency issues when
flushing eSRAM back to DRAM.

Due to the eSRAM hardware architecture, there is a time window during the page
overlaying process whereby the DRAM page itself is not accessible. As a consequence,
users should avoid overlaying pages containing symbols used by the driver’s page-
populate routine. A fully comprehensive list may be obtained by analyzing the
subroutine call graph of intel_qrk_esram_page_populate_atomic().

Userspace APl Reference

A sysfTs interface has been provided to configure eSRAM mappings.
= /sys/devices/platform/intel-gqrk-esram.0/map_range
— Allows overlaying of a kernel page given its virtual address
— Allows viewing of all current overlaid pages
= /sys/devices/platform/intel-gqrk-esram.0/stats

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

intel.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

— Gives a status overview of current eSRAM state

— Number of free pages
— Other miscellaneous data

Note: At the time of writing, the map_range interface only allows overlaying one page at a
time.
51.1.1 Example showing eSRAM stat usage
root@quark:~# cat /sys/devices/platforn/intel-qrk-esram.0/stats
esram-pgpool : 0x19fcfe00
esram-pgpool . free : 128
esram-pgpool . flushing : 128
esram-ctrl : 0x047¥3f91
esram-ctrl.ecc : enabled
esram-ctrl.ecc-theshold : 63
esram-ctrl_pages : 128
esram-ctrl._dram-flush-priorityi : 2
esram-block - 0x00000000
free page - 128
used page : 0
refresh : Oms
page enable retries -0
page disable retries -0
ecc next page : 127
5.1.1.2 Example of Mapping a Virtual Address into eSRAM
The following examples shows how to overlay the page where printk is defined into
eSRAM.
root@quark:~# cat /proc/kallsyms |grep " printk$"
cl1341299 T printk
[Inspect page @ 0xc1341000 to ensure it is safe to overlay]
root@quark:~# echo 0xcl1341000 > /sys/devices/platform/intel-qrk-esram.0/
map_range
root@quark:~# cat /sys/devices/platform/intel-qrk-esram.0/map_range
sysfs
Page virt 0xc1341000 phys 0x01341000
Refcount 1
51.2 Kernel API Reference
An API to map kernel address ranges is available.
51.2.1 intel_grk_esram_map_range

Map 4kB increments at given address to eSRAM. Maps any arbitrary kernel virtual
address from vaddr to vaddr + size bytes. This mapping is then named mapname.

int intel_qgrk_esram_map_range(void * vaddr, u32 size, char * mapname);

« vaddr: Virtual address to start mapping (must be 4k aligned)

* size: Size to map from - aligned to a 4 kilobyte boundary

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*
10

October 2015
Document Number: 330235-004US

. ®
Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000 l n tel >

52

521

53

October 2015

- mapname: Mapping symbolic name shown in sysfs
= return O success < O failure

Isolated Memory Region Driver

Isolated Memory Region (IMR) allocation and assignments are detailed in the Intel®
Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual. In Linux* a run-time
interface provides an convenient method to view IMR allocations.

This interface shows the IMR allocations provided as part of the secure boot reference
code on the Intel® Quark™ SoC X1000.

IMR Run-time Kernel Protection
root@quark:~# cat /sys/kernel/debug/imr_state

imr00: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbFFFFFFf, wmask=OxFFFFFFFf, disabled, locked

imrOl: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbfffffff, wmask=0OxFfFFfffff, disabled, locked

imr02: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbfFFffff, wmask=0OxFFFFFfff, disabled, locked

imro3: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbfFFffff, wmask=0OxFFFFFfff, disabled, locked

imro4: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbfFFFFrff, wmask=0xFFFFFFFf, disabled, locked

imro5: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbFFFFFFf, wmask=OxFFFFFFff, disabled, locked

imr06: base=0x0000000000000000, end=0x0000000000000000, size=0x00000000
rmask=0xbFFFFFFf, wmask=OxFFFFFFFf, disabled, locked

imr07: base=0x0000000001000000, end=0x00000000014elfff, size=0x004elfff
rmask=0x80000001, wmask=0xc0000001, enabled, locked

Thermal Driver

Linux* provides a standard thermal driver interface. Intel® Quark™ SoC X1000 hooks
its particular thermal silicon into this Linux* sub-system. The thermal driver is
minimalistic in design with no associated thermal cooling device attached to the one
and only thermal zone, thus the Intel® Quark™ SoC X1000 may require external
cooling.

Intel® Quark™ SoC X1000 hardware is set up to automatically shutdown on critical
temperature detection. The trip points described below are set in the driver and cannot
be changed.

Linux* provides an entire sub-system dedicated to triggering events based on hot and
critical events. The task of the thermal driver is to provide the minimum level of silicon
support to drive these events.

« Hot trip point: 95 degrees Celsius

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 11

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

The thermal driver incrementally polls the thermal sensor and when this threshold
is exceeded, a hot trip event is propagated into the thermal sub-system.

Critical trip point: 104 degrees Celsius

The Linux* thermal sub-system triggers a graceful system shutdown if the critical
trip threshold is reached.

Hardware failover critical temperature: 105 degrees Celsius

As a precautionary measure, Intel® Quark™ SoC X1000 silicon is configured to
drive a shutdown signal at 105 degrees Celsius. Assumption is that software polling
should catch an over-temperature situation when temperature meets or exceeds
the critical trip point (104 degrees Celsius). A one degree over-limit from the
maximum specified critical temperature forces embedded hardware to take
preventative action and drive a shutdown signal directly.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

12

Document Number: 330235-004US

[|} ®
Legacy Block Driver—Intel® Quark™ SoC X1000 l n tel >

6.0 Legacy Block Driver
The LPC address space contained within Intel® Quark™ SoC X1000 legacy block has
the following component that has been enabled in the Linux* run-time:
* Legacy GPIO
In order to enable this silicon functionality, a small modification is necessary to LPC
enabling software in Linux, adding appropriate PCI vendor/device.
6.1 Legacy GPIO
Note: This driver is different than the one described in Section 4.9, “GPIO Interface Driver”

October 2015

on page 13.

Intel® Quark™ SoC X1000 contains eight GPIOs within the legacy bridge. These GPIO
pins are interrupt-capable. They support rising/falling/both edge-triggered interrupts.

These legacy GPIOs provide the ability to drive GPE events and hence to resume an
Intel® Quark™ SoC X1000 device in a low-power state.

There are:

* 6 GPIO pins in the resume power well
In the Intel® Quark™ X1000 Datasheet, these pins are referred to as
GPIO_SUS[5:0].
The GPIOs in the resume well can be used to drive a General Purpose Event (GPE)
through the ACPI sub-system that subsequently takes the Intel® Quark™ SoC
X1000 out of a low-power state.

= 2 GPIO pins in the core well
In the Intel® Quark™ X1000 Datasheet, these pins are referred to as GPIO[9:8].

The eight legacy GPIO are indexed in the range [0,7] and can be accessed from user-
space through sysfs interface.

To load the legacy GPIO driver, type:
modprobe gpio-sch

The commands below demonstrate how to drive a signal to the first legacy GPIO:
root@quark# echo 0 > /sys/class/gpio/export # Reserve Ffirst legacy GPIO
root@quark# echo "out™ > /sys/class/gpio/gpioO/direction # Set as output
root@quark# echo 1" > /sys/class/gpio/gpioO/value # Drive logical one

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

intel.

Intel® Quark™ SoC X1000—Legacy Block Driver

Table 5. Intel® Quark™ SoC Legacy GPIO Interface Pin Table
Linux GPIO Well Pin Name

gpio0 Core GPIO[8]

gpiol Core GPIO[9]

gpio2 Suspend GPI10O_SUSIO0]
gpio3 Suspend GPIO_SUSI[1]
gpio4 Suspend GPI0O_SUSI[2]
gpio5 Suspend GPIO_SUSI[3]
gpio6 Suspend GPIO_SUS[4]
gpio7 Suspend GPIO_SUS[5]

Intel® Quark™ SoC X1000

Software Developer’s Manual for Linux*

10

October 2015
Document Number: 330235-004US

[|} ®
Expansion Drivers—Intel® Quark™ SoC X1000 I n tel >

7.0 Expansion Drivers
This section describes drivers that are included with the Intel® Quark™ SoC X1000
Software package to enable board-specific functionality.
= AD7298 Driver
* Bluetooth® Driver (requires mini-PCle card)
* Wi-Fi* Driver (requires mini-PCle card)
e 3G Modem Driver (requires mini-PCle card)
7.1 AD7298 Driver
The Analog Devices* AD7298 is a 12-bit, low power, 8-channel, successive
approximation ADC with an internal temperature sensor. The LS-ADC does not provide
a user-space interface directly, it is provided by the 110 subsystem in the Linux* kernel.
The ADC registers with the 110 subsystem as an 110 ADC device driver. As such, it
makes calls to functions on the 110 kernel APl and provides callbacks which can be used
by the 110 subsystem to invoke driver operations.
Figure 4. ADC Location in Software Stack

October 2015

User-space applications

LS ADC
driver

Kernel

50C

To load the drivers for the AD7298, perform the following sequence:

= Enable GPIO driver:
modprobe intel_qrk_gip

= Enable 110 support:
modprobe industrialio

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

Intel® Quark™ SoC X1000—Expansion Drivers

= Enable SPI driver:
modprobe spi-pxa2xx-pci

= Enable AD7298 driver:
modprobe ad7298

After the driver loading sequence is complete, the AD7298 driver enables the following
data points via the Industrial 1/0 (110) kernel API directly read from the ADC chip.

= Provide the RAW voltage at the input in the range O - 4095 representing the voltage
range O to +5 Volts
/sys/bus/iio/devices/iio:device0/in_voltage[0-7]_raw
/sys/bus/iio/devices/iio:device0/in_voltageO_raw
/sys/bus/iio/devices/iio:device0/in_voltagel raw
etc

= Scaling value to apply to the raw voltage input
/sys/bus/iio/devices/iio:device0/in_voltage_scale

= Temperature offset
/sys/bus/iio/devices/iio:device0/in_tempO_offset

= Raw instantaneous temperature of the ADC die
/sys/bus/iio/devices/iio:device0/in_tempO_raw

= Temperature scaling factor
/sys/bus/iio/devices/iio:device0/in_temp0O_scale

Other data points are provided by the Linux* 110 APl but are out of scope for this
document.

Using the above values, it is possible to calculate the real instantaneous voltage in
milli-Volts at a given voltage input using the following formula:

(Raw value * scale value) / 1000 = Vj,o actual input voltage in mV

Using the above values, it is possible to calculate the internal die temperature on the
AD7298, in milli-degrees Celsius using the following formula:

((in_tempO_offset + in_tempO_raw) * in_tempO_scale) = Tyje

7.2 Bluetooth* Driver

Bluetooth functionality is provided by a mini-PCle card connected to the mini-PCle slot
on the platform. The following cards have been validated with the Intel® Quark™ SoC
X1000 Software:

« Intel® Centrino® Wireless-N 135 card
< Intel® Centrino® Dual Band Wireless-N 7260 (Dual Band Wi-Fi, 2.4 and 5 GHz)

A requirement exists to include the firmware for the card in the root filesystem at the
following path:

/lib/Firmware/iwlwifi-135-6.ucode (Intel® Centrino® Wireless-N 135)

or

/lib/Firmware/iwlwifi-7260-9.ucode (Intel® Centrino® Dual Band Wireless-N
7260)

The following drivers must be loaded to enable USB-bluetooth components:
modprobe ehci-pci
modprobe ohci-hcd
modprobe btusb

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
10 Document Number: 330235-004US

Expansion Drivers—Intel® Quark™ SoC X1000

Once loaded, the sysfs entry below should appear:
/sys/module/bluetooth

The following user-space components are required:
bluetoothd
hciconfig
hcitool

7.2.1 Device Discovery

hciconfig <BT DEVICE NAME> noscan

hciconfig <BT DEVICE NAME>
Expected UP_RUNNING

hcitool scan --flush

hciconfig <BT DEVICE NAME> piscan

7.2.2 Service Discovery

sdptool browse <BT_2_BD_ADDR>

7.2.3 Establish Connection

hcitool dc <BT_ADDR>
hcitool cc <BT_ADDR>
hcitool con

hcitool dc <BT_ADDR>

7.2.4 Ping

12ping -c 5 <BT_ADDR>

7.3 Wi-Fi* Driver

Wi-Fi functionality is provided by a mini-PCle card connected to the mini-PCle slot. The
Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module (Dual Band Wi-Fi, 2.4 and
5 GHz) has been validated with the Intel® Quark™ SoC X1000 Software.

A requirement exists to include the firmware for the Intel® Centrino® Advanced-N
6205 Wi-Fi Radio Module in the root filesystem at the following path:

/lib/firmware/iwlwifi-6000g2a-6.ucode

Latest firmware for this card can be downloaded from:
http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

To load a driver for the Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module, type
the following command:

modprobe iwlwifi

After a successful load of this driver, the following sysfs path is available:
/sys/class/net/wlan0

Intel® Quark™ SoC X1000
October 2015 Software Developer’s Manual for Linux*
Document Number: 330235-004US 11

http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

[| ®
l n tel Intel® Quark™ SoC X1000—Expansion Drivers

7.3.1 Enable/Disable WLAN Radio

e Get the index of the device
rfkill list

« Disable radio
rfkill block 0

e Enable radio
rfkill unblock 0

7.3.2 Scan for Wi-Fi Networks

wlist wlanO scan

7.3.3 Configure a Wi-Fi Device

Enter the command:
edit /etc/network/interfaces

Add the following:
auto wlanO
iface wlanO inet static
address <IP ADDRESS>
netmask <NETMASK>
wireless_mode managed

wireless_essid <SSID_NAME>
wpa-driver wext
wpa-conf /etc/wpa_supplicant.conf

7.3.4 Generate wpa_supplicant File
This file is used to configure a protected Wi-Fi network.

Generate the WPA Passphrase:
wpa_passphrase essid <PassPhrase>

Generate the wpa_supplicant.conf file:
network={
ssid="‘essid"
#psk=<PassPhrase>
psk=<Result from last command>

}
7.3.5 Connect to a Wi-Fi Network
ifup wlanO
7.3.6 Disconnect from a Wi-Fi Network

ifdown wlanO

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
12 Document Number: 330235-004US

[|} ®
Expansion Drivers—Intel® Quark™ SoC X1000 l n tel >

7.4 3G Modem Driver

GSM/3G communications functionality can be provided by a mini-PCle card connected
to the mini-PCle slot. The Telit* HE910 mini-PCle module (specifically, the functionality
for GSM Voice and SMS communications, and HSPA+ data communications) has been

validated with the Intel® Quark™ SoC X1000 Software.

Driver Requirements:

Telit* HE910 requires USB2.0 support in kernel
Telit* HE910 requires PPP (point-to-point protocol) support in kernel

Use of active GPS antenna needs external circuit for powering antenna's amplifier

Software tool requirements:

minicom - for running scripts
Can be compiled as ipk package

microcom - handy for executing simple AT commands

Microcom is a part of busybox package.

If it is not installed, it can be enabled in yocto using the command:
bitbake busybox -c menuconfig

then re-installed as ipk package.

pppd - Point-to-point protocol

ppp is used for data packet connection. It can be enabled in yocto as an image
feature "ppp"

To load the drivers, perform the following sequence:

Enable USB controllers:
modprobe ehci-pci
modprobe ohci-hcd

Enable Communication Device Class Abstract Control Model interface:
modprobe cdc-acm

References

1.

October 2015

HE910/UE910 AT Commands Reference Guide
http://www.telit.com/module/infopool/download.php?id=4092
GPS Application Note
http://www.telit.com/module/infopool/download.php?id=5442
DVI Application Note - 12S communication with Maxim 9867 codec
http://www.telit.com/module/infopool/download.php?id=4094
Hardware guide
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200

. Minicom manual

http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 13

http://www.telit.com/module/infopool/download.php?id=4092
http://www.telit.com/module/infopool/download.php?id=5442
http://www.telit.com/module/infopool/download.php?id=4094
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200
http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

7.4.1

7.4.2

7.4.3

7.4.4

7.4.5

7.4.6

Note:

7.4.7

Intel® Quark™ SoC X1000—Expansion Drivers

Verify System Installation and Configuration

dmesg | grep ttyACM
/dev/ttyACM<X>
- list of port devices created by cdc-acm driver

The serial port used for communicating with the 3G modem is /dev/ttyACMO

Send an AT Command to HE910 with Microcom

echo -ne "ATE1\r" | microcom -X -t 500 /dev/ttyACMO

Use Minicom

Starting minicom:
minicom -D /dev/ttyACMO

AT commands can be sent to the modem from minicom’'s console by typing.
For HE910 AT commands reference guide, see: References [1]

For detailed minicom guide, see: References [5]

Request Model ldentification
AT+GMM

Expected:
HE910
OK

Request Modem Capabilities
AT+GCAP

Expected:
+GCAP: +CGSM,+DS,+FCLASS,+MS,+ES
OK

Check Radio Access Network Registration
AT+CREG?

Expected sample:
0,1
- registered to home network

Result may vary, depending on condition. For details / see: references [1]

Check Signal Strength
AT+CSQ

Expected sample:
+CSQ: 11,2
OK

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

14

Document Number: 330235-004US

Expansion Drivers—Intel® Quark™ SoC X1000

7.4.8

7.4.9

7.4.10

October 2015

List all Available Networks
AT+COPS=?

Expected sample:
+COPS: (2,"Vodafone IRL",,"27201",2),(2,"Vodafone IRL",,"27201",0),
(3,702 - IRL",,"27202",2),(3,"IRL 05",,"27205",2),
(3, IRL-METEOR™, ,"'27203",2),(3,"02 - IRL",,"27202",0),
(3,"IRL-METEOR", ,"'27203",0), ,(0-4), (0,2)

Send an SMS Text Message to 0123456789

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Start sending the text message, specifying the number to send to.
AT+CMGS="'0871234567""

The modem returns a > prompt. Type the message and press Ctrl-z.
> Hello World

After the Ctrl-z, the modem pauses for a few seconds and the following response is
returned:

+CMGS: <n>

OK

Receive an SMS Text Message

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Select SIM card memory as SMS storage
AT+CPMS=""SM""

Expected:
OK

After entering the following command, all messages are printed:
AT+CMGL="ALL"

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 15

intel)

7.4.11

7.4.12

7.4.13

7.4.14

7.4.15

Place a Call to 0871234567

Switch to voice mode
AT+FCLASS=8

Expected:
OK

Dial the number
ATD0871234567

Expected:
OK

Receive a Call

Switch to voice mode
AT+FCLASS=8

Once modem is called
RING

Message is printed on console.

Call can be answered with following command

ATSO=1

Hang Up
AT+CHUP

Expected:
OK

Intel® Quark™ SoC X1000—Expansion Drivers

Configure Data Packet Connection (PPP)

There are many PPP configuration guides available in the internet.

Configuration may vary depending on service provider.

Example guide:

https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd

Enable Data Packet Connection (PPP)

Once ppp is configured, ppp connection can be established with the command:

pon

Connection can be tested with:
ping www. intel .com

Release the connection with:
poff

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

16

October 2015
Document Number: 330235-004US

https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd
http://www.google.com

[|} ®
Expansion Drivers—Intel® Quark™ SoC X1000 l n tel

7.4.16

October 2015

Obtain GPS Location
Make sure that GPS antenna is connected to the Telit* HE910 mini-PCle module.

Initialize GPS module:
AT$GPSNVRAM=15,0

Expected:
OK

Enable GPS:
AT$SGPSP=1

Expected:
OK

The GPS location is updated after a certain amount of time (a few seconds up to a few
minutes), depending on GPS signal strength and previously stored GPS data.

GPS location can be obtained with:
AT$GPSACP

Expected sample:
$GPSACP:
152324 .000,5267.1849N,00854.8107W,3.00,310.0,3,000.00,0.00,0.00,200412,05
OK

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 17

Sample Applications—lntel® Quark™ SoC X1000

8.0 Sample Applications
This section describes sample applications that can be used with the Intel® Quark™
SoC drivers. The generic_buffer application is available as a source file under the kernel
source tree at <kernel>/drivers/staging/iio/Documentation.

8.1 Generic Buffer

October 2015

generic_buffer is a sample application that demonstrates how to retrieve buffered
samples from an ADC driver via the Industrial 1/0 (110) sysfs interface.

This particular example uses the AD7298 ADC driver (see Section 7.1), however, other
110 ADC drivers may also be used.

This example uses the 110 sysfs trigger option, which allows an application or script to
explicitly trigger each sampling event, by writing a dedicated file under sysfs. This gives
the application control over the timing and quantity of samples collected from the ADC.
However, as each trigger incurs the overhead of a system call, this method is not
recommended where maximum sampling rates are needed.

Perform the steps below to use generic_buffer for gathering buffered samples from the
desired ADC driver:

1. Load the necessary kernel modules:
modprobe ad7298
modprobe i1io-trig-sysfs

2. Enable a sysfs trigger that allows us to trigger the driver from user-space to collect a
new set of samples from the selected ADC channels:

echo 0 > /sys/bus/iio/devices/iio_sysfs_trigger/add_trigger

3. Select the ADC channels that you want to sample. Here's a suggested list:

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_timestamp_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_currentO_rms_en
echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_currentl_rms_en
echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/
in_powerQ_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/
in_powerQO_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/

in_powerO_avg_react_en

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

Intel® Quark™ SoC X1000—Sample Applications

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_power0O_factor_en
echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/
in_powerl_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/
in_powerl_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/
in_powerl_avg_react_en

echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_powerl_ factor_en
echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_voltageO_rms_en
echo 1 > /sys/bus/iio/devices/iio\:devicel/scan_elements/in_voltagel rms_en
4. Run the data collection sample application with the following parameters:

_./generic_buffer -s -w 2000 -c 1 -n ad7298 -t sysfstrig0 -1 2000 -o

output.csv

where:

-S Use a sysfs-type trigger.

-w 2000 Delay for 2000 microseconds between each invocation of the trigger.
-c 1 Collect 1 set of samples. Buffered samples are output after each set.
-n ad7298 Name of the 110 device to use.

-t sysfstrig0 Name of the 11O trigger to use.

-1 2000 Number of samples to collect in each set.

-0 output.csv Name of output file to save buffered samples to in CSV format.

The expected result is an output file with header line and 2000 lines of samples. One
column contains a timestamp value, expressed in nanoseconds, which should show that
the samples are approximately 3300 microseconds apart on average (which translates
into a sample rate of approximately 300 Hz). This 3300 microsecond interval is
comprised of the 2000 microsecond delay specified, as well as the overhead incurred in
the execution of the trigger via sysfs.

8.2 Generic Buffer High Resolution Timer

This application is similar to the generic_buffer application described in Section 8.1,
however, it uses a different 110 trigger option, called the High-Resolution Timer trigger.
When configured and enabled, this trigger operates at kernel level, using a
high-resolution timer interrupt source (if available) to trigger 110 sampling at a desired
frequency.

The trigger frequency is set via sysfs. The trigger is associated with the 110 ADC driver
and, when buffered sampling is enabled for that driver, the trigger automatically starts
firing at the desired frequency and runs until the buffered sampling is later disabled.

1. Load the necessary kernel module:

modprobe iio-trig-hrtimer

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015
10 Document Number: 330235-004US

[|} ®
Sample Applications—lntel® Quark™ SoC X1000 l n tel

2. Instantiate the hrtimer trigger:

echo 0 > /sys/bus/iio/devices/iio_hrtimer_trigger/add_trigger

3. Enable the set of ADC channels to be sampled as described in Section 8.1, step 3.

4. Run the data collection sample application with the following parameters:

./generic_buffer_hrtimer -f 100 -p 10 -c 1 -n ad7298 -t hrtimer_trig0 -o
output.csv

where:

-T

-0

100

10

1

ad7298
hrtimer_trig0

output.csv

Sampling frequency - number of samples to collect per second
Sampling duration in seconds

Collect 1 set of samples. Buffered samples are output after each set.
Name of the 110 device to use.

Name of the 110 trigger to use.

Name of output file to save buffered samples to in CSV format.

The expected result is an output file with header line and approximately 1000 lines of
samples. One column contains a timestamp value, expressed in nanoseconds, which
should show that the samples are approximately 10000 microseconds apart on
average.

October 2015

Document Number: 330235-004US

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*
11

[|} ®
Secure Boot Implementation—lntel® Quark™ SoC X1000 l n tel >

9.0 Secure Boot Implementation

9.1 Overview
A key feature of the Intel® Quark™ SoC X1000 is the concept of secure boot. Secure
boot means that only authenticated software that has been cryptographically verified
can be run on a secure SKU Intel® Quark™ SoC X1000 system.
The concept is predicated on a root-of-trust (RoT) from the reset vector, through to the
run-time kernel. Each phase of the boot verifies the next phase of the boot, before
handing off to that phase.
In this way, Intel® Quark™ SoC X1000 reference software stack provides a mechanism
to ensure only authenticated software can be booted on a Intel® Quark™ SoC X1000
system.
There are two variants of Intel® Quark™ SoC X1000:

= Secure boot enabled (called secure SKU)
= Non-secure boot enabled (called base SKU or non-secure SKU)

Both variants enable Isolated Memory Regions (IMRs) during boot, through bootloader
and kernel. However, only the secure SKU of Intel® Quark™ SoC X1000 requires
cryptographic authentication of images in order to boot.

9.2 Isolated Memory Regions
IMRs are used extensively by grub and Linux* to provide extra security during boot.
IMRs can be used to define fine-grained access masks to defined memory regions.
These access masks prevent bus masters, from accessing particular memory regions
based on the definitions of access rights for a given memory region associated with an
IMR.
There is a total of 8 IMR regions.
Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for a
detailed description of IMR settings throughout the boot process.

9.3 Bootloader Security

October 2015

The reference second stage bootloader solution carries out two important functions in
terms of secure boot:

* Asset verification
— Kernel
— Bootloader config file - grub.conf
— InitRD

* IMR setup/teardown

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

Document Number: 330235-004US 9

intel.

9.3.1

9.3.2

Intel® Quark™ SoC X1000—Secure Boot Implementation

— IMR setup for kernel boot params

— IMR setup for compressed kernel image

This reference solution maintains a chain of trust through bootloader into kernel by
ensuring that all assets executed have been validated and encapsulated within an IMR.

Asset Verification Flow

Grub verifies any kernel, init-ramdisk or grub configuration file, it relies upon in secure
boot mode.

Grub executes the boot logic given to it in grub.conf. The grub.conf file specifies the
boot configuration. The grub.conf file also specifies where to find boot assets.
Supported locations are:

e SPI Flash
= SD/USB mass storage device

In secure boot mode, grub wiill:
« Parse the master flash header to identify the location of grub.conf
= Read in the contents of grub.conf
= Verify grub.conf against a cryptographic signature
« For the selected menu entry in the grub.conf file
— Search for the asset and its signature
— Verify the asset against the asset signature
For any of the previous steps, a failure to find an asset or an asset signature, or a

failure to verify an asset against an asset signature, will result in grub falling back to a
restricted shell exporting a minimal amount of available commands.

Isolated Memory Region Flow
Grub is booted by EDK with IMRs already configured around a number of assets.

As part of the reference secure boot solution, grub will read a Linux* kernel image from
SPI flash or from USB/MMC mass storage.

Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for
the IMR setup flow in grub.

Grub subsequently verifies bzImage against the cryptographic key for bziImage once
the compressed image is placed within the IMR protection region.

Finally, assuming verification succeeds, control is handed from grub to the compressed
kernel image with which is wrapped by an IMR, restricting access to CPU read/write
only.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

10

Document Number: 330235-004US

Secure Boot Implementation—lntel® Quark™ SoC X1000

Figure 5. Grub Secure Boot Flow

Parse MFH identify address of grub.conf

Mo
Fass

Yes

Read contents of grub.conf

Mo

Pass

Yes

Verify grub.conf against crypto key (secure only)

Mo

Pass

Ye

m

Verify each boot asset against cypto key (secure only)

Mo

Pass

Yes

s

Boot asset specified in grub.conf

A

Execute EDKII recovery mechanism callback

Note: On secure SKUs, grub requires an accompanying signature file in order to
successfully boot. For details, see the [Build & SW User Guide].

October 2015
Document Number: 330235-004US

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*
11

9.4.1

9.4.1.1

9.4.1.2

9.4.1.3

Intel® Quark™ SoC X1000—Secure Boot Implementation

OS Security

The reference OS solution for Intel® Quark™ SoC X1000 adds IMR protection to the
uncompressed kernel as well as bringing the system to a final state in terms of IMR
protection.
Specifically, the reference OS solution:

« Places an IMR around executable sections of the kernel image.

= Tears down any IMRs that are not required for the run-time system.

« Locks any unlocked IMRs.

= Provides a convenient debug interface to view the size, extent, and state of each

IMR.

Refer to Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual for a
detailed breakdown of IMR state at the OS boot/runtime stage.

Linux* IMR setup

Default behaviour

The reference IMR run-time solution on Intel® Quark™ SoC X1000 has the following
default behavior:

= allocates an IMR region for the kernel read-only, initialized data section.

« tears down IMRs that are not needed at run-time

= locks all IMRs.
IMR setup options
The following options modify the default behaviour of the IMR setup flow. These options
can only be passed to the kernel command line at boot time through grub, and are
typically only used for debugging or development purposes.

An option is provided by the IMR driver not to lock all IMRs by default.imr.imr_lock=0

A second parameter disables IMR allocation altogether.
imr_enable=0

When imr_enable=0 the driver does the following:
= does not allocate any IMR region for the kernel read-only, initialized data section
Debug Interface

For the purposes of system debug, an interface is provided in /sys to view the setup of
the IMRs on a booted reference Intel® Quark™ SoC X1000 system.

Read data from /sys/kernel/debug/imr_state to view the address range of each
IMR[0-7] and its state, in the run-time system.

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* October 2015

12

Document Number: 330235-004US

	Intel® Quark™ SoC X1000 Software Developer’s Manual for Linux*
	Legal Notices and Disclaimers
	Contents
	Figures
	Tables

	Revision History
	1.0 Introduction
	1.1 About this Manual
	1.2 Introduction
	1.3 Related Documentation
	Table 1. Product Documentation

	1.4 Terminology
	Table 2. Terminology

	1.5 Conventions

	2.0 Platform Overview
	2.1 Platform Synopsis
	Figure 1. Intel® Quark™ SoC X1000 Block Diagram

	2.2 SoC Features

	3.0 Software Overview
	3.1 High-Level Software Architecture Overview
	Figure 2. Software Architecture Overview

	3.2 Linux* Support
	3.2.1 Standard OS Drivers
	3.2.2 Host Bridge OS Drivers
	3.2.3 Bootloader Host Bridge Drivers

	3.3 User-Space Software Dependencies

	4.0 Intel® Quark™ SoC X1000 Drivers
	4.1 Overview
	Table 3. Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers

	4.2 USB OHCI Controller Interface Driver
	4.3 USB 2.0 EHCI Controller Interface Driver
	4.4 USB Device Interface Driver
	4.5 SD/MMC Controller Interface Driver
	4.6 HSUART Interface Driver
	Note: In the Intel® Quark™ SoC X1000 Datasheet, this is referred to as the high speed UART.
	Note: There is no support supplied for legacy I/O port access at addresses 0x3F8, 0x2F8, 0x3E8 or 0x2E8.
	Note:

	4.7 SPI Interface Driver
	Figure 3. Multiplexing using Intel® Quark™ SoC X1000 SPI Driver

	4.8 I2C* Interface Driver
	4.9 GPIO Interface Driver
	Note: This driver is different from the one described in Section 6.1, “Legacy GPIO” on page 9.
	Note: MSIs are enabled by default. Disabling MSIs is not recommended for performance reasons.
	Table 4. Intel® Quark™ SoC GPIO Interface Pin Table

	4.10 Ethernet Interface Driver (STMMAC)
	Note: MSI mode is enabled by default.
	4.10.1 VLAN

	4.11 Userspace I/O Subsystem (UIO) enabling for GPIO
	Note: The UIO interface is non-coherent with the default gpiolib sysfs methods. The UIO interface is not able to make atomic changes to the GPIO registers but the default gpiolib sysfs methods are able to. Changes made by the default gpiolib sysfs me...
	Note: The current driver architecture requires the Intel Quark SoC GPIO Interface Driver and Intel Quark SoC Legacy GPIO Driver to be built as modules to enable the UIO interface.

	5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers
	5.1 eSRAM Configuration Driver
	Note: Unmapping is neither supported nor advised due to potential coherency issues when flushing eSRAM back to DRAM.
	Warning: Due to the eSRAM hardware architecture, there is a time window during the page overlaying process whereby the DRAM page itself is not accessible. As a consequence, users should avoid overlaying pages containing symbols used by the driver’s...
	5.1.1 Userspace API Reference
	Note: At the time of writing, the map_range interface only allows overlaying one page at a time.
	5.1.1.1 Example showing eSRAM stat usage
	5.1.1.2 Example of Mapping a Virtual Address into eSRAM

	5.1.2 Kernel API Reference
	5.1.2.1 intel_qrk_esram_map_range

	5.2 Isolated Memory Region Driver
	5.2.1 IMR Run-time Kernel Protection

	5.3 Thermal Driver

	6.0 Legacy Block Driver
	6.1 Legacy GPIO
	Note: This driver is different than the one described in Section 4.9, “GPIO Interface Driver” on page 13.
	Table 5. Intel® Quark™ SoC Legacy GPIO Interface Pin Table

	7.0 Expansion Drivers
	7.1 AD7298 Driver
	Figure 4. ADC Location in Software Stack

	7.2 Bluetooth* Driver
	7.2.1 Device Discovery
	7.2.2 Service Discovery
	7.2.3 Establish Connection
	7.2.4 Ping

	7.3 Wi-Fi* Driver
	7.3.1 Enable/Disable WLAN Radio
	7.3.2 Scan for Wi-Fi Networks
	7.3.3 Configure a Wi-Fi Device
	7.3.4 Generate wpa_supplicant File
	7.3.5 Connect to a Wi-Fi Network
	7.3.6 Disconnect from a Wi-Fi Network

	7.4 3G Modem Driver
	References
	1. HE910/UE910 AT Commands Reference Guide
	2. GPS Application Note
	3. DVI Application Note - I2S communication with Maxim 9867 codec
	4. Hardware guide
	5. Minicom manual

	7.4.1 Verify System Installation and Configuration
	7.4.2 Send an AT Command to HE910 with Microcom
	7.4.3 Use Minicom
	7.4.4 Request Model Identification
	7.4.5 Request Modem Capabilities
	7.4.6 Check Radio Access Network Registration
	Note: Result may vary, depending on condition. For details / see: references [1]

	7.4.7 Check Signal Strength
	7.4.8 List all Available Networks
	7.4.9 Send an SMS Text Message to 0123456789
	7.4.10 Receive an SMS Text Message
	7.4.11 Place a Call to 0871234567
	7.4.12 Receive a Call
	7.4.13 Hang Up
	7.4.14 Configure Data Packet Connection (PPP)
	7.4.15 Enable Data Packet Connection (PPP)
	7.4.16 Obtain GPS Location

	8.0 Sample Applications
	8.1 Generic Buffer
	8.2 Generic Buffer High Resolution Timer

	9.0 Secure Boot Implementation
	9.1 Overview
	9.2 Isolated Memory Regions
	9.3 Bootloader Security
	9.3.1 Asset Verification Flow
	9.3.2 Isolated Memory Region Flow
	Figure 5. Grub Secure Boot Flow

	9.4 OS Security
	9.4.1 Linux* IMR setup
	9.4.1.1 Default behaviour
	9.4.1.2 IMR setup options
	9.4.1.3 Debug Interface

