
Order Number: 330236-005US

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide

October 2015

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
2 Order Number: 330236-005US

Legal Lines and DisclaimersBy using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined." Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

© 2015, Intel Corporation

330326 UEFI Firmware Writers Guide Comare
330326 UEFI Firmware Writers Guide Comare

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 3

Revision History—Intel® Quark™ SoC

Revision History

Date Document
Revision

Software
Release Description

August 2015 005 1.2

Updates are included with change bars and include:
• Section 21.7, “Redundant Images” on page 114
• Section 25.4, “UEFI Firmware Sources” on page 136
• Section 26.1.2, “EDKII SecurityPkg TPM Supported Features” on page 137
• Section 26.1.3, “EDKII SecurityPkg TPM Unsupported Features” on page 137
• Section 26.3, “TcgPei Driver Override” on page 138, added section
• Section 26.4, “TcgDxe Driver Override” on page 138
• Section 26.6, “TPM Measure Boot” on page 138
• Section 26.7, “UEFI Firmware Sources” on page 139, added 2.3 TcgPei Driver

Override to table

January 2015 004 1.1

Updates are indicated with change bars and include:
• Section 4.13, “Accessing Quark Platform Data System Flash Area” on page 35
• Section 16.4, “SMI Handler best practice” on page 96
• Section 17.0, “Power Management”: For POWER/RESET BUTTON event during

S3.
• Section 20.1.1, “Legacy GPIO Configuration” on page 105
• Section 21.0, “Security Enhancements”: For auto usage of security lockdown

policies on secure SKU hardware.
• Section 21.2, “Secure Boot” on page 108
• Section 21.4, “Legacy SPI Flash Protection” on page 112
• Section 21.11.3, “SMI Handler best practice” on page 116
• Section 21.12, “Rollback Protection on Intel® Quark™ SoC Secure Skus” on

page 116
• Section 22.8, “Write Capsule to Flash” on page 123
• Section 23.4, “Platform Early PEI Stage HOB Setup” on page 129
• Removed: Quark specific auto entry into Recovery boot on EDKII ASSERT.

Replaced by EDKII standard HALT loop during system boot.
• Section 25.0, “Additional Programming Items”: I2C* PI PEI Stage support.

June 2014 003 1.0.2

Updates are indicated with change bars and include:
• Removed: De-featured SPI DMA IOBAR (SPI DMA configured via Message

Network and not via CPU IO Space).
• Updated: IMR protection no longer enabled by default.
• Updated: Firmware Recovery trusts SPI flash if various checks pass.
• Updated: Trusted Platform Module (TPM) Support.
• Updated: UEFI Firmware Sources: Basic Firmware Requirements and GPIO

Handling.
• Updated: Firmware Update to add clarification on capsule creation.

May 2014 002 1.0.1

Updates are indicated with changebars and include:
• Updated Table 1, Table 2, and Table 3.
• Modified UEFI Firmware Sources references in Section 4.13 and Section 10.7.
• Updated Section 13.1 and added UEFI Firmware Sources reference for

Section 13.1.1.
• Modified UEFI Firmware Sources references in Section 20.3 and Section 21.13.
• Added Section 25.3, “I2C* Host Controller drivers” on page 135.
• Added Section 26.0, “Trusted Platform Module (TPM) Support” on page 137.
• Updated with trademarked term: Intel® Quark™ SoC (no changebars).

March 2014 001 1.0.0 First public release of document.

Intel® Quark™ SoC—Revision History

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
4 Order Number: 330236-005US

§ §

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 5

Contents—Intel® Quark™ SoC

Contents

1.0 About This Document .. 12
1.1 Terminology ... 12
1.2 Reference Documents .. 13
1.3 Related Documents ... 14
1.4 Related Websites... 15
1.5 Formats and Notations ... 15

2.0 Introduction .. 17
2.1 Component Identification ... 18

3.0 Register Access Mechanisms ... 20
3.1 Message Network .. 20

3.1.1 Message Network Registers ... 20
3.1.2 Message Network Register Programming ... 21

3.2 PCI Express* Configuration Space Base Address.. 22
3.2.1 Bus:Device:Function:Register Offset Translation... 23

4.0 Basic Firmware Requirements ... 24
4.1 Configuring Memory and MMIO Accesses .. 24
4.2 Early Memory Setup .. 24
4.3 Isolated Memory Regions (IMRs) ... 24
4.4 Initializing Chipset Registers ... 24

4.4.1 MMIO Write Considerations.. 24
4.4.2 Non-Standard BARs .. 25
4.4.3 Static Register Programming.. 26

4.5 Remote Management Unit Binary... 31
4.5.1 Secure SKU ... 31
4.5.2 Base SKU (Non-Secure) .. 31

4.6 RMU Binary Relocation ... 31
4.6.1 RMU Binary Relocation Considerations... 33

4.7 PCI/PnP Enumeration... 33
4.8 ACPI Support.. 33
4.9 Reporting Interrupt Routing to the OS.. 33
4.10 Reporting IO/Memory Resources to the OS ... 34
4.11 Chipset Sticky Registers ... 34
4.12 Boot Checklist... 35
4.13 Accessing Quark Platform Data System Flash Area... 35
4.14 UEFI Firmware Sources .. 39

5.0 DDR3 DRAM Configuration... 41
5.1 Intel® Quark™ SoC System Memory Controller ... 41
5.2 MRC Flow Selection ... 41
5.3 Programming Considerations .. 42
5.4 Memory Controller Initialization... 42

5.4.1 Clear Self-Refresh .. 42
5.4.2 Program DDR Timing Control ... 42
5.4.3 Program Pre-JEDEC Rank Decoding... 43
5.4.4 Perform DDR Reset... 43
5.4.5 Initialize DDRIO ... 44
5.4.6 Perform JEDEC Initialization... 44
5.4.7 Signal Initialization Complete... 45
5.4.8 Restore Timings ... 45
5.4.9 Disable Memory Caching ... 45
5.4.10 Receive Enable Training .. 46

Intel® Quark™ SoC—Contents

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
6 Order Number: 330236-005US

5.4.11 Write Leveling Training..47
5.4.12 Read Training...48
5.4.13 Write Training ..49
5.4.14 Store Timings...49
5.4.15 Enable Scrambling ..49
5.4.16 Program Execution Control...50
5.4.17 Configure Rank Population ...50
5.4.18 Perform Wake ..50
5.4.19 Change Refresh Period ..50
5.4.20 Set Periodic Compensation...51
5.4.21 Enable ECC ..51
5.4.22 Memory Test ..52
5.4.23 Lock Registers..52

5.5 Memory Training Engine ...52
5.6 Memory Reference Code Configuration..52
5.7 UEFI Firmware Sources ..53

6.0 CPUID Instruction..54
6.1 CPUID Functions..54
6.2 UEFI Firmware Sources ..56

7.0 Model Specific Registers ..57
7.1 UEFI Firmware Sources ..57

8.0 System Management Mode (SMM) ...58
8.1 Initializing SMM ...58

8.1.1 Responsibilities of the SMM Relocation Handler ...58
8.2 SMM Revision Identifier ..59
8.3 SMM State Save Map..59
8.4 SMRR Configuration Requirements ...60
8.5 UEFI Firmware Sources ..61

9.0 Cache Control ..62
9.1 MTRR Programming ...62
9.2 Processor Implications with Cached SMM Handler...63

9.2.1 System Management Mode Range Register ..63
9.2.1.1 UEFI Firmware Steps to Enable and Configure SMRR63

9.3 UEFI Firmware Sources ..65

10.0 Intel® Legacy SPI Controller ..66
10.1 Legacy SPI Flash Decode Enable ..66
10.2 Legacy SPI Flash Base Address..66
10.3 Write Protecting SPI Flash Ranges..66
10.4 Opcode/Opcode Type/Prefix Opcode Configuration ...66
10.5 Configuration Lockdown..66
10.6 Legacy SPI Flash Update Protection..67
10.7 UEFI Firmware Sources ..67

11.0 Reset Control ...68
11.1 Reset Control Overview ..68
11.2 Cold and Warm Reset Control ..68
11.3 UEFI Firmware Sources ..69

12.0 PCI IRQ Routing...70
12.1 PCI Interrupt to IRQ Router ..70
12.2 Interrupt Routing for Internal Agents..71
12.3 Interrupt Routing for PCI Express* Root Ports ...72
12.4 Reporting Interrupt Routing to the OS ..73

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 7

Contents—Intel® Quark™ SoC

12.4.1 Example PRT Packages for Interrupt Routing.. 74
12.5 UEFI Firmware Sources .. 75

13.0 PCI Express* Support .. 76
13.1 PCI Express* Configuration Space Base Address.. 76

13.1.1 Releasing PCIe Controller from Reset .. 77
13.1.2 Bus:Device:Function:Register Offset Translation... 77
13.1.3 Register Access Using Capabilities List... 77
13.1.4 Device/Port Type Field of PCI Express* Devices .. 78
13.1.5 Initialize “Slot Implemented” for Root Ports ... 78
13.1.6 Initialize “Physical Slot Number” for Root Ports... 78
13.1.7 Initialize “Slot Power Limit” for Root Ports.. 78
13.1.8 Port Configuration Registers .. 79
13.1.9 SCI/SMI Generation.. 80

13.2 RCRB (Root Complex Register Block) ... 80
13.3 Root Complex Topology Programming .. 80
13.4 PCI Express* Active State Power Management (ASPM) ... 81

13.4.1 Root Port L0s Exit Latency Initialization by Firmware................................... 81
13.4.2 Calculation of Total L-State Exit Latency.. 81
13.4.3 Firmware Software Flow for Enabling ASPM.. 82
13.4.4 ASPM vs. Isochrony .. 82

13.5 Root Port Error Reporting ... 82
13.5.1 SERR# Generation ... 82

13.6 PCI Firmware Spec 3.0 Support... 82
13.7 ACPI Table and Methods for PCI Express* Support... 83

13.7.1 MCFG Table ... 83
13.7.2 _HID and CID for PCI Host Bridge .. 85
13.7.3 _OSC() Method .. 85

13.8 PCI Express* PME Firmware Support.. 88
13.8.1 Native PME Software Model.. 88
13.8.2 Legacy PME Software Model... 88
13.8.3 Firmware Enabling of PCI Express* PME SCI Generation 89
13.8.4 Handling PCI Express* PME SCI Event... 89

13.8.4.1 General Mechanism and Sequence .. 89
13.8.4.2 Firmware GPE Handler for PME Event... 90

13.8.5 Transition from Legacy to Native PME Software Model 90
13.8.6 WAKE# Support ... 90

13.9 UEFI Firmware Sources .. 91

14.0 Processor Interface ... 92
14.1 Front Side Bus Interrupt Delivery Mechanism .. 92

14.1.1 Configuration of the IOxAPIC ... 92
14.1.2 Steps Involved in Delivering the Interrupt ... 92

14.2 UEFI Firmware Sources .. 93

15.0 NMI Handling .. 94
15.1 Settings to Generate NMI ... 94
15.2 Steps for Handling NMI .. 94

15.2.1 Steps for Execution .. 94
15.3 UEFI Firmware Sources .. 95

16.0 SMI Handling... 96
16.1 SMI on Sleep Enable.. 96
16.2 Setting the EOS Bit.. 96
16.3 SMI Status Bits ... 96
16.4 SMI Handler best practice... 96
16.5 UEFI Firmware Sources .. 97

Intel® Quark™ SoC—Contents

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
8 Order Number: 330236-005US

17.0 Power Management ...98
17.1 Power Button Override ...98
17.2 Power Failure Considerations...98
17.3 Processor Throttling ...98
17.4 C States ...98

17.4.1 IRQ Break Events for C1 State..98
17.4.2 C2 State Support ..98
17.4.3 Cx State Support Reporting for ACPI OS ..98
17.4.4 Break Events..99

17.5 Wake Events ...99
17.6 UEFI Firmware Sources ..100

18.0 Suspend Handler Considerations..101
18.1 Power-On Suspend Handling Preparation ..101
18.2 S3 Entry Steps ..101

18.2.1 Initiating Sleep States via SLP_EN Bit..101
18.3 S3 Resume Steps ..101
18.4 UEFI Firmware Sources ..103

19.0 High Performance Event Timer (HPET) Support ...104
19.1 HPET Basic Configuration ..104
19.2 UEFI Firmware Sources ..104

20.0 GPIO Handling ...105
20.1 Legacy GPIOs..105

20.1.1 Legacy GPIO Configuration...105
20.1.2 Legacy GPIO Interrupt Handling..105

20.2 Chipset South Cluster GPIO Controller ..106
20.2.1 South Cluster GPIO Controller Configuration...106

20.3 UEFI Firmware Sources ..107

21.0 Security Enhancements..108
21.1 Introduction..108

21.1.1 Security Build Options ...108
21.2 Secure Boot ..108

21.2.1 Intel® Quark™ SoC ROM Root of trust Secure Boot108
21.2.2 UEFI Secure Boot..109

21.2.2.1 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware
deployment and firmware recovery..109

21.2.2.2 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware
update...110

21.2.2.3 Intel® Quark™ SoC firmware UEFI Secure Boot rollback protection using
secure SKU ROM. ..110

21.3 Isolated Memory Regions (IMRs)..111
21.4 Legacy SPI Flash Protection...112

21.4.1 Base SKU hardware ..112
21.4.1.1 Legacy SPI Flash Range Protection ..112
21.4.1.2 Legacy SPI Flash Update Protection ...112

21.4.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build
firmware ...112
21.4.2.1 Legacy SPI Flash Range Protection ..113
21.4.2.2 Legacy SPI Flash Update Protection ...113

21.5 PCIe Option ROMs..113
21.5.1 No Security Build options used to build firmware.......................................113
21.5.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) option used to

build firmware..113
21.6 Register Locking ..113

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 9

Contents—Intel® Quark™ SoC

21.6.1 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build
firmware ... 114

21.7 Redundant Images .. 114
21.8 Limiting Boot Options... 115

21.8.1 No Security Build options used to build firmware 115
21.8.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build

firmware ... 115
21.9 Denial of Service/Compromise Prevention... 115

21.9.1 SMI Pin Blocking .. 115
21.10 Memory Training Engine Lockdown .. 115
21.11 SMM Security Enhancements .. 115

21.11.1SMRAM Caching ... 115
21.11.2SMBASE Relocation Address Selection ... 116
21.11.3SMI Handler best practice.. 116

21.12 Rollback Protection on Intel® Quark™ SoC Secure Skus 116
21.13 UEFI Firmware Sources .. 117

22.0 Firmware Update ... 119
22.1 Introduction ... 119

22.1.1 UpdateCapsule() EDKII Module and Platform Module Dependencies............. 119
22.1.2 Intel® Quark™ SoC UEFI Firmware Update Steps in Detail: 120

22.2 Create an Update Capsule .. 121
22.2.1 Intel® Quark™ SoC UEFI Firmware specific capsule flags........................... 121

22.3 Call UEFI Runtime Service UpdateCapsule() .. 122
22.4 Initiate Capsule Reset .. 122
22.5 Boot in BOOT_ON_FLASH_UPDATE Mode .. 122
22.6 Build Capsule Update HOBs .. 122
22.7 Process Capsule Update HOBs... 123
22.8 Write Capsule to Flash ... 123
22.9 UEFI Firmware Sources .. 124

23.0 Firmware Recovery.. 126
23.1 Introduction ... 126

23.1.1 Trigger Intel® Quark™ SoC UEFI Firmware Recovery................................. 127
23.1.2 Required Minimum Intact System Flash Areas .. 127

23.1.2.1 Intel® Quark™ SoC X1000 Secure SKU...................................... 127
23.1.2.2 Intel® Quark™ SoC X1000 Base SKU... 127

23.1.3 Constraints on UEFI Executables .. 128
23.1.4 Intel® Quark™ SoC UEFI Firmware Recovery Steps................................... 128

23.2 Create FVMAIN.fv Recovery Image .. 128
23.3 Call Fixed Recovery Firmware Volume .. 128
23.4 Platform Early PEI Stage HOB Setup .. 129

23.4.1 Create EFI_PLATFORM_INFO HOB... 129
23.4.2 Set Up Early PEI Stage EDKII Boot Mode HOB .. 129

23.5 Initialize Platform Memory .. 129
23.6 Load DXE Image ... 130
23.7 Platform Late PEI Stage HOB Setup ... 130

23.7.1 Set Up Capsule HOBs.. 130
23.7.2 Set Up Late PEI Stage EDKII Boot Mode HOB ... 130
23.7.3 Set Up Late PEI Stage EFI_PLATFORM_INFO HOB 131

23.8 Complete Platform Firmware Recovery ... 131
23.9 UEFI Firmware Sources .. 131

24.0 Firmware Error Handling ... 133
24.1 Introduction ... 133
24.2 Report and Clear Errors Detected by RMU... 133

Intel® Quark™ SoC—Contents

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
10 Order Number: 330236-005US

24.3 Print EDKII ASSERT Messages to Console and halt system boot.133
24.4 Print EDKII DEBUG_ERROR Messages to Console ...133
24.5 UEFI Firmware Sources ..134

25.0 Additional Programming Items ..135
25.1 Cache Line Size Clarification..135
25.2 VGA 16-bit Decode ..135
25.3 I2C* Host Controller drivers ..135
25.4 UEFI Firmware Sources ..136

26.0 Trusted Platform Module (TPM) Support ..137
26.1 Introduction..137

26.1.1 TPM Build Requirements ..137
26.1.2 EDKII SecurityPkg TPM Supported Features..137
26.1.3 EDKII SecurityPkg TPM Unsupported Features ..137
26.1.4 Additional TPM Features...137

26.2 TcgComm Library Override..138
26.3 TcgPei Driver Override..138
26.4 TcgDxe Driver Override ..138
26.5 ACPI TPM Device Object ...138
26.6 TPM Measure Boot ...138
26.7 UEFI Firmware Sources ..139

Figures
1 PCI Block Diagram..18
2 RMU Binary Relocation ..32
3 SMRR Mapping with a Typical Memory Layout...64
4 PIRQ to IRQ Router...71
5 PCI Interrupt Routing Control...72
6 ASPM Calculation Diagram...81
7 Cx State Support Reporting Through _CST Control Method...99
8 Intel® Quark™ SoC Firmware Update Capsule ..120
9 FVMAIN.fv Recovery Module File Contents..127

Tables
1 Terminology ..12
2 Reference Documents ...13
3 Related Documents...14
4 Number Format and Notation ...15
5 Data Type Notation...15
6 Register Programming Table Abbreviations ..15
7 Register Access Attributes Nomenclature ...16
8 Component Identification...18
9 Intel® Quark™ SoC X1000 PCI Devices ...19
10 Op codes 10h/11h, Msg Port 03h, Offset 09h: HECREG – Extended Configuration Space22
11 Non-Standard IO Base Address Registers...25
12 Non-Standard Memory Base Address Registers ...25
13 Generic Static Register Configuration ..27
14 Chipset Thermal Static Register Configuration Sequence..29
15 Chipset USB Static Register Configuration Sequence ...30
16 Chipset PCIe Controller PHY Static Register Configuration Sequence31
17 DRAM Base Address Ready ..32
18 Op codes 06h/07h, Msg Port 31h, Offset 51h: CFGSTICKY_RW – Sticky Read/Write34
19 Platform data area header ...36

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 11

Contents—Intel® Quark™ SoC

20 Platform data item header... 36
21 Platform data items common to Intel® platforms and customer platforms........................ 36
22 Platform Data Item: Memory Reference Code (MRC) parameters 37
23 Platform Data Item: 1st Boot UEFI Secure Boot auto provisioning item for UEFI Secure Boot

‘kek’, ‘db’ or ‘dbx’ variable... 38
24 Component-Specific Programming.. 42
25 Intel® Quark™ SoC CPUID Functions .. 54
26 Model Specific Registers.. 57
27 SMRAM State Save Map .. 59
28 Supported Cache Types .. 62
29 Memory Map and MTRR Programming Example .. 62
30 RESET CONTROL REGISTER (I/O ADDRESS CF9h) .. 68
31 PIRQ Routing Table .. 70
32 PCI Express* Root Port Interrupt Mapping for Downstream Devices 73
33 PCI Express* Slot Interrupt Routing Table Example .. 73
34 Op Codes 10h/11h, Msg Port 03h, Offset 09h: HECREG – Extended Configuration Space ... 76
35 PCIe Controller Reset Sequence ... 77
36 Root Port Slot Power Consumption Guidelines .. 79
37 D23:F0/F1:RD8h: MPC – Miscellaneous Port Configuration... 79
38 D23:F0/F1:RDCh: SMSCS – SMI / SCI Status .. 79
39 MCFG Table Layout .. 84
40 Configuration Space Base Address Allocation Structure ... 84
41 Capabilities DWORD1 Definition ... 87
42 Interrupt Message Address Format ... 93
43 Interrupt Message Data Format.. 93
44 NMI_EN — NMI Enable Register (Shared with RTC Index Register) (I/O).......................... 94
45 GPIO Registers Offset and Function .. 105
46 South Cluster GPIO Controller MMIO Registers ... 106
47 Create/Destroy/Lock Requirements for IMRs.. 111

§ §

Intel® Quark™ SoC—About This Document

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
12 Order Number: 330236-005US

1.0 About This Document

The primary purpose of this document is to supplement the information provided in the
Intel® Quark™ SoC X1000 Datasheet [Datasheet] for use by UEFI firmware vendors
and Intel customers developing their own UEFI firmware. Register descriptions are
referenced in this document, however, the [Datasheet] should be utilized along with
applicable specification updates for obtaining the latest register settings and associated
implementation details.

This document describes the implementation of UEFI firmware for the Intel® Quark™
SoC. It makes recommendations to take advantage of certain system capabilities. This
document uses the word “should” to describe this category of features. This document
also describes functions that the firmware must perform in order to enable correct
operation of the platform. This document uses the word “must” to describe this
category of features.

This document may be supplemented from time to time with specification updates. The
specification updates contain information relating to the latest programming changes.
Check with your Intel representative for availability of specification updates.

1.1 Terminology

Table 1. Terminology (Sheet 1 of 2)

Term Description

ACPI Advanced Configuration and Power Interface

ASPM Active State Power Management

BDS Boot Device Select (UEFI Boot manager Boot Device Select)

DDR Double Data Rate (Synchronous Dynamic Random Access Memory)

DDR3 Third generation Double Data Rate memory

DDRIO DDR physical interface (part of the System Memory Controller)

DIMM Dual In-line memory module

DSDT Differentiated System Description Table (ACPI DSDT)

eSRAM Embedded SRAM

FSB Front Side Bus

FW Firmware

GUID Globally Unique IDentifier

HOB Hand-Off Block

I2C* I-squared-C - a type of two wire communications bus

IMR Isolated Memory Region

IPI Inter Processor Interrupt

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 13

About This Document—Intel® Quark™ SoC

1.2 Reference Documents

MRC Memory Reference Code

MSI Message Signalled Interrupt

MSS Memory Sub System

MTE Memory Training Engine

NV Non Volatile

PI Platform Initialization (UEFI Platform Initialization)

RCRB Root Complex Register Block

RMU Remote Management Unit

RoT Root of Trust

SKU Stock Keeping Unit (identifies different device versions from the same design stepping)

SPD Serial Presence Detect

SR Self-Refresh

TCG Trusted Computing Group

TPM Trusted Platform Module

TSEG Top of Memory Segment. Equivalent to SMM Range in Section 6 of [Datasheet].

SVN Security Version Number

UEFI Unified Extensible Firmware Interface

UDK UEFI Development Kit

Table 2. Reference Documents

Document Document No.

Intel® Quark™ SoC X1000 Datasheet
[Datasheet]

329676

Intel® Quark™ SoC X1000 Specification Update 329677

Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual
[Secure Boot]

330234

Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User
Guide
[Build Guide]

329687

Intel® Quark™ SoC X1000 Software Release Notes
Contains the software download URL and lists errata.

330232

Table 1. Terminology (Sheet 2 of 2)

Term Description

Intel® Quark™ SoC—About This Document

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
14 Order Number: 330236-005US

1.3 Related Documents

Table 3. Related Documents

Document Location/Number/Revision

UEFI Specification Version 2.3.1 http://www.uefi.org/specs/agreement

Platform Initialization Specification 1.2 http://www.uefi.org/specs/
platform_agreement

Intel Corporation, MultiProcessor Specification Version 1.4, Order #242016

Intel® 64 and IA-32 Architectures Software Developer Manuals are available at:
https://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture Order

#253665
• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2A: Instruction Set Reference,

A-M Order #253666
• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2B: Instruction Set Reference,

N-Z Order #253667
• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Programming Guide

Part 1 Order #253668
• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System Programming Guide

Part 2 Order #253669

Intel® 82093AA I/O Advanced Programmable Interrupt Controller
(I/O APIC) Datasheet Order #290566

Compaq Computer Corporation, Phoenix Technologies, Ltd., Intel
Corporation, Plug and Play BIOS Specification Revision 1.0a, June 7, 2005

Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation,
Advanced Configuration and Power Interface (ACPI)

Version 3.0a

PCI Express* Special Interest Group, PCI Express* Base
Specification Revision 1.1

PCI Express* Special Interest Group, PCI Express* Card
Electromechanical Specification Revision 1.1

PCI Special Interest Group, PCI BIOS Specification Revision 2.1, August 26, 1994

PCI Special Interest Group, PCI Local Bus Specification Revision 2.3, March 29, 2002

PCI Special Interest Group, PCI to PCI Bridge Architecture
Specifications Revision 1.2, June, 2003

ACPI Specification, version 5.0 Revision 5.0 December 6, 2011

DDR3 SDRAM Specification
[JESD79-3F]

http://www.jedec.org/standards-
documents/docs/jesd-79-3d
Revised July 2012

TPM Main Specification Version 1.2, Rev. 116, 2011-03-01, TCG
(parts 1-3)

PC Client Work Group Specific Implementation Specification for
Conventional BIOS, Version 1.2
[TCG SPEC BIOS]

http://trustedcomputinggroup.org
Version 1.20 FINAL Revision 1.00 July
13, 2005 For TPM Family 1.2; Level 2

http://www.uefi.org/specs/agreement
http://www.uefi.org/specs/platform_agreement
http://www.uefi.org/specs/platform_agreement
https://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://trustedcomputinggroup.org

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 15

About This Document—Intel® Quark™ SoC

1.4 Related Websites

1.5 Formats and Notations
The target audience for this document is UEFI firmware writers. The formats and
notations used within this document model those used by UEFI firmware vendors. This
section describes the formatting and the notations that are followed in this document.

Context Site

PCI IRQ Routing for MP ACPI
systems

http://msdn.microsoft.com/en-us/library/windows/hardware/
gg454523.aspx

Intel® 64 and IA-32 Architectures
Software Developer’s Manuals http://www.intel.com/products/processor/manuals/

Power Management and ACPI http://msdn.microsoft.com/en-us/windows/hardware/gg463220

MultiProcessor Specification http://www.intel.com/design/archives/processors/pro/docs/242016.htm

Power management, ACPI and
related specifications http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf

Trusted Platform Module (TPM) http://trustedcomputinggroup.org

Table 4. Number Format and Notation

Number Format Notation Example

Decimal (default) d 14d

Binary b 1110b

Hex h 0Eh

Table 5. Data Type Notation

Data Type Notation Size

BIT b Smallest unit, 0 or 1

BYTE B 8 bits

WORD W 16 bits or 2 bytes

DWORD DW 32 bits or 4 bytes

QWORD QW 8 bytes or 4 words

Kilobyte KB 1024 bytes

Megabyte MB 1,048,576 bytes

Gigabyte GB 1024 MB

Table 6. Register Programming Table Abbreviations (Sheet 1 of 2)

Abbreviation Meaning

B PCI Bus

D PCI Device

http://trustedcomputinggroup.org
http://msdn.microsoft.com/en-us/library/windows/hardware/gg454523.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg454523.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/gg454523.aspx
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://msdn.microsoft.com/en-us/windows/hardware/gg463220
http://msdn.microsoft.com/en-us/windows/hardware/gg463220
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.intel.com/design/archives/processors/pro/docs/242016.htm
http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec50.pdf

Intel® Quark™ SoC—About This Document

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
16 Order Number: 330236-005US

This document refers to individual bit fields within a register, as well as the registers
themselves with their designated acronym, followed by the device, register address
and bit field in parenthesis. The reader is expected to be familiar with the register
definitions for the Quark SoC. The reader must also be capable of referencing the
associated documentation described in Table 2 if more register field details are
required.

When the document specifies individual register bits to be modified, system firmware
must perform a read, modify, write sequence to ensure other bits are not changed.

§ §

F PCI Function

P Msg Port

R Register

Table 6. Register Programming Table Abbreviations (Sheet 2 of 2)

Abbreviation Meaning

Table 7. Register Access Attributes Nomenclature

Abbreviation Meaning Description

RO Read Only If a register is read only, writes to this register have no effect.

WO Write Only If a register is write only, reads return undefined data.

R/W Read/Write A register bit with this attribute can be read and written.

R/WO Read/Write Once A register bit with this attribute can be read and written only
once. Additional writes to R/WO bits will not alter their state.

RWC Read/Write Clear
A register bit with this attribute can be read or cleared by
software. In order to clear this bit, any value must be written
to it.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 17

Introduction—Intel® Quark™ SoC

2.0 Introduction

Intel® Quark™ SoC is the next generation secure, low-power Intel Architecture (IA)
System on a Chip (SoC) for deeply embedded applications. The Intel® Quark™ SoC
X1000 integrates the Intel® Quark™ Core plus all the required hardware components
to run off-the-shelf operating systems and to leverage the vast x86 software
ecosystem.

This section provides an introduction to the Intel® Quark™ SoC. For complete details,
refer to the [Datasheet].

The Intel® Quark™ SoC is partitioned into three major clusters - BaseIA, the Memory
Sub-System (MSS), and South cluster as shown in Figure 1.

The main components for BaseIA are:
• 400MHz Intel® Quark™ Core (single core) with local APIC
• Host Bridge with Message Bus interface
• Legacy Bridge
• IOSF fabric interface to attach the South cluster

The MSS is comprised of:
• 512KB embedded SRAM
• 16bit DDR3 ECC memory controller supporting 800 MT/s data rates.

The South cluster terminates the two IOSF ports from BaseIA. The first IOSF port is
terminated in an 2x1 lane PCI Express Gen 1 controller. The second IOSF port is
terminated in an IOSF-AHB bridge. The AHB fabric supports the following peripherals:

• 2xSPI
• 2x16550 UART
• 1xSDIO Controller
• 2x10/100 Ethernet MAC
• 1xGPIO/I2C Controller
• 1xUSB EHCI Host
• 1xUSB OHCI Host
• 1xUSB Device

The Intel® Quark™ SoC is designed to minimize the number of external components
required to enable the SoC at a platform level. The SoC requires an industry standard
voltage regulator providing three output rails (3.3v, 1.5v and 1.0v), a 25 MHz crystal,
legacy SPI flash device, DDR3 memory, and an external Ethernet PHY IC to enable a
complete system on a 4 layer FR4 platform.

The Intel® Quark™ SoC supports fully functional (S0), Standby (S3), hibernate (S4),
shutdown (S5) states.

Intel® Quark™ SoC—Introduction

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
18 Order Number: 330236-005US

Intel® Quark™ SoC package is a 393 ball, 15x15mm FCBGA based on a 0.593mm
pitch.

2.1 Component Identification
The Quark SoC stepping is identified by both:

• Processor Family/Model/Stepping returned by the CPUID instruction. This will
always return 0x590 for the Intel® Quark™ SoC X1000.

• Revision ID register of the Host Bridge, located at D0:F0. Reads of the register will
reflect the stepping.

The Quark SoC incorporates a variety of PCI functions as listed in Table 9. All devices
reside on PCI bus #0 as shown in Figure 1.

Figure 1. PCI Block Diagram

PCI Bus 0

Host Bridge
D0:F0

Legacy
Bridge
D31:F0

Intel® Quark™
Core

(single core)

BaseIA

Memory Sub
System
(MSS)

PCIe
Root
Port1

D23:F1

SPI1
D21:F1

SPI0
D21:F0

Ethernet
MAC 1
D20:F7

Ethernet
MAC 0
D20:F6

UART1
D20:F5

USB
OHCI
Host

D20:F4

USB
EHCI
Host

D20:F3

USB
Device
D20:F2

UART0
D20:F1

SDIO
D20:F0

I2C/
GPIO

D21:F2

PCIe
Root
Port0

D23:F0

South
Cluster

Intel®
Quark™

SoC X1000

Table 8. Component Identification

Vendor ID1 Device ID2 Revision ID3 Stepping

8086h 0958h 00h A0h

Notes:
1. The Vendor ID corresponds to bits 15-0 of the Vendor ID Register located at offset 00-01h in the PCI

configuration space of the device.
2. The Device ID corresponds to bits 15-0 of the Device ID Register located at offset 02-03h in the PCI

configuration space of the device.
3. The Revision ID corresponds to bits 7-0 of the Revision ID Register located at offset 08h in the PCI

configuration space of the device.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 19

Introduction—Intel® Quark™ SoC

§ §

Table 9. Intel® Quark™ SoC X1000 PCI Devices

Device:Function Description Device ID A0 SRID

D0:F0 Host Bridge 0958h 00h

D31:F0 Legacy Bridge 095Eh 00h

D23:F0 PCIe* Root Port 0 11C3h 00h

D23:F1 PCIe* Root Port 1 11C4h 00h

D20:F0 SDIO / eMMC Controller 08A7h 10h

D20:F1 HS-UART 0 0936h 10h

D20:F2 USB 2.0 Device 0939h 10h

D20:F3 USB EHCI Host Controller 0939h 10h

D20:F4 USB OHCI Host Controller 093Ah 10h

D20:F5 HS-UART 1 0936h 10h

D20:F6 10/100 Ethernet MAC 0 0937h 10h

D20:F7 10/100 Ethernet MAC 1 0937h 10h

D21:F0 SPI Controller 0 0935h 10h

D21:F1 SPI Controller 1 0935h 10h

D21:F2 I2C* Controller and GPIO Controller 0934h 10h

Intel® Quark™ SoC—Register Access Mechanisms

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
20 Order Number: 330236-005US

3.0 Register Access Mechanisms

This section summarizes the register access mechanisms required for a Quark-based
platform. For complete details, refer to the [Datasheet].

3.1 Message Network

3.1.1 Message Network Registers

In the Quark SoC, some chipset commands are accomplished by utilizing the internal
message network within the host bridge (D0:F0). Accesses to this network are
accomplished by populating the message control register (MCR), Message Control
Register eXtension (MCRX) and the message data register (MDR).

Register writes via message network are sent by first loading the MDR with the desired
data and loading (MCRX) with the high order bits of the target register address. The
command is sent by populating the MCR with the target port, low byte of target register
address, and the write opcode.

Register reads via message network are sent by first populating the MCRX and MCR
with the target port, target register address, and the read opcode. Data is then
accessed via the MDR.

As well as accessing Quark SoC registers the message network can be used to send
atomic commands to the internal SoC units.

D0:F0:RD8h MCRX – Message Control Register eXtension

This register provides extra parameter bits to the Message Control Register (below).

Bit Type Reset Description

31:8 WO 0h
Offset/Register Extension (SB_ADDR_EXTN): This is used for messages
sent to end points that require more than 8 bits for the offset/register.
These bits are a direct extension of MCR[15:8].

7:0 WO 0h Reserved

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 21

Register Access Mechanisms—Intel® Quark™ SoC

D0:F0:RD0h MCR – Message Control Register

A write to this register will cause a message to be sent via the internal message
network with the parameters defined in fields below unless the register is locked (see
below). This register must be written with all bytes enabled.

D0:F0:RD4h MDR – Message Data Register

Software must prepare data in this register prior to initiating a write transaction via the
Message Control Register (D0:F0:RD0h). After initiating a read transaction via the
MCR, software reads the returned data from this register.

3.1.2 Message Network Register Programming

Some Quark SoC configuration registers exist outside of PCI, I/O, and MMIO space.
Accesses to these registers are accomplished via the message network port access
mechanism. Common opcode pairs are opcodes 10h/11h and 6h/7h. Setting the
message opcode to 6h/10h initiates a read from an internal register, while opcode 7h/
11h initiates a write to an internal register. For all other supported opcodes, please
refer to the [Datasheet].

Examples
1. Read the USB PHY Global port register (opcode 06h, port 14h, register 4001h)

a. Set MCRX (D0:F0:RD8h) to 00004000h, where 000040h = internal register
offset[31:8]

b. Set the PCI configuration register MCR (D0:F0:RD0h) to 061401F0h, where
6 = the read opcode, 14 = the message port, 01 = the internal register offset,
and F0 sets all byte enables (must always set the lower byte to F0h). Writing to
this register initiates reading of the internal register and places the read data in
the “Message Data Register”.

c. Read the PCI configuration register MDR (D0:F0:RD4h) and extract the value of
bits 31:0.

2. Read the current setting of the Power Management I/O Base Address (opcode 10h,
port 04h, register 70h, bits 15:0).
a. Set MCRX (D0:F0:RD8h) to 00000000h, where 000000h = internal register

offset[31:8].

Bit Type Reset Description

31:24 WO 0h Message Opcode: (Refer to the [Datasheet] for all supported opcodes)

23:16 WO 0h Message Port: The device or unit to be targeted by the message bus
transaction

15:8 WO 0h
Message Target Register Address: Bits 7:0 of the private register offset to
be targeted by the message bus transaction. This field applies only to
register read and write operations.

7:4 WO 0h Message Write Byte Enables#: Active high byte enables which enable
each of the corresponding bytes in the MDR when high.

3:0 WO 0h Reserved

Bit Type Reset Description

31:0 RW 0h Message Data

Intel® Quark™ SoC—Register Access Mechanisms

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
22 Order Number: 330236-005US

b. Set the PCI configuration register MCR (D0:F0:RD0h) to 100470F0h, where
10 = the read opcode, 04 = the message port, 70 = the internal register
offset[7:0], and F0 sets all byte enables (must always set the lower byte to F0h).
Writing to this register initiates reading of the internal register and places the
read data in the “Message Data Register”.

c. Read the PCI configuration register MDR (D0:F0:RD4h) and extract the value of
bits 15:0.

3. Write the “Power Management I/O Base Address” register (opcode 11h, port 04h,
register 70h) to 80001010h (program the base address to 1010h and set the
enable bit at bit 31).
a. Set the PCI configuration register MDR (D0:F0:D4h) to 80001010h to prepare

the data for the write transaction.
b. Set MCRX (D0:F0:RD8h) to 00000000h, where 000000h = internal register

offset[31:8].
c. Set the PCI configuration register MCR (D0:F0:D0h) to 110470F0h, where

11 = the write opcode, 04 = the message port, 70 = the internal register
offset[7:8], and F0 sets all byte enables (must always set the lower byte to F0h).
Writing to this register initiates writing of the internal register, using the data
previously programmed to MDR.

3.2 PCI Express* Configuration Space Base Address
The PCI Express* specification defines a 256 MB block within the memory address
space as PCI Express* configuration space addressable through a Bus:Device:Function
mapping. The base address of this configuration space is determined by the value
programmed in the “Extended Configuration Space” register.

Once initialized and enabled by firmware, software can use memory instructions to
access the PCI Express* configuration space registers by byte, word or dword, though
the access may not cross dword boundaries.

To maintain the compatibility with PCI configuration space, the first 256 bytes (offset
00h through FFh) of the configuration space for a Bus:Device:Function can also be
accessed via the I/O index/data register pair at CF8h/CFCh as defined in PCI 2.x
specification.

In addition to programming and enabling the PCI Express* EC base address in the EC
register (see Table 34), system firmware should program the identical value into Msg
Port 00h, Offset 00h.

Table 10. Op codes 10h/11h, Msg Port 03h, Offset 09h: HECREG – Extended Configuration
Space

Bit Range Default &
Access Description

31:28
000b
RW

Extended Configuration Base Address (EC_BASE): This field describes the
upper 4-bits of the 32-bit address range used to access the memory-mapped
configuration space. This field must not be set to 0xF.

27:1
000000h

RO
Reserved (RSV11): Reserved.

0
0b
RW

Extended Configuration Space Enable (EC_ENABLE): When set, causes the
EC_Base range to be compared to incoming memory accesses. If bits [31:28] of
the memory access match the EC_Base value then a posted memory access is
treated as a non-posted configuration access.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 23

Register Access Mechanisms—Intel® Quark™ SoC

3.2.1 Bus:Device:Function:Register Offset Translation

The memory-mapped physical address of a given PCI Express* configuration register of
a specific bus:device:function can be determined by:

PCI Express* Config Space Base Address + (Bus Number x 100000h) + (Device
Number x 8000h) + (Function Number x 1000h) + Register Offset

§ §

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
24 Order Number: 330236-005US

4.0 Basic Firmware Requirements

This section discusses the basic firmware requirements for a Quark-based platform.

4.1 Configuring Memory and MMIO Accesses
Quark SoC is capable of addressing both the MSS (eSRAM/DDR3) and MMIO in the 32-
bit address space. To control which accesses go to the MSS and MMIO, the Quark SoC
has implemented a HMBOUND register (Msg Port 3: R08h). UEFI firmware must set
HMBOUND to the top of physical memory in the system (eSRAM/DDR3). All memory
accesses below HMBOUND go to the MSS while all other memory accesses go to MMIO.
Once MRC has initialized DDR3 memory, UEFI firmware must lock HMBOUND at the top
of physical memory in the system (the top of physical memory depends on the location
of eSRAM and may not actually be the top of DDR3 memory). Please refer to the
[Datasheet] for additional information on the HMBOUND register.

4.2 Early Memory Setup
UEFI firmware needs access to memory before DDR3 memory is initialized. In
particular, the MRC code that initializes DDR3 memory, itself requires memory to be
able to execute. Quark SoC contains an embedded 512KB SRAM (eSRAM) that is
initialized by hardware and available to UEFI firmware following release of the core
from reset. UEFI firmware is responsible for relocating this eSRAM to a suitable location
in the physical memory map and enabling it. Refer to Table 12 for the recommended
location to locate the eSRAM. This eSRAM is then available to UEFI firmware as early
code/data memory.

4.3 Isolated Memory Regions (IMRs)
Quark SoC has implemented IMRs to help protect memory during system operation.
Software can configure IMRs to allow/deny access by certain system agents to
programmed memory ranges. Refer to the [Datasheet] for the IMR description and list
of system agents than can be impacted by IMR setup. Depending on platform policies
UEFI firmware restricts memory access to various regions to only the system agents
that must have access. Furthermore, depending on policy the UEFI firmware may lock
any memory regions that must persist through OS boot and beyond. IMRs are a useful
feature that software beyond UEFI firmware should also use for better system security.

4.4 Initializing Chipset Registers

4.4.1 MMIO Write Considerations

Writes to Quark SoC MMIO registers may not immediately affect the behavior of the
chipset. The data may be placed in an intermediate buffer before actually taking effect.
To ensure the data is flushed into the chipset, firmware must perform a read from a

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 25

Basic Firmware Requirements—Intel® Quark™ SoC

register after writing data to that register. The affected bit-fields must then be
compared to the expected values to ensure coherency. If firmware does not perform
this read, the register write may not have completed and chipset behavior based on the
programmed MMIO register is not guaranteed.

4.4.2 Non-Standard BARs

Table 11 and Table 12 specify the base address registers in the Quark SoC (excluding
PCI standard BARs), along with suggested values.

Note: It is the responsibility of the firmware programmer to ensure the ranges below do not
overlap or conflict with any other resources on the platform.

Table 11. Non-Standard IO Base Address Registers

Region
Base

Address
Type

BAR Control Size Suggested Value

ACPI PM1 block I/O D31:F0:R48h 16B 80001000h (Address=1000h)

ACPI P block I/O Msg Port 4:R70h
16B (Must be
located at PM1
block base + 10h)

80001010h (Address=1010h)

GPIO I/O D31:F0:R44h 128B 80001080h (Address=1080h)

GPE0 I/O D31:F0:R4Ch 64B 80001100h (Address=1100h)

WDT I/O D31:F0:R84h 64B 80001140h (Address=1140h)

Table 12. Non-Standard Memory Base Address Registers

Region
Base

Address
Type

BAR Control Size Suggested Value

SMM Control Memory Msg Port 3:R04h 2 MB See Note 1 below.

PCI Express* Memory Msg Port 0:R00h 256 MB
E0000001h
(Address=E0000000h)
See Note 3 below.

PCI Express* Memory Msg Port 3:R09h 256 MB
E0000001h
(Address=E0000000h)
See Note 3 below.

RCBA Memory D31:F0:RF0h 16 KB FED1C001h
(Address=FED1C000h)

eSRAM Memory Msg Port 5:R82h 512 KB
See Note 2 below.
10000080h
(Address=80000000h)

Notes:
1. The layout of the SMM control register is given below. The “Upper Bound” field of the HSMMCTL

register must be programmed to match the upper 12 bits of “Top of Physical Memory – 2MB”.
For example, if 1 GB of memory is present in the system then “Top of Physical Memory – 2MB” =
(40000000h – 200000h = 3FE00000h).

2. eSRAM is used as early available memory before DDR3 memory is initialized. Refer to [Secure Boot]
documentation for eSRAM usage during a secure boot. eSRAM is then available for use as general
purpose memory as required by the system programmer.

3. The PCI Express* Configuration Space Base Address is programmed to two Quark SoC registers. The
Intel® Quark™ SoC addresses all 256MB starting at PCI Express* EC base address but the amount of
memory mapped space reserved is defined by the PCD
gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize.

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
26 Order Number: 330236-005US

Msg Port 03h, Register 04h: HSMMCTL–Host System Management Mode
Controls

The “Upper Bound” HSMMCTL field is programmed with bits [31:20] of the SMM Range
upper bound memory address and “Lower Bound” HSMMCTL field is programmed with
bits [31:20] of the SMM Range lower bound memory address (bits [19:0] of SMM
address assumed to be 0 since SMM Range is 1MB aligned).

Bits 2:1 of HSMMCTL should be programmed to allow reads and writes to SMM space
for SMM initialization. After SMM initialization, the SMM Locked bit must be set to
prevent further changes to this register.

For the configuration in the above example with 1GB physical memory, the value of the
HSMMCTL register would be 3FF03FF1h:

• SMM Base Address = 0x3FF00000
• SMM Limit Address = 0x3FFFFFFF
• SMM Locked

4.4.3 Static Register Programming

This sub-section defines data that must be programmed in all cases. This section DOES
NOT include a list of registers/bit-fields whose values may change based on platform
configuration.

Table 13 summarizes the chipset registers that must always be programmed to a fixed
value during the boot process. This table excludes standard PCI registers, legacy I/O
registers, and registers whose values vary depending on the system configuration. The
bus number is 0 for all PCI devices.

Bit Type Reset Description

31:20 RW/L 12’h000
SMM Upper Bound (SMM_END): These bits are compared with bits
[31:20] of the incoming address to determine the upper 1MB aligned
value of the protected SMM range.

19 RO 1’b0 Reserved (RSV42)

18 RW/L 1’b1 Non-Host SMM Writes Open (NON_HOST_SMM_WR_OPEN)

17 RW/L 1’b1 Non-Host SMM Reads Open (NON_HOST_SMM_RD_OPEN)

16 RO 1’b0 Reserved (RSV07)

15:4 RW/L 12’h000
SMM Lower Bound (SMM_START): These bits are compared with bits
[31:20] of the incoming address to determine the lower 1MB aligned
value of the protected SMM range

3 RO 1’b0 Reserved (RSV06)

2 RW/L 1’b1

SMM Writes Open (SMM_WR_OPEN): Allow non-SMM writes to SMM
space. This bit allows processor writes to the SMM space defined by the
SMM Start and SMM End fields even when the processor is not in SMM
mode.

1 RW/L 1’b1

SMM Reads Open (SMM_RD_OPEN): Allow non-SMM reads to SMM
space. This bit allows processor reads from the SMM space defined by
the SMM Start and SMM End fields even when the processor is not in
SMM mode.

0 RW/O 1’b0 SMM Locked (SMM_LOCK): When set, this bit locks this register and
prevents write access. A reset is required to unlock.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 27

Basic Firmware Requirements—Intel® Quark™ SoC

Table 13. Generic Static Register Configuration (Sheet 1 of 2)

Name Access
Type Address[Bits] Value When to Program

E000h/F000h Routing Message
Port

Opcode Pair 10h/11h
Msg Port 3h:R03h[2:1]

11b
Stage 1: Immediately
after shadowing (route
reads to DRAM)

PCIe* Slot Capabilities PCI D23:F0:R54h[31:0] Platform Specific Stage 2: Before PCI
enumeration

PCIe* Slot Capabilities PCI D23:F1:R54h[31:0] Platform Specific Stage 2: Before PCI
enumeration

PCIe* Packet Fast
Transmit Mode (IPF): PCI D23:F0/F1:RD4h[11] 1b Stage 1: after Memory

Init

PCIe* Message Bus
Idle Counter (SBIC): PCI D23:F0/F1:RF4h[17:16] 11b Stage 1: after Memory

Init

PCIe* Upstream Non-
Posted Split Disable
(UNSD):

PCI D23:F0/F1:RD0h[24] 0b Stage 1: as part of PCIe
slot configuration

PCIe* Upstream Non-
Posted Request Size
(UNRS):

PCI D23:F0/F1:RD0h[15] 1b Stage 1: as part of PCIe
slot configuration

PCIe* Upstream
Posted Request Size
(UPRS):

PCI D23:F0/F1:RD0h[14] 1b Stage 1: as part of PCIe
slot configuration

Element Self
Descriptor MMIO RCBA + 04h[23:16] 00h Stage 3: Before passing

control to OS

MAC Address Ethernet
MAC 0 / MAC1
ADDRLO

MMIO

MAC0 [BAR0] + 44h[31:0]

BAR0 Reference: [B:0,
D:20, F:6/F:7] + 10h

Platform Specific Stage 1: Before
Memory Init.

MAC Address Ethernet
MAC 0 / MAC1
ADDRHI

MMIO

MAC0 [BAR0] + 40h[15:0]

BAR0 Reference: [B:0,
D:20, F:6/F:7] + 10h

Platform Specific Stage 1: Before
Memory Init.

MAC Address Ethernet
MAC 0 / MAC1
Address Enable (AE)

MMIO

MAC0 [BAR0] + 40h[31]

BAR0 Reference: [B:0,
D:20, F:6/F:7] + 10h

Platform Specific Stage 1: Before
Memory Init.

ASTATUS Message
Port

Opcode Pair 10h/11h
Msg Port 0h:R21h[1:0]

10b

Stage 1: Before
Memory Init

Opcode Pair 10h/11h
Msg Port 0h:R21h[3:2]

10b

Opcode Pair 10h/11h
Msg Port 0h:R21h[9:8]

11b

Opcode Pair 10h/11h
Msg Port 0h:R21h[11:10]

11b

MemoryManager: non
host request queue
limit.

Message
Port

Opcode Pair 10h/11h
Msg Port 05h:R20h[5:0]

000010b Stage 1: Before
Memory Init

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
28 Order Number: 330236-005US

Chipset Internal
Clocks Config

Message
Port

Opcode Pair 6h/7h
Msg Port
32h:R0140h[22:20]

001b

Stage 1: Before
Memory Init
See Note1 below.

Opcode Pair 6h/7h
Msg Port
32h:R0140h[25:23]

011b

Opcode Pair 6h/7h
Msg Port 32h:R2000h[0]

0b

Opcode Pair 6h/7h
Msg Port 32h:R0314h[0]

1b

Opcode Pair 6h/7h
Msg Port 32h:R0414h[0]

1b

Opcode Pair 6h/7h
Msg Port 32h:R0514h[0]

1b

Notes:
1. All READ accesses to registers at port 32h must be followed by 2 identical WRITEs even if the

contents are not to be changed.

Table 13. Generic Static Register Configuration (Sheet 2 of 2)

Name Access
Type Address[Bits] Value When to Program

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 29

Basic Firmware Requirements—Intel® Quark™ SoC

Table 14. Chipset Thermal Static Register Configuration Sequence

Name Access
Type Address[Bits] Value When to Program

Thermal Sensor Mode
Config

Message
Port

Opcode Pair 06h/07h
Msg Port 31h:R31h[5:3]

100b

Stage 1: Before
Memory Init

Opcode Pair 06h/07h
Msg Port 31h:R31h[12:8]

00010b

Opcode Pair 06h/07h
Msg Port 31h:R31h[14]

1b

Opcode Pair 06h/07h
Msg Port 31h:R31h[17]

0b

Opcode Pair 06h/07h
Msg Port 31h:R31h[18]

0b

Opcode Pair 06h/07h
Msg Port 31h:R32h[15:0]

011fh

Opcode Pair 06h/07h
Msg Port 31h:R33h[7:0]

17h

Opcode Pair 06h/07h
Msg Port 31h:R33h[9:8]

01b

Opcode Pair 06h/07h
Msg Port 31h:R33h[31:24]

00h

Opcode Pair 06h/07h
Msg Port 31h:R34h[22:11]

0c8h

Thermal Monitor
Catastrophic Trip Set
Point

Set Point
Opcode Pair 10h/11h
Msg Port 04h:RB2h[7:0]

Platform Specific
See Note1 below

Thermal Monitor
Catastrophic Trip
Clear Point

Clear Point
Opcode Pair 10h/11h
Msg Port 04h:RB2h[23:16]

Platform Specific
See Note1 below

Take Thermal Sensor
out of Reset

Opcode Pair 06h/07h
Msg Port 31h:R34h[0]

0b

Enable Thermal
Monitor

Opcode Pair 10h/11h
Msg Port 04h:RB0h[15]

1b

Lock All Thermal
Configuration

Opcode Pair 10h/11h
Msg Port 04h:R71h[6:5]

11b

Notes:
1. Both fields must be programmed, clear point must be lower then set point and the values in degrees

Celsius is calculated by subtracting an offset of 50 from the 8-bit field value. The temperature in
degrees Celsius corresponds to: 00h: -50C, 01h: -49C,,FEh: 204C, FFh: 205C

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
30 Order Number: 330236-005US

Table 15. Chipset USB Static Register Configuration Sequence

Name Access
Type Address[Bits] Value When to Program

USB2 Global PORT

Message
Port

Opcode Pair 06h/07h
Msg Port 14h:R4001h[1]

0b

Stage 1: Before
Memory Init

Opcode Pair 06h/07h
Msg Port 14h:R4001h[8:7]

11b

USB2 COMPBG
Opcode Pair 06h/07h
Msg Port 14h:R7F04h[10:7]

1001b

USB2 PLL2
Opcode Pair 06h/07h
Msg Port 14h:R7F03h[29]

1b

USB2 PLL1
Opcode Pair 06h/07h
Msg Port 14h:R7F02h[1]

1b

USB2 PLL1
Opcode Pair 06h/07h
Msg Port 14h:R7F02h[6:3]

1000b

USB2 PLL2
Opcode Pair 06h/07h
Msg Port 14h:R7F03h[29]

0b

USB2 PLL2
Opcode Pair 06h/07h
Msg Port 14h:R7F03h[24]

1b

USB EHCI Packet
Buffer OUT Threshold
(OUT_Threshold)

MMIO

USB EHCI [BAR0] +
94h[23:16]

BAR0 Reference: [B:0,
D:20, F:3] + 10h

7fh Stage 1: After Memory
Init.

USB EHCI Packet
Buffer IN Threshold
(IN_Threshold)

MMIO

USB EHCI [BAR0] +
94h[7:0]

BAR0 Reference: [B:0,
D:20, F:3] + 10h

7fh Stage 1: After Memory
Init.

USB Device Interrupt
Mask Register
(d_intr_msk_udc_reg)

MMIO

USB Device [BAR0] +
0410h[31:0]

BAR0 Reference: [B:0,
D:20, F:2] + 10h

0000007fh Stage 1: After Memory
Init.

USB Endpoints
Interrupt Mask
Register
(ep_intr_msk_udc_re
g)

MMIO

USB Device [BAR0] +
0418h[31:0]

BAR0 Reference: [B:0,
D:20, F:2] + 10h

000f000fh Stage 1: After Memory
Init.

USB Endpoints
Interrupt Register
(ep_intr_udc_reg)

MMIO

USB Device [BAR0] +
0414h[31:0]

BAR0 Reference: [B:0,
D:20, F:2] + 10h

000f000fh Stage 1: After Memory
Init.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 31

Basic Firmware Requirements—Intel® Quark™ SoC

4.5 Remote Management Unit Binary
The Quark SoC includes a Remote Management Unit that must access its binary data.
This binary data is referred to as the RMU binary. The following sections describe the
UEFI firmware requirements for handling this RMU binary.

4.5.1 Secure SKU

The RMU binary data is split into two parts (a 2KB RoT binary and a main binary). The
location of the RoT binary is hardcoded to FFFE0000h which is located in the Legacy
Bridge internal ROM. This 2KB RoT binary is automatically loaded by the Remote
Management Unit at power on. During boot, UEFI firmware shadows the main RMU
binary data to memory and informs the Remote Management Unit of its location.

4.5.2 Base SKU (Non-Secure)

The location of the RMU binary data is determined by a strap as follows (refer to the
[Datasheet] for more details):

• 0b: FFF00000h
• 1b: FFD00000h

The first 2KB of the RMU binary is automatically loaded by the RMU at power on. During
boot, UEFI firmware shadows the main RMU binary data to memory and informs the
Remote Management Unit of its location.

4.6 RMU Binary Relocation
After main memory has been either initialized or restored after leaving a suspend state,
the RMU binary should be relocated into main system memory to increase system
performance.

The firmware build files place a copy of the RMU binary in each of the built stage1
firmware volumes. The firmware finds the binary in the firmware volume using the
GUID filename defined by
PCD(gEfiQuarkNcSocIdTokenSpaceGuid.PcdQuarkMicrocodeFile) and then copies this
binary to main memory. Finally the firmware informs the chipset Remote Management
Unit of its location.

Table 16. Chipset PCIe Controller PHY Static Register Configuration Sequence

Name Access
Type Address[Bits] Value When to Program

Mixer Load Lane 0
Message

Port

Opcode Pair 02h/03h
Msg Port 16h:R2080h[7:6]

00b Stage 1: After releasing
PCIe controller from
resetMixer Load Lane 1

Opcode Pair 02h/03h
Msg Port 16h:R2180h[7:6]

00b

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
32 Order Number: 330236-005US

The RMU binary relocation procedure is as follows:
1. Copy the RMU binary (up to 64KB) from Firmware Volume file defined by

PCD(gEfiQuarkNcSocIdTokenSpaceGuid.PcdQuarkMicrocodeFile) to main memory.
Note: The RMU binary must be aligned on a 64KB boundary in main memory.

2. Indicate to the chipset that the RMU binary has been copied via the DRAM Base
Address Ready register [Opcode 78h:Port 04h, Register 00h]. The data payload
should contain the upper 16 bits of the 32 bit DRAM address where the RMU’s 64KB
block is located as shown in Table 17.

Figure 2. RMU Binary Relocation

FFFFFFFFh

RMU RoT Binary(2KB)

FFF00000h or FFD00000h
(selected by strap)

RMU RoT Binary(2KB)
FFFE0000h

FFFFFFFFh

FF800000h

RMU Main
Binary(<=64KB)

8MB Legacy SPI Flash 128KB ROM
(Only present in

Quark secure SKU)

Address=Don’t Care

 Quark Secure SKU: RMU RoT binary is automatically loaded by hardware from address FFFE0000h in the legacy ROM.
 Quark Base SKU (non-secure): RMU RoT binary is automatically loaded by hardware from address FFF00000/FFD00000h in

the legacy SPI Flash.
 RMU Main Binary is copied to system memory by UEFI firmware during boot for both secure and base Quark SKUs.

Table 17. DRAM Base Address Ready

Bit Description

31:16 Bit 31:16 of the RMU’s 64KB code block in DRAM

15:00 0000h

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 33

Basic Firmware Requirements—Intel® Quark™ SoC

After this procedure is executed, the image located in main memory will be used by the
system.

Note: For best system performance, the RMU should be relocated as early as possible after
main memory is available.

4.6.1 RMU Binary Relocation Considerations

Firmware must ensure that any OS software does not disturb the integrity of the RMU
binary after it has been relocated. The 64KB region that was reserved for the RMU
binary must be reported as Reserved in the UEFI memory map.

4.7 PCI/PnP Enumeration
System firmware is required to perform standard PCI/PnP enumeration and initialize all
PCI devices/functions discovered. As part of this process, all PCI-to-PCI bridges
(D23:F0-F1) must be initialized with secondary/subordinate bus numbers assigned and
bridge windows programmed properly. In addition, I/O, memory, and interrupt
resource allocation to PCI devices should be completed.

4.8 ACPI Support
System firmware should include ACPI support, with ACPI tables built in memory and
reported to the OS.

Before passing control to an ACPI OS, firmware must select the SCI to IRQ mapping by
programming the SCIS field (D31:F0:R58h[2:0]). SCI is disabled by default.

4.9 Reporting Interrupt Routing to the OS
The PCI interrupt routing schemes for all motherboard and chipset internal devices, PCI
expansion slots and PCI Express* slots behind the root ports are platform specific
information. System firmware is required to report this information to the OS via the
following interfaces:

• ACPI _PRT packages (per the ACPI Specification, in an ACPI environment)
• ACPI Multiple APIC Description Table (per ACPI Specification, in an ACPI

environment)

Offset 58h: ACTL – ACPI Control

2:0

SCI IRQ Select (SCIS): Specifies on which IRQ SCI will rout to. If not using APIC, SCI must
be routed to IRQ9-11, and that interrupt is not sharable with SERIRQ, but is shareable with
other interrupts. If using APIC, SCI can be mapped to IRQ20-23, and can be shared with
other interrupts.

Bits SCI Map Bits SCI Map

000 IRQ9 100 IRQ 20

001 IRQ10 101 IRQ 21

010 IRQ11 110 IRQ 22

011 SCI Disabled 111 IRQ 23

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
34 Order Number: 330236-005US

Refer to these specifications for detailed formats of interrupt routing tables and data
structures.

Refer to Section 12.0, “PCI IRQ Routing” on page 70 for details on interrupt routing.

4.10 Reporting IO/Memory Resources to the OS
Some of the memory and I/O address ranges used by internal devices are assigned by
firmware using base address registers beyond the standard PCI header (above offset
40h), and thus is invisible to OS. Firmware must report such memory/I/O resource
usage to OS through standard software interfaces to avoid potential system resource
conflict.

Firmware should report the memory address range used by the Chipset Configuration
space via UEFI memory table as ’EfiMemoryMappedIO’ memory space (Type=11), and
via ACPI _CRS object as motherboard resources, with the device ID of PNP0C02.

Firmware should report all of the I/O register space used by the ACPI, and GPIO
devices to the OS by using PNP device node entries and by using ACPI _CRS object.
They should be declared as Plug and Play motherboard resources with the Device ID of
PNP0C02.

4.11 Chipset Sticky Registers
Sticky registers are registers whose contents are preserved during an Intel® Quark™
SoC X1000 warm reset. See definition of warm reset in [Datasheet].

Table 18. Op codes 06h/07h, Msg Port 31h, Offset 51h: CFGSTICKY_RW – Sticky Read/Write

Bit Range Default &
Access Description

31:12
00000h

RW
Reserved (RSVD): Reserved.

11:10
00b
RW

Reserved (RSVD): Reserved.

9
0b
RW

Software Force Recovery (SW_FORCE_RECOVERY): Set by software to
indicate a critical error or security violation has been detected and system has
warm reset to boot Recovery firmware image.

8:5
000b
RW

Reserved (RSVD): Reserved.

4 0b RMU Warm Reset (RMU_WARM_RESET): Set by RMU when it initiates a
Warm Reset.

3 0b RMU Double ECC error detect (RMU_DECC_DETECT): Set by RMU when it
detects a double/multi bit ECC error.

2 0b RMU IMR access violation detect (RMU_IMR_VIOLATION): Set by RMU
when it detects a general Isolated Memory Regions (IMRs) access violation.

1 0b RMU HMBOUND access violation detect (RMU_HMB_VIOLATION): Set by
RMU when it detects a Host Memory I/O Boundary (HMBOUND) access violation.

0 0b RMU SMM access violation detect (RMU_SMM_VIOLATION): Set by RMU
when it detects a System Management Mode (SMM) access violation.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 35

Basic Firmware Requirements—Intel® Quark™ SoC

4.12 Boot Checklist
The following details the minimum steps necessary to boot using the Quark SoC:

• Control register CR0.NE must be set to 1 as FERR is not supported. Instead native
mode will be used (interrupt 16 generated internally on FPU errors).

• Enable NMI operation (IO Port 070h bit 7 = 0).
• Enable SMI operation (Msg Port 3:Reg03h bit 13 = 1).
• Initialize the legacy SPI decode/enable registers according to platform design

(D31:F0:RD0-D8h).
• Relocate and enable early memory for UEFI firmware use (Msg Port 5:Reg82h =

10000080h).
• Check resume status (WAKE, PM1_BLK+0, Bit[15]) and SLP_TYP (PM1_BLK + 04h,

Bit[12:10]). If not resuming, take reset path.
• Initialize the non-standard BARs (details in Section 4.4.2).
• Program GPIO configuration.
• Call memory reference code to initialize system memory (details in Section 5.0).
• Shadow RMU binary to system memory (see Section 4.6 for details).
• Shadow firmware to system memory.
• Initialize the “Stage 1” registers in Table 13.
• Relocate SMBase, clear SMI status bits at GPE0BASE + 14h, and enable SMIs.
• If SMRAM caching is used then a cache flush (wbinvd) must be performed before

exiting SMM. This is required since cache is external to CPU within a Intel® Quark™
SoC X1000.

• Initialize the “Stage 2” registers in Table 13.
• Perform PCI enumeration.
• Program Sub-System and Sub-Vendor ID in D31:F0:R2Ch. These values are used

as the SSID/SVID for all internal PCI devices. Also program these registers in all
PCI Express* devices per PCI specification.

• Initialize the “Stage 3” registers in Table 13.

4.13 Accessing Quark Platform Data System Flash Area
Intel® Quark™ SoC UEFI firmware provides an EDKII class library PlatformDataLib
which allows platform PI PEI and PI DXE drivers to access the Quark specific Platform
Data System Flash Area.

Platform data is an area of system flash with platform specific and unit specific
personality data used to configure various platform components during system boot.
This binary used to program system flash during manufacture is patched with this data
during board manufacture, see [Build Guide] on patching flash binary file using a
platform data file.

The Platform data area in system flash consists of a platform data area header followed
by multiple platform data items of configuration data, each platform data item consists
of an item header followed by the actual item configuration data bytes.

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
36 Order Number: 330236-005US

Table 19. Platform data area header

Field
name

Field
Length
in byte

Data
Type Description

Identifier 4 UINT32
Area signature which corresponds to using the EDKII macro
SIGNATURE_32 as follows:
SIGNATURE_32 ('P', 'D', 'A', 'T')

Length 4 UINT32 Length of the platform data area excluding this header.

CRC 4 UINT32 CRC32 of the platform data area excluding this header.

Table 20. Platform data item header

Field
name

Field
Length
in bytes

Data
Type Description

Identifier 2 UINT16
Unique identifier of data item. Corresponds to the value in the Identifier
column of Table 21
Values 0000h to 0fffh are reserved by Intel® for items common to
Intel reference platforms and customer platforms.

Length 2 UINT16 Length of data part of the data item.

Descripti
on 10

UINT8
[10]

10 byte character array description of this item

Version 2 UINT16 Version of this item.

Table 21. Platform data items common to Intel® platforms and customer platforms

Identifier

Data
Length in

bytes
(excluding

item
header)

Description

0 n/a Reserved item.

1 2
UINT16 specifying platform type firmware is executing on.
Values 0000h to 0fffh are reserved for Intel® Reference Platform types

2 TBD Reserved item for future use as board serial number.

3 6 MAC Address for B0:D20:F6 South Cluster 10/100 Mbps Ethernet Device.

4 6 MAC Address for B0:D20:F7 South Cluster 10/100 Mbps Ethernet Device.

5 TBD Reserved item for future use by Memory Reference Code (MRC).

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 37

Basic Firmware Requirements—Intel® Quark™ SoC

6 39
Memory Reference Code (MRC) parameters used in Section 5.0 to initialize
system memory.
See Table 22

7 varies
UEFI Secure Boot auto provisioning item for UEFI ‘pk’ variable.
.cer,.der or *.crt file which is a X509 public certificate in ASN.1 DER encoding
format.

8 varies

1st Boot UEFI Secure Boot auto provisioning item for UEFI Secure Boot ‘kek’, ‘db’
or ‘dbx’ variables.
It is expected there will be multiple instances of these items.
See Table 23

Table 21. Platform data items common to Intel® platforms and customer platforms

Identifier

Data
Length in

bytes
(excluding

item
header)

Description

Table 22. Platform Data Item: Memory Reference Code (MRC) parameters

Field
Name

Field
Length
in byte

Data
Type Description

Platform
identifier

2 UINT16 Platform ID sanity check to match against data value of item 1 in Table 21

Flags 4 UINT32
BIT[0]: ECC Enable
BIT[1]: Scramble Enable
BIT[2-31]: Reserved

Dram
Width

1 UINT8 0=x8, 1=x16, others=RESERVED

Dram
Speed

1 UINT8 0=DDRFREQ_800 others=RESERVED.

Dram
Type

1 UINT8 0=DDR3,1=DDR3L, others=RESERVED.

Rank
Mask

1 UINT8 bit[0] RANK0_EN, bit[1] RANK1_EN, others=RESERVED.

Chan
Mask

1 UINT8 bit[0] CHAN0_EN, others=RESERVED

Chan
Width

1 UINT8 1=x16, others=RESERVED

Addr
Mode

1 UINT8 0, 1, 2 (mode 2 forced if ecc enabled), others=RESERVED

SrInt 1 UINT8 1=1.95us, 2=3.9us, 3=7.8us, others=RESERVED.
REFRESH_RATE.

SrTemp 1 UINT8 0=normal, 1=extended, others=RESERVED

Dram
RonVal

1 UINT8 0=34ohm, 1=40ohm, others=RESERVED
RON_VALUE

Dram
RttNom
Value

1 UINT8 0=40ohm, 1=60ohm, 2=120ohm, others=RESERVED

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
38 Order Number: 330236-005US

Dram
RttWr
Value

1 UINT8 0=off others=RESERVED

Soc
RdOdt
Value

1 UINT8 0=off, 1=60ohm, 2=120ohm, 3=180ohm,
others=RESERVED.

Soc
WrRon
Value

1 UINT8 0=27ohm, 1=32ohm, 2=40ohm, others=RESERVED.

Soc
WrSlew

Rate
1 UINT8 0=2.5V/ns, 1=4V/ns, others=RESERVED.

Dram
Density

1 UINT8 0=512Mb, 1=1Gb, 2=2Gb, 3=4Gb, others=RESERVED.

tRAS 4 UINT32 ACT to PRE command period in picoseconds.

tWTR 4 UINT32 Delay from start of internal write transaction to internal read command in
picoseconds.

tRRD 4 UINT32 ACT to ACT command period (JESD79 specific to page size1K/2K) in
picoseconds

tFAW 4 UINT32 Four activate window (JESD79 specific to page size 1K/2K) in picoseconds.

tCL 1 UINT8 DRAM CAS Latency in clocks.

Notes:
1. The only values validated by Intel® for the above fields are the values used by MRC bin files which

come as part of the Intel® Quark™ SoC BSP, see [Build Guide].

Table 22. Platform Data Item: Memory Reference Code (MRC) parameters

Field
Name

Field
Length
in byte

Data
Type Description

Table 23. Platform Data Item: 1st Boot UEFI Secure Boot auto provisioning item for UEFI Secure
Boot ‘kek’, ‘db’ or ‘dbx’ variable.

Field
Name Length Data

Type Description

Header 4 struct

UINT8:StoreType: 1=”kek”, 2=”db”, 3=”dbx”,others=RESERVED.

UINT8:SignatureType:0=X509 cert file, 1=32Byte SHA256 Digest,2=*.pbk
Rsa2048 storing file, others=RESERVED

UINT16:flags: bit[0] Have SignatureOwner guid, others=RESERVED

Signatur
e

Owner
16 guid Optional GUID to identify individual Certificate / Signature stored in “kek”,

“db” or “dbx” SecureBoot variables

Signatur
e

Data
varies file Data to match Header.SignatureType

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 39

Basic Firmware Requirements—Intel® Quark™ SoC

4.14 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

Section Title File Path Function

4.1
Configuring
Memory and

MMIO Accesses

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S stackless_EarlyPlatformInit

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm stackless_EarlyPlatformInit

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnSmmConfi
gurationProtocol

4.2 Early Memory
Setup

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S stackless_EarlyPlatformInit

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm stackless_EarlyPlatformInit

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnSmmConfi
gurationProtocol

4.3
Isolated

Memory Regions
(IMRs)

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c SetPlatformImrPolicy

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnSmmConfi
gurationProtocol

4.4
Initializing

Chipset
Registers

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c
PeiQNCPreMemInit

QNCLockSmramRegion
PeiQNCPostMemInit

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S stackless_EarlyPlatformInit

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm stackless_EarlyPlatformInit

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c GetMemoryMap

QuarkPlatformPkg\Platform\Pei\PlatformInit\MemoryCallback.c MemoryDiscoveredPpiNotify
Callback

QuarkPlatformPkg\Platform\Dxe\Setup\QNCRegTable.c PlatformInitQNCRegs

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c QNCRootPortInit

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformEarlyInit.c

EarlyPlatformThermalSenso
rInit

InitializeUSBPhy
PcieControllerEarlyInit

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformErratas.c PlatformErratasPostMrc

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformEarlyInit.c EarlyPlatformInit

QuarkPlatformPkg\Library\PlatformPcieHelperLib\PlatformPcieHelperLi
b.c PlatformPciExpressEarlyInit

4.5
Remote

Management
Unit Binary

QuarkSocPkg\QuarkNorthCluster\Binary\QuarkMicrocode\RMU.bin -

4.6 RMU Binary
Relocation

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c PostInstallMemory

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c RmuMainRelocation

Intel® Quark™ SoC—Basic Firmware Requirements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
40 Order Number: 330236-005US

§ §

4.8 ACPI Support

QuarkPlatformPkg\Platform\Dxe\Setup\QNCRegTable.c PlatformInitQNCRegs

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform*.* *.*

QuarkPlatformPkg\Acpi\AcpiTables*.* *.*

4.9

Reporting
Interrupt

Routing to the
OS

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform\MadtPlatform.c *.*

QuarkPlatformPkg\Acpi\AcpiTables*.* *.*

4.10

Reporting IO/
Memory

Resources to
the OS

QuarkPlatformPkg\Acpi\AcpiTables*.* *.*

QuarkSocPkg\QuarkNorthCluster\QNCInit\Dxe\QNCInit.c QNCInitializeResource

QuarkPlatformPkg\Pci\Dxe\PciHostBridge\PciHostBridge.c InitializePciHostBridge

QuarkSocPkg\QuarkNorthCluster\Spi\RuntimeDxe\PchSpi.c InstallPchSpi

4.13

Accessing Quark
Platform Data
System Flash

Area

QuarkPlatformPkg\Include\PlatformData.h *.*

QuarkPlatformPkg\Include\Library\PlatformDataLib.h *.*

QuarkPlatformPkg\Library\PlatformDataLib *.*

Section Title File Path Function

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 41

DDR3 DRAM Configuration—Intel® Quark™ SoC

5.0 DDR3 DRAM Configuration

This chapter supplements the information provided in the [Datasheet] for use by
firmware vendors and Intel customers developing their own firmware for Quark SoC.

Register locations are referenced in this document, however, the current external
design specification or data sheet should be used along with applicable specification
updates for obtaining the current register and bit settings of the System Memory
Controller.

This document will be supplemented from time to time with specification updates. The
specification updates contain information relating to the latest programming changes
and may also contain resolutions to known errata. Check with your Intel representative
for availability of specification updates.

5.1 Intel® Quark™ SoC System Memory Controller
Quark SoC A0 supports single channel, memory down solution, organized as a single or
two ranks of the same DDR3 devices.

For complete details on Intel® Quark™ SoC System Memory Controller capabilities and
usage, see the [Datasheet], specifically Section 1.2 and Section 13.0.

5.2 MRC Flow Selection
Memory Reference Code (MRC) is the DRAM/Memory-Controller initialization flow
performed by Firmware before DRAM is enabled for functional access.

There are four basic types of MRC flows:
• Cold Boot Flow - After transition from G3, G2/S5, G1/S4 state, requires full System

Memory Controller, DDRIO and DRAM initialization sequence and training. Also that
flow should be executed on detection of DRAM initialization failure (when
GPE0BLK.PMSW.DRAMI bit is set).

• S3 Exit Flow - After transition from G1/S3 state, DRAM is expected to be in self
refresh and storing valid data. Training results from last cold boot are used for
DDRIO configuration and scrambler vector from last cold boot is written to System
Memory Controller.

• Warm Boot Flow- After warm reset some memory subsystem components retain
configuration settings, some registers are locked, only partial initialization is
required. Training results from last cold boot are used.

• Fast Cold Boot Flow - That is cold boot scenario assuming that memory
configuration did not change since the last time. Saved training results are used.
The flow must not be used if previous MRC execution indicates error
(GPE0BLK.PMSW.DRAMI bit is set).

For further boot flow description they will be referenced as: cold, s3, warm and fast.

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
42 Order Number: 330236-005US

In order to detect power transition type, the firmware has to check
PM1BLK.PM1S.WAKE and PM1BLK.PM1C.SLPTYPE registers.

The MRC code should use GPE0BLK.PMSW.DRAMI to indicate recent MRC execution
status. The bit should be set on MRC entry and cleared on successful completion. This
allows detecting memory initialization error and adopting the boot flow in case of
failure.

The use of Fast Cold Boot Flow is up to firmware, and can be used to optimize boot
performance.

5.3 Programming Considerations
Memory initialization requires programming of various registers within different system
components. The register/data access is component specific.

See Section 3.1, “Message Network” on page 20.

The message port access is executed using MDR/MCR registers.
• D0:F0:RD0h MCR - Message Control Register
• D0:F0:RD4h MDR - Message Data Register

5.4 Memory Controller Initialization
This section describes step by step memory initialization sequence, stating the
relevance for individual boot flows (cold/S3/warm/fast).

5.4.1 Clear Self-Refresh

Boot flow affected: Cold, Fast, Warm, S3

Clear self-refresh status
• PORT1.PMSTS.DISR=1

5.4.2 Program DDR Timing Control

Boot flow affected: Cold, Fast, Warm, S3

Table 24. Component-Specific Programming

Component Access method Port Read opcode Write opcode

PORT1
System Memory

Controller registers
Message port 0x01 0x10 0x11

PORT5 Message port 0x05 0x10 0x11

DDRIO Message port 0x12 0x06 0x07

MTE Message port 0x11 0x10 0x11

System Memory
Controller atomic
command handler

Message port 0x01 -- 0x68

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 43

DDR3 DRAM Configuration—Intel® Quark™ SoC

Initialize PORT1 DTR0 through DTR4 timing control registers. Follow detailed content
description from [Datasheet].

Note: Traditionally DIMM memory characteristic is provided through SPD, that is, providing
firmware independence from currently used memory chips. For the soldered down
DDR3 chips, the memory characteristics are known at production time and can be
hard-coded in the firmware.

5.4.3 Program Pre-JEDEC Rank Decoding

Boot flow affected: Cold, Fast

This step is preparing System Memory Controller for executing JEDEC memory
initialization sequence.

Disable power saving features and self-refresh
• PORT1.DPMC0.CLKGTDIS = 1
• PORT1.DPMC0.DISPWRDN = 1
• PORT1.DPMC0.DYNSREN = 0
• PORT1.DPMC0.PCLSTO = 0

Disable out of order transactions
• PORT1.DSCH.OOODIS = 1
• PORT1.DSCH.NEWBYPDIS = 1

Disable issuing the REF command
• PORT1.DRFC.tREFI = 0

Disable ZQ calibration short
• PORT1.DCAL.ZQCINT = 0
• PORT1.DCAL.SRXZQCL = 0

Enable rank decoding (depending on ranks populated on the board)
• PORT1.DRP.rank0Enabled = 1
• PORT1.DRP.rank1Enabled = 1

5.4.4 Perform DDR Reset

Boot flow affected: Cold, Fast

Set COLDWAKE bit before sending the WAKE message (this step is used set up the DDR
I/F prior to the JEDEC initialization and to take the System Memory Controller
maintenance FSM out of the reset state).

• PORT1.DRMC.COLDWAKE = 1

Using message port access, send wake command (op-code 0xCA) to System Memory
Controller (port address 0x01)

Restore default DRMC value
• PORT1.DRMC = 0

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
44 Order Number: 330236-005US

5.4.5 Initialize DDRIO

Boot flow affected: Cold, Fast, S3

Follow the reference code for the register programming sequence.
• The MPLL starts locking immediately after Power Good de-assertion assuming that

the right clock dividers have been passed to the MPLL through straps. There is no
FW action needed to lock the MPLL, but FW intervention is needed in getting the
clocks out as the clocks are disabled by default.

• Configure DDR3 interface characteristics through DDRIO registers (specify CL,
CWL, read ODT, write RON, write slew rate)

• After all the DDRIO configuration registers have been programmed, Initial RCOMP
(DDR Buffer compensation) is enabled.

• After the Initial RCOMP is done, FW enables the clock alignment FSM by a
configuration register write.

• FW enables the DDRIO TRANSMIT FIFO pointers.
• FW then sets the configuration register for IO_BUFFER_ACTIVATE that will enable

the DDR IO buffers.
• FW writes a "1" to the configuration bit to set the DRAM_RESET pad to HIGH
• FW writes a "1" to the configuration bit to set the SPID_INIT_COMPLETE bit that is

reflected back to the Memory Controller on the SPID interface.
• Now the DDRIO is ready to accept transactions on the SPID interface starting with

the JEDEC initialization of the DDR memory devices.

5.4.6 Perform JEDEC Initialization

Boot flow affected: Cold, Fast

Firmware must ensure the initialization sequence meets JEDEC spec timing intervals.
See Reset and Initialization Sequence at Power-on Ramping in [JESD79-3F] for details.

Assert RESET# for 200us
• DDRIO.CCDDR3RESETCTL.BIT8=0
• DDRIO.CCDDR3RESETCTL.BIT1=1
• Wait 200us
• DDRIO.CCDDR3RESETCTL.BIT8=1
• DDRIO.CCDDR3RESETCTL.BIT1=0

Set CKE signal for each populated memory rank
• PORT1.DRMC.CKEVAL[0] = 1
• PORT1.DRMC.CKEVAL[1] = 1 // only if 2nd rank populated
• PORT1.DRMC.CKEMODE = 1

Send NOP command to each populated rank (using System Memory Controller message
for DRAM command (op-code 0x68))

Restore default DRMC value
• PORT1.DRMC = 0

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 45

DDR3 DRAM Configuration—Intel® Quark™ SoC

For each populated memory rank send MR2, MR3, MR1, MR0 register values and
execute ZQCL (using System Memory Controller message for DRAM command (op-code
0x68))

5.4.7 Signal Initialization Complete

Boot flow affected: Cold, Fast, Warm

Specify PRI interface owned by PORT5
• PORT1.DCO.PMICTL = 0

Indicate that initialization of the System Memory Controller has completed. Memory
accesses are permitted and maintenance operation begins. Until this bit is set, the
memory controller will not accept DRAM requests from the PORT5 or MTE.

• PORT1.DCO.IC = 1

5.4.8 Restore Timings

Boot flow affected: Fast, Warm, S3

Some NV storage is required for storing training results in order to avoid full training
procedure on every reset. Assuming use of saved data from the last cold boot flow,
program DDRIO settings for:

• Receive enable delay
• Read DQS delay
• Write DQS delay
• Write DQ delay
• Internal VREF value
• Write control delay
• Write clock delay

5.4.9 Disable Memory Caching

Boot flow affected: Cold

During memory training execution, if memory read or write cycles are triggered by the
CPU, then caching has to be disabled. Depending on firmware flow, the original values
have to be saved and restored after memory training is completed.

Disable DRAM caching
• CPU.CR0.CD = 1
• MTRR[DRAM_RANGE].TYPE = UC

Flush cache to DRAM
• PORT5.BCTRL.MISSVALIDENTRIES = 1
• PORT5.BWFLUSH.DIRTY_LWM = 0
• PORT5.BWFLUSH.DIRTY_HWM = 0
• PORT5.BDEBUG1 = 0
• PORT3.HWFLUSH.HWM = 0

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
46 Order Number: 330236-005US

5.4.10 Receive Enable Training

Boot flow affected: Cold

The procedure has to be executed for each memory rank and each byte lane.

Adjust internal receive enable signal to the center of the first DQS preamble cycle.

The DQS signal is generated by the DRAM in response to the read command. If the CPU
is used to generate read cycles, then read timing has to be extended

• DTR1. tCCD = 1

in order to be able to sample DQS preamble.

Using default back-to-back transactions, it is not possible to capture DQS preamble.
Single CPU memory read generates 4 read commands on the DDR interface, DQS
samples are collected from the last read. After completed receive enable training, DTR1
settings have to be restored.

For individual byte lanes, the DQS sample is read from
• DDRIO.Reg0x0034.Bit0 - byte lane 0
• DDRIO.Reg0x0034.Bit1 - byte lane 1

For the purpose of the training algorithm, the representative sample value should be
evaluated as the average of multiple samples.

The receive enable delay is expressed in 1/128 of memory clock cycle duration. The
final value is the result of the following formula:

• DDRIO.Reg0x0070.Bit[11:08]*64 + DDRIO.Reg0x003C.Bit[29:24] - byte lane 0
• DDRIO.Reg0x0070.Bit[23:20]*64 + DDRIO.Reg0x0038.Bit[29:24] - byte lane 1

Dead band adjust (additional configuration is required if delay is outside of certain
limits, otherwise referenced bits should be set to zero).

If DDRIO.Reg0x003C.Bit[29:24] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit5 = 1

If DDRIO.Reg0x003C.Bit[29:24] is less than 0x12 then
• DDRIO.Reg0x007C.Bit11 = 1

If DDRIO.Reg0x0038.Bit[29:24] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit2 = 1

If DDRIO.Reg0x0038.Bit[29:24] is less than 0x12 then
• DDRIO.Reg0x007C.Bit8 = 1

Algorithm overview:
• Start with arbitrary delay
• Increase delay with small steps in order to detect DQS sample change 0'1
• Increase delay by 32 to place in center of high pulse
• Decrease delay by 128 (entire memory clock) until zero is sampled (i.e. DQS

preamble)
• Increase delay by 32 to position receive enable at the middle of the DQS preamble

cycle

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 47

DDR3 DRAM Configuration—Intel® Quark™ SoC

• As the setting is common for both ranks, the final result must be the average.

5.4.11 Write Leveling Training

Boot flow affected: Cold

The procedure has to be executed for each memory rank and each byte lane.

Adjust write DQS signal delay to DRAM clock (fine write leveling).

Adjust write DQ delay to write DQS signal in order to get write and read consistency for
simple data patterns (coarse write leveling).

Fine write leveling

The write DQS delay is expressed in 1/128 of memory clock cycle duration. The final
delay is result of the following formula:

• DDRIO.Reg0x0070.Bit[07:04]*64 + DDRIO.Reg0x003C.Bit[21:16] - byte lane 0
• DDRIO.Reg0x0070.Bit[19:16]*64 + DDRIO.Reg0x0038.Bit[21:16] - byte lane 1

Dead band adjust (additional configuration is required if delay is outside of certain
limits, otherwise referenced bits should be set to zero).

If DDRIO.Reg0x003C.Bit[21:16] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit1 = 1

If DDRIO.Reg0x003C.Bit[21:16] is less than 0x12 then
• DDRIO.Reg0x007C.Bit4 = 1

If DDRIO.Reg0x0038.Bit[21:16] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit7 = 1

If DDRIO.Reg0x0038.Bit[21:16] is less than 0x12 then
• DDRIO.Reg0x007C.Bit10 = 1

In write leveling mode, the memory is providing internal clock state on the DQ lines as
it is latched by the rising edge of write DQS signal. The sample of DQ signals can be
read from:

• DDRIO.Reg0x0034.Bit8 - byte lane 0
• DDRIO.Reg0x0034.Bit9 - byte lane 1

Algorithm
• Perform a single PRECHARGE ALL command to make DRAM state machine go to

IDLE state
• Enable write leveling mode in MRS1
• Set PORT1.DTR4.ODTDIS = 1 (ODT disable)
• Configure DDRIO write leveling mode

— DDRIO.Reg0x009C = ((DDRIO.Reg0x009C & 0x100003FC) | 0x10000154)
— DDRIO.Reg0x5830.Bit16 = 1

• Set arbitrary delay for write DQS signal
• Increase delay with small steps in order to detect DQ sample change 0'1
• Cancel DDRIO write leveling mode

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
48 Order Number: 330236-005US

— DDRIO.Reg0x5830.Bit16 = 0
— DDRIO.Reg0x009C = ((DDRIO.Reg0x009C & 0x100003FC) | 0x00000154)

• Set PORT1.DTR4.ODTDIS = 0 (ODT enable)
• Disable write leveling mode in MRS1
• Perform a single PRECHARGE ALL command to make DRAM state machine go to

IDLE state

Coarse write leveling

During coarse write leveling, write DQ delay has to be set ¼ DCLK (128/4 = 32 units)
earlier than write DQS, then write DQS is moved by the whole DCLK (128 units) until
read data is matching write data. Simple (low frequency) data pattern has to be used
for write/read test.

The delay has to be adjusted for each byte lane, and finally the average (per byte lane)
from all ranks has to be programmed.

The write DQ delay is expressed in 1/128 of memory clock cycle duration. The final
value is the result of the following formula:

• DDRIO.Reg0x0070.Bit[03:00]*64 + DDRIO.Reg0x003C.Bit[13:08] - byte lane 0
• DDRIO.Reg0x0070.Bit[15:12]*64 + DDRIO.Reg0x0038.Bit[13:08] - byte lane 1

Dead band adjust (additional configuration is required if delay is outside of certain
limits, otherwise referenced bits should be set to zero).

If DDRIO.Reg0x003C.Bit[13:08] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit0 = 1

If DDRIO.Reg0x003C.Bit[13:08] is less than 0x12 then
• DDRIO.Reg0x007C.Bit3 = 1

If DDRIO.Reg0x0038.Bit[13:08] is less than 0x12 or greater than 0x34 then
• DDRIO.Reg0x007C.Bit6 = 1

If DDRIO.Reg0x0038.Bit[13:08] is less than 0x12 then
• DDRIO.Reg0x007C.Bit9 = 1

5.4.12 Read Training

Boot flow affected: Cold

The procedure has to be executed for each memory rank and each byte lane.

Find available margins for internal VREF value and read DQS delay and position these
signals in the "eye" center. The margining is executed by verifying successful read of
random write patterns.

Algorithm
• (A) Starting from min VREF, find min working read DQS passing write/read test.

Increase VREF if no valid read DQS can be found.
• (B) Starting from min VREF, find max working read DQS. Increase VREF if no valid

read DQS can be found.
• (C) Starting from max VREF, find min working read DQS. Decrease VREF if no valid

read DQS can be found.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 49

DDR3 DRAM Configuration—Intel® Quark™ SoC

• (D) Starting from max VREF, find max working read DQS. Decrease VREF if no valid
read DQS can be found.

• Calculate average read DQS for min working VREF (using A & B step results)
• Calculate average read DQS for max working VREF (using C & D step results)
• Configure final read DQS using average from above results
• Calculate average VREF for min read DQS (using A & C step results)
• Calculate average VREF for max read DQS (using B & D step results)
• Configure final VREF using average from above results

Note: Finally average result from each rank should be used.

The read DQS delay is expressed in 1/128 of memory clock cycle duration. The final
value is result of the following formula:

• DDRIO.Reg0x005C.Bit[06:00] - byte lane 0
• DDRIO.Reg0x0058.Bit[06:00] - byte lane 1

The value of VREF is programmed in the following register:
• DDRIO.Reg0x0014.Bit[07:02] - byte lane 0
• DDRIO.Reg0x0024.Bit[07:02] - byte lane 1

Min to max VREF encoding: 0x3F, …,0x20, 0x00, …,0x1F

5.4.13 Write Training

Boot flow affected: Cold

The procedure has to be executed for each memory rank and each byte lane.

Find available margins for write DQ signal and position it in the "eye" center. The
margining is executed by verifying successful write of random data patterns.

Algorithm
• Starting from write DQ delay configured ¼ DCLK earlier than write DQS (using the

results from coarse write leveling), find min and max write DQ delay passing the
write/read test.

• Configure final write DQ delay as the average of the above results

5.4.14 Store Timings

Boot flow affected: Cold

Training results collected during cold boot flow should be saved in some NV storage for
later use (i.e. for Fast, Warm, and S3 flows, see Section 5.4.8, “Restore Timings” on
page 45).

5.4.15 Enable Scrambling

Boot flow affected: Cold, Fast, Warm, S3

If scrambling is enabled by platform designer/owner, then the Firmware should load a
new, random scrambler vector every cold boot. At S3 Exit, the Firmware must load the
same vector loaded in the last cold boot since the DRAM is expected to contain valid
data and the same scrambler vector that was used to write the data into the DRAM is
needed to unscramble it.

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
50 Order Number: 330236-005US

• PORT1.SCRMSEED = random_value

5.4.16 Program Execution Control

Boot flow affected: Cold, Fast, Warm, S3

Configure power management
• PORT1.DPMC0.CLKGTDIS = 0
• PORT1.DPMC0.DISPWRDN = 0
• PORT1.DPMC0.PCLSTO = 4
• PORT1.DPMC0.PREAPWDEN = 1

Configure scheduler control registers
• PORT1.DSCH.OOODIS = 0
• PORT1.DSCH.OOOST3DIS = 0
• PORT1.DSCH.NEWBYPDIS = 0

5.4.17 Configure Rank Population

Boot flow affected: Cold, Fast, Warm, S3

After training is completed, configure System Memory Controller rank population
register specifying: enabled ranks, device width, density, and address mode.

• PORT1.DCO.IC = 0
• PORT1.DRP.rank0Enabled = 1
• PORT1.DRP.rank1Enabled = rank1_present
• PORT1.DRP.dimm0DevWidth = dev0_width
• PORT1.DRP.dimm1DevWidth = dev1_width
• PORT1.DRP.dimm0DevDensity = dev0_density
• PORT1.DRP.dimm1DevDensity = dev1_density
• PORT1.DRP.addressMap = address_mode

Signal initialization complete
• PORT1.DCO.IC = 1

5.4.18 Perform Wake

Boot flow affected: Warm, S3

Using Message Network+, send the wake command (op-code 0xCA) to System Memory
Controller (port address 0x01)

5.4.19 Change Refresh Period

Boot flow affected: Cold, Fast, Warm, S3

Configure refresh rate and short ZQ calibration interval. Activate dynamic self-refresh.
• PORT1.DRFC.tREFI = refresh_rate
• PORT1.DRFC.REFDBTCLR = 1

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 51

DDR3 DRAM Configuration—Intel® Quark™ SoC

• PORT1.DCAL.ZQCINT = 3
• PORT1.DPMC0.ENPHYCLKGATE = 1
• PORT1.DPMC0.DYNSREN = 1

5.4.20 Set Periodic Compensation

Boot flow affected: Cold, Fast, Warm, S3

Configure DDRIO for Periodic Compensations, Dynamic Diff-Amp

Enable Periodic RCOMPS
• DDRIO.Reg0x6800.BIT1 = 1

Enable Dynamic Diff-Amp and ODT
• DDRIO.Reg0x0094 &= ~0x3FFC00
• DDRIO.Reg0x0098 &= ~0x3FFC00

For each populated rank sent ZQCS command
• MDR = (RNK << 22) | 6
• MCR = 0x680100F0

Reset internal DDRIO FIFO pointers
• DDRIO.Reg0x0074.BIT8 = 0
• DDRIO.Reg0x0074.BIT8 = 1

5.4.21 Enable ECC

Boot flow affected: Cold, Fast, Warm, S3

Depending on configuration enable ECC support. Note that some Intel® Quark™ SoC
SKUs do not support ECC. Even if ECC is supported by the silicon, the designer may
decide not to use it because of boot performance impact (required entire memory
cleanup for initial ECC reset) or because of related memory bandwidth and size
limitation.

Force settings required for ECC
• PORT1.DRP.addressMap = 2
• PORT1.DRP.split64 = 1
• PORT1.DSCH.NEWBYPDIS = 1

Enable ECC
• PORT1.DECCCTRL.SBEEN = 1
• PORT1.DECCCTRL.DBEEN = 1
• PORT1.DECCCTRL.ENCBGEN = 1

Available memory size is decreased as part of it is used to store ECC, and is not
available for use by the system (see [Datasheet] for details).

• AvailableMemSize = ActualMemSize * 7 / 8

Clear available memory in order to initialize ECC (except of S3 flow, as memory content
has to be preserved).

Intel® Quark™ SoC—DDR3 DRAM Configuration

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
52 Order Number: 330236-005US

5.4.22 Memory Test

Boot flow affected: Cold, Fast, Warm

Memory test is optional. In case of Fast/Warm boot flows, as recovery from the test
failure, the complete memory training might be executed.

5.4.23 Lock Registers

Boot flow affected: Cold, Fast, Warm, S3

For security purposes, at the end of memory initialization, changes to the DRP register
and MTE access must be disabled.

• PORT1.DCO.PMIDIS = 0
• PORT1.DCO.PMICTL = 0
• PORT1.DCO.DRPLOCK = 1
• PORT1.DCO.REUTLOCK = 1

5.5 Memory Training Engine
The MTE (Memory Training Engine) is part of the System Memory Controller. It can be
used during memory initialization and training as it offers better performance
comparing to CPU driven memory access. The reference code provides primitive
functions supporting:

• ECC initialization - Fill memory with fixed pattern
• Memory test - Write, and then read/verify entire memory using fixed pattern
• Coarse write leveling - Write, and then read/verify at specified address, using low

frequency pattern
• Read and write training - Write, and then read/verify at specified address, using

variable random patterns

The control over DDR interface, SoC vs. MTE, depends on the PORT1.DCO.PMICTL bit
state.

5.6 Memory Reference Code Configuration
Intel® Quark™ SoC MRC is implemented in the MemoryInitPei component, being part
of QuarkSocPkg package. The memory controller initialization is performed by
MemoryInit function with respect to the current boot flow mode. That function is
executed at the end of PEI phase (indirectly through the service protocol interface call).
The platform specific code has to provide all required input data through the
MRC_PARAMS structure (see definition in
QuarkSocPkg\QuarkNorthCluster\MemoryInit\Pei\mrc.h).

The MRC_PARAMS structure input data to the MRC is set up by the MemoryInit,
MrcConfigureFromMcFuses and MrcConfigureFromInfoHob of
QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c

The reference platform design assumes "memory down" solution, thus the
configuration is fixed for a specific platform, and no external or discrete SPD data is
used.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 53

DDR3 DRAM Configuration—Intel® Quark™ SoC

Certain parameters may be fixed by silicon fuses (see MrcConfigureFromMcFuses).
Configurable parameters are modified using platform data stored in legacy SPI flash.
For example, configurable parameters include number of populated ranks, DDR width,
density, clock speed, etc. The default timing parameters are based on JESD79-3E
specification and are specific to DDR clock speed and data bus width. Table 22 defines
MRC configuration parameters stored in platform data. Refer to Section 4.13 and [Build
Guide] for more details on platform data.

5.7 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function/structures

5.0
DDR3 DRAM
Configuration

QuarkSocPkg\QuarkNorthCluster\MemoryInit\Pei*.* *.*

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapp
er.c MemoryInit

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapp
er.c

MrcConfigureFromMcFu
ses

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapp
er.c

MrcConfigureFromInfo
Hob

QuarkPlatformPkg\include\PlatformData.h PDAT_MRC_ITEM
structure

Intel® Quark™ SoC—CPUID Instruction

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
54 Order Number: 330236-005US

6.0 CPUID Instruction

For a detailed description of the CPUID instruction format, please refer to the Intel®
Architecture Software Developer's Manual. This section provides additional
documentation specific to the Quark SoC. The UEFI firmware should use the CPUID
instruction to identify the Quark SoC.

Two sets of functions are supported: standard functions, and extended functions. The
standard functions are 0000_0000h - 0000_000Bh. The extended functions are
8000_0000h and above.

6.1 CPUID Functions
Quark SoC UEFI firmware uses the CPUID instruction to determine what features are
supported by the Quark SoC. The UEFI firmware should validate the Vendor-ID before
executing additional CPUID functions (must return ’GenuineIntel’). Table 25 lists the
CPUID functions supported on Quark SoC.

Table 25. Intel® Quark™ SoC CPUID Functions (Sheet 1 of 2)

CPUID Function Number
(EAX Value)

Returned on Intel®
Quark™ SoC Description

0x00000000

EAX=0x00000007 Largest standard CPUID function number
supported.

EBX=0x756E6547 ’uneG’. Part of ’GenuineIntel’ string

ECX=0x6C65746E ’letn’. Part of ’GenuineIntel’ string

EDX=0x49656E69 ’Ieni’. Part of ’GenuineIntel’ string

0x00000001

EAX=0x00000590 Family ID=0x5, Model=0x9, Stepping ID=0x0

EBX=0x00010000

[7:0] = Brand ID.
[15:8] = CLFLUSH line size.
[23:16] = Maximum number of logical
processors per package.
[31:24] = Default APIC ID.

ECX=0x00000000 Features supported

EDX=0x8000237B

[0] = FPU on chip
[1] = Virtual 8086 mode enhancements
[3] = PSE. Page Size Extension. Large pages of
size 4MB are supported including CR4.PSE
[4] = TSC. Time Stamp Counter. RDTSC
instruction is supported including CR4.TSD for
controlling privilege.
[5] = MSR. Model Specific Register RDMSR/
WRMSR instructions.
[6] = PAE. Physical Address Extension.
[8] = CMXCHG8B instruction support.
[9] = APIC. APIC on chip
[13] = PGE. Page Global Bit
[31] = PBE. Pending Break Event.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 55

CPUID Instruction—Intel® Quark™ SoC

0x00000002

EAX=0x00000001
[0] = Number of CPUIDs
No cache information to report.

EBX=0x00000000 No cache information to report.

ECX=0x00000000 No cache information to report.

EDX=0x00000000 No cache information to report.

0x00000003 - 0x00000006

EAX=0x00000000

EBX=0x00000000

ECX=0x00000000

EDX=0x00000000

0x00000007 (and
ECX=0x00000000)

EAX=0x00000001 Maximum number of supported leaf 7 sub leaves

EBX=0x00000080 or
0x00000000 [7] = SMEP

ECX=0x00000000

EDX=0x00000000

0x00000007 (and
ECX!=0x00000000)

EAX=0x00000000

EBX=0x00000000

ECX=0x00000000

EDX=0x00000000

0x80000000

EAX=0x80000008 Maximum extended CPUID function

EBX=0x00000000

ECX=0x00000000

EDX=0x00000000

0x80000001

EAX=0x00000000

EBX=0x00000000

ECX=0x00000000

EDX=0x00100000 or
0x00000000

[20] = Execute Disable available.
0: if IA32_MISC_ENABLES[34]=1
1: if IA32_MISC_ENABLES[34]=0

0x80000002 - 0x80000007

EAX=0x00000000

EBX=0x00000000

ECX=0x00000000

EDX=0x00000000

0x80000008 EAX=0x00002020
[7:0] = Physical address width
[15:8] = Linear address width

EBX=0x00000000

ECX=0x00000000

EDX=0x00000000

Table 25. Intel® Quark™ SoC CPUID Functions (Sheet 2 of 2)

CPUID Function Number
(EAX Value)

Returned on Intel®
Quark™ SoC Description

Intel® Quark™ SoC—CPUID Instruction

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
56 Order Number: 330236-005US

6.2 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

6.1 CPUID Functions MdePkg\Library\BaseLib\Ia32\CpuId.c AsmCpuid

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 57

Model Specific Registers—Intel® Quark™ SoC

7.0 Model Specific Registers

Quark SoC supports a subset of Model Specific Registers (MSRs). These MSRs and the
supported bits are listed in Table 26.

UEFI firmware must ensure IA32_MISC_ENABLE[22]=0 so that all CPUID functions are
reported.

7.1 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Table 26. Model Specific Registers

Name Address Feature Bit definition

IA32_TSC 0x10 Time Stamp Counter
This is a 64-bit counter that
increments with the core clock
frequency.

IA32_MISC_ENABLE 0x1A0 PAE/XD

[22]=Limit CPUID
[34]=XD Disable
All other bits are reserved. Writing
of 1'b1 to reserved bits causes
#GP(0) Fault.

IA32_EFER 0xC000_0080 PAE/XD

[11] - NXE - Execute Disable bit
Enable.
All other bits are reserved. Writing
of 1'b1 to reserved bits causes
#GP(0) Fault.

Section Title File Path Function

7.0
Model

Specific
Registers

IA32FamilyCpuBasePkg\CpuMpDxe\LimitCpuIdValue.c MaxCpuidLimitReg

QuarkSocPkg\Override\MdePkg\Library\BaseLib\ReadMsr64.c AsmReadMsr64

QuarkSocPkg\Override\MdePkg\Library\BaseLib\WriteMsr64.c AsmWriteMsr64

QuarkSocPkg\Override\MdePkg\Library\BaseLib\QuarkMsr.c TranslateMsrIndex

MdePkg\Library\BaseLib\Ia32\ReadTsc.c
QuarkSocPkg\Override\MdePkg\Library\BaseLib\Ia32\GccInline.c AsmReadTsc

Intel® Quark™ SoC—System Management Mode (SMM)

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
58 Order Number: 330236-005US

8.0 System Management Mode (SMM)

System Management Mode (SMM) is a high priority mode of the Quark SoC that is
entered when the Quark SoC acknowledges a System Management Interrupt (SMI).
When the Quark SoC enters SMM it writes the current state of the Quark SoC (the
Quark SoC’s context) to memory and begins executing specialized UEFI firmware code.
When entering SMM the Quark SoC is in a mode similar to real-address mode except
there are no privilege levels or address mapping. The main benefit of SMM is that it
offers a distinct and easily isolated processor environment that operates transparently
to the operating system or executive and software applications. SMM has proven
valuable as a mechanism for working around various system issues and also for power
management handling. However, if not used correctly, SMM has the ability to cause
unexpected system behavior, poor system performance and even crash/hang the
operating system.

The Quark SoC introduces new capabilities and requirements for SMM. This chapter
discusses UEFI firmware changes required to supported SMM.

For a detailed overview of SMM, refer to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A: System Programming Guide, Part 1.

8.1 Initializing SMM
During the boot process, the bootstrap processor (BSP) is responsible for:

• Configuring the chipset controls (see SMM Control in Table 12) for the SMM region.
• Copying the runtime SMM handler to the TSEG.
• Copying the SMM relocation handler to 30000h + 8000h.
• Invoking an SMI IPI (Inter Processor Interrupt, see Section 16.0) to self to execute

the SMM relocation handler.
• Resume execution of the boot process.

Since the BSP initialized the chipset and installed the runtime SMM handler, the
application processors (APs) must:

• Send an SMI IPI to self to execute the SMM relocation handler. This first SMI will
cause the Quark SoC to vector to 30000h + 8000h.

• Resume execution of the multiprocessor initialization.

8.1.1 Responsibilities of the SMM Relocation Handler

For each logical processor, the first SMI it receives after a reset will cause the processor
to vector to 30000h + 8000h. This is the default SMBASE for all Intel processors. UEFI
firmware is responsible for relocating this default SMBASE to be located in TSEG
memory space. Each logical processor must be assigned a unique SMBASE in TSEG.
Thus, UEFI firmware installs the SMM Relocation Handler at this default SMBASE. The
SMM relocation handler is responsible for:

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 59

System Management Mode (SMM)—Intel® Quark™ SoC

— Assigning each processor a unique SMBASE. The SMBASE is only
configurable while in SMM and must be written to the SMBASE register which is
part of the processor context saved when the SMI was acknowledged. The
SMBASE register during this first SMI is located at memory address 30000h +
(8000h + 7EF8h). Subsequent SMIs will cause the processor to vector to the
new SMM entry point which is SMBASE + 8000h. The minimum distance
between adjacent SMBASE assignments is 200h (512) bytes. The Quark SoC
SMBASE must be aligned on a 32KB boundary.

— Configuring the System Management Mode Range Registers (SMRR).
The SMRR maps the cacheability of the runtime SMM handler. The runtime
handler must be located in TSEG. The SMRRs enhance SMM by making the
SMM memory cacheable upon acknowledging an SMI. The SMRR is used to
define the cacheability type of all of the TSEG. SMRAM base and size must be
aligned on a power of 2 boundary. Since TSEG is now cacheable when the
processor is writing its context, entry and exit of the runtime SMM handler
should be faster. Refer to Section 9.2.1 for additional details.

During the boot process, the UEFI firmware must initialize the SMBASE for each logical
processor in the Quark SoC. Each logical processor must be assigned a unique SMBASE
aligned on a 32KB boundary. The SMBASE for a logical processor must maintain at least
200h address separation from another logical processor’s SMBASE.

The address selected for SMBASE relocation must not overlap fixed Local APIC range
(FEE00000h-FEEFFFFFh).

8.2 SMM Revision Identifier
Upon entering SMM, the UEFI firmware must check the SMMREV_ID register located at
SMBASE + 8000h + 7EFCh. The Quark SoC supports a SMMREV_ID of 3_0000h.

8.3 SMM State Save Map
The Quark SoC supports 32-bit SMM State Save Map.

Table 27. SMRAM State Save Map (Sheet 1 of 2)

Offset
(Added to SMBASE + 8000H) Register Writable?

7FFCH CR0 No

7FF8H CR3 No

7FF4H EFLAGS Yes

7FF0H EIP Yes

7FECH EDI Yes

7FE8H ESI Yes

7FE4H EBP Yes

7FE0H ESP Yes

7FDCH EBX Yes

7FD8H EDX Yes

7FD4H ECX Yes

7FD0H EAX Yes

† The two most significant bytes are reserved.

Intel® Quark™ SoC—System Management Mode (SMM)

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
60 Order Number: 330236-005US

8.4 SMRR Configuration Requirements
Configuring the SMRR registers only occurs during the first SMI per logical processor
where SMM relocation of the SMBASE is accomplished. SMRR configuration is NOT
executed with each subsequent SMI.

Note: Configuration of SMRR is discussed in Section 9.2.1. SMRR can only be configured while
the processor is in SMM and executing the SMM relocation handler.

7FCCH DR6 No

7FC8H DR7 No

7FC4H TR† No

7FC0H Reserved No

7FBCH GS† No

7FB8H FS† No

7FB4H DS† No

7FB0H SS† No

7FACH CS† No

7FA8H ES† No

7FA4H I/O State Field No

7FA0H I/O Memory Address Field No

7F9FH-7F03H Reserved No

7F02H Auto HALT Restart Field (Word) Yes

7F00H I/O Instruction Restart Field (Word) Yes

7EFCH SMM Revision Identifier Field (Doubleword) No

7EF8H SMBASE Field (Doubleword) Yes

7EF7H - 7E00H Reserved No

Table 27. SMRAM State Save Map (Sheet 2 of 2)

Offset
(Added to SMBASE + 8000H) Register Writable?

† The two most significant bytes are reserved.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 61

System Management Mode (SMM)—Intel® Quark™ SoC

8.5 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

8.1 Initializing
SMM

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c GetMemoryMap

QuarkSocPkg\\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCGetTSEGMemoryRange

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCOpenSmramRegion

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCCloseSmramRegion

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCLockSmramRegion

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\Ia32\SmmInit.asm
IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\Ia32\SmmInit.S SmmStartup

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\PiSmmCpuDxeSmm.c
SmmRelocateBases

SmmInitHandler
FindSmramInfo

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\Ia32\SmiEntry.asm
IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\Ia32\SmiEntry.S _SmiEntryPoint

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\MpService.c SmiRendezvous

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\SmmFeatures.c

IsSmrrSupported
PentiumInitSmrr

DisableSmrr
PentiumEnableSmrr

8.2 SMM Revision
Identifier

IntelFrameworkPkg\Include\Protocol\SmmCpuSaveState.h EFI_SMM_CPU_STATE32.S
MMRevId

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\PiSmmCpuDxeSmm.c SmmReadSaveState

8.3 SMM State
Save Map

IntelFrameworkPkg\Include\Protocol\SmmCpuSaveState.h EFI_SMM_CPU_STATE32

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\PiSmmCpuDxeSmm.c SmmReadSaveState

8.4
SMRR

Configuration
Requirements

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\SmmFeatures.c SmmInitiFeatures

Intel® Quark™ SoC—Cache Control

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
62 Order Number: 330236-005US

9.0 Cache Control

9.1 MTRR Programming
Quark SoC does not support MSR MTRRs. Fixed and Variable range MTRRs are accessed
via the Message Network Registers (refer to Section 4.4) and not the traditional MSR
mechanism. Refer to the [Datasheet] for more details. The following are the Cache
types supported by the Quark SoC.

In addition to setting up the decoding of the E0000h and F0000h segments, system
firmware should also program the MTRR (Memory Type Range Registers), which are
part of the Quark SoC. The following are the suggested MTRR settings for various
memory regions.

Note: The programming described in Table 29 assumes a default cache type of UC (default in
all modern processors).

Table 28. Supported Cache Types

Cache Type MTRR Encoding Description

UC 00h Un Cached

WT 04h Write Through

WB 06h Write Back

Table 29. Memory Map and MTRR Programming Example (Sheet 1 of 2)

Memory Range Description MTRR
Setting

MTRR
Encoding MTRR Used for Configuration

0h-9FFFFh 640KB Main memory WB 06 MTRRfix64K_0000
MTRRfix16K_8000

A0000h – AFFFFh 64KB Legacy video
frame buffer UC 00 MTRRfix16K_A0000

B0000h – BFFFFh 64KB Legacy video
frame buffer UC 00 MTRRfix16K_B0000

C0000h – C7FFFh 32KB Expansion ROM UC 00 MTRRfix4K_C0000

C8000h – CFFFFh 32KB Expansion ROM UC 00 MTRRfix4K_C8000

D0000h – DFFFFh 64KB Expansion ROM UC 00
MTRRfix4K_D0000
MTRRfix4K_D8000

E0000h – EFFFFh 64KB Extended
System Firmware UC 00

MTRRfix4K_E0000
MTRRfix4K_E8000

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 63

Cache Control—Intel® Quark™ SoC

Table 29 shows an example of the following configuration.

Sample Configuration:

• 2 GB of Main Memory populated in the system
• (2GB-1MB) - 2GB (1 MB of Main Memory being used as TSEG memory space) –

Uncached. TSEG can be cached from within the SMM handler for the base SKU
(non-secure) by using the MTRR/SMRR mechanism. The Quark SoC secure SKU
always enforces uncached TSEG regardless of MTRR/SMRR setup.

Please refer to the Intel® Architecture Software Developer's Manual in Table 3 for the
rules that apply to overlapping variable range MTRRs.

9.2 Processor Implications with Cached SMM Handler
Quark SoC secure SKU always enforces uncached TSEG regardless of MTRR/SMRR
setup. This reduces the security threat to TSEG at the cost of system performance.The
following sections on cached TSEG apply only to the Quark SoC base SKU (non-secure).

Some platforms run using a cacheable SMM handler. The Quark SoC supports one
cacheable SMRAM area: TSEG. TSEG is located at the top of memory starting at (Top of
physical memory - TSEG Size).

Top of Memory SMRAM (TSEG) can be used with a write-back (WB) cache policy.
However, the specification requires that the TSEG SMRAM space be cached only inside
the SMI handler.

9.2.1 System Management Mode Range Register

The System Management Mode Range Register (SMRR) is an enhancement to the
Intel® 64 and IA-32 Architectures.

During the SMM relocation phase of the boot, UEFI firmware must detect if the Quark
SoC supports SMRRs by examining the SMRR Support bit (IA32_MTRRCAP[11]). If the
SMRR Support bit is set to '1', the Quark SoC supports the SMRR. If the SMRR Support
bit is cleared to '0', then the Quark SoC does not support the SMRR.

9.2.1.1 UEFI Firmware Steps to Enable and Configure SMRR

Configuring the SMRR registers only occurs during the first SMI where SMM relocation
of the SMBASE is accomplished. This sequence of steps is NOT executed with each
subsequent SMI.
1. The BSP copies the SMI handler to TSEG
2. For the BSP and each AP the SMM Relocation Handler is responsible for:

F0000h – FFFFFh 64KB System
Firmware UC 00

MTRRfix4K_F0000
MTRRfix4K_F8000

1 MB – (2 GB-1 MB) Extended Memory WB 06 Variable MTRR

(2 GB-1 MB) – 2 GB
Extended Memory

used as TSEG memory
space

UC 00
Variable MTRR
Note: The TSEG region will be
declared as UC in this case.

Table 29. Memory Map and MTRR Programming Example (Sheet 2 of 2)

Memory Range Description MTRR
Setting

MTRR
Encoding MTRR Used for Configuration

Intel® Quark™ SoC—Cache Control

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
64 Order Number: 330236-005US

— Setting a new SMBASE equal to the TSEG + a unique entry offset.
— Read the IA32_MTRRCAP register and test bit 11 of the IA32_MTRRCAP

register. If bit 11 is set to 1 then the SMRR is supported. If bit 11 is cleared to
0 the SMRR is not supported.

— Configure the SMRR_PHYSBASE using the same physical address as the
beginning of the TSEG. Also UEFI firmware must set the cacheability type in
SMRR_PHYSBASE[7:0] = 06h for Write-Back (WB).

— Configure the SMRR_PHYSMASK with the size of the SMRAM region in TSEG
and set the valid bit (bit 11).

— Resume (RSM)

While executing in SMM, the memory type of SMRAM is described by the SMRR. When
executing outside SMM, if a memory request is made to an address mapped by the
SMRR, it will always default to a UC memory access.

To minimize the number of variable MTRRs required to map conventional + low
memory, the SMRR may overlap MTRRs. In the case where the SMRR overlaps MTRRs a
decode precedence is applied such that the memory type is always defaulted to the
operation of the SMRR.

Figure 3. SMRR Mapping with a Typical Memory Layout

Conventional Memory

Low Memory

SMRAM

PCI Memory Hole

0

1 MB

SMRR_PHYSBASE = ToM – SMM Range Size

Top of Memory (ToM)

4 GB

SMRAM is mapped by the chipset as SMM Range and in the CPU with the SMRR.

SMRRSMM
Range

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 65

Cache Control—Intel® Quark™ SoC

9.3 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

9.1 MTRR Programming

QuarkSocPkg\Override\MdePkg\Library\BaseLib\\Ia32\ReadMsr64.
c AsmReadMsr64

QuarkSocPkg\Override\MdePkg\Library\BaseLib\Ia32\WriteMsr64.c AsmWriteMsr64

QuarkSocPkg\Override\MdePkg\Library\BaseLib\Ia32\QuarkMsr.c TranslateMsrIndex

QuarkSocPkg\Override\UefiCpuPkg\Library\MtrrLib\MtrrLib.c MtrrSetMemoryAttribute
MtrrSetAllMtrrs

9.2
Processor

Implications with
Cached SMM Handler

IA32FamilyCpuBasePkg\PiSmmCpuDxeSmm\SmmFeatures.c SmmInitiFeatures

Intel® Quark™ SoC—Intel® Legacy SPI Controller

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
66 Order Number: 330236-005US

10.0 Intel® Legacy SPI Controller

UEFI firmware resides on the SPI flash behind the legacy SPI Host Controller. UEFI
firmware uses the Quark SoC legacy SPI Host Controller to perform various legacy SPI
flash device operations (erase, program, protect). The SPI Host Interface registers
used to achieve this are memory-mapped in the RCRB chipset register space with a
base address (SPIBAR) of 3020h and are located within the range of 3020h to 308Fh.
Please refer to the [Datasheet] for the register list and definitions.

10.1 Legacy SPI Flash Decode Enable
Quark SoC Legacy Bridge (D31:F0) is configured by UEFI firmware to decode the
addresses that target the legacy SPI flash. This is achieved by programming the ’BIOS
Decode Enable’ register (D31:F0:RD4h).

10.2 Legacy SPI Flash Base Address
UEFI firmware sets the ’Bottom Of System Flash’ field in the ’BIOS Base Address’
register (RCRB+3070h). Commands and memory reads whose address field is less
than this value will be blocked from the legacy SPI flash.

EDKII does not program this register allowing the Quark SoC processor to read all
Legacy SPI Flash locations.

10.3 Write Protecting SPI Flash Ranges
UEFI firmware is responsible for selecting the legacy SPI flash ranges that must be
protected from malicious writes. This is achieved using the ’Protected BIOS Range’
registers (RCRB+3080h to RCRB+3088h). UEFI firmware sets the ’Protected Range
Base’ and ’Protected Range Limit’ fields to the range that must be protected and then
sets the ’Write Protection Enable’ bit.

10.4 Opcode/Opcode Type/Prefix Opcode Configuration
Opcodes required for SPI flash operations must be programmed by the UEFI firmware
as part of the legacy SPI Host Controller initialization. This is achieved by programming
registers RCRB+3074h to RCRB+3078h. UEFI firmware programs the required opcodes
for the legacy SPI flash device(s) supported (refer to SPI flash manufacturers
datasheet for the required opcodes).

10.5 Configuration Lockdown
UEFI firmware sets the ’Configuration Lock-Down’ bit in the ’SPI Status’ register
(RCRB+3020h) to prevent alteration of the configuration performed in the previous
sections. A reset is required to unlock.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 67

Intel® Legacy SPI Controller—Intel® Quark™ SoC

10.6 Legacy SPI Flash Update Protection
UEFI firmware may prevent other system agents from updating the legacy SPI flash. It
achieves this by configuring the Legacy Bridge to generate an SMI on any attempt to
disable the legacy SPI flash Write Protection. The protection bit is not actually changed
and the attempt to write to the bit will be trapped by UEFI firmware in the SMI handler,
thus effectively keeping SPI writable for SMM IA firmware.

To enable this feature, UEFI firmware first clears the Write Protect Disable bit in the
’BIOS Control’ register (D31:F0:RD8h Bit0=0). Finally, UEFI firmware sets the Lock
Enable bit in the ’BIOS Control’ register (D31:F0:RD8h Bit1=1). Once set, this bit can
only be cleared by a reset.

The SMI Handler increments a runtime NVRAM UEFI variable each time it traps an SPI
Access Violation. On the next boot, the firmware clears this access violation NVRAM
UEFI count variable if it is not equal to zero. No security decisions are taken on the
value of the count, but it is useful for bootloader and operating system integration
testing.

10.7 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

10.1 Legacy SPI Flash Decode
Enable QuarkPlatformPkg\Platform\Dxe\Setup\QNCRegTable.c PlatformInitQNCRegs

10.2 Legacy SPI Flash Base
Address

Not implemented
(No current requirement to have an un-readable area of

flash)
Not implemented

10.3 Write Protecting SPI Flash
Ranges

QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\AccessV
iolationHandler.c *.*

QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QncEnableLegacyFlashAc
cessViolationSmi

10.4
Opcode/Opcode Type/

Prefix Opcode
Configuration

QuarkPlatformPkg\Platform\SpiFvbServices\FwBlockService
.c FvbInitialize

10.5 Configuration Lockdown QuarkPlatformPkg\Library\PlatformHelperLib\PlatformHelper
Dxe.c PlatformFlashLockConfig

10.6 Legacy SPI Flash Update
Protection

QuarkPlatformPkg\Library\PlatformHelperLib\PlatformHelper
Dxe.c PlatformFlashLockPolicy

QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\AccessV
iolationHandler.c *.*

Intel® Quark™ SoC—Reset Control

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
68 Order Number: 330236-005US

11.0 Reset Control

11.1 Reset Control Overview
The reset vector starts program execution at physical address FFFFFFF0h.

Hard resets are controlled by the Reset Control register (I/O Address CF9h) This range
is always enabled.

11.2 Cold and Warm Reset Control
A Cold reset results in all Quark SoC devices being reset and all registers including
sticky registers being reset to their default power on settings.

A Warm reset results in all Quark SoC devices (with the exception of logic in power
domains other than S0) being reset and all non-sticky registers being reset to their
default power on settings. Thus S3/S5/RTC well logic will not get reset by a Warm
reset.

Table 30. RESET CONTROL REGISTER (I/O ADDRESS CF9h)

Bit Range Default &
Access Description

7:4
0b
RO

RSV2 (RSV2): Reserved

3
0b
RW

COLD_RST (COLD_RST): This bit causes SLPMODE, and RSTRDY# to be
driven low, while SLPRDY# remains high. In response to this, the platform
will perform a full power cycle

2
0b
RO

RSV1 (RSV1): Reserved

1
0b
W

WARM_RST (WARM_RST): This bit causes RSTRDY# to be driven low, with
SLPMODE high, while SLPRDY# remains high. In response to this, the
platform will pulse RESET# low to reset the CPU and all peripherals

0
0b
RO

Reserved.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 69

Reset Control—Intel® Quark™ SoC

11.3 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

11.1 Reset Control
Overview

QuarkPlatformPkg\Cpu\Sec\ResetVector\Ia32\ResetVec.asm16
QuarkPlatformPkg\Cpu\Sec\ResetVector\Ia32\ResetVec.S16

(For Secure SKU, reset vector is in the Rom code and not UEFI firmware)
ResetHandler

11.2 Cold and Warm
Reset Control QuarkSocPkg\QuarkNorthCluster\Library\ResetSystemLib\ResetSystemLib.c ResetCold

ResetWarm

Intel® Quark™ SoC—PCI IRQ Routing

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
70 Order Number: 330236-005US

12.0 PCI IRQ Routing

An OS may have the ability to dynamically route PCI interrupts to interrupt requests
(IRQs). Usually in a traditional system BIOS a SETUP option is implemented to decide
whether a PnP OS is going to be booted. Firmware must assign IRQs to all PCI devices
during power-on self-test (POST) when the PnP OS Option is set to “Absent”. Firmware
must assign IRQs only for the boot devices, and not “all PCI devices” when a PnP OS
that is IRQ routing capable is “PRESENT”. These interrupts, once chosen, can be moved
if the OS finds there is a conflict with the current usage of the interrupt.

To support assignment and reassignment of PCI IRQs, the OS will need to know how
the system board has wired each motherboard integrated PCI device and each PCI
slot’s interrupt pins to the PCI Interrupt Router’s interrupt pins. This chapter describes
the capabilities of the Quark SoC that allow customization of such routings, and how
firmware should report this platform-specific information to the OS.

12.1 PCI Interrupt to IRQ Router
There are 8 PIRQ pins supported named PIRQ[A#:H#], that route PCI interrupts to
IRQs of the 8259 PIC. PIRQ[A#:H#] routing is controlled by PIRQ Routing Registers
60h-67h (D31:F0:R60h-R67h). See Figure 4 for details.

The PIRQs are connected to 8 individual IOxAPIC input pins, as shown in Table 31.

Table 31. PIRQ Routing Table

PIRQ# Pin Interrupt Router Register Connected to IOxAPIC Pin

PIRQA# D31:F0:R60h INTIN16

PIRQB# D31:F0:R61h INTIN17

PIRQC# D31:F0:R62h INTIN18

PIRQD# D31:F0:R63h INTIN19

PIRQE# D31:F0:R64h INTIN20

PIRQF# D31:F0:R65h INTIN21

PIRQG# D31:F0:R66h INTIN22

PIRQH# D31:F0:R67h INTIN23

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 71

PCI IRQ Routing—Intel® Quark™ SoC

12.2 Interrupt Routing for Internal Agents
The Quark SoC provides maximum flexibility of interrupt routing for internal agents by
allowing platform firmware to configure which PIRQy# line each INTx# pin drives. This
allows the platform design to reduce the possibility of interrupt sharing among these
agents. Figure 5 shows a logical illustration of this programmable interrupt routing
control. It should be noted that INTx pin, when used in the PCI Express* context,
represents a virtual wire rather than a physical signal pin (PCI Express* delivers
interrupts by in-band messages instead of side-band pins).

The descriptions of the interrupt routing control registers can be found in the
[Datasheet]. Note that when a value is programmed into the relevant register field to
select the INTx pin for a PCI function, the same value will be mirrored in the read-only
Interrupt Pin register (offset 3Dh) in the standard PCI configuration space header of
this function.

When using these registers to implement a PCI interrupt routing scheme, it is
important to remember the following rules defined in the PCI Specification:

“Any function on a multi-function device can be connected to any of the INTx#
lines. The Interrupt Pin register defines which INTx# line the function uses to
request an interrupt. If a device implements a single INTx# line, it is called INTA#;
if it implements two lines, they are called INTA# and INTB#; and so forth. For a
multi-function device, all functions may use the same INTx# line or each may have

Figure 4. PIRQ to IRQ Router

60h

61h

62h

63h

64h

65h

66h

67h

PIRQA#

PIRQB#

PIRQC#

PIRQD#

PIRQE#

PIRQF#

PIRQG#

PIRQH#

8259 PIC

PIRQA#
INTIN16

INTIN17

INTIN18

INTIN19

INTIN20

INTIN21

INTIN22

INTIN23

IOAPIC

PIRQB#

PIRQC#

PIRQD#

PIRQE#

PIRQF#

PIRQG#

PIRQH#

Interrupt to CPU
IRQ’s

PIRQ Routing
Registers Target IRQ#

set by BIOS
9

10

5

11

60h

61h

62h

63h

64h

65h

66h

67h

’s

PIRQ to IRQ Router

Intel® Quark™ SoC—PCI IRQ Routing

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
72 Order Number: 330236-005US

its own (up to a maximum of four functions) or any combination thereof. A single
function can never generate an interrupt request on more than one INTx# line.”

The recommended guidelines for interrupt routing are:
1. For a single-function PCI device capable of generating interrupt, use INTA pin.
2. For a multi-function device, at least one of the interrupt-capable functions must use

INTA pin.
3. Always include entry for INTA pin when reporting device interrupt routing

information of a multi-function device to OS, even though the function using INTA
pin may actually be “hidden” by the Function Disable register. (Example: PCI IRQ
routing table for all internal PCI devices and PCI slots, MPS table, ACPI _PRT
objects, etc).

Agent0 - Quark SoC RMU (refer to Section 4.5)
Agent1 - PCIe Root Port Controller (refer to Figure 1)
Agent2 - Intel® Quark™ Core (refer to the [Datasheet])
Agent3 - Quark SoC PCIe devices (refer to Figure 1)

A firmware developer may choose to change the default interrupt routing scheme to
suit their platform configuration. However the default routing is expected to be efficient
for most platforms, which are expected to be essentially closed systems. See the
Interrupt Routing Configuration section of the [Datasheet] for details on the register
programming required to change interrupt routing.

12.3 Interrupt Routing for PCI Express* Root Ports
The two PCI Express* root ports in the Quark SoC, represented as P2P bridges (D23:F0
and D23:F1), merit additional detail due to their complexities.

Figure 5. PCI Interrupt Routing Control

IRQAGENT3
(RCBA+3146h)

Dev20
(Agent3)

Dev21
(Agent3)

IRQAGENT2
(RCBA+3144h)

(Agent2)

IRQAGENT0
(RCBA+3140h)

(Agent0)

IRQAGENT1
(RCBA+3142h)

Dev23
(Agent1)

INTA#
INTB#

INTC#
INTD#

INTA#
INTB#

INTC#
INTD#

INTA#

INTA#

INTA#
INTB#

INTC#
INTD#

PIRQA# - PIRQH#

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 73

PCI IRQ Routing—Intel® Quark™ SoC

Interrupts generated by the root ports themselves (for example, PME or Hot Plug event
interrupts) are governed by the same rules and configuration registers as those for all
other internal PCI functions described above. On the other hand, the root ports perform
the additional function of forwarding interrupts received from their secondary interfaces
to the upstream root complex. In an effort of minimizing the possibility of interrupt
sharing, a different interrupt mapping, or “swizzling”, is defined for these root ports
when forwarding interrupts upstream on behalf of downstream PCI Express* devices at
their secondary interfaces, i.e., at the downstream end of the PCI Express* links.
Table 32 defines this interrupt mapping for downstream devices.

The INTx in boldface on the top row in the table are interrupts received from the
downstream devices (before the swizzling). The rest of the INTy in the table are
interrupts forwarded upward by the root ports (after the swizzling). This swizzling is
hard-wired, and is non-programmable by software. As an example, when a
downstream device at root port 1 generates INTA#, then the root port will convert this
INTA# into INTB# before forwarding it upstream.

Firmware is required to handle this swizzling and report this routing information to the
OS in a manner similar to that of a PCI to PCI bridge. Table 33 is an example of PCI IRQ
routing table entries for PCI Express* slots behind the root ports.

12.4 Reporting Interrupt Routing to the OS
The PCI interrupt routing schemes for all motherboard and chipset internal devices, PCI
expansion slots and PCI Express* slots behind the root ports are platform specific
information that needs to be reported to the OS by firmware via the following
interfaces:

• ACPI _PRT packages
ACPI Specification, in an ACPI environment

• ACPI Multiple APIC Description Table
ACPI Specification, in an ACPI environment

Table 32. PCI Express* Root Port Interrupt Mapping for Downstream Devices

Port INTA# INTB# INTC# INTD#

0 INTA# INTB# INTC# INTD#

1 INTB# INTC# INTD# INTA#

Table 33. PCI Express* Slot Interrupt Routing Table Example

Field Name Size Port 0 Port 1

PCI Bus Number Byte 0 0

PCI Device Number (in upper five bits) Byte 23 23

Link Value for INTA# Byte PIRQA PIRQB

IRQ Bitmap for INTA# Word 0E38h 0E38h

Link Value for INTB# Byte PIRQB PIRQC

IRQ Bitmap for INTB# Word 0E38h 0E38h

Link Value for INTC# Byte PIRQC PIRQD

IRQ Bitmap for INTC# Word 0E38h 0E38h

Link Value for INTD# Byte PIRQD PIRQA

IRQ Bitmap for INTD# Word 0E38h 0E38h

Slot Number Byte 0 1

Intel® Quark™ SoC—PCI IRQ Routing

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
74 Order Number: 330236-005US

Please refer to the above specifications for detailed formats of interrupt routing tables
and data structures.

12.4.1 Example PRT Packages for Interrupt Routing

The following is an ASL code example to illustrate interrupt routing on a Intel® Quark™
SoC-based platform, with _PRT packages for PIC mode only:

//---
// INTERRUPT ROUTING _PRT EXAMPLE (PIC MODE)
//---
Scope(_SB) {

Device(PCI0) { // PCI root bridge
Name(_HID, EISAID("PNP0A03"))// PnP ID for PCI Bus
Name(_ADR, 0x00000000)
Name(_BBN, 0x0000) // Bus number, optional for the Root PCI Bus

Name(_PRT, Package(){

// Device 23 (PCI Express Root Ports)
Package(){0x0017FFFF, 0, LNKE, 0 },
Package(){0x0017FFFF, 0, LNKF, 0 },
Package(){0x0017FFFF, 0, LNKG, 0 },
Package(){0x0017FFFF, 0, LNKH, 0 },

}) // end _PRT

Device(PEX0) {
Name(_ADR, 0x00170000) // PCI Express Root Port0
Name(_PRT, Package(){

// PCI Express Slot1
Package(){0x0000FFFF, 0, LNKE, 0 },
Package(){0x0000FFFF, 1, LNKF, 0 },
Package(){0x0000FFFF, 2, LNKG, 0 },
Package(){0x0000FFFF, 3, LNKH, 0 },

})
} // end PEX0

Device(PEX1) {
Name(_ADR, 0x00170001) // PCI Express Root Port1
Name(_PRT, Package(){

// PCI Express Slot
Package(){0x0000FFFF, 0, LNKF, 0 },
Package(){0x0000FFFF, 1, LNKG, 0 },
Package(){0x0000FFFF, 2, LNKH, 0 },
Package(){0x0000FFFF, 3, LNKE, 0 },

})
} // end PEX1

} // end PCI0

} // end _SB scope

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 75

PCI IRQ Routing—Intel® Quark™ SoC

12.5 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

12.1
PCI Interrupt

to IRQ
Router

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\\PciIrq.asi *.*

12.2

Interrupt
Routing for

Internal
Agents

QuarkPlatformPkg\Platform\Dxe\Setup\QNCRegTable.c PlatformInitQNCRegs

12.3

Interrupt
Routing for

PCI Express*
Root Ports

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\PciHostBridge.asi Method(_PRT,0,NotSerialized)

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\PciExpansionPrt.asi Device (PEX0)
Device (PEX1)

12.4

Reporting
Interrupt
Routing to

the OS

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\PciHostBridge.asi Method(_PRT,0,NotSerialized)

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\PciExpansionPrt.asi Device (PEX0)
Device (PEX1)

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform\MadtPlatform.c *.*

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
76 Order Number: 330236-005US

13.0 PCI Express* Support

This chapter covers PCI Express* firmware support. The reader is expected to be
familiar with PCI Express* Base Specification 2.0 and related terminologies (Endpoints,
Root port, Isochrony, ASPM etc.).

The basic assumptions/requirements are:
1. Firmware is able to enumerate and configure all root ports as PCI-PCI bridges in

compliance with PCI-to-PCI Bridge Architecture Specification, v1.2.
2. Firmware handles/reports the PCI interrupt routing schemes for the root ports and

for the secondary buses behind them correctly (refer to Section 12.0 for more
information).

13.1 PCI Express* Configuration Space Base Address
The PCI Express* specification defines a 256 MB block within the memory address
space as PCI Express* configuration space addressable through a Bus:Device:Function
mapping. The base address of this configuration space is determined by the value
programmed in the “Extended Configuration Space” register. This value comes from the
PCD gEfiMdePkgTokenSpaceGuid.PcdPciExpressBaseAddress.

Once initialized and enabled by firmware, software can use memory instructions to
access the PCI Express* configuration space registers by byte, word or dword, though
the access may not cross dword boundaries.

To maintain the compatibility with PCI configuration space, the first 256 bytes (offset
00h through FFh) of the configuration space for a Bus:Device:Function can also be
accessed via the I/O index/data register pair at CF8h/CFCh as defined in PCI 2.x
specification.

In addition to programming and enabling the PCI Express* EC base address in the EC
register (see Table 34), system firmware should program the identical value into Msg
Port 00h, Offset 00h.

Table 34. Op Codes 10h/11h, Msg Port 03h, Offset 09h: HECREG – Extended Configuration
Space

Bit Range Default &
Access Description

31:28
000b
RW

Extended Configuration Base Address (EC_BASE): This field describes the
upper 4-bits of the 32-bit address range used to access the memory-mapped
configuration space. This field must not be set to 0xF

27:1
000000h

RO
Reserved (RSV11): Reserved.

0
0b
RW

Extended Configuration Space Enable (EC_ENABLE): When set, causes the
EC_Base range to be compared to incoming memory accesses. If bits [31:28] of
the memory access match the EC_Base value then a posted memory access is
treated as a non-posted configuration access.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 77

PCI Express* Support—Intel® Quark™ SoC

The Intel® Quark™ SoC addresses all 256MB starting at PCI Express* EC base address,
but the amount of memory mapped space reserved is defined by the PCD
gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize.

13.1.1 Releasing PCIe Controller from Reset

Quark SoC holds the PCIe controller in reset following a power on. UEFI firmware is
responsible for releasing the PCIe controller from reset. The PCIe controller
(D23:F0/F1) will not be visible in PCI configuration space while it is held in reset. The
following table shows the sequence (in order) to release the PCIe controller from reset.

The PCIe signal PERST# supplied to the PCIe slots is accessed during this procedure.
The CPU interface to the PERST# signal is platform dependent.

13.1.2 Bus:Device:Function:Register Offset Translation

The memory-mapped physical address of a given PCI Express* configuration register of
a specific bus:device:function can be determined by:

PCI Express* Config Space Base Address + (Bus Number x 100000h) + (Device
Number x 8000h) + (Function Number x 1000h) + Register Offset

13.1.3 Register Access Using Capabilities List

PCI Express* configuration registers are defined as a set of capability structures that
are linked via Capabilities List pointers. It is recommended that firmware follows the
pointers of the Capabilities List when accessing configuration registers of individual
capability structures, so that the code will be reusable without change in the case
where the offset of the capability structures are changed in future chipsets. Here are
the guidelines of accessing standard PCI Express* configuration registers:
1. Locate the starting address of the configuration space section for a given

Bus:Device:Function.
2. Locate the first Capabilities List pointer at offset 34h, or use offset 100h as the

location of the first structure in PCI Express* extended configuration space, and
follow the linked pointers until the desired capability structure is found by a
matching Capability ID and thus the base address of the capability structure is
determined.

3. Add the register offset into the capability structure to the base address found above
to read/write the register.

Table 35. PCIe Controller Reset Sequence

Step Register setting Description

1 ASSERT PERST# PCI Express Reset, asserted low

2
Msg Port 31h:R36h Bit19=1

PHY common lane reset
Delay (1 microsecond)

3 Msg Port 31h:R36h Bit17/Bit20=1
PHY Sideband interface reset (bit 17)
Controller main reset (bit 20)

4 Delay (80 microseconds) Wait for PLL to lock

5
Msg Port 31h:R36h Bit18=1

Controller Sideband interface reset
Delay (20 Microseconds)

6 DE-ASSERT PERST#

7 Msg Port 31h:R36h Bit16=1 Controller Primary interface reset

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
78 Order Number: 330236-005US

Section 14.0 includes the sample code of register access using Capabilities List
pointers.

13.1.4 Device/Port Type Field of PCI Express* Devices

PCI Express* Specification v2.0 states that extended configuration space capabilities
may be implemented on a legacy endpoint, however, those capabilities may be ignored
by software.

However, to ensure an important requirement by the same specification, that
configuration of advanced features (for example, virtual channel, ASPM, etc) must be
consistent between both ends of a PCI Express* link, Intel currently recommends that
software should not differentiate PCI Express* Endpoint devices vs. legacy PCI
Express* Endpoint devices when it performs configuration for a link.

Device/Port Type field can and should be checked/used when there is a need. (i.e.
when software needs to access a register file that only applies to a root port but not to
an endpoint device).

13.1.5 Initialize “Slot Implemented” for Root Ports

Firmware must initialize the “Slot Implemented” bit of the PCI Express* Capabilities
Register at offset 02h in the PCI Express* Capability Structure of each available and
enabled root port based on the platform implementation. Setting this bit to 1 will
indicate that the PCI Express* link associated with this port is connected to a slot (as
compared to being connected to an integrated device component or being disabled).

13.1.6 Initialize “Physical Slot Number” for Root Ports

Firmware must assign a unique number to the Physical Slot Number field of the Slot
Capabilities register at offset 14h of the PCI Express* Capability structure of each
available and enabled downstream root port that implements a slot. This number is not
visible to existing legacy operating systems, but will be used by a PCI Express*-aware
OS to identify the root port slots.

13.1.7 Initialize “Slot Power Limit” for Root Ports

Firmware must initialize the Slot Power Limit Value and Slot Power Limit Scale fields of
the Slot Capabilities register structure of the root ports (D23:F0/F1:R54h[16:7]) so
that cards or modules attached to the root ports will operate properly within the given
limit of power consumption. This initialization should take place before the downstream
device is enabled. Table 13 includes the recommended values for this register.

When either the Slot Power Limit Value or Slot Power Limit Scale field is written by
software, the root port will send a Set_Slot_Power_Limit message to the downstream
device, which will capture this information in the Captured Slot Power Limit Value and
Captured Slot Power Limit Scale fields of its Device Capabilities register. This ensures
that it does not exceed the imposed limit of slot power consumption.

The slot power consumption and allocation is platform specific. The guidelines are given
in Table 36 based on the PCI Express* Card Electromechanical (CEM) Spec.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 79

PCI Express* Support—Intel® Quark™ SoC

13.1.8 Port Configuration Registers

There are several registers located in PCI configuration space for each root port that
control the behavior and configuration of the port. The sub-sections in this chapter will
refer to these registers for firmware programming information.

Table 36. Root Port Slot Power Consumption Guidelines

Form Factor / Slot Type
Link Width

x1

CEM Standard 10W

Table 37. D23:F0/F1:RD8h: MPC – Miscellaneous Port Configuration

Bits Type Reset Definition

31 R/W 0 Power Management SCI Enable (PMCE): This enables SCI for power
management events./

30 R/W 0 Hot Plug SCI Enable (HPCE): This enables SCI for hot plug events.

29 R/W 0 Link Hold Off (LHO): When set, the port will not take any TLP. It is used
during loopback mode to fill the downstream queue.

28 R/W 0 Address Translator Enable (ATE): This enables address translation via
AT during loopback mode.

27:21 RO 0 Reserved

20:18 R/W 100 Unique Clock Exit Latency: (UCEL) L0s Exit Latency when LCAP.CCC is
cleared.

17:15 R/W 010 Common Clock Exit Latency (CCEL): L0s Exit Latency when LCAP.CCC is
set.

14:12 RO 0 Reserved

11:08 R/W 0 Address Translator (AT): During loopback, these bits are XORd with bits
[31:28] of the receive address when ATE is set.

07:02 RO 0 Reserved

01 R/W 0 Hot Plug SMI Enable (HPME): This enables the port to generate SMI for
hot plug events.

00 R/W 0 Power Management SMI Enable (PMME): This enables the port to
generate SMI for power management events.

Table 38. D23:F0/F1:RDCh: SMSCS – SMI / SCI Status (Sheet 1 of 2)

Bits Type Reset Definition

31 R/WC 0
Power Management SCI Status (PMCS): This is set if the root port PME
control logic needs to generate an interrupt and this interrupt has been
routed to generate an SCI.

30 R/WC 0
Hot Plug SCI Status (HPCS): This is set if the hot plug controller needs
to generate an interrupt and this interrupt has been routed to generate an
SCI.

29:05 RO 0 Reserved

04 R/WC 0
Hot Plug Link Active State Changed SMI Status (HPLAS): This is set
when SLSTS.LASC transitions from ‘0’ to ‘1’ and MPC.HPME is set. When
set, SMI# is generated.

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
80 Order Number: 330236-005US

13.1.9 SCI/SMI Generation

To support power management events on non-PCI Express* aware operating systems,
PM events can be routed to generate SCI. To generate SCI, MPC.PMCE must be set.
When set, a power management event will cause SMSCS.PMCS to be set.

Additionally, firmware workarounds for power management can be supported by
setting MPC.PMME. When this bit is set, power management events will set
SMSCS.PMMS, and SMI # will be generated. This bit will be set regardless of whether
interrupts or SCI is enabled. The SMI# may occur concurrently with an interrupt or
SCI.

13.2 RCRB (Root Complex Register Block)
As part of a PCI Express* Root Complex, the Quark SoC implements one RCRB which
consists of a memory-mapped configuration register space region. This RCRB contains
registers including PCI Express* extended capabilities and other implementation
specific registers that apply to the Root Complex.

It should be noted that RCRB space is separate from the standard PCI Express*
extended configuration space which employs a Bus:Device:Function number based
indexing scheme.

It is assumed that the reader is familiar with PCI Express* specifications and related
terminology (such as Root Complex, ASPM, Virtual Channel, etc).

13.3 Root Complex Topology Programming
The topology of PCI Express* Root Complex, i.e., the way Root Complex internal
elements (RCRBs, root ports, internal devices) are inter-connected, is specific to each
chipset implementation. Each element can be identified by a Component ID and a Port
Number.

For PCI Express*-aware software (OS/Driver) to discover and comprehend this
topology, Root Complex Topology Capability Structure registers in the configuration
space are used. Most of these register fields are Read-Only and are automatically set
up by the hardware. However, some fields must be programmed by firmware to
complete the topology information. As a reminder, these fields are write-once-read-
only, and should be programmed on both cold boot and S3 resume paths.

It should be noted that if the topology is changed, the Link Valid field (Read-Only) for
the affected link(s) will return a value of 0 to indicate that the link is invalid (not
present).

03:02 RO 0 Reserved

01 R/WC 0
Hot Plug Presence Detect SMI Status (HPPDM): This is set when
SLSTS.PDC transitions from ‘0’ to ‘1’ and MPC.HPME is set. When set, SMI#
is generated.

00 R/WC 0
Power Management SMI Status (PMMS): This is set when RSTS.PS
transitions from ‘0’ to ‘1’ and MPC.PMME is set. When set, SMI# is
generated.

Table 38. D23:F0/F1:RDCh: SMSCS – SMI / SCI Status (Sheet 2 of 2)

Bits Type Reset Definition

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 81

PCI Express* Support—Intel® Quark™ SoC

Recommended values for the root complex topology configuration are specified in
Table 13.

13.4 PCI Express* Active State Power Management (ASPM)
The PCI Express* root ports in the Quark SoC support the L0s and L1 power
management states. This section describes how firmware should enable L0s and L1
entry for an Endpoint attached to a root port.

13.4.1 Root Port L0s Exit Latency Initialization by Firmware

The Quark SoC allows firmware to program the L0s exit latency value which will be
reported to software via the Link Capabilities register of each root port. The “Unique
Clock Exit Latency” and “Common Clock Exit Latency” fields of the Misc Port
Configuration register (D23:F0/F1:RD8h) of a root port, once programmed by
firmware, will be “mirrored” in the EL0 field of Link Capabilities register of the port
based on the value of the Common Clock Configuration bit in that register, and later
used by firmware or OS/driver software in the calculation of total exit latency for an
Endpoint.

It is recommended that firmware keep the default L0s exit latency values unless
required to change them by future versions of this document or its updates.

13.4.2 Calculation of Total L-State Exit Latency

Prior to enabling L-state entry, firmware must calculate the total exit latency along the
entire path to make sure that the total exit latency is within the tolerance of the
Endpoint device in order to ensure the functionality and performance of the device. The
exit latency of a path is the maximum of the exit latencies of the links along the path.
For example: An endpoint is connected to a root port. The exit latency of the endpoint
is 4-8 µs, while the exit latency of the root port is 2-4 µs. The exit latency of the path is
4-8 µs (use 8 µs to be safe), as the endpoint has longer exit latency than the root port.

Figure 6. ASPM Calculation Diagram

Root port 0
Exit Latency = 2–4us

Endpoint
Exit Latency = 4–8us

Exit Latency = Maximum (2–4us, 4–8us) = 4–8us

The exit latency of 4-8us is
arrived at by taking the larger of
the two values. Firmware should
use 8us, as the exact exit
latency cannot be known.

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
82 Order Number: 330236-005US

13.4.3 Firmware Software Flow for Enabling ASPM

Active state power management can only be enabled on an endpoint link if the exit
latency of the link is less than the acceptable exit latency of the endpoint. So, if ASPM
is to be enabled for an endpoint connected directly to a root port, the exit latency of the
endpoint/root port link (the larger exit latency of the two) must be less than the
acceptable exit latency of the endpoint. Firmware can obtain the exit latencies by
reading bits 14:12 (L0s) and 17:15 (L1) of the Link Capabilities register in the PCI
Express* Capabilities structure. The acceptable exit latencies can be obtained by
reading 8:6 (L0s) and 11:9 (L1) of the Device Capabilities register in the PCI Express*
Capabilities structure. Please see the PCI Express* specification for details on these
registers.

13.4.4 ASPM vs. Isochrony

If isochronous service is enabled for a device, then the ASPM enabling for links along
the isoch path becomes dependent on the isoch device involved. In general, this is a
device specific topic, i.e. the software agent enabling isoch should comprehend the
isoch latency requirements for the specific device. If the OS enables isoch, then it
negotiates that with the driver. If firmware enables isoch, then firmware has to ensure
that the path to the device is configured correctly. That is why isoch can only be
enabled in firmware for a known device.

13.5 Root Port Error Reporting
The PCI Express* specification defined “Advanced Error Reporting” is not supported by
the Quark SoC.

13.5.1 SERR# Generation

SERR# may be generated via two paths – through PCI mechanisms involving bits in the
PCI header, or through PCI Express* mechanisms involving bits in the AER-alike
structure. These errors are put together to signal SERR# to the platform. The PCI
Express* methods for calculating SERR# do not set PSTS.SSE.

For the PCI Express*-based SERRs, the corresponding error enable bits in the AER-alike
structure registers for Correctable Error, Uncorrectable-Fatal Error and Uncorrectable-
Non-Fatal Error are all disabled by default after reset, so such errors will not be able to
generate SERR#. To enable SERR# generation by such errors at root ports, software
must program the following registers to enable individual errors:

• Device Control register of the root port PCI Express* Capability structure (D23:F0/
F1, Reg 48h[2:0]).

• Root Control register of the root port PCI Express* Capability structure (D23:F0/F1,
Reg 5Ch[2:0]).

Refer to PCI Express* Spec 1.0a, Section 6.2.5 for this multi-level control of PCI
Express* error signaling.

13.6 PCI Firmware Spec 3.0 Support
PCI Firmware Specification v3.0 expanded the previous version of the spec to include
support for the PCI Express* enhanced configuration mechanism, among other things.
Firmware must be compliant with this spec in order to support PCI Express*-aware
operating systems and PCI Express*-aware option ROMs.

Please refer to the latest specification at PCI SIG’s website at www.pcisig.org.

www.pcisig.org
http://www.pcisig.org.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 83

PCI Express* Support—Intel® Quark™ SoC

13.7 ACPI Table and Methods for PCI Express* Support

13.7.1 MCFG Table

MCFG is an ACPI table that is used by platform firmware to communicate the enhanced
configuration space mechanism’s memory mapped base address for a PCI Express*
platform. The format of MCFG table is shown in Table 39 and the format of the
Configuration Space Base Address Allocation Structure is shown in Table 40. Note that
since the system only contains a single PCI (default) segment, Segment 0 definition is
implied and no additional _SEG objects are required.

The PCI Segment field denotes the PCI/PCI-X*/PCI Express* Segment field
corresponding to the base address field in the hierarchy.

The 64-bit base address field provides the physical base address of the memory-
mapped configuration space associated with the PCI Segment. It is the responsibility of
the provider of the table to ensure that the base address reported is consistent with the
requirements for the hardware implementation. Utilizing the enhanced configuration
access method, the Base Address is aligned on 256 MB boundary with bits 27:0 being
‘0’s.

The Start Bus Number and the End Bus Number fields define the range of buses that
can be addressed by the region defined by the Base Address field via the Enhanced
Configuration Access mechanism.

• The Start Bus Number field MUST be set to 0, but the End Bus Number must be
determined by the PCD gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize.

• The End Bus Number field MUST be
((gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize / SIZE_1MB) - 1).

The memory region referenced by the PCIEXBAR register must use a non-conflicting
address range.

The address range referenced by the MCFG table must be reserved and reported by
firmware as follows:

• A PnP DevNode with Device ID = “PNP0C02” (motherboard resources). This
reserved memory region will then be understood by a non-ACPI OS.

• A _CRS resource descriptor in the scope of a device with _HID = “PNP0C02” and
immediately under _SB scope in ACPI namespace. For example:

Device (_SB.EXPL)
{

Name (_HID, EISAID(“PNP0C02”))
 //motherboard resources

Method (_CRS ,0)
{

// Return the resource descriptor for the
// memory region referred to by MCFG table

}
}

The memory region(s) referenced by the MCFG table must not be reported via the
E820h table.

The memory region referenced by the EC register must use a non-conflicting address
range. The address range must be reserved and reported using the ACPI _CRS objects.

The table signature ‘MCFG’ is a reserved keyword. Based on the signature and table
revision, the OS can then interpret the implementation-specific data within the table.
The Table Revision for revision 1.0 of the MCFG table is set to 1.

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
84 Order Number: 330236-005US

This table must not include the memory mapped configuration base addresses for hot
pluggable PCI segments. Such segments must be described by using the MCBA method
in the corresponding ACPI name space object.

Notes regarding Table 40:
• The PCI Segment field denotes the PCI/PCI-X*/PCI Express* Segment field

corresponding to the base address field in the hierarchy. Since the system only
contains a single (default) segment, namely, segment 0, no corresponding _SEG
object is required.

Table 39. MCFG Table Layout

Field Byte
Length

Byte
Offset Description Values

Header

Signature 4 0
‘MCFG’. Signature for the Memory
mapped configuration space base
address Description Table.

‘MCFG’

Length 4 4

Length, in bytes, of the entire MCFG
Description table including the memory
mapped configuration space base
address allocation structures.

60 (44 for table
plus 16 for the
single entry)

Revision 1 8 1 1

Checksum 1 9 Entire table must sum to zero. 0

OEM ID 6 10 OEM ID. <OEM ID>

OEM Table ID 8 16 For the MCFG Description Table, the
table ID is the manufacture model ID.

<manufacturer
model ID>

OEM Revision 4 24 OEM revision of MCFG table for
supplied OEM Table ID.

<OEM revision ID
for this table>

Creator ID 4 28 Vendor ID of utility that created the
table.

<vendor ID of the
utility that created

the table>

Creator Revision 4 32 Revision of utility that created the
table.

Reserved 8 36 Reserved.

Configuration space
base address

allocation structure
[n]

--- 44

A list of the Memory mapped
configuration base address allocation
structures. This list will contain one
entry corresponding to each PCI
segment present in the platform.

Table 40. Configuration Space Base Address Allocation Structure

Field Byte
Length

Byte
Offset Description

Base Address 8 0 Base Address for the Enhanced Configuration Access
Mechanism

PCI Segment Group
Number 2 8

PCI Segment Group Number. Default is 0. For all other
PCI Segment Groups, this field value should
correspond to the value returned by _SEG object in
ACPI name space for the applicable host bridge device.

Start Bus Number 1 10 Start PCI Bus number corresponding to base address
specified in the structure.

End Bus Number 1 11 End PCI Bus number corresponding to the base
address specified in the structure.

Reserved 4 12 Reserved

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 85

PCI Express* Support—Intel® Quark™ SoC

• The base address field provides the 64-bit physical base address of the memory-
mapped configuration space associated with the PCI Segment. It is the
responsibility of the provider of the table to ensure that the base address reported
is consistent with the requirements for the hardware implementation. Utilizing the
enhanced configuration access method, the Base Address is aligned on 256 MB
boundary with bits 27:0 being ‘0’s.

• The Start Bus Number and the End Bus Number fields define the range of buses
that can be addressed by the region defined by the Base Address field via the
Enhanced Configuration Access mechanism. The Start Bus Number field MUST be
set to 0, but the End Bus Number must be determined by the PCD
gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize. End Bus Number field MUST
be ((gEfiQuarkNcSocIdTokenSpaceGuid.PcdPciExpressSize / SIZE_1MB) - 1).

13.7.2 _HID and CID for PCI Host Bridge

Currently, Plug-and play ID (PNP ID) of PNP0A03 is used to indicate host-PCI bridge
devices in ACPI name space. This PNP ID is used to describe both PCI/PCI-X*
hierarchies.

A new PNP ID of PNP0A08 is defined to indicate PCI Express* as well as PCI-X* Mode2
host bridges to the operating system. The unique ID for these host bridges will allow
the host to distinguish a PCI Express*, PCI-X* Mode2 hierarchy in a mixed host-bridge
environment and also allow the OS to tune the driver loading process to the capabilities
of the underlying I/O hierarchy.

To maintain compatibility with older operating systems that do not recognize the new
PNP ID, when PNP0A08 is used to describe a device in the namespace, it is also
required to include PNP0A03 as the compatible ID (_CID).

Here is an example ASL code with PNP0A08 usage:

Device(PCI0) // Root PCI Bus
{

Name(_HID, EISAID("PNP0A08")) // Indicates PCI Express host bridge
// hierarchy

Name(_CID, EISAID("PNP0A03")) // For legacy OS that doesn’t understand
// the new HID

. . .
} // end PCI0 scope

13.7.3 _OSC() Method

Per the PCI Firmware Spec v3.0, the _OSC() ACPI control method is optional for Intel®
Quark™ SoC-based platforms. It provides a two-way handshake mechanism for OS and
firmware to advertise/exchange ACPI/PCI Express* support capabilities, so that smooth
hand-over of control of certain capabilities can occur between firmware and OS.

The _OSC() method is located under devices whose capabilities can be supported either
by firmware or by a PCI Express*-aware OS with built-in native support. For a PCI/PCI-
X*/PCI Express* hierarchy, _OSC could be implemented under the host-bridge device
or a P2P bridge device. For a PCI Express* hierarchy, _OSC method could be
implemented under a host bridge device or a P2P bridge device corresponding to the
root port. When present, _OSC is invoked by OSPM prior to evaluating any other object
in the device’s scope. This allows the return values from other objects to be predicated
on the feature support / capability information conveyed by _OSC. OSPM may evaluate
_OSC multiple times to indicate changes in OSPM capability, but this may be precluded
by specific device requirements. _OSC enables the platform to configure its ACPI
namespace representation and object evaluations to match the capabilities of OSPM.
This can allow legacy operating system support for platforms with new features that

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
86 Order Number: 330236-005US

make use of namespace objects unknown to the legacy operating system. _OSC
provides the capability to transition to native operating system support of new features
and capabilities when available through dynamic namespace reconfiguration.

Firmware is allowed to return the capabilities bit(s) cleared when the Query Support
flag is True, indicating that firmware is not ready to give up control of certain features.
Firmware can also issue a Notify (device, 08h) to inform OSPM to re-evaluate _OSC
when the availability of feature control changes.

In general, platforms should support both OSPM taking and relinquishing control of
specific feature support via multiple invocations of _OSC but the required behavior may
vary on a per device basis.

Arguments:
Arg0 (Buffer): UID
Arg1 (DWORD): Revision ID
Arg2 (BYTE): Query Support Flag
Arg3 (DWORD): Count
Arg4 (BUFFER): Capabilities DWORDs

UUID:
Universal Unique Identifier (16 Byte Buffer) defined as
33db4d5b-1ff7401c-96577441-c03dd766

Revision ID:
Capabilities DWORDs format revision. This revision is specific to the UUID.

Query Support Flag:
Uses Boolean logic. If True, the _OSC invocation is a query by OSPM and in this
case for each bit set in Capabilities DWORDs, _OSC returns bits set for those
capabilities for which OSPM may take control and bits cleared for those capabilities
for which OSPM may not take control. If False, the _OSC invocation is not a query
and any bits set in Capabilities DWORDs indicate capabilities for which OSPM will
take control of once _OSC returns.

Count:
Number of capabilities DWORDs passed in Arg3

Capabilities DWORDs:
Buffer containing the number of DWORDs indicated by Count. The bits in each
DWORD convey to the platform the capabilities and features supported by OSPM.
Successive revisions of Capabilities DWORDs must be backwards compatible with
earlier revisions. Bit ordering cannot be changed. Compatibility DWORDs are device
specific and as such are described under specific device definitions. See ACPI Spec
section 10, “ACPI-Specific Device Objects” for any _OSC definitions for ACPI
devices. Capabilities DWORDs format and behavior rules may also be specified by
OEMs and IHVs for custom devices and other interface or device governing bodies
for example, the PCI SIG.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 87

PCI Express* Support—Intel® Quark™ SoC

Result Code:

Capabilities DWORDs (Buffer) – The platform acknowledges the Capabilities
DWORDs by returning a buffer of DWORDs of the same length. Set bits indicate
acknowledgement and cleared bits indicate that the platform does not support the
capability.

The basic scenario of using _OSC() is:
• Firmware provides _OSC() under a device in the ACPI name space as needed.
• OS detects the presence of _OSC() during ACPI initialization, and calls _OSC() with

its current capabilities.
• Firmware examines the OS capabilities, and returns the capabilities (appropriately

masked) indicating the capabilities that are handed over to exclusive OS control.

Below is an ASL code example of using _OSC() method:

Scope(_SB)
{

Method (_INI) {…}
Device(PCI0) { // PCI Root Bus

Name(_ADR,0)
Method (_OSC, 5)
{

Store (Arg3, Local0) // Local0 = Cap. Dword count
Multiply (Local0, 4, Local1) // Local1 = Size of

// buffer in bytes
Name (BUF1, Buffer (Local1){}) // Create a buffer of

// the right size
Store (Arg4, BUF1) // Copy input Arg4 into

// local buffer
Store (0, Local1) // Local1 = Cap. Dword #

// (0,1,2…)
Store (0, Local2) // Local2=ByteIndex into

// Arg4 buffer (0,4,8,…)
While (Local0)
{

Multiply (Local1, 4, Local2) // Local2 = ByteIndex
// into Arg4 buffer

CreateDWordField (BUF1, Local2, CAPB)
// CAPB is the next Dword

Table 41. Capabilities DWORD1 Definition

Bit Description

0 0 = OS does not support PCI_Config Opregion > 100h
1 = OS supports PCI_Config Opregion > 100h

1 0 = OS does not support native PCI Express* hot plug
1 = OS supports native PCI Express* hot plug

2 0 = OS does not support SHPC hot plug
1 = OS supports SHPC hot plug

3 0 = OS does not support native PME
1 = OS supports native PME

4 0 = OS does not support native PCI Express* AER interrupt
1 = OS supports native PCI Express* AER interrupt

5 Reserved

6 0 = OS does not support ASPM
1 = OS Supports ASPM

31:7 Reserved

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
88 Order Number: 330236-005US

If (Arg2) // Query Flag = True
{

// Examine bits in CAPB and process it ...
If (LEqual(Local1, 0)) // If the 1st Cap

// Dword
{

And (CAPB, 0xfffffffc)
// Clear bits in Cap. DWORD as
// appropriate

}
}
Else // Query Flag = False
{

// Examine bits in CAPB and process it
}
Increment (Local1)// Local1 = next DWord #
Decrement(Local0)// Update loop count

}
Return (BUF1)// Return the buffer of Cap DWORDs.

} // end _OSC
} // end PCI0

} // end scope _SB

13.8 PCI Express* PME Firmware Support
PCI Express* delivers PME events by way of in-band Transaction Layer PME messages
as opposed to the side-band signaling approach used by PCI bus. Additionally, the Root
Complex can signal a PME event via an interrupt, allowing software to handle the PME
as an interrupt event.

13.8.1 Native PME Software Model

PCI Express*-aware software can enable a mode where the Root Complex signals PME
via an OS native interrupt. When configured for native PME support (which requires
that legacy GPE-based PME support be disabled), a Root Port receives the PME Message
and sets the PME Status bit in its Root Status register. If software has set the PME
Interrupt Enable bit in the Root Control register to 1b, the Root Port then generates an
interrupt. The software handler for this interrupt can determine which device sent the
PME Message by reading the PME Requester ID field in the Root Status register in a
Root Port. It dismisses the interrupt by writing a 1b to the PME Status bit in the Root
Status register.

The native PME software model is expected to be used by future PCI Express*-aware
OS-level software, therefore its implementation details are beyond the scope of this
document.

13.8.2 Legacy PME Software Model

Legacy operating systems will not understand this in-band message-based, interrupt-
driven mechanism for signaling PME. In the presence of legacy OS system software,
the system power management logic in the Root Complex receives the PME Message
and informs system software through an implementation specific mechanism.

The Quark SoC has included logic that allows software implementation of PCI Express*
PME support using existing GPE-based ACPI model in a legacy OS environment.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 89

PCI Express* Support—Intel® Quark™ SoC

13.8.3 Firmware Enabling of PCI Express* PME SCI Generation

The Quark SoC provides an option for software to route PCI Express* PME events to the
ACPI General Purpose Event (GPE0) register for the purpose of generating SCI.

Firmware enables SCI generation by PCI Express* PME messages on the root port:
• Make sure that PME Interrupt Enable bit of Root Control register of PCI Express*

Capability structure is cleared (=0b).
• Program Misc Port Config (MPC) register at PCI configuration space offset D8h as

follows:
— Power Management SCI Enable (PMCE, bit31) = 1b
— Power Management SMI Enable (PMME, bit0) = 0b

Note: For normal PME operation under ACPI OS, PME SMI should be disabled.
• Ensure GPE0 Register (GPE0BLK + 0h), BIT17(PCIE) is 0 (clear it if not zero).

13.8.4 Handling PCI Express* PME SCI Event

PCI Express* PME events can be handled using the existing GPE model defined by ACPI
spec under ACPI OS environment, where firmware plays an important role.

13.8.4.1 General Mechanism and Sequence

The PCIE enable and status bits in the GPE0 registers map PCI Express* PME to an
ACPI general purpose event which is signaled by an SCI. ACPI OS and system firmware
can handle this event in a co-operative manner as shown in the following sequence.
Note that this is an example to illustrate the main control flow. Although
Implementations on different systems may vary and may involve more ACPI objects/
methods, the basic control flow described here will still apply.

• Firmware programs the chipset registers properly so that a PCI Express* PME event
will cause the PCIE bits in GPE0 status register to be set to 1. See previous
subsection for details.

• Firmware exposes _PRW object under the root port devices, indicating the wake
capability of the device and the bit location of PCIE events in the GPE0 register. (A
conceptual ACPI name space tree is shown in the example ASL code at the end of
this chapter.)

• Firmware also provides a _GPE._L11 method in ASL code as the handler for these
events.

• Based on its own power management policy and at a time of its own choosing, ACPI
OS enables the PCIE enable bits in GPE0 register. It also programs the standard PCI
PM register PMCS of each root port to enable PME generation by the port.

• When a PCI Express* PME event occurs at any one of the root ports or is received
from downstream devices, the PCIE status bit(s) in GPE0 register will be set,
causing a SCI being generated.

• ACPI OS clears PCIE enable bit(s) in GPE0 register, and then calls the _GPE._L11
control method provided by firmware which handles this event.

• ACPI OS clears the PME Status bit in the standard PCI PM register PMCSR of the
port.

• ACPI OS clears PCIE status bit(s), and re-enables PCIE enable bit(s) in the GPE0
register.

Intel® Quark™ SoC—PCI Express* Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
90 Order Number: 330236-005US

13.8.4.2 Firmware GPE Handler for PME Event

Firmware needs to provide the _GPE._L11 control method in the ACPI name space as
the actual handler for PCI Express* PME SCI event. Once invoked by ACPI OS, this
control method should perform the following:

For each root port:
1. Read the Root Status Register (offset 20h of PCI Express* Capability structure) of

the root port. If PME Status bit ==0, go to step 5.
2. Clear the PME Status bit by writing a 1b to it.
3. Check PME Status bit to see if it is set to 1 again (in case there was another PME

event pending). If yes, go back to step 2.
4. Clear the PMCS status bit (offset DCh[31]) by writing a 1b to it.
5. Perform a “Notify(Device, 02)” to notify OS of the event that occurred at this

particular root port location.
6. Go to the next root port and repeat steps 1 through 5, until all root ports are done.

13.8.5 Transition from Legacy to Native PME Software Model

As previously mentioned, a PCI Express*-aware OS will be able to handle PCI Express*
PME events using the native, interrupt-driven PME software model. To enable such OS
behavior, firmware must provide a proper _OSC control method in the ACPI name
space for the transition from legacy to native PME software model.

The basic scenario of using _OSC() for native PME support transition is:
• Firmware provides _OSC() under a proper device in the ACPI name space. For the

purpose of native PCI Express* PME support transition, the _OSC can be placed
under the system bus scope, i.e., _SB._OSC().

• OS detects the presence of this _OSC() object during ACPI initialization, and calls
the _OSC() with its current capabilities.

• In the _OSC() method, firmware ASL code does the following:

{
Examine the input argument “OS capabilities”;
If (“OS supports PCI Express Native PM” flag ==1)
{

Clear the PMCE bit to 0b for all the root ports to route PMEs to native
interrupt logic by programming D23:F0/F1:RD8h[31] =0b.

}
Return the Capabilities with “OS Supports PCI Express Native PME” flag
unchanged, indicating that UEFI firmware is handing over PCI Express PME

support to
exclusive OS control.

}

OS examines the value returned by _OSC() method and sees that “OS Supports PCI
Express* Native PM” flag stays set; therefore it enables the native PME software model.

13.8.6 WAKE# Support

WAKE# is not supported at the PCIe controller level. Instead, PCIe devices wishing to
wake the system must have their WAKE# signal routed to a wake event (see
Section 17.5 for details).

Note: The PCIe bus power is not provided by Quark SoC during S3, so PCIe devices must
have their own power source for their WAKE# signal.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 91

PCI Express* Support—Intel® Quark™ SoC

13.9 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

13.1

PCI Express*
Configuration
Space Base

Address

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm
QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S stackless_EarlyPlatformInit

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c QNCRootPortInit
PciExpressEarlyInit

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c PeiQNCPostMemInit

13.1.1
Releasing PCIe
Controller from

Reset

QuarkPlatformPkg\Library\PlatformPcieHelperLib\PlatformPcieHelperL
ib.c PlatformPciExpressEarlyInit

13.2
RCRB (Root

Complex Register
Block)

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c PeiQNCPreMemInit

13.3
Root Complex

Topology
Programming

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c QNCRootPortInit

13.4

PCI Express*
Active State

Power
Management

(ASPM)

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c PcieSetAspmAuto
PcieSetAspmManual

13.5 Root Port Error
Reporting

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c
(Note: AER is not supported) QNCRootPortInit

13.7
ACPI Table and
Methods for PCI

Express* Support

QuarkPlatformPkg\Acpi\AcpiTables\Mcfg\Mcfg.aslc *.*

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform\AcpiPlatform.c AcpiUpdateTable

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\Platform.asl Device(PCI0)

13.8 PCI Express* PME
Firmware Support

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\PciExpress.c QNCRootPortInit

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\Platform.asl Scope(_GPE)

Intel® Quark™ SoC—Processor Interface

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
92 Order Number: 330236-005US

14.0 Processor Interface

14.1 Front Side Bus Interrupt Delivery Mechanism
The Quark SoC supports the delivery of interrupts to the processor by using one of the
two mechanisms:
1. Interrupt delivery by using the INTR/NMI pins on the processor, when the IOxAPIC

is in Virtual Wire Mode A.
2. Interrupt delivery from the IOxAPIC by using the interrupt message delivery

mechanism (MSI) when the IOxAPIC is enabled.

14.1.1 Configuration of the IOxAPIC

The only requirement for IOAPIC enabling is to build ACPI tables containing the
appropriate IOAPIC entries.

14.1.2 Steps Involved in Delivering the Interrupt

The firmware boot process is as follows:
1. Firmware will configure the IOxAPIC for MSI delivery.
2. Firmware will build the ACPI APIC tables for the OS.
3. Control is passed to the boot strap loader to handle control to the OS.
4. OS will switch the interrupt operation from virtual wire mode to symmetric I/O

Mode (IOAPIC usage).
5. When the OS switches the mode of interrupt delivery to the IOxAPIC the interrupts

are delivered using the MSI mechanism.

These are the steps involved in the delivering of an MSI:
1. The Quark SoC detects that an interrupt event has happened and sets the IRR bit in

the IOAPIC associated with that interrupt
2. The Quark SoC automatically flushes all the upstream buffers
3. The Quark SoC delivers the interrupt in the form of a 32-bit memory write cycle

with a known format for address and data as defined in Table 42 and Table 43.
4. After this 32-bit memory write cycle is received, the write occurs to the Quark SoC.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 93

Processor Interface—Intel® Quark™ SoC

14.2 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Table 42. Interrupt Message Address Format

Bits Description

Bits 31:20 FEEh

Bits 19:12 (Destination ID) Same as bits 63:56 of I/O Redirection Table Entry

Bits 11:4 (Reserved) 00h

Bit 3 (Redirect Hint) 0/1

Bit2 (Destination Mode) 0/1 (based on bit 3)

Bits 1:0 00b

Table 43. Interrupt Message Data Format

Bits Description

Bits 31:16 0000h

Bit 15 (Trigger Mode) 0/1 (Edge/Level)

Bit 14 (Delivery Status) 0/1 (De-assert / Assert)

Bits 13:11 00b

Bits 10:8 (Delivery Mode) Same as 10:8 of I/O Redirection Table entry

Bits 7:0 (Vector)

Section Title File Path Function

14.1

Front Side
Bus

Interrupt
Delivery

Mechanism

IA32FamilyCpuBasePkg\CpuArchDxe\Cpu.c CpuProgramVirtualWireMode

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform\MadtPlatform.c *.*

Intel® Quark™ SoC—NMI Handling

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
94 Order Number: 330236-005US

15.0 NMI Handling

15.1 Settings to Generate NMI
The Quark SoC can receive an NMI from the following sources:
1. SERR# assertion if configured in the NMI Status and Control Register (I/O port

61h).
2. Quark SoC Legacy Bridge (refer to the [Datasheet] for all possible sources of NMI

in the Legacy Bridge).

The NMI Enable bit in the RTC index register (I/O port 70h, bit 7) can be used to mask
the NMI signal and disable/enable all NMI sources. This is useful before an NMI handler
has been installed.

NMI_EN – NMI Enable Register
I/O Address: 070h
Default Value: Bit[6:0]=undefined; Bit 7=1
Attribute: Write Only

This port is shared with the real-time clock. Do not modify the contents of this register
without considering the effects on the state of the other bits.

Reading I/O Port 74h returns the value last written to the RTC index register (port
70h[6:0]). I/O Port 74h[7] always returns 0 when read.

15.2 Steps for Handling NMI
Firmware should execute the minimum steps described below for handling an NMI in
Intel® Quark™ SoC-based systems.

15.2.1 Steps for Execution

1. Save the contents of I/O Register CF8h.
2. Save the current RTC Index by reading port 74h.
3. Disable the NMI generation by writing a “1” to bit 7 in port 70h.
4. Clear the PERR# and SERR# status bits in PCI Register Offset 06-07h for all PCI

devices in the system supporting generation of their PERR# and/or SERR#.

Table 44. NMI_EN — NMI Enable Register (Shared with RTC Index Register) (I/O)

Bit Description

7 NMI Enable. 1=Disable generation of NMI; 0=Enable generation of NMI.

6:0 Real Time Clock Address. Used by the Real Time Clock to address memory locations. Not
used for NMI enabling/disabling.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 95

NMI Handling—Intel® Quark™ SoC

5. Clear the Primary and Secondary PERR# and SERR# status bits in and all root ports
(Device 23, Functions 0-1).

6. Clear the NMI source and perform any platform specific handling required:
a. Clear SERR# status bit in port 61h.
b. Clear NMI sources in Quark SoC Legacy Bridge (refer to the [Datasheet]).

7. Restore the RTC Index and NMI Disable bit in port 70h.
8. Restore the contents of I/O Register CF8h.
9. Exit from the NMI handler.

15.3 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

15.1

Settings
to

Generate
NMI

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm
QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S stackless_EarlyPlatformInit

IA32FamilyCpuBasePkg\CpuArchDxe\IA32\Exception.c mExceptionTable[]

15.2
Steps for
Handling

NMI

Not implemented
(Common handler used for all exceptions:

IA32FamilyCpuBasePkg\CpuArchDxe\IA32\Exception.c)

Not implemented
(CommonExceptionHandler)

Intel® Quark™ SoC—SMI Handling

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
96 Order Number: 330236-005US

16.0 SMI Handling

The Quark SoC supports several sources of SMI. These include but are not limited to:
• Legacy GPIOs
• General Purpose Events (GPEs)
• Inter Processor Interrupts (IPIs)
• Power Management events

Please refer to the [Datasheet] for a full list of all possible sources of SMIs. UEFI
firmware must provide support for configuring and handling any source of SMI required
(platform specific design).

16.1 SMI on Sleep Enable
The enable SMI on sleep bit (GPE0BASE + 10h[2]) allows firmware to enable
generation of an SMI when the operating system writes to the SLP_EN. The SMI on
sleep status bit (GPE0BASE + 14h[2]) reflects the source of the SMI as the Sleep SMI.

In the handler for this event, firmware typically initiates workarounds that must be in
place before entry into a sleep state. Examples include saving platform specific
registers that need to be restored after a WAKE, changing the state of a GPIO, etc.

16.2 Setting the EOS Bit
Setting the EOS bit (GPE0BASE + 14[31]) will de-assert the SMI# signal and will re-
arm SMIs. If there is a pending and enabled SMI status bit, the EOS bit will read back
as cleared. In this case, a SMI will occur as soon as the resume instruction is executed.

16.3 SMI Status Bits
The SMI status bits must be cleared by software after the SMI source has been de-
asserted. It is up to the SMI handler to de-assert the SMI source and clear the status
bits. Status bits that are set for SMI sources can be set even if they are not enabled
and do not need to be serviced or cleared. SMI Status bits should be qualified with their
respective enables before being serviced. If enabled status bits are not cleared, the
EOS bit will remain set.

16.4 SMI Handler best practice
Given the secure SMM environment that SMI Handlers are executing in the handlers
must follow the following best practices to mitigate attacks from compromised ring0-
ring3 code.:

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 97

SMI Handling—Intel® Quark™ SoC

• Always validate pointers passed to SMI handlers so that the handler does not read
or write from SMRAM. Pointers passed to SMI handlers should only ever reference
memory outside SMRAM.

• Never call out to a functions outside SMRAM after the EndOfDxe EDKII event has
been signalled.

• Always perform bound checking and integer overflow checking on any offset / size
arguments passed to SMI handlers.

16.5 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

16.1 SMI on Sleep
Enable

QuarkPlatformPkg\Acpi\DxeSmm\AcpiSmm\AcpiSmmPlatform.c RegisterToDispatchDriver

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatcher\Q
NC\QNCSmmSx.c QNCSmmSxGoToSleep

16.2 Setting the
EOS Bit

QuarkSocPkg\QuarkNorthCluster\Library\QNCSmmLib\QNCSmmLib.c InternalTriggerSmi
ClearSmi

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatcher\Q
NC\QNCSmmHelpers.c QNCSmmSetAndCheckEos

QuarkSocPkg\QuarkNorthCluster\Smm\Dxe\SmmControlDxe\SmmContr
olDriver.c SmmClear

16.3 SMI Status Bits

QuarkSocPkg\QuarkNorthCluster\Library\QNCSmmLib\QNCSmmLib.c InternalTriggerSmi
ClearSmi

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCClearSmiAndWake

QuarkSocPkg\QuarkNorthCluster\Smm\Dxe\SmmControlDxe\SmmContr
olDriver.c SmmClear

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatcher\Q
NCSmmHelpers.c QNCSmmClearSource

16.4 SMI Handler
best practice QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\SMIFlashDxe.c

IsCapsuleInfoPacketValid
IsAddressValid

IsMfhOffsetValid

Intel® Quark™ SoC—Power Management

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
98 Order Number: 330236-005US

17.0 Power Management

17.1 Power Button Override
The power button override is handled by the Quark SoC.

Note: There is no status register to indicate this event.

17.2 Power Failure Considerations
Firmware can detect a power failure by reading the DRAMI bit (GPE0BASE + 2Ch[0]).
This bit could be set by the memory initialization code and is only cleared on a system
power failure. So, if the bit is set the system is in the process of warm booting. If clear,
the system is recovering from a power failure.

17.3 Processor Throttling
Quark SoC does not support processor throttling. Only 100% duty cycle is supported.
(P_BLK + 0h).

17.4 C States
The core provides support for C0, C1, and C2.

17.4.1 IRQ Break Events for C1 State

The C1 state is entered when the core executes a Halt (HLT) instruction.

IRQs are used as break events from a C1 state. If IRQs as break events must be
disabled, firmware should do so using the 8259 mask registers prior to entering the C1
state. Firmware must also ensure that the mask register is enabled for the desired
break events.

17.4.2 C2 State Support

C2 state support is available within the CPU. The C2 state is entered via reading the
P_LVL2 register (P_BLK + 4h).

17.4.3 Cx State Support Reporting for ACPI OS

ACPI capable operating systems can support the C2 state by using the _CST control
method implemented by system firmware. The example given below in Figure 7
assumes P_BLK address of 410h.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 99

Power Management—Intel® Quark™ SoC

17.4.4 Break Events

Break events cause the Quark SoC to transition from C2 back to C0, following the entry
steps in reverse order. The break events for exiting from C2 state are:

• Any unmasked interrupt going active
• Any internal event that causes an NMI or SMI#
• Any internal event that causes INIT# to go active
• A pending CPU break event, indicated by PBE#.

17.5 Wake Events
The following events are capable of generating a wakeup from S4/S5:

• POWER/RESET BUTTON:
Note: There is no status register to indicate this wake event.

The following events are capable of generating a wakeup from a suspend state (S3):
• POWER/RESET BUTTON:

Note: There is no status register to indicate this wake event and the ACPI power
management bit (PM1_BLK + 00h[15]) interrogated by OS is not changed
by hardware if POWER/RESET BUTTON event waked system during S3. This
is a particular case were Intel® Quark™ SoC UEFI firmware will issue a cold
reset as described in Section 18.3 step 2

• RTC ALARM: (RTC Enable at PM1BLK + 02h[10])
• PCI Express* Devices: (PCI Express* enable at GPE0BASE + 04h[17]). These are

PCIe devices behind the PCIe Root Ports 0/1.
• Legacy (resume well) GPIO: (GPIO enable at GPE0BASE + 04h[14] to globally

enable GPIO wake)
• External General Purpose Event: (EGPE enable at GPE0BASE + 04h[13] to globally

enable EGPE wake)

Figure 7. Cx State Support Reporting Through _CST Control Method

Processor (
_SB.CPU), //Processor Name
1, //ACPI Processor number
0x410,, //PBlk system IO address
6) //PBlkLen
{
Method (_CST, 0)
{

Return (Package () {
3,
Package() {ResourceTemplate() {Register(FFixedHW, 0 0 0)}, 1,

1, 1000},
Package() {ResourceTemplate() {Register(SystemIO, 8, 0,

0x414)}, 2, 1, 500},
})

}

Intel® Quark™ SoC—Power Management

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
100 Order Number: 330236-005US

UEFI firmware must configure/handle any of the above wake event required in the
platform (platform design dependent). Please refer to the [Datasheet] for details of the
above registers.

17.6 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

17.2 Power Failure
Considerations QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c MemoryInit

17.3 Processor
Throttling

QuarkPlatformPkg\Acpi\AcpiTables\Cpu0Tst\Cpu0Tst.asl *.*

17.4 C States QuarkPlatformPkg\Acpi\AcpiTables\Cpu0Cst\Cpu0Cst.asl *.*

17.5 Wake Events

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\Platform.asl Scope(_GPE)

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.
c

QNCCheckS3AndClearState
QNCCheckPowerOnResetAndClearStat

e

QuarkPlatformPkg\Acpi\DxeSmm\AcpiSmm\AcpiSmmPlatform.c SxSleepEntryCallBack

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 101

Suspend Handler Considerations—Intel® Quark™ SoC

18.0 Suspend Handler Considerations

18.1 Power-On Suspend Handling Preparation
Suspend handling preparation occurs during initial system boot (that is, for EDKII boot
modes BOOT_WITH_FULL_CONFIGURATION and
BOOT_WITH_MINIMAL_CONFIGURATION) and is performed by the
AcpiSmmPlatform.efi driver, as well as miscellaneous chipset drivers using the
S3BootScriptLib library to save register setting they wish to be restored during S3
Resume.

18.2 S3 Entry Steps
1. The ACPI operating system performs the steps "Transitioning from the Working to

the Sleeping State" in the ACPI Specification (Table 3).
2. Step 1 above results in an SMI been generated and a generic QuarkSocPkg routine

QNCSmmCoreDispatcher being entered.
3. QNCSmmCoreDispatcher determines a Sleep SMI has occurred and passes control

to the registered platform sleep handler SxSleepEntryCallBack.
4. SxSleepEntryCallBack will:

a. Will save current runtime state of specific chipset registers so that they can be
restored on resume (SaveRuntimeScriptTable).

b. Enable wake events, see Section 17.5.
c. Assert PCI Express* signal PERST# to put PCIe cards into reset.

5. Control will return to QNCSmmCoreDispatcher which will Initiate Sleep States via
SLP_EN Bit (QNCSmmSxGoToSleep, see Section 18.2.1).

18.2.1 Initiating Sleep States via SLP_EN Bit

Before the software sets SLP_EN bit in PM1_CNT register (PM1_BLK+04h[13]),
interrupts must be masked and bus master activity must be disabled.

In an ACPI OS environment, the operating system is expected to ensure that this
requirement is met.

If firmware sets the SLP_EN bit, it becomes the responsibility of firmware to ensure
that the above requirement is met.

18.3 S3 Resume Steps
Firmware executes the following generic steps when resuming a system from S3 state
(Suspend to RAM).

Intel® Quark™ SoC—Suspend Handler Considerations

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
102 Order Number: 330236-005US

On a resume from S3 state the Quark SoC starts executing from the reset vector
location of FFFF_FFF0h.
1. Re-program all chipset-specific base address registers, as described in Table 11 and

Table 12.
2. Verify the system is waking (PM1_BLK + 00h[15]) and that the system is resuming

from S3 state by looking at the SLP_TYP bit field (PM1_BLK + 04h[12:10]). If the
system is not resuming from S3 state do not execute any of the steps below.
Note: If SLP_TYP bit field (PM1_BLK + 04h[12:10]) has value for S3 state but

hardware maintained (PM1_BLK + 00h[15]) bit interrogated by OS does
not indicate a wake then Intel® Quark™ SoC UEFI firmware will issue a cold
reset to follow a know good hardware/software reset path.

3. The system firmware will execute the steps for getting the memory functional in
the platform and continue with the rest of the steps required for a system-wide
resume.

4. Restore the Quark SoC configuration:
a. Any SOC configuration perform by Intel® Quark™ SoC PEI stage drivers.
b. Relocate the SMM base address to the SMM base that is being used in the

system.
c. Initialize the cache. This will involve the restore of the MTRR registers in the

Quark SoC.
5. Restore Chipset registers saved using s3BootScriptLib and

SaveRuntimeScriptTable.
6. If the system is resuming back to an ACPI OS the control can be passed to the ACPI

OS waking vector at this step. An ACPI OS may reassign the PCI registers to some
other value than what the firmware assigned in step 5. Step 5 is required as a
safety step where the PCI devices have a default Base address register value
assigned if a problem arises.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 103

Suspend Handler Considerations—Intel® Quark™ SoC

18.4 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

18.1

Power-On
Suspend
Handling

Preparation

QuarkPlatformPkg\Acpi\DxeSmm\AcpiSmm\AcpiSmmPlatform.c InitAcpiSmmPlatform

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatch
er\QNCSmmCore.c QNCSmmCoreRegister

QuarkPlatformPkg**
(Drivers using

S3BootScriptLib)
QuarkSocPkg*.*

18.2 S3 Entry Steps

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatch
er\QNC\QNCSmmSx.c QNCSmmSxGoToSleep

QuarkSocPkg\QuarkNorthCluster\Smm\DxeSmm\QncSmmDispatch
er\QNCSmmCore.c QNCSmmCoreDispatcher

QuarkPlatformPkg\Acpi\DxeSmm\AcpiSmm\AcpiSmmPlatform.c SxSleepEntryCallBack
SaveRuntimeScriptTable

18.3
S3 Resume Steps

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCCheckS3AndClearState

QuarkPlatformPkg\Override\UefiCpuPkg\Universal\Acpi\S3Resume2
Pei\S3Resume.c S3RestoreConfig2

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c InstallS3Memory

QuarkSocPkg\QuarkNorthCluster\MemoryInit\Pei*.*

.
(when

MRC_PARAMS.boot_mode =
bmS3)

QuarkPlatformPkg\Platform\Pei\PlatformInit *.*

Intel® Quark™ SoC—High Performance Event Timer (HPET) Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
104 Order Number: 330236-005US

19.0 High Performance Event Timer (HPET) Support

19.1 HPET Basic Configuration
The address of the HPET register block in the Quark SoC is always mapped to address
FED00000h. No programming is required to enable decoding of this region. In all other
respects, the operation and programming of the HPET is identical to previous platforms.

UEFI firmware is responsible for reporting the presence of the HPET and the resources
it consumes to the OS via ACPI tables.

For additional details, refer to the [Datasheet], in the Legacy Bridge HPET Registers
section. Also refer to the ACPI specification for additional details on reporting the HPET
to the OS.

19.2 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

19.1 HPET Basic
Configuration

QuarkPlatformPkg\Acpi\Dxe\AcpiPlatform\AcpiPlatform.c AcpiUpdateTable
AcpiPlatformEntryPoint

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\LpcDev.asi Device(HPET)

QuarkPlatformPkg\Acpi\AcpiTables\Hpet\Hpet.aslc *.*

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 105

GPIO Handling—Intel® Quark™ SoC

20.0 GPIO Handling

20.1 Legacy GPIOs
The Quark SoC supports two core well legacy GPIOs and six resume well legacy GPIOs.
Each GPIO is capable of input, output, SCI generation, SMI generation, and NMI
generation. Also, when configured as inputs, each GPIO can generate an interrupt on
the rising and/or the falling edge of the input signal. Resume well GPIOs are also
capable of generating WAKE events (refer to Section 17.5).

20.1.1 Legacy GPIO Configuration

The offset and function of the GPIO registers is provided in Table 45. The GPIOs should
be configured to match the associated functionality on the platform.

Note: Two core well and six resume well GPIOs are present in the legacy block. So only bits
1:0 are valid for the core well GPIO registers and 5:0 for resume well GPIO registers.

Note: The offsets given below are from the GPIO Base Address, as programmed in
D31:F0:R44h. See Table 11, “Non-Standard IO Base Address Registers” on page 25 for
details.

Note: Only Core Well GPIO configuration are reprogrammed on a resume from S3, Resume
Well GPIOs registers are not written to on a resume from S3.

20.1.2 Legacy GPIO Interrupt Handling

If a GPIO is configured to generate an interrupt, in the GPIO interrupt handler software
must:

Table 45. GPIO Registers Offset and Function

Core Well GPIO Offset Resume Well GPIO Offset Function

0000h 0020h Enable

0004h 0024h I/O Select (0=Output, 1=Input)

0008h 0028h Level

000Ch 002Ch Positive Edge Trigger Enable

0010h 0030h Negative Edge Trigger Enable

0014h 0034h GPE Enable

0018h 0038h SMI Enable

001Ch 003Ch Trigger Status

0040h 0044h NMI Enable

Intel® Quark™ SoC—GPIO Handling

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
106 Order Number: 330236-005US

1. Check the GPIO status bit in the GPE0 status register (GPE0_BLK base + 0h[14]) if
in a GPE handler and the SMI status register (GPE0_BLK base + 14h[9]) if in the
SMI handler.

2. If the GPIO status bit is set, software must determine which GPIO caused the
interrupt by reading the core and resume well “Trigger Status” registers.

3. Handle any GPIOs whose associated status bits are set.
4. Clear the status bits in the “Trigger Status” register (GPIO Base + 1Ch/3Ch for

core/resume well GPIOs).
5. Clear the GPIO GPE or SMI status bit in the GPE0_BLK (GPE0_BLK base + 0h[14]

for a GPE or GPE0_BLK base + 14h[9] for an SMI).

20.2 Chipset South Cluster GPIO Controller
The Quark SoC supports 8 Independently configurable GPIOs, Separate data register
and data direction for each GPIO, Interrupt source mode supported for each GPIO, De-
bounce logic for interrupt sources and Metastability registers for GPIO read data

20.2.1 South Cluster GPIO Controller Configuration

The GPIO MMIO registers are shown in Table 46. The GPIOs should be configured to
match the associated functionality on the platform.

Table 46. South Cluster GPIO Controller MMIO Registers

MMIO Address Function

I2C/GPIO Controller [BAR1] + 00h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

GPIO Port A data bits (GPIO_SWPORTA_DR)

I2C/GPIO Controller [BAR1] + 04h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

GPIO Port A data direction bits (GPIO_SWPORTA_DDR)

I2C/GPIO Controller [BAR1] + 30h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Interrupt Enable (GPIO_INTEN)

I2C/GPIO Controller [BAR1] + 34h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Interrupt Mask (GPIO_INTMASK)

I2C/GPIO Controller [BAR1] + 38h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Interrupt Type (GPIO_INTTYPE_LEVEL)

I2C/GPIO Controller [BAR1] + 3Ch[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Interrupt Polarity (GPIO_INT_POLARITY)

I2C/GPIO Controller [BAR1] + 48h[7:0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Debounce Enable (GPIO_DEBOUNCE)

I2C/GPIO Controller [BAR1] + 60h[0]
BAR1 Reference: [B:0, D:21, F:2] + 14h

Synchronization Level (GPIO_LS_SYNC)

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 107

GPIO Handling—Intel® Quark™ SoC

20.3 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Functions/Tables

20.1.1 Legacy GPIO
Configuration

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformEarlyInit.c EarlyPlatformInit

QuarkPlatformPkg\Include\PlatformBoards.h PLATFORM_LEGACY_GPIO_
TABLE_DEFINITION

20.1.2 Legacy GPIO
Interrupt Handling

Not implemented
(Intel® Quark™ SoC not supporting legacy GPIO interrupts in UEFI

firmware)

Not implemented
(Intel® Quark™ SoC not
supporting legacy GPIO

interrupts in UEFI firmware)

20.2.1
South Cluster

GPIO Controller
Configuration

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformEarlyInit.c EarlyPlatformInit

QuarkPlatformPkg\Include\PlatformBoards.h PLATFORM_GPIO_CONTROL
LER_CONFIG_DEFINITION

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
108 Order Number: 330236-005US

21.0 Security Enhancements

21.1 Introduction
This chapter is dedicated to describing the enhancements made to the Intel® Quark™
SoC UEFI firmware to make it more robust and resistant to attacks and failures. These
enhancements are designed to reduce the risk of a system becoming non-bootable or
compromised.

21.1.1 Security Build Options

Some of the following sections have different levels of Security depending on the build
options used to generate the firmware images. For details, see [Build Guide].

Security Build Options:
• NONE

No security build options specified in EDKII build parameters
• -DSECURE_BOOT_ENABLE=TRUE

Add UEFI Secure Boot support to firmware build. Same build option format for UEFI
Secure Boot support on public UDK platform packages.

• -DSECURE_LD
Secure Lockdown build option specified in EDKII build parameters.
Note: On Intel® Quark™ SoC secure SKU parts even if Intel® Quark™ SoC UEFI

firmware is not built with -DSECURE_LD build option the firmware will
enforce -DSECURE_LD security policies.

21.2 Secure Boot
Secure Boot is split between Intel® Quark™ SoC ROM Root of trust Secure Boot which
authenticates firmware volumes in system flash (or firmware update/recovery
capsules) and UEFI Secure Boot which is an industry standard mechanism which
authenticates UEFI executables external to system flash.

21.2.1 Intel® Quark™ SoC ROM Root of trust Secure Boot

For Intel® Quark™ SoC X1000 secure SKU, the hardware implements a root of trust
that starts executing code from ROM at the reset vector (0xFFFFFFF0). This ROM code
authenticates the Intel® Quark™ SoC UEFI firmware before passing control to it. The
ROM code will not launch Intel® Quark™ SoC UEFI firmware if it fails authentication.

Intel® Quark™ SoC UEFI firmware is split into two firmware volumes:
• Stage1 Firmware Volume
• Stage2 Firmware Volume

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 109

Security Enhancements—Intel® Quark™ SoC

The Stage1 Firmware Volume continues the chain of trust by first authenticating the
Stage2 Firmware Volume (via a call to the ROM code to perform the authentication)
before passing control to it. This chain of trust is continued all the way up to the OS.
For a detailed description of the Intel® Quark™ SoC secure boot feature, see [Secure
Boot].

There is a security key module stored in flash (see [Secure Boot]). Intel® Quark™ SoC
UEFI firmware always validates this key module before it validates Stage2 Firmware
volumes and firmware update capsules (see Figure 8 and Section 22.8, “Write Capsule
to Flash” on page 123). The firmware may or may not also validate the key module for
other images (for example, bootloader payload). See the QuarkBootRomLib
(Section 21.13) for details.

The authentication functions in QuarkBootRomLib will always return a positive result if
the firmware is executing on base SKU hardware, also called non-secure SKU.

21.2.2 UEFI Secure Boot

See Security Build Options on how to add support for UEFI Secure Boot to the Intel®
Quark™ SoC UEFI firmware build.

The following link is the landing page for the EDKII implementation of UEFI Secure Boot
http://tianocore.sourceforge.net/wiki/SecurityPkg. The "How to Sign UEFI Drivers &
Applications VX.YY.pdf" on this landing page gives a useful overview of UEFI Secure
boot and also links to further reading.

Another useful slide presentation on UEFI Secure Boot is http://www.uefi.org/sites/
default/files/resources/1_-_UEFI_Summit_Deploying_Secure_Boot_July_2012_0.pdf.
The "Required for Secure Firmware Updates" requirement of this slide presentation is
supplied by Section 21.2.1 in Intel® Quark™ SoC UEFI firmware.

It is beyond the scope of this document to explain industry standard UEFI Secure Boot,
the reader should use the links above for a overview of UEFI Secure Boot. This
document does outline adaptations to Intel® Quark™ SoC firmware to support UEFI
Secure Boot.

To give the same level of protection as Intel® Quark™ SoC ROM Root of trust
Secure Boot it is expected that the created UEFI Secure Boot private keys /
public certificates are SHA256 based.

Intel® Quark™ SoC firmware adaptations for UEFI Secure Boot are in the areas of UEFI
Secure Boot firmware deployment / recovery, maintaining UEFI Secure Boot variables
during firmware update, updating UEFI Secure boot variables during firmware update
and UEFI Secure Boot rollback protection. Intel only supports UEFI Secure Boot on
secure SKU parts since the secure SKU ROM is required for authentication and rollback
protection of signed firmware update/recovery capsules.

21.2.2.1 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware
deployment and firmware recovery

Intel® Quark™ SoC firmware UEFI Secure Boot deployment was designed for an
embedded system booting a single operating system, in other words the platform
owner only trusts boot loaders signed by a specific operating system vendor (some of
the links above envisage systems booting multiple boot loaders for different operating
systems).

UEFI secure boot has a mechanism whereby a Physical Present user can place the
system into custom mode and provision the UEFI Secure boot Authenticated Variables
without the need to sign the Authenticated Variable payloads. Intel® Quark™ SoC
firmware simulates this mechanism on first boot of a Intel® Quark™ SoC embedded

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
110 Order Number: 330236-005US

system after manufacture and recovery. EFI Secure boot custom mode is entered for
short period of time on the first boot when an Intel® Quark™ SoC firmware call back is
signalled that variable write services have been installed (by PI DXE stage2 firmware).
The data to be provisioned on the first boot is programmed into the unsigned platform
data area during manufacture or firmware recovery. On the first boot the signalled call
back reads the provisioning items in platform data area (Table 23) and writes them to
the UEFI Secure boot variables ’db’, ’dbx’, ’kek’ and ’pk’. The provisioning items are
then deleted from the platform data area when provisioning is complete and before any
third party OPROMs or boot loaders have executed on the first boot.

Even though Intel® Quark™ SoC firmware does not guard against a physical attack
(using flash programmer) on unsigned flash areas (eg MFH, platform data and NVRAM)
it is recommended that the UEFI Secure Boot Quark embedded systems are booted
once before shipment. In any case the platform data area used to provision UEFI
Secure Boot is hardware write protected during PI DXE stage2 before any third party
components can execute Section 21.4.2.

On first boot after recovery the provisioning data in platform data area was placed
there by the recovery firmware after it had authenticated the signed capsules using the
Intel® Quark™ SoC secure SKU ROM.

The firmware update capsule image in the recovery file (FVMAIN.fv Recovery Module
File Contents) for Intel® Quark™ SoC UEFI Secure Boot systems must have a platform
data area image containing all the platform data items that was used in production
including the UEFI Secure Boot provisioning items (Table 23 on page 38). The capsule
flags must indicate that no unit specific items are written to flash (e.g.
PD_UPDATE_MAC in Section 22.2.1, “Intel® Quark™ SoC UEFI Firmware specific
capsule flags” on page 121 must be clear).

21.2.2.2 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware
update.

During firmware Update Intel® Quark™ SoC firmware can either provision the system
for the first time if the firmware was built with UEFI Secure Boot support or replace the
UEFI Secure Boot variables if the system is already provisioned. In both cases the
provisioning data is taken from the platform data area in the signed firmware update
capsule and is provisioned during Section 22.8, “Write Capsule to Flash” on page 123.
Like the firmware recovery case (Section 21.2.2.1) the Intel® Quark™ SoC secure SKU
ROM is used to authenticate the capsule.

Note: Quark systems cannot be changed after UEFI Secure boot has been
provisioned from UEFI Secure Boot system to a non UEFI Secure boot
system by a Firmware Update (a different GUID is used in the NVRAM
header, gEfiAuthenticatedVariableGuid for EDKII UEFI Secure Boot systems
or gEfiVariableGuid for EDKII built without UEFI Secure boot).

21.2.2.3 Intel® Quark™ SoC firmware UEFI Secure Boot rollback protection using
secure SKU ROM.

UEFI Secure Boot variables can only be updated as shown in Section 21.2.2.2 This
enables [Secure Boot] rollback protection to also protect if UEFI Secure Boot keys
become compromised. For example if keys becomes compromised then a new recovery
file is built. The firmware update capsule in the new recovery file must have a higher
SVN then the SVN in the original firmware update capsule. A firmware update should
be preformed on systems in the field using the firmware update capsule image in the
new recovery file (FVMAIN.fv Recovery Module File Contents). This will insure that in
field systems are using the new certificates and can only be recovered with the new
recovery file (with the higher SVN).

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 111

Security Enhancements—Intel® Quark™ SoC

If the UEFI Secure boot certificates are the only component that has changed a
firmware update capsule just containing a platform data area image may also be built
at the same time as the new recovery file but both capsules should use the new SVN.

The mechanism mandates Intel® Quark™ SoC firmware does not allow UEFI Secure
Boot variables to be updated at run time using the UEFI SetVariable run time service.
This is not expected to be an issue for Quark embedded systems (in many cases
headless systems) running a single embedded OS. In any case OS owners are already
expected to give UEFI Secure boot public certificate to the platform owners so that the
manufacturing flash binaries can be created (and flash recovery files can be created /
signed).

21.3 Isolated Memory Regions (IMRs)
Intel® Quark™ SoC hardware provides the capability to configure IMRs to allow/deny
access by certain system agents to programmed memory ranges. Thus, an area of
memory that is only for use by the host processor can be protected from other DMA
agents in the system. Intel® Quark™ SoC UEFI firmware when running on secure SKU
Intel® Quark™ SoC parts or when built with -DSECURE_LD build option (see [Build
Guide]), uses IMRs to protect the following sensitive assets during boot:

• PeiMemory: Memory used for Intel® Quark™ SoC UEFI firmware code/data,
boottime services code/data, stack, OS loader

• ACPI Memory: Memory that holds ACPI reclaim, runtime services code/data,
reserved memory, ACPI NVS memory

• RMU Memory: RMU binary in memory
• Legacy S3 Memory: Region of memory below 1MB that hold legacy S3 code
• AP Startup Vector Memory: Region of memory that is used for startup code for

multi-processor capable systems
• Default SMRAM Memory: Region of memory that SMRAM is mapped to following a

processor reset (typically used to relocate the SMBASE to TSEG).
• eSRAM Memory: Memory that the initial Stage1 Firmware Volume is copied into

(from legacy SPI flash) following a system reset.

The following table shows when IMRs for the above memory regions must be set up by
Intel® Quark™ SoC UEFI firmware and if they are locked UEFI firmware or torn down
by UEFI firmware (or subsequent system components):-

Table 47. Create/Destroy/Lock Requirements for IMRs

Memory Region IMR Create IMR Destroy IMR Lock

eSRAM Reset Vector code Stage2 Firmware Volume No

PeiMemory Stage1 Firmware Volume
(Normal boot path)

OS (after ExitBootServices and OS loader
has transferred control to the OS) No

ACPI Memory Stage1 Firmware Volume
(Normal boot path) No Yes

RMU Memory Stage1 Firmware Volume
(Normal boot path) Stage2 Firmware Volume No

Legacy S3
Memory

Stage1 Firmware Volume
(Normal boot path) No Yes

AP Startup Vector
Memory

Stage1 Firmware Volume
(Normal boot path) OS (after ExitBootServices) No

Default SMRAM
Memory

Stage1 Firmware Volume
(Normal boot path) Stage2 Firmware Volume No

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
112 Order Number: 330236-005US

Similar to the Intel® Quark™ SoC UEFI firmware, the OS loader/OS must also use IMRs
to protect sensitive assets it uses. This involves destroying/re-allocation IMRs that were
set up by Intel® Quark™ SoC UEFI firmware but that are no longer required (for
example, after the OS call to ’ExitBootServices’, the PeiMemory/AP Startup Vector
Memory is available to the OS so it must remove the IMRs that were created for those
regions). In addition, the OS must be aware that any IMRs locked by Intel® Quark™
SoC UEFI firmware are not available to the OS (ACPI Memory and Legacy S3 Memory
IMRs).

Thus, IMR design is done at a system level where Reset Vector Code/Intel® Quark™
SoC UEFI Firmware/OS Loader/OS must all agree on IMR implementation and usage. It
is not supported to have IMRs implemented by only some of those components. IMRs
are either implemented by all components in the system or none at all. For IMR design
details, refer to [Secure Boot].

21.4 Legacy SPI Flash Protection
For all boot modes except BOOT_ON_FLASH_UPDATE (no matter what build options
was used to build the firmware) Legacy SPI Flash Range Protection is enabled (see
Section 21.4.1.1 and Section 21.4.2.1) and the configuration registers (see
Section 10.5) of the Legacy SPI Flash controller are locked. This happens early in the PI
DXE stage before PCI enumeration when SMM SPI initialization has completed. For
BOOT_ON_FLASH_UPDATE boot mode at this point, the Legacy SPI Flash Range
Protection is enabled, but the configuration registers are not locked. Later, before flash
is programmed for boot mode, BOOT_ON_FLASH_UPDATE Legacy SPI Flash Range
Protection is disabled.

Depending on hardware SKU or Security Build options used to build the firmware,
runtime restrictions of who can update a SPI Legacy Flash area and if a SPI Legacy
flash area is writable are applied to legacy SPI Flash.

21.4.1 Base SKU hardware

21.4.1.1 Legacy SPI Flash Range Protection

The following ranges are protected using SPI range protection registers (see
Section 10.3) just before the EDKII Boot manager loads and starts the initial Boot
option:

• Contiguous area containing RMU Binary (see Section 4.6), MFH (See [Build Guide])
and platform data (see Section 4.13).

• Contiguous area containing Fixed Recovery Stage1 image and Boot ROM override
image.

21.4.1.2 Legacy SPI Flash Update Protection

All SPI Flash regions not protected by SPI range protection registers (see Section 10.3)
are writable by run-time code.

21.4.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used
to build firmware

In this condition Intel® Quark™ SoC UEFI firmware (capsule mechanism) is the only
mechanism allowed to update/recover the legacy SPI flash. In addition, Intel® Quark™
SoC UEFI firmware is the only module allowed to update the legacy SPI flash NVRAM
area where UEFI EFI_VARIABLE_NON_VOLATILE variables are stored. To enforce this,
Intel® Quark™ SoC UEFI firmware implements SPI flash protection as follows.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 113

Security Enhancements—Intel® Quark™ SoC

21.4.2.1 Legacy SPI Flash Range Protection

Intel® Quark™ SoC UEFI firmware write protects all SPI Flash except for the NVRAM
area (where runtime UEFI EFI_VARIABLE_NON_VOLATILE variables are stored) just
before the EDKII Boot manager loads and starts the initial Boot option. This point in
time is after the firmware has determined that capsule update is not required. Write
protection is achieved using SPI range protection registers (see Section 10.3).

21.4.2.2 Legacy SPI Flash Update Protection

Intel® Quark™ SoC UEFI firmware is the only module allowed to update the legacy SPI
flash NVRAM area where UEFI EFI_VARIABLE_NON_VOLATILE variables are stored.
However, the legacy SPI flash NVRAM area cannot be protected as in Section 21.4.2.1
because this area may be updated during Intel® Quark™ SoC UEFI firmware boot and
also at runtime (UEFI runtime variable support). To enforce the policy of Intel® Quark™
SoC UEFI firmware being the only module allowed to update this area, the legacy SPI
flash controller is configured to generate an SMI on any attempt to write to the legacy
SPI flash. This protection mechanism is enabled just after the SMI access violation
handler has been registered. Refer to Section 10.6 for the legacy SPI controller
registers used to implement this legacy SPI flash update protection mechanism.

The SMI handler will not enable flash writes but instead increments an access violation
count variable which is stored as an UEFI NVRAM variable. On every boot, if the handler
finds the count is not equal to zero, it will trace the value of the count to the console
and clear the count variable. No security decisions are taken on the value of the count,
but it is useful for debug during bootloader and operating system integration testing.

21.5 PCIe Option ROMs
Depending on Security Build options used to build the firmware, a boot time restriction
on loading PCIe Option ROMs is applied.

21.5.1 No Security Build options used to build firmware

All PCIe Option ROM Load requests are allowed.

21.5.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD)
option used to build firmware

Intel® Quark™ SoC UEFI firmware will not load PCIe Option ROMs from any plug in
PCIe cards. Instead, any option ROMs required will be built into the Intel® Quark™ SoC
UEFI firmware image. This is typical for embedded systems where the onboard
firmware is capable of initializing any hardware it needs.

Note: In this condition PCIe Option ROMs may be loaded if UEFI Secure boot is
enabled and provisioned and the Option ROM executable is signed, see
UEFI Secure Boot The Option ROM executable must be an UEFI Option ROM
and not a Legacy Option ROM.

21.6 Register Locking
Certain Quark SoC registers are responsible for setting up critical system operating
features. Once set up, these registers can be locked to prevent malicious changing of
their settings to compromise or hang the system. Intel® Quark™ SoC UEFI firmware
locks the following critical registers for security (a reset is required to unlock) no
matter what build options are used to build the firmware:

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
114 Order Number: 330236-005US

• HMBOUND (Op codes 10h/11h: Msg Port 03h: R08h): Determines if a memory
access is routed to the MSS or to MMIO. This register is locked after DDR3
initialization is complete when the top of physical memory is known. Refer to
Section 4.1.

• HSMMCTL (Op codes 10h/11h: Msg Port 03h: R04h): Defines where in the address
space SMRAM is located and allows memory reads/writes to this range to be
blocked when not in SMM mode. This register is locked after SMM initialization is
complete. Refer to Section 4.4.2.

• Thermal Configuration registers. Refer to Table 14.
• Legacy SPI Controller configuration registers. Refer to Section 10.5.

21.6.1 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used
to build firmware

In this condition Intel® Quark™ SoC UEFI firmware locks the following additional
registers.

• Lock Remote Management DMA (Set to 1b Bit0 of Op codes 10h/11h: Msg Port
04h:R72h)

• IMRxL (Op codes 10h/11h: Msg Port 05h: R1x0h [x=0 to 7]): Intel® Quark™ SoC
UEFI firmware locks any IMR that must persist through OS boot and beyond. Refer
to Section 21.3

21.7 Redundant Images
It is important that corrupt legacy SPI flash images or legacy SPI flash images that fail
to authenticate (secure SKU) should not leave the system un-recoverable. Intel®
Quark™ SoC UEFI firmware achieves this by providing redundant Stage1 Firmware
Volumes as follows:

• Boot Stage1 Firmware Volume Image1 - This is the first Stage1 Firmware Volume
• Boot Stage1 Firmware Volume Image2 - This is the redundant Stage1 Firmware

Volume
• Fixed Recovery Firmware Volume Image - This is the fixed Recovery Firmware

Volume whose base and length is defined by the fixed EDKII PCDs
PcdFlashFvFixedStage1AreaBase and PcdFlashFvFixedStage1AreaSize

The reset vector code (ROM code for secure SKU) will transfer control to the first ’good’
Firmware Volume found from the above list. If both Boot Stage1 Firmware Volumes are
’bad’ then the fixed Recovery Firmware Volume is launched. Only if all Firmware
Volumes in the above list are ’bad’ will the system be un-recoverable. To reduce the risk
of ending up with all Firmware Volumes corrupt, it is recommended that all Firmware
Volumes above should not be updated in the one update. In reality, it is expected that
the Fixed Recovery Firmware Volume will rarely need to be updated. The Fixed
Recovery Firmware volume just needs to be ’good enough’ to recover the system and
updates to it are only expected to address security vulnerabilities.

Failures of Stage2 and subsequent images will result in system boot halting, refer to
Firmware Recovery section on how to recovery system flash.

Refer to the [Secure Boot] for detailed description of this redundant images feature.

Boot Stage1 Firmware Volume Image2 is removed in the Quark BSP Release 1.2 to
increase the size for the Stage 1 Firmware Volume Image1.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 115

Security Enhancements—Intel® Quark™ SoC

21.8 Limiting Boot Options

21.8.1 No Security Build options used to build firmware

No boot option limitations are enforced thus allowing the system to boot from all
bootable media.

21.8.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used
to build firmware

Intel® Quark™ SoC UEFI firmware only supports booting an image (OS bootloader/
UEFI application) from a known location in legacy SPI flash. This removes the risk of
unknown UEFI applications/drivers being loaded from USB/eMMC/SD/UEFI shell and
causing unexpected system behavior or even compromising the system. This restriction
is removed if UEFI Secure Boot is enabled and provisioned and the boot loader
executable is signed, thus allowing booting images from external media (USB/eMMC/
SD), see UEFI Secure Boot

21.9 Denial of Service/Compromise Prevention

21.9.1 SMI Pin Blocking

Quark SoC provides the ability to disable the SMI pin, thus preventing the SMI signal
reaching the processor. This could result in a denial of service in some cases
(preventing the relocation of the SMBASE for example). In other cases, it could also
result in the system being compromised. If, for security reasons, SMI trapping of
certain events were set up, then this would prevent the UEFI firmware SMI handler
from trapping these events and taking the appropriate action.

Intel® Quark™ SoC UEFI firmware makes sure the SMI pin is not masked by explicitly
enabling it at the following stages during boot:

• Start of Stage1 Firmware Volume - Early boot code
• SMM Exit - Just before executing the ’rsm’ instruction to exit SMM

21.10 Memory Training Engine Lockdown
As part of DDR3 memory initialization code, the Intel® Quark™ SoC UEFI firmware
makes use of a hardware engine to assist in the training of memory. Once DDR3
memory initialization is complete, Intel® Quark™ SoC UEFI firmware locks the
hardware training engine to prevent further training sequences being initiated.

21.11 SMM Security Enhancements

21.11.1 SMRAM Caching

SMRAM caching is always disabled by hardware for the secure SKU regardless of the
settings for the MTRRs/SMRR. This is to enhance SMM security due to caching issues.
Intel® Quark™ SoC UEFI firmware sets up SMRAM as un-cached for the base SKU
(non-secure) also to enhance its security.

As periodic SMIs are not used, SMI’s in general should be very infrequent. Thus,
uncached SMRAM is not expected to have a major system performance impact.

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
116 Order Number: 330236-005US

21.11.2 SMBASE Relocation Address Selection

The address selected for SMBASE relocation should not overlap fixed Local APIC range
(FEE00000h-FEEFFFFFh).

21.11.3 SMI Handler best practice

Intel® Quark™ SoC UEFI firmware follows the SMI handler best practice as discussed in
Section 16.4.

21.12 Rollback Protection on Intel® Quark™ SoC Secure Skus
See rollback protection section of the [Secure Boot] manual for a detailed description of
rollback protection on Intel® Quark™ SoC Secure Sku hardware.

The responsibility of UEFI Firmware for rollback protection is to maintain the SVN Array
mentioned in [Secure Boot] manual and to ensure no image in Intel® Quark™ SoC
Firmware Update Capsule has an SVN that would be rejected by Intel® Quark™ SoC
Secure Sku ROM during boot (Section 21.2.1).

During Firmware Update or Firmware Recovery Intel® Quark™ SoC UEFI firmware will
do the following:-

• Cache current system flash SVN array into memory.
• If any image in Intel® Quark™ SoC Firmware Update Capsule is targeted at the

SVN array in system flash then fail Firmware Update or Firmware Recovery.
• For each signed image in Intel® Quark™ SoC Firmware Update Capsule ensure that

the SVN for the image is greater than or equal to the relevant SVN in SVN Array. If
image SVN is greater than relevant SVN in SVN Array then update relevant SVN in
the cached SVN array.

• Update SVN Array in system flash with cached SVN array if cached SVN array
changed in the last step. The SVN array in system flash is updated before all
images in Intel® Quark™ SoC Firmware Update Capsule are written to flash with
the exception that if Fixed Recovery Firmware Volume Image is in the Intel®
Quark™ SoC Firmware Update Capsule and its SVN has been updated in last step
then the Fixed Recovery Firmware Volume Image is written to system flash before
writing the updated SVN Array to system flash.
Note: Firmware update / recovery capsule must also be signed and have a

particular SVN index in the SVN array assigned to them. This allows
rollback protection to also protect unsigned areas of system flash during
firmware update / recovery.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 117

Security Enhancements—Intel® Quark™ SoC

21.13 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

Section Title File Path Function

21.2.1

Intel® Quark™
SoC ROM Root
of trust Secure

Boot

QuarkPlatformPkg\Platform\Pei\PlatformInit\PeiFvSecurity.c PeiInitializeFvSecurity
PeiSecurityVerifyFv

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeFvSecurity.c DxeInitializeFvSecurity
DxeSecurityVerifyFv

QuarkPlatformPkg\Library\QuarkBootRomLib\QuarkBootRomLib.c
SecurityAuthenticateImage
SecurityAuthenticateKeyMo

dule

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSecurity.c PlatformCapsuleSecurity

21.2.2.
1

Intel® Quark™
SoC firmware
UEFI Secure
Boot support

during
firmware

deployment
and firmware

recovery

QuarkPlatformPkg\Library\PlatformSecureLib\PlatformSecureLib.c *.*

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnVariable
Write

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformSecureBoot.c
QuarkAutoProvisionSecure

Boot

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSecurity.c UefiSecureBootCapsulePoli
cy

21.2.2.
2

Intel® Quark™
SoC firmware
UEFI Secure
Boot support

during
firmware
update.

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSecurity UefiSecureBootNvramCaps
ulePolicy

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformSecureBoot.c QuarkMaintainSecureBootV
ariables

QuarkPlatformPkg\Include\PlatformVariableTables.h
SECURE_BOOT_MAINTAIN
_VARIABLE_TABLE_DEFINI

TION

21.2.2.
3

Intel® Quark™
SoC firmware
UEFI Secure
Boot rollback

protection
using secure
SKU ROM.

QuarkPlatformPkg\Include\PlatformVariableTables.h
QUARK_VARIABLE_REQUE
ST_TO_LOCK_TABLE_DEFI

NITION

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSecurity.c PlatformCapsuleSecurity

21.3

Isolated
Memory
Regions
(IMRs)

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c SetPlatformImrPolicy

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnSmmConf
igurationProtocol

21.4
Legacy SPI

Flash
Protection

QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QncEnableLegacyFlashAcce
ssViolationSmi

QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\AccessViolationHandler.c *.*

21.5 PCIe Option
ROMs

QuarkPlatformPkg\Library\PlatformUnProvisionedHandlerLib\PlatformUnProvisio
nedHandlerLib.c UnProvisionedHandler

21.6 Register
Locking

QuarkPlatformPkg\Platform\Dxe\PlatformInit\PlatformConfig.c PlatformConfigOnSmmConf
igurationProtocol

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\IntelQNCLib.c QNCLockSmramRegion

Intel® Quark™ SoC—Security Enhancements

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
118 Order Number: 330236-005US

§ §

21.7 Redundant
Images

QuarkPlatformPkg\QuarkPlatformPkg.fdf *.*

QuarkPlatformPkg\Tools\QuarkSpiFixup*.py *.*

21.8.2 Limiting Boot
Options

QuarkPlatformPkg\Library\PlatformUnProvisionedHandlerLib\PlatformUnProvisio
nedHandlerLib.c UnProvisionedHandler

QuarkPlatformPkg\Library\PlatformBootManagerLib\BdsPlatform.c SecureLockBoot

21.9

Denial of
Service/

Compromise
Prevention

QuarkPlatformPkg\Library\SmmCpuPlatformHookLib\SmmCpuPlatformHookLib.
c

PlatformSmmExitProcessin
g

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S
stackless_EarlyPlatformInit

21.10

Memory
Training
Engine

Lockdown

QuarkSocPkg\QuarkNorthCluster\MemoryInit\Pei\meminit.c lock_registers

21.11.2

SMBASE
Relocation
Address
Selection

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c GetMemoryMap

21.12

Rollback
Protection on

Intel®
Quark™ SoC
Secure Skus

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSecurity.c PlatformCapsuleSecurity

Section Title File Path Function

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 119

Firmware Update—Intel® Quark™ SoC

22.0 Firmware Update

22.1 Introduction
This chapter describes how the Intel® Quark™ SoC UEFI firmware is updated during
system runtime.

In brief, the firmware update involves:
• Creating a firmware update capsule. The capsule has multiple images to be placed

at specified locations in the SPI flash (refer to Figure 8 and Section 22.2). The full
capsule shown in Figure 8 would be contained in a single .cap file.

• Placing the .cap file in memory and calling the UEFI runtime service
UpdateCapsule() with the memory location of the capsule. This is done by a
runtime agent either running in an UEFI Shell or operating system.

• Programming the capsule images to flash immediately OR after a warm reset,
depending on when UpdateCapsule() is called and the arguments that are passed.

• Calling the UEFI runtime service ResetSystem() if a warm reset is required. This
service notices that a capsule is in memory and does an immediate S3 reset so that
the capsule is preserved in memory after the reset.

• Processing the capsule and programming the capsule images into SPI flash.
• Initiating a cold reset after SPI flash programming is complete to boot with the new

SPI flash images.

UpdateCapsule() is described in Section 7.5.3 of the UEFI Specifications (see Table 3)
which allows passing information/capsules to the firmware. The format of the capsule
passed to UpdateCapsule() is platform-specific.

Example images placed in capsule (Figure 8) would be PEI Stage1 images, DXE Stage2
Image, and EDKII NVRAM Image. A typical EDKII capsule is comprised of contiguous
data starting at the Capsule Header Block. The Security Header Block shown in Figure 8
is Quark-specific. For information on the first Security Header Block shown in Figure 8,
refer to sections on Asset Signing and Secure Boot Header Data Structures in [Secure
Boot] with further information on signing files in the [Build Guide].

As noted above a reset may be required to update the firmware. Many of the following
sub sections describe how the firmware update completes during the firmware boot
flow after the reset.

22.1.1 UpdateCapsule() EDKII Module and Platform Module Dependencies

The UpdateCapsule() runtime service is implemented by the core EDKII driver
CapsuleRuntimeDxe and depends on a platform implementation of EDKII library classes
CapsuleLib to process the capsule it receives.

Intel® Quark™ SoC—Firmware Update

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
120 Order Number: 330236-005US

If reset is required, then the following are also required: core EDKII driver
ResetSystemRuntimeDxe, platform implementation of the EDKII library class
ResetSystemLib, and core EDKII driver CapsulePei. After the reset to complete the
firmware update, platform hooks in PEI stage call CapsulePei and in DXE stage they call
CapsuleLib.

22.1.2 Intel® Quark™ SoC UEFI Firmware Update Steps in Detail:

1. Platform owner creates a capsule for Intel® Quark™ SoC UEFI firmware update
(see Section 22.2) in firmware build environment.

2. A UEFI Application or Operating System application running on the target calls the
UEFI Runtime service UpdateCapsule() with the capsule (see Section 22.3).

3. UpdateCapsule() will:
a. Validate UpdateCapsule() parameters with particular emphasis on the flag

combinations in the flags field of the EFI_CAPSULE_HEADER structure.
b. If flag field of EFI_CAPSULE_HEADER indicates no reset is required, then

UpdateCapsule() calls CapsuleLib Library Class entry point
ProcessCapsuleImage() to execute Section 22.8 below (Write Capsule to Flash)
and then returns to the caller of UpdateCapsule().

c. If flag field of EFI_CAPSULE_HEADER indicates a reset is required, then NVRAM
variables are created that correspond to the UpdateCapsule() input parameter
ScatterGatherList (see UEFI Specifications Section 7.5.3). UpdateCapsule() may
be called multiple times with extra scatter gather lists. The name of the created
variable increments each time UpdateCapsule() is called. For example, variables
may be named CapsuleUpdateData, CapsuleUpdateData1,
CapsuleUpdateData2, etc.

Note: If the firmware update capsule contains new images for any of the areas
locked in Section 21.4 (Legacy SPI Flash Protection) or firmware is running
on secure SKU hardware then the capsule flags must always indicate a
reset is required.

Figure 8. Intel® Quark™ SoC Firmware Update Capsule

Security Header Block

Capsule Header Block

HINT[0]

Image Data
Block

Platform Capsule

Hint Block

HINT[1]

HINT[N-1]

HINT[N]
Size = 0

Image[0]

Image[1]

Image[N-1]

Array of Images to be placed in flash.
Location in flash for each image
specified in corresponding hint
structure.

Array of UPDATE_HINT structures

EFI_CAPSULE_HEADER defined in
Section 7.5.3 of the UEFI Spec.
CapsuleGuid field of this structure
determines if capsule is supported
by the platform.

Target Addr

Flash Base Address in CPU Address Map
to write image

UPDATE_HINT Structure

Description of fields in array
elements HINT[0] to HINT[N]

Size

Size of data in bytes to write to flash
if Size == 0 last Hint and no

corresponding image in Image Data Block

SourceOffset

Offset to Image Data to Write
Offset from Base of Capsule Header Block

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 121

Firmware Update—Intel® Quark™ SoC

d. If flag field of EFI_CAPSULE_HEADER indicates initiate a reset, then continue
from step 4.

4. Initiate Capsule Reset. See Section 22.4.
5. Set boot mode to BOOT_ON_FLASH_UPDATE. See Section 22.5.
6. PEI stage code builds Capsule Update HOBs. See Section 22.6.
7. Delete all variables with name prefix EFI_CAPSULE_VARIABLE_NAME. See

Section 22.7.
8. Build all Capsule HOBs created in PEI stage into contiguous capsule images (see

Section 22.7) and then write each Capsule image to flash (see Section 22.8).
9. Issue cold reset when all capsules have been written to flash when booting in mode

BOOT_ON_FLASH_UPDATE.
Note: The Intel® Quark™ SoC UEFI firmware always issues a cold reset even if

the capsules did not update firmware dependent flash areas, this behavior
implies that UEFI capsules built with UEFI Capsule flag
CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE are not supported.

10. System cold reboots with flash updated with capsule created in step 1 above.

22.2 Create an Update Capsule
The Intel® Quark™ SoC UEFI firmware platform package contains the tool
CapsuleCreate which builds a .cap file containing three sequential binary blocks shown
in Figure 8: Capsule Header Block, Hint Block, and Image Data Block.

To place a security header block at the start of the .cap file created by CapsuleCreate,
the platform package SignTool can be used for the Intel® Quark™ SoC base SKU (non-
secure). For secure SKU, refer to the signing files section of the [Build Guide].

The SPI Flash Tools described in [Build Guide] use the CapsuleCreate application and
Intel® Quark™ SoC signing tools to automatically build .cap capsule files.

22.2.1 Intel® Quark™ SoC UEFI Firmware specific capsule flags

EFI_CAPSULE_HEADER structure is defined in Section 7.5.3 of the UEFI Specifications
(see Table 3). This structure contains a Flags field.

Intel® Quark™ SoC UEFI firmware specific capsule flags for capsule creation are:-

#define PD_UPDATE_MAC 0x00000001

Platform data is an area of legacy SPI flash that contains platform configuration data
including MRC parameters, platform type, board LAN MAC addresses, etc. (See
Section 4.13 and [Build Guide] for more information, the sample-platform-data.pdat
created in the [Build Guide] can be used as one of the images in the firmware update
capsule). If a platform data image is found in the firmware update capsule then the
value of this bit determines whether the Intel® Quark™ SoC UEFI firmware updates
the MAC addresses in the legacy SPI flash platform data area. If bit == 0b then all
fields except MAC addresses are updated else if bit == 1b then all fields including
MAC addresses are updated.

Note: If platform data is in firmware update capsule then the UEFI Specifications
standard flag (CAPSULE_FLAGS_PERSIST_ACROSS_RESET 0x00010000)
must also be set due to Legacy SPI Flash protection See Section 21.4.

Intel® Quark™ SoC—Firmware Update

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
122 Order Number: 330236-005US

22.3 Call UEFI Runtime Service UpdateCapsule()
The .cap file created in the last section can be passed to the UEFI UpdateCapsule()
runtime service by Operating System agents or UEFI applications. See the [Build
Guide], "Programming flash on the board using serial interface" section. The source for
the UEFI application used in UEFI Shell option in the [Build Guide] can be found in the
Intel® Quark™ SoC UEFI firmware platform package.

If the .cap file cannot be placed in a contiguous memory buffer, then refer to
information on the ScatterGatherList parameter of the UpdateCapsule() service in
Section 7.5.3 of the UEFI Specification (Table 3, Related Documents). In this case, the
flags field of EFI_CAPSULE_HEADER passed to UpdateCapsule() must indicate that a
reset is required and the last call to UpdateCapsule() must set an additional flag to
initiate a reset to complete the firmware update. Alternatively, UEFI runtime service
ResetSystem() can be called to initiate the reset.

Note: The capsule may be split into non-contiguous memory pointed to by the
ScatterGatherList. There is a specific Quark SoC requirement that the
memory containing the EFI_CAPSULE_HEADER and the Quark SoC Security
Header Block must be in the same contiguous memory block.

22.4 Initiate Capsule Reset
When UpdateCapsule() has finished, capsule variables
(EFI_CAPSULE_VARIABLE_NAME) point to capsule memory locations. The capsule reset
involves:

• UEFI runtime service ResetSystem() is called with EfiResetWarm parameter [after
UpdateCapsule() or from within UpdateCapsule() depending on a flag].

• ResetSystem () sees capsule variables and calls platform implementation of
EnterS3WithImmediateWake (EDKII library class ResetSystemLib).

• System does an S3 reset which guarantees that memory pointed to by the capsule
NVRAM variables are preserved in memory.

22.5 Boot in BOOT_ON_FLASH_UPDATE Mode
Setting the boot mode BOOT_ON_FLASH_UPDATE is required to continue the capsule
update flow. Pre memory initialization Platform PEI Stage code is responsible for
detecting the EDKII boot mode. This code sets the boot mode to
BOOT_ON_FLASH_UPDATE if the following conditions are met:
1. Section 18.3 Step 2. Verify the system is waking (PM1_BLK + 00h[15]) and that

the system is resuming from S3 state by looking at the SLP_TYP bit field (PM1_BLK
+ 04h[12:10]). If the system is not resuming from S3 state do not execute any of
the steps below.

2. EDKII core PPI service CheckCapsuleUpdate() returns EFI_SUCCESS.
CheckCapsuleUpdate() returns EFI_SUCCESS if it find a variable with name
EFI_CAPSULE_VARIABLE_NAME in the UEFI variable store.

22.6 Build Capsule Update HOBs
Post memory initialization Platform PEI Stage code is responsible for continuing the
Capsule Update flow by calling the Core EDII PPI routines CapsuleCoalesce and
CreateState to create the Capsule HOBs which are used by the DXE Stage code to
program the system flash.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 123

Firmware Update—Intel® Quark™ SoC

This code also has the added responsibility to create the platform specific Capsule
Security Header HOBs, that is, the Security Header prefix placed in the .cap by the
signing tools in Section 22.2.

To achieve this task, the platform PEI Stage post memory initialization code must do
the following steps:
1. Skip PEI memory test so that memory locations referenced by

EFI_CAPSULE_VARIABLE_NAME variables (Section 22.1.2 Step 3.) are not
destroyed.

2. Find the largest memory range excluding that given to PEI area to be used by
EDKII CapsuleCoalesce.

3. Create platform specific Capsule Security Header Hobs associated with the capsules
referenced by EFI_CAPSULE_VARIABLE_NAME variables.

4. Call EDKII CapsuleCoalesce to coalesce the memory locations referenced by the
EFI_CAPSULE_VARIABLE_NAME variables into a contiguous buffer of capsules.

5. Call EDKII CreateState with contiguous buffer returned from CapsuleCoalesce to
create the capsule HOBs to be used by the DXE stage to program the system flash.

22.7 Process Capsule Update HOBs
Platform DXE code is responsible for ensuring the Capsule Update flow is completed. It
achieves this by doing the following steps:
1. Delete all variables with name prefix EFI_CAPSULE_VARIABLE_NAME.
2. Find all Capsule HOBs created by PEI Stage which need to be written to flash.
3. Write found Capsules (one at a time) to Flash (see Section 22.8).
4. Cold Reset system to complete Capsule Update and execute the updated firmware.

If the boot mode is BOOT_ON_FLASH_UPDATE, all of the above steps are executed.
Note that step 1 is also done for all other EDKII boot modes.

22.8 Write Capsule to Flash
Writing a capsule to Flash can be initiated directly by the UEFI runtime service
UpdateCapsule (Section 22.1.2 Step 3) or during boot when capsule HOBs are found
and mode equals BOOT_ON_FLASH_UPDATE (Section 22.7 Step 3).

EDKII defines a library class CapsuleLib. The implementation of this library is provided
by the platform package. The entry point ProcessCapsuleImage of this library is
responsible for writing a capsule to flash.

The Intel® Quark™ SoC UEFI firmware implementation of ProcessCapsuleImage will:
1. Verify CapsuleGuid field of the EFI_CAPSULE_HEADER input parameter of

ProcessCapsuleImage is supported by the firmware.
2. Do capsule security policy.

a. If Capsule Image passed into ProcessCapsuleImage is prefixed with Quark
Security Header then call ROM authentication code (Section 21.2.1) to
authenticate Capsule Image. ELSE if a Capsule Security Header HOB is found for
the Capsule Image, then build a contiguous buffer containing the Data from the
Capsule Security Header HOB followed by the Capsule image passed into
ProcessCapsuleImage and call ROM authentication code (Section 21.2.1) to
authenticate this new capsule image.

Intel® Quark™ SoC—Firmware Update

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
124 Order Number: 330236-005US

b. Call ROM authentication code (Section 21.2.1) to validate each image within the
capsule that has an Quark Security Header and the firmware knows the key for
the image (firmware always knows the key for stage 1 and stage 2 firmware
volumes).

c. Do firmware Rollback Protection on Intel® Quark™ SoC Secure Skus tasks.
3. Do the following in order if UEFI Secure Boot provisioned / enabled and the capsule

is not been written during a recovery boot.
a. If there is an NVRAM image in the capsule THEN ignore NVRAM in the capsule

and delete all UEFI variables in current NVRAM except for UEFI Secure Boot
Variables.

b. If platform data image in the capsule has UEFI Secure boot provisioning items
(Table 23) THEN update UEFI Secure Boot Variables in current NVRAM using the
UEFI Secure boot provisioning items (Table 23) of platform data capsule image.

4. Save watchdog configuration and disable watchdog to ensure no watchdog reset
trigger during flash programming.

5. Write to flash the capsule image that was authenticated by ROM.
6. Restore watchdog configuration.
7. Return to step 3. in Section 22.7

22.9 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

Section Title File Path Functions & Types

22.2 Create an
Update Capsule

QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\SMIFlas
hDxe.h UPDATE_HINT

QuarkPlatformPkg\Tools\CapsuleCreate\CapsuleCreate.c main

QuarkPlatformPkg\Tools\SignTool\DummySignTool.c main

MdePkg\Include\Uefi\UefiSpec.h EFI_CAPSULE_HEADER

QuarkPlatformPkg\Library\PlatformCapsuleLib\PlatformCaps
uleLib.c SupportCapsuleImage

22.3

Call UEFI
Runtime
Service

UpdateCapsule(
)

QuarkPlatformPkg\Applications\CapsuleApp\CapsuleApp.c UefiMain

MdeModulePkg\Universal\CapsuleRuntimeDxe\CapsuleServi
ce.c UpdateCapsule

22.4 Initiate Capsule
Reset

MdeModulePkg\Universal\ResetSystemRuntimeDxe\ResetSy
stem.c ResetSystem

QuarkSocPkg\QuarkNorthCluster\Library\ResetSystemLib\R
esetSystemLib.c

EnterS3WithImmediateWa
ke

22.5

Boot in
BOOT_ON_FLA

SH_UPDATE
Mode

QuarkPlatformPkg\Platform\Pei\PlatformInit\BootMode.c UpdateBootMode

QuarkSocPkg\QuarkNorthCluster\Library\IntelQNCLib\Intel
QNCLib.c

QNCCheckS3AndClearStat
e

MdeModulePkg\Universal\CapsulePei\UefiCapsule.c CheckCapsuleUpdate

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 125

Firmware Update—Intel® Quark™ SoC

§ §

22.6 Build Capsule
Update HOBs

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c InstallEfiMemory
SetPlatformImrPolicy

QuarkPlatformPkg\Platform\Pei\PlatformInit\Capsule.c FindCapsuleSecurityHead
ersAndBuildHobs

MdeModulePkg\Universal\CapsulePei\UefiCapsule.c CapsuleCoalesce
CreateState

22.7 Process Capsule
Update HOBs

QuarkPlatformPkg\Library\PlatformBootManagerLib\BdsPlatf
orm.c

PlatformBootManagerAfter
Console

QuarkPlatformPkg\Bds\Library\UefiBootManagerLib\Capsule
s.c

EfiBootManagerProcessCa
psules

22.8
Write Capsule to Flash

QuarkPlatformPkg\Library\PlatformCapsuleLib\PlatformCaps
uleLib.c ProcessCapsuleImage

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSe
curity.c PlatformCapsuleSecurity

QuarkPlatformPkg\Platform\Dxe\PlatformInit\DxeCapsuleSe
curity.c

UefiSecureBootNvramCap
sulePolicy

QuarkPlatformPkg\Library\PlatformCapsuleLib\IA32\TrigSmi
.S

QuarkPlatformPkg\Library\PlatformCapsuleLib\IA32\TrigSmi
.asm

SendCapsuleSmi
GetUpdateStatusSmi

QuarkPlatformPkg\Platform\DxeSmm\SMIFlashDxe\SMIFlas
hDxe.c SMIFlashSMIHandler

QuarkSocPkg\QuarkNorthCluster\Spi\Common\SpiCommon.
c SpiProtocolExecute

Section Title File Path Functions & Types

Intel® Quark™ SoC—Firmware Recovery

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
126 Order Number: 330236-005US

23.0 Firmware Recovery

23.1 Introduction
This chapter describes the recovery process for the Intel® Quark™ SoC UEFI firmware.

Firmware recovery allows the platform firmware to be recovered if the platform will not
boot. For example, if power was lost during a normal firmware update, the board would
be unbootable.

In brief, firmware recovery is comprised of the following steps:
• building a recovery file (see FVMAIN.fv in [Build Guide])
• connecting a USB key with this file to the target
• booting the target in recovery mode
• waiting for the recovery mode firmware to update the target flash using the

FVMAIN.fv file

The recovery FVMAIN.fv image shown in Figure 9 is a file that consists of a signed
Intel® Quark™ SoC UEFI firmware Recovery Stage2 DXE image followed by a Intel®
Quark™ SoC UEFI firmware capsule image (see Section 22.2 Figure 8).

This mechanism ensures that the capsule needed to recover the platform flash, as well
as most of the firmware modules required to boot the platform during the recovery
process, are sourced from the USB key.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 127

Firmware Recovery—Intel® Quark™ SoC

23.1.1 Trigger Intel® Quark™ SoC UEFI Firmware Recovery

Firmware recovery is triggered if any of the following conditions are met:
• Hardware strap has force recovery value when processor comes out of reset. The

Intel® Quark™ SoC X1000 hardware strap condition is when the SPI0_MOSI pin is
connected to ground when the processor comes out of reset. Firmware detects this
by checking that bit (Opcode 06h Msg Port 31H:R00H[0]) is equal to 0b. It is
important to emphasise that since this is a strap pin executing recovery firmware
cannot read the real time state of this pin.

• Software sets the sticky bit (Opcode 06h Msg Port 31H:R51H[9]) to 1b and then
does a Warm Reset.

23.1.2 Required Minimum Intact System Flash Areas

Certain flash areas must be intact for firmware recovery to complete. The flash areas
are different for secure SKU and base SKU (non-secure). It is recommended that these
flash areas are never part of firmware update and firmware recovery capsules.

23.1.2.1 Intel® Quark™ SoC X1000 Secure SKU

Secure SKU flash areas:
• Fixed Recovery Firmware Volume Image. See Section 21.7 Redundant Images.
• SVN AREA, see [Secure Boot] manual for details.
• Signed Key Module, see [Secure Boot] manual for details.

23.1.2.2 Intel® Quark™ SoC X1000 Base SKU

Base SKU (non-secure) flash areas:

Figure 9. FVMAIN.fv Recovery Module File Contents

Signed
Recovery

Stage2 EDKII
DXE

image

Platform Security Header

FV.EDKII_BOOT_STAGE2_RECOVERY
in platform EDKII .fdf file

Crucial difference from normal DXE Stage2
is that variable services driver does not

access EDKII flash NVRAM area

Firmware update capsule image

Intel® Quark™ SoC—Firmware Recovery

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
128 Order Number: 330236-005US

• Boot ROM Override firmware volume (Reference in EDKII platform .fdf is
EDKII_BOOTROM_OVERRIDE.) which performs tasks when processor comes out of
reset. The final task is to call entry point in the Fixed Recovery Firmware Volume
Image.

• Fixed Recovery Firmware Volume Image. See Section 21.7 Redundant Images.
• The first 2KB of the RMU binary, see Section 4.5.2 for details.

23.1.3 Constraints on UEFI Executables

• Given (Section 23.1.2) it needs to be emphasized that flash data areas should not
be trusted during recovery. Example areas are standard EDKII NVRAM area and
platform specific MFH (see [Build Guide]). The exception is platform data area (see
Section 4.13 and [Build Guide]). This area has a CRC and if the CRC check passes
and a cross reference check passes between the platform type item and MRC item,
then executables may trust platform data.

• If (Section 21.3 Isolated Memory Regions (IMRs)) protection is enabled then the
transfer of recovery resources between memory and external media using DMA
must ensure that IMR protected areas are not accessed.

23.1.4 Intel® Quark™ SoC UEFI Firmware Recovery Steps

1. Create Recovery file FVMAIN.fv and place in USB Disk, see Section 23.2.
Trigger recovery boot (Section 23.1.1) and continue to next step.

2. SoC comes out of reset, detects a force recovery condition is met, and calls Fixed
Recovery Firmware Volume Image entry point (see Section 23.3).

3. Initialize platform memory for recovery boot (see Section 23.5).
4. Load UEFI DXE image from external media (see Section 23.6).
5. Complete HOB setup for recovery boot (see Section 23.7).
6. Complete firmware recovery (see Section 23.8).

23.2 Create FVMAIN.fv Recovery Image
See [Build Guide] for details on how to build FVMAIN.fv.

Note: Even if FVMAIN.fv is being used on an Intel® Quark™ SoC base SKU, it must contain a
dummy security header for the DXE Stage2 Recovery Image.

23.3 Call Fixed Recovery Firmware Volume
If a force recovery condition is detected (see Section 23.1.1), the Intel® Quark™ SoC
firmware UEFI Sec Stage code performs the following to call the Fixed Recovery
Firmware Volume:

Note: For a secure SKU, the Sec stage code is called from ROM.
For a base SKU, the Sec stage code is called from reset vector code in
EDKII_BOOTROM_OVERRIDE firmware volume (see the platform .fdf file).
1. Copy Fixed Recovery Firmware Volume to eSRAM as soon as processor stack is set

up (taking care not to overwrite itself if already running from eSRAM).
2. Find entry point in Fixed Recovery Firmware Volume.
3. Call entry point in Fixed Recovery Firmware Volume.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 129

Firmware Recovery—Intel® Quark™ SoC

23.4 Platform Early PEI Stage HOB Setup
Early HOB setup below is done before memory initialization.

23.4.1 Create EFI_PLATFORM_INFO HOB

The EFI_PLATFORM_INFO HOB is created early in the UEFI PEI Stage.

The following EFI_PLATFORM_INFO HOB fields are crucial for boot and are persisted in
system flash in the platform data area see Section 4.13 and [Build Guide]:

• EFI_PLATFORM_INFO.Type: platform type that has been booted
• EFI_PLATFORM_INFO.MemData.MemMrcConfig: configuration values for the

memory reference code (see Section 5.6)
Note: The EFI_PLATFORM_INFO.MemData.MemMrcConfig structure also contains

the platform type identifier so that a cross reference sanity check can be
done against where EFI_PLATFORM_INFO.Type is persisted in system flash.

The platform data area has a CRC and is write protected before Intel® Quark™ SoC
UEFI firmware exits the UEFI PI DXE stage. On a recovery boot if the CRC check or
platform type cross reference sanity check fails (see Note above) then the recovery
image will do the following to determine the platform type and MRC configuration.
1. Ask the user to select the platform type to be recovered using a list of platform

types supported by this Fixed Recovery Firmware Volume.
2. The selected type is used to read the platform data file built into the Fixed Recovery

Firmware Volume for this platform type. Each built-in platform data file matches a
complete platform data binary file built using [Build Guide].

3. Update the HOB fields EFI_PLATFORM_INFO.Type and
EFI_PLATFORM_INFO.MemData.MemMrcConfig from the selected platform data file
in Fixed Recovery Firmware Volume.

23.4.2 Set Up Early PEI Stage EDKII Boot Mode HOB

The platform Fixed Recovery Firmware Volume sets up the boot mode HOB with the
EDKII defined value BOOT_IN_RECOVERY_MODE using the EDKII library function
PeiServicesSetBootMode.

23.5 Initialize Platform Memory
If boot mode equals BOOT_IN_RECOVERY_MODE, then memory initialization performs
the following recovery-specific steps:
1. Call the memory reference code with a parameter to prompt it to do cold boot

initialization.
Note: This is done in all cases, no matter how the hardware has been reset.

2. Use default memory type information list to build standard EDKII
gEfiMemoryTypeInformationGuid HOB, instead of using NVRAM/Flash variable
store.

3. Build HOB to point to the largest memory range (excluding that given to PEI area)
to be used by recovery components for transferring recovery resources using DMA.
Ensure that IMR violations are not triggered, see Section 21.3.

Intel® Quark™ SoC—Firmware Recovery

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
130 Order Number: 330236-005US

23.6 Load DXE Image
The DXE Stage2 image placed at the start of the FVMAIN.fv file created in Section 23.2
is loaded as the EDKII DXE Firmware volume to be executed.

The following steps are performed:
1. Platform code installs an instance of a defined EDKII PPI

gEfiPeiRecoveryModulePpiGuid instead of the firmware volume for the DXE stage2
image persisted in flash.

2. The EDKII Core DXE Load component detects that the boot mode is
BOOT_IN_RECOVERY_MODE (set in Section 23.4) and calls the platform recovery
module PPI (gEfiPeiRecoveryModulePpiGuid) to install DXE firmware volume to be
used for the DXE boot stage.

3. The Platform Recovery module discovers and loads the Recovery File FVMAIN.fv
from Installed Recovery Devices (EDKII Standard PPI
gEfiPeiDeviceRecoveryModulePpiGuid).

4. Any low level media device drivers used during discovery and loading of FVMAIN.fv
use the HOB created in Section 23.5 step 3 to ensure DMA transfers do not trigger
IMR violations (Section 21.3).

5. On loading of the recovery FVMAIN.fv file, the DXE firmware volume part is
installed using the standard EDKII library function PeiServicesInstallFvInfoPpi.

23.7 Platform Late PEI Stage HOB Setup

23.7.1 Set Up Capsule HOBs

The capsule file part of FVMAIN.fv Recovery file (see Section 23.2) must be placed in
HOBs so that the DXE stage code can program the system flash to complete firmware
recovery.

After the platform recovery module (Section 23.6) has installed the DXE firmware
volume part of FVMAIN.fv, it creates the Capsule HOBs as follows:
1. Check if FVMAIN.fv Recovery file has capsules.
2. Check if capsules are supported by platform.
3. Create platform-specific Security Header HOB (data in first block of capsule, see

Figure 8 on page 120).
4. Create standard EDKII Capsule HOB using standard EDKII library routine

BuildCvHob (Data from Capsule Header Block, Hint Block, and Image Data Block
shown in Figure 8 are put in a contiguous memory buffer).

23.7.2 Set Up Late PEI Stage EDKII Boot Mode HOB

The recovery module (Section 23.6) also changes the boot mode HOB value to
BOOT_ON_FLASH_UPDATE so that the DXE stage flash update modules will update
flash with the capsule found in Section 23.7.1.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 131

Firmware Recovery—Intel® Quark™ SoC

23.7.3 Set Up Late PEI Stage EFI_PLATFORM_INFO HOB

Set EFI_PLATFORM_INFO.BootingRecoveryDxe to TRUE so that platform DXE drivers do
not try to access system flash data areas, for example to stop platform DXE drivers
accessing MFH (see [Build Guide]) or maintaining UEFI Secure boot variables when
writing recovery capsule to system flash.

23.8 Complete Platform Firmware Recovery
The steps to complete firmware recovery are listed in:

• Section 22.7 Process Capsule Update HOBs
• Section 22.8 Write Capsule to Flash

Note: Section 22.8 Step 1 has no effect since variable service emulator driver is
used in DXE Stage2 recovery image. These variables are not relevant for
recovery. Also, the variables are cleared after the system boots due to cold
reset at the end of Section 22.7.

Note: In Section 22.8 the firmware will not maintain UEFI Secure boot variables
since EFI_PLATFORM_INFO.BootingRecoveryDxe was set to true in
Section 23.7.3, in other words the NVRAM image in the capsule is always
written to flash.

The firmware sources for these sections are shown in Section 22.9.

23.9 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

Section Title File Path Functions & Types

23.2

Create
FVMAIN.fv
Recovery
Image

QuarkPlatformPkg\QuarkPlatformPkg.fdf FV.EDKII_BOOT_STAGE2_
RECOVERY

See Section 22.9 for firmware sources for Section 22.2 Create an Update Capsule

23.3

Call Fixed
Recovery
Firmware
Volume

QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.asm
QuarkPlatformPkg\Library\QuarkSecLib\Ia32\Flat32.S ProtectedModeEntryPoint

QuarkPlatformPkg\Cpu\Sec\ResetVector\Ia32\Flat32.asm
QuarkPlatformPkg\Cpu\Sec\ResetVector\Ia32\Flat32.S ProtectedModeEntryPoint

QuarkPlatformPkg\Library\PlatformSecServicesLib\Platform
SecServicesLib.c

PlatformIsForceRecoveryC
onditionsMet

PlatformCopyFixedRecove
ryImageToSramAndCall

Intel® Quark™ SoC—Firmware Recovery

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
132 Order Number: 330236-005US

23.4
Platform Early
PEI Stage HOB

Setup

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformInfo.c
PdrGetPlatformInfo

UserSelectPlatformDataFil
e

QuarkPlatformPkg\Include\Guid\PlatformDataFileNameGuid
s.h

PDAT_FILE_NAME_TABLE
_DEFINITION

QuarkPlatformPkg\Platform\Pei\PlatformInit\BootMode.c
EarlyUpdateBootMode

UpdateBootMode

23.5
Initialize
Platform
Memory

QuarkPlatformPkg\Platform\Pei\PlatformInit\MrcWrapper.c
MemoryInit

InstallEfiMemory
GetPlatformMemorySize

QuarkSocPkg\QuarkNorthCluster\Library\RedirectPeiService
sLib\RedirectPeiServices.c

RedirectMemoryServicesS
etPool

23.6 Load DXE
Image

MdeModulePkg\Core\DxeIplPeim\DxeLoad.c DxeLoadCore

QuarkPlatformPkg\Platform\Pei\PlatformInit\Generic\Recove
ry.c PlatformRecoveryModule

QuarkSocPkg\QuarkSouthCluster\Usb\Ohci\Pei\OhcPeim.c
RedirectOhciBulkTransfer
RedirectOhciControlTransf

er

QuarkSocPkg\QuarkSouthCluster\Usb\Ohci\Pei\UsbHcMem.c UsbHcAllocMemBlock

QuarkSocPkg\QuarkNorthCluster\Library\RedirectPeiService
sLib\RedirectPeiServices.c

RedirectMemoryServicesE
nable

RedirectMemoryServicesD
isable

23.7
Platform Late

PEI Stage HOB
Setup

QuarkPlatformPkg\Platform\Pei\PlatformInit\Generic\Recove
ry.c PlatformRecoveryModule

QuarkPlatformPkg\Platform\Pei\PlatformInit\Capsule.c BuildCapsuleSecurityHead
erHob

23.9

Complete
Platform
Firmware
Recovery

See Section 22.9 for firmware sources for Section 22.7 and Section 22.8

Section Title File Path Functions & Types

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 133

Firmware Error Handling—Intel® Quark™ SoC

24.0 Firmware Error Handling

24.1 Introduction
This chapter describes the error handling implemented in the Intel® Quark™ SoC UEFI
firmware.

The Intel® Quark™ SoC UEFI firmware error handling features are:
• Report and clear errors detected by the Intel® Quark™ SoC Remote Management

Unit
• Print to console if EDKII ASSERT macros are called and halt the boot.
• Print to console all EDKII debug messages with error level DEBUG_ERROR

24.2 Report and Clear Errors Detected by RMU
Upon detecting a double bit ECC error or an access violation, the Intel® Quark™ SoC
Remote Management Unit writes to one of the four bits [3:0] in the CFGSTICKY_RW
register (see Section 4.11) and then issues a Warm Reset.

The Intel® Quark™ SoC firmware detects this early in boot before memory initialization
by interrogating the CFGSTICKY_RW register. The firmware reports which error bits are
set and then clears the error bits.

24.3 Print EDKII ASSERT Messages to Console and halt system
boot.
This is achieved by:

• Ensuring bit 0 is set of core EDKII PCD PcdDebugPropertyMask (Mask constant
DEBUG_PROPERTY_DEBUG_ASSERT_ENABLED) for all build options in platform
.dsc file.

• Ensuring bit 5 is set of core EDKII PCD PcdDebugPropertyMask (Mask constant
DEBUG_PROPERTY_ASSERT_DEADLOOP_ENABLED) for all build options in platform
.dsc file.

24.4 Print EDKII DEBUG_ERROR Messages to Console
This is achieved by:

• Ensuring bit 1 is set of core EDKII PCD PcdDebugPropertyMask (Mask constant
DEBUG_PROPERTY_DEBUG_PRINT_ENABLED) for all build options in platform .dsc
file.

• Ensuring bit 31 is set of core EDKII PCD PcdDebugPrintErrorLevel (Mask constant
DEBUG_ERROR) for all build options in platform .dsc file.

Intel® Quark™ SoC—Firmware Error Handling

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
134 Order Number: 330236-005US

Note: For Section 24.3 and Section 24.4 above, the message printing will only be
seen if the necessary EDKII StatusCodeHandler (PEI, DXE or SMM) is installed
before the ASSERT or DEBUG message happened.

24.5 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

24.2

Report and
Clear Errors
Detected by

RMU

QuarkPlatformPkg\Platform\Pei\PlatformInit\PlatformEarlyIn
it.c

CheckForResetDueToError
s

24.3

Print EDKII
ASSERT

Messages to
Console and
halt system

boot.

QuarkPlatformPkg\QuarkPlatformPkg.dsc PcdDebugPropertyMask

•

Ensuring bit 5 is
set of core
EDKII PCD

PcdDebugPrope
rtyMask (Mask

constant
DEBUG_PROPE
RTY_ASSERT_D
EADLOOP_ENA
BLED) for all

build options in
platform .dsc

file.

QuarkPlatformPkg\QuarkPlatformPkg.dsc
PcdDebugPropertyMask
PcdDebugPrintErrorLevel

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 135

Additional Programming Items—Intel® Quark™ SoC

25.0 Additional Programming Items

25.1 Cache Line Size Clarification
In accordance with PCI specification v2.3, firmware should program the number of
cache lines, for PCI bus masters with memory write and invalidate, to the number of
cache lines in the CPU. On Quark SoC-based systems, the cache line size for a bus
master should be set to 16 bytes. The cache line size register, offset 0Ch, of a PCI
device with bus master memory write and invalidate capability should initially be set to
04h since it accepts cache line size in terms of DWORDs. In the event a device does not
support 16 bytes, it is the responsibility of firmware to arbitrate between all devices
implementing this register on the same bus to find the lowest common denominator.

25.2 VGA 16-bit Decode
To eliminate the potential for I/O conflicts, it is advised to use 16-bit decoding instead
of 10-bit decoding when configuring the VGA decode bits in the PCIe* root ports.

The UEFI firmware should set both VGA enable bit (bit 3) and VGA 16-bit decode bit
(bit 4) in the Bridge Control Register (3Eh) to positively decode and forward the VGA
accesses.

25.3 I2C* Host Controller drivers
Intel® Quark™ SoC UEFI firmware provides I2C* PEI and DXE boot service drivers to
enable firmware writers to use the I2C* Controller built into the Intel® Quark™ SoC.
The drivers uses a temporary memory BAR early in boot which is then replaced by the
permanent memory BAR when PCI/PnP Enumeration is complete.

Intel® Quark™ SoC—Additional Programming Items

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
136 Order Number: 330236-005US

25.4 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the sections in this
chapter.

§ §

Section Title File Path Function

25.1 Cache Line Size
Clarification

Not implemented
(Default of 0 used)

Not implemented
(Default of 0 used)

25.2 VGA 16-bit
Decode

MdeModulePkg\Bus\Pci\PciBusDxe\PciEnumeratorSupport.c DetermineDeviceAttribute

MdeModulePkg\Bus\Pci\PciBusDxe\PciIo.c PciIoAttributes

25.3
I2C* Host Controller

drivers

QuarkSocPkg\QuarkSouthCluster\Library\I2cLib*.* *.*

QuarkSocPkg\QuarkSouthCluster\Library\Include\I2cLib *.*

QuarkSocPkg\QuarkSouthCluster\QuarkSocPkg.dec PcdI2CFastModeEnabled
PcdIohI2cMmioBase

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 137

Trusted Platform Module (TPM) Support—Intel® Quark™ SoC

26.0 Trusted Platform Module (TPM) Support

26.1 Introduction
This chapter describes the Trusted Platform Module (TPM) support. Core EDKII
SecurityPkg TPM only supports a memory-mapped I/O interface to TPM devices which
is not supported by the Intel® Quark™ SoC Legacy Bridge hardware. Intel® Quark™
SoC UEFI firmware provides an override to the core EDKII SecurityPkg software to
allow I2C* bus access to TPM devices.

26.1.1 TPM Build Requirements

• Before building firmware, the EDKII Builder must follow the one-time prerequisite
steps in CryptoPkg\Library\OpensslLib\Patch-HOWTO.txt

• Intel® Quark™ SoC UEFI firmware must be built with TPM_SUPPORT build option.
See [Build Guide] for details.

• Standard EDKII PCD gEfiSecurityPkgTokenSpaceGuid.PcdTpmInstanceGuid must be
set to gEfiTpmDeviceInstanceTpm12Guid at build time or run time.

• Standard EDKII PCD gEfiSecurityPkgTokenSpaceGuid.PcdTpmPhysicalPresence
must be FALSE.

• Standard EDKII PCD gEfiSecurityPkgTokenSpaceGuid.PcdTpmPlatformClass must
be 0 to specify TCG platform type of PC client.

26.1.2 EDKII SecurityPkg TPM Supported Features

Intel® Quark™ SoC UEFI firmware provides an override of the SecurityPkg Tcg Pei and
TcgDxe driver which supports Standard TCG Service Protocol and TPM measured boot
(UEFI PI and UEFI BDS stages) as defined in the specification[TCG SPEC BIOS].

26.1.3 EDKII SecurityPkg TPM Unsupported Features

The following features are not supported:
• Memory Map IO access to TPM hardware devices
• SecurityPkg TPM drivers in \SecurityPkg\Tcg
• SecurityPkg ACPI TPM Device object not supported.
• Platform Attack Mitigation via Memory OverWrite Request (MOR) not supported.

26.1.4 Additional TPM Features

The UEFI firmware supports the features below in addition to those in EDKII
SecurityPkg TPM:

• Intel® Quark™ SoC UEFI firmware allows I2C* bus access to TPM devices.

Intel® Quark™ SoC—Trusted Platform Module (TPM) Support

Intel® Quark™ SoC X1000
UEFI Firmware Writers Guide October 2015
138 Order Number: 330236-005US

• Intel® Quark™ SoC UEFI firmware policy ensures that the TPM device is enabled
and activated before UEFI BDS Stage.

26.2 TcgComm Library Override
The Intel® Quark™ SoC UEFI firmware provides an override of the EDKII SecurityPkg
SecurityPkg\Library\TpmCommLib. The override version differs from the original
SecurityPkg TpmCommLib as described below:

• Provides I2C* bus access to TPM devices.
• Updates TpmPresent flag of EFI_GLOBAL_NVS_AREA to TRUE or FALSE to match

the return value of the TisPcPresenceCheck routine.
Note: Intel® Quark™ SoC UEFI firmware will ASSERT if I2C* bus accesses to TPM

devices fail. The one exception being if the TisPcPresenceCheck routine
mentioned above fails to communicate with the TPM device. Higher level
SecurityPkg TPM code based on a MMIO interface only expects the
TisPcPresenceCheck routine to fail to communicate with TPM devices.

26.3 TcgPei Driver Override
The Intel® Quark™ SoC UEFI firmware provides an override of the EDKII SecurityPkg
SecurityPkg\Tcg\TcgPei. The override version differs from the original SecurityPkg
TcgPei as described below:

• Update TcgPei function call to use I2C* bus access instead of mmio TPM devices.

26.4 TcgDxe Driver Override
The Intel® Quark™ SoC UEFI firmware provides an override of the EDKII SecurityPkg
SecurityPkg\Tcg\TcgDxe. The override version differs from the original SecurityPkg
TcgDxe as described below:

• Ensures that the TPM device is enabled and activated.

26.5 ACPI TPM Device Object
The Intel® Quark™ SoC UEFI firmware adds a TPM device object to the ACPI
Differentiated System Description Table (DSDT). The TPM device object is a minimal
implementation compared to the original SecurityPkg TPM Device object.

26.6 TPM Measure Boot
The Intel® Quark™ SoC UEFI firmware is enabled with TPM measured boot capability as
in the EDKII SecurityPkg to perform event logging into the TPM's PCR (Platform
Configuration Registers).

In Pei, TcgPei will log measurement of CRTM version (Core Root of Trust Measurement),
main BIOS and FvImage, and in Dxe phase, TcgDxe will log measurement of boot
variables, multi-processor information, the SMBIOS table, and so on.

Intel® Quark™ SoC X1000
October 2015 UEFI Firmware Writers Guide
Order Number: 330236-005US 139

Trusted Platform Module (TPM) Support—Intel® Quark™ SoC

26.7 UEFI Firmware Sources
The following table lists the UEFI firmware sources related to the various sections in
this chapter.

§ §

Section Title File Path Function

26.2
TcgComm

Library
Override

QuarkPlatformPkg\Override\SecurityPkg\Library\TpmComm
Lib *.*

QuarkPlatformPkg\Include\Protocol\GlobalNvsArea.h TpmPresent

26.3 TcgPei Driver
Override QuarkPlatformPkg\Override\SecurityPkg\Tcg\TcgPei *.*

26.4 TcgDxe Driver
Override QuarkPlatformPkg\Override\SecurityPkg\Tcg\TcgDxe *.*

26.5 ACPI TPM
Device Object

QuarkPlatformPkg\Acpi\AcpiTables\Dsdt\Tpm.asi *.*

QuarkPlatformPkg\Include\Protocol\GlobalNvsArea.h TpmPresent

	Intel® Quark™ SoC X1000
	Revision History
	Contents
	Figures
	Tables

	Legal Lines and Disclaimers

	1.0 About This Document
	1.1 Terminology
	1.2 Reference Documents
	1.3 Related Documents
	1.4 Related Websites
	1.5 Formats and Notations

	2.0 Introduction
	2.1 Component Identification

	3.0 Register Access Mechanisms
	3.1 Message Network
	3.1.1 Message Network Registers
	3.1.2 Message Network Register Programming

	3.2 PCI Express* Configuration Space Base Address
	3.2.1 Bus:Device:Function:Register Offset Translation

	4.0 Basic Firmware Requirements
	4.1 Configuring Memory and MMIO Accesses
	4.2 Early Memory Setup
	4.3 Isolated Memory Regions (IMRs)
	4.4 Initializing Chipset Registers
	4.4.1 MMIO Write Considerations
	4.4.2 Non-Standard BARs
	4.4.3 Static Register Programming

	4.5 Remote Management Unit Binary
	4.5.1 Secure SKU
	4.5.2 Base SKU (Non-Secure)

	4.6 RMU Binary Relocation
	4.6.1 RMU Binary Relocation Considerations

	4.7 PCI/PnP Enumeration
	4.8 ACPI Support
	4.9 Reporting Interrupt Routing to the OS
	4.10 Reporting IO/Memory Resources to the OS
	4.11 Chipset Sticky Registers
	4.12 Boot Checklist
	4.13 Accessing Quark Platform Data System Flash Area
	4.14 UEFI Firmware Sources

	5.0 DDR3 DRAM Configuration
	5.1 Intel® Quark™ SoC System Memory Controller
	5.2 MRC Flow Selection
	5.3 Programming Considerations
	5.4 Memory Controller Initialization
	5.4.1 Clear Self-Refresh
	5.4.2 Program DDR Timing Control
	5.4.3 Program Pre-JEDEC Rank Decoding
	5.4.4 Perform DDR Reset
	5.4.5 Initialize DDRIO
	5.4.6 Perform JEDEC Initialization
	5.4.7 Signal Initialization Complete
	5.4.8 Restore Timings
	5.4.9 Disable Memory Caching
	5.4.10 Receive Enable Training
	5.4.11 Write Leveling Training
	5.4.12 Read Training
	5.4.13 Write Training
	5.4.14 Store Timings
	5.4.15 Enable Scrambling
	5.4.16 Program Execution Control
	5.4.17 Configure Rank Population
	5.4.18 Perform Wake
	5.4.19 Change Refresh Period
	5.4.20 Set Periodic Compensation
	5.4.21 Enable ECC
	5.4.22 Memory Test
	5.4.23 Lock Registers

	5.5 Memory Training Engine
	5.6 Memory Reference Code Configuration
	5.7 UEFI Firmware Sources

	6.0 CPUID Instruction
	6.1 CPUID Functions
	6.2 UEFI Firmware Sources

	7.0 Model Specific Registers
	7.1 UEFI Firmware Sources

	8.0 System Management Mode (SMM)
	8.1 Initializing SMM
	8.1.1 Responsibilities of the SMM Relocation Handler

	8.2 SMM Revision Identifier
	8.3 SMM State Save Map
	8.4 SMRR Configuration Requirements
	8.5 UEFI Firmware Sources

	9.0 Cache Control
	9.1 MTRR Programming
	9.2 Processor Implications with Cached SMM Handler
	9.2.1 System Management Mode Range Register
	9.2.1.1 UEFI Firmware Steps to Enable and Configure SMRR

	9.3 UEFI Firmware Sources

	10.0 Intel® Legacy SPI Controller
	10.1 Legacy SPI Flash Decode Enable
	10.2 Legacy SPI Flash Base Address
	10.3 Write Protecting SPI Flash Ranges
	10.4 Opcode/Opcode Type/Prefix Opcode Configuration
	10.5 Configuration Lockdown
	10.6 Legacy SPI Flash Update Protection
	10.7 UEFI Firmware Sources

	11.0 Reset Control
	11.1 Reset Control Overview
	11.2 Cold and Warm Reset Control
	11.3 UEFI Firmware Sources

	12.0 PCI IRQ Routing
	12.1 PCI Interrupt to IRQ Router
	12.2 Interrupt Routing for Internal Agents
	12.3 Interrupt Routing for PCI Express* Root Ports
	12.4 Reporting Interrupt Routing to the OS
	12.4.1 Example PRT Packages for Interrupt Routing

	12.5 UEFI Firmware Sources

	13.0 PCI Express* Support
	13.1 PCI Express* Configuration Space Base Address
	13.1.1 Releasing PCIe Controller from Reset
	13.1.2 Bus:Device:Function:Register Offset Translation
	13.1.3 Register Access Using Capabilities List
	13.1.4 Device/Port Type Field of PCI Express* Devices
	13.1.5 Initialize “Slot Implemented” for Root Ports
	13.1.6 Initialize “Physical Slot Number” for Root Ports
	13.1.7 Initialize “Slot Power Limit” for Root Ports
	13.1.8 Port Configuration Registers
	13.1.9 SCI/SMI Generation

	13.2 RCRB (Root Complex Register Block)
	13.3 Root Complex Topology Programming
	13.4 PCI Express* Active State Power Management (ASPM)
	13.4.1 Root Port L0s Exit Latency Initialization by Firmware
	13.4.2 Calculation of Total L-State Exit Latency
	13.4.3 Firmware Software Flow for Enabling ASPM
	13.4.4 ASPM vs. Isochrony

	13.5 Root Port Error Reporting
	13.5.1 SERR# Generation

	13.6 PCI Firmware Spec 3.0 Support
	13.7 ACPI Table and Methods for PCI Express* Support
	13.7.1 MCFG Table
	13.7.2 _HID and CID for PCI Host Bridge
	13.7.3 _OSC() Method

	13.8 PCI Express* PME Firmware Support
	13.8.1 Native PME Software Model
	13.8.2 Legacy PME Software Model
	13.8.3 Firmware Enabling of PCI Express* PME SCI Generation
	13.8.4 Handling PCI Express* PME SCI Event
	13.8.4.1 General Mechanism and Sequence
	13.8.4.2 Firmware GPE Handler for PME Event

	13.8.5 Transition from Legacy to Native PME Software Model
	13.8.6 WAKE# Support

	13.9 UEFI Firmware Sources

	14.0 Processor Interface
	14.1 Front Side Bus Interrupt Delivery Mechanism
	14.1.1 Configuration of the IOxAPIC
	14.1.2 Steps Involved in Delivering the Interrupt

	14.2 UEFI Firmware Sources

	15.0 NMI Handling
	15.1 Settings to Generate NMI
	15.2 Steps for Handling NMI
	15.2.1 Steps for Execution

	15.3 UEFI Firmware Sources

	16.0 SMI Handling
	16.1 SMI on Sleep Enable
	16.2 Setting the EOS Bit
	16.3 SMI Status Bits
	16.4 SMI Handler best practice
	16.5 UEFI Firmware Sources

	17.0 Power Management
	17.1 Power Button Override
	17.2 Power Failure Considerations
	17.3 Processor Throttling
	17.4 C States
	17.4.1 IRQ Break Events for C1 State
	17.4.2 C2 State Support
	17.4.3 Cx State Support Reporting for ACPI OS
	17.4.4 Break Events

	17.5 Wake Events
	17.6 UEFI Firmware Sources

	18.0 Suspend Handler Considerations
	18.1 Power-On Suspend Handling Preparation
	18.2 S3 Entry Steps
	18.2.1 Initiating Sleep States via SLP_EN Bit

	18.3 S3 Resume Steps
	18.4 UEFI Firmware Sources

	19.0 High Performance Event Timer (HPET) Support
	19.1 HPET Basic Configuration
	19.2 UEFI Firmware Sources

	20.0 GPIO Handling
	20.1 Legacy GPIOs
	20.1.1 Legacy GPIO Configuration
	20.1.2 Legacy GPIO Interrupt Handling

	20.2 Chipset South Cluster GPIO Controller
	20.2.1 South Cluster GPIO Controller Configuration

	20.3 UEFI Firmware Sources

	21.0 Security Enhancements
	21.1 Introduction
	21.1.1 Security Build Options

	21.2 Secure Boot
	21.2.1 Intel® Quark™ SoC ROM Root of trust Secure Boot
	21.2.2 UEFI Secure Boot
	21.2.2.1 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware deployment and firmware recovery
	21.2.2.2 Intel® Quark™ SoC firmware UEFI Secure Boot support during firmware update.
	21.2.2.3 Intel® Quark™ SoC firmware UEFI Secure Boot rollback protection using secure SKU ROM.

	21.3 Isolated Memory Regions (IMRs)
	21.4 Legacy SPI Flash Protection
	21.4.1 Base SKU hardware
	21.4.1.1 Legacy SPI Flash Range Protection
	21.4.1.2 Legacy SPI Flash Update Protection

	21.4.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build firmware
	21.4.2.1 Legacy SPI Flash Range Protection
	21.4.2.2 Legacy SPI Flash Update Protection

	21.5 PCIe Option ROMs
	21.5.1 No Security Build options used to build firmware
	21.5.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) option used to build firmware

	21.6 Register Locking
	21.6.1 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build firmware

	21.7 Redundant Images
	21.8 Limiting Boot Options
	21.8.1 No Security Build options used to build firmware
	21.8.2 Secure SKU hardware or Secure Lock Down build (-DSECURE_LD) used to build firmware

	21.9 Denial of Service/Compromise Prevention
	21.9.1 SMI Pin Blocking

	21.10 Memory Training Engine Lockdown
	21.11 SMM Security Enhancements
	21.11.1 SMRAM Caching
	21.11.2 SMBASE Relocation Address Selection
	21.11.3 SMI Handler best practice

	21.12 Rollback Protection on Intel® Quark™ SoC Secure Skus
	21.13 UEFI Firmware Sources

	22.0 Firmware Update
	22.1 Introduction
	22.1.1 UpdateCapsule() EDKII Module and Platform Module Dependencies
	22.1.2 Intel® Quark™ SoC UEFI Firmware Update Steps in Detail:

	22.2 Create an Update Capsule
	22.2.1 Intel® Quark™ SoC UEFI Firmware specific capsule flags

	22.3 Call UEFI Runtime Service UpdateCapsule()
	22.4 Initiate Capsule Reset
	22.5 Boot in BOOT_ON_FLASH_UPDATE Mode
	22.6 Build Capsule Update HOBs
	22.7 Process Capsule Update HOBs
	22.8 Write Capsule to Flash
	22.9 UEFI Firmware Sources

	23.0 Firmware Recovery
	23.1 Introduction
	23.1.1 Trigger Intel® Quark™ SoC UEFI Firmware Recovery
	23.1.2 Required Minimum Intact System Flash Areas
	23.1.2.1 Intel® Quark™ SoC X1000 Secure SKU
	23.1.2.2 Intel® Quark™ SoC X1000 Base SKU

	23.1.3 Constraints on UEFI Executables
	23.1.4 Intel® Quark™ SoC UEFI Firmware Recovery Steps

	23.2 Create FVMAIN.fv Recovery Image
	23.3 Call Fixed Recovery Firmware Volume
	23.4 Platform Early PEI Stage HOB Setup
	23.4.1 Create EFI_PLATFORM_INFO HOB
	23.4.2 Set Up Early PEI Stage EDKII Boot Mode HOB

	23.5 Initialize Platform Memory
	23.6 Load DXE Image
	23.7 Platform Late PEI Stage HOB Setup
	23.7.1 Set Up Capsule HOBs
	23.7.2 Set Up Late PEI Stage EDKII Boot Mode HOB
	23.7.3 Set Up Late PEI Stage EFI_PLATFORM_INFO HOB

	23.8 Complete Platform Firmware Recovery
	23.9 UEFI Firmware Sources

	24.0 Firmware Error Handling
	24.1 Introduction
	24.2 Report and Clear Errors Detected by RMU
	24.3 Print EDKII ASSERT Messages to Console and halt system boot.
	24.4 Print EDKII DEBUG_ERROR Messages to Console
	24.5 UEFI Firmware Sources

	25.0 Additional Programming Items
	25.1 Cache Line Size Clarification
	25.2 VGA 16-bit Decode
	25.3 I2C* Host Controller drivers
	25.4 UEFI Firmware Sources

	26.0 Trusted Platform Module (TPM) Support
	26.1 Introduction
	26.1.1 TPM Build Requirements
	26.1.2 EDKII SecurityPkg TPM Supported Features
	26.1.3 EDKII SecurityPkg TPM Unsupported Features
	26.1.4 Additional TPM Features

	26.2 TcgComm Library Override
	26.3 TcgPei Driver Override
	26.4 TcgDxe Driver Override
	26.5 ACPI TPM Device Object
	26.6 TPM Measure Boot
	26.7 UEFI Firmware Sources

