

Creating a High-Availability Lustre* Storage
Solution over a ZFS File System

Partner Guide
High Performance Data Division

Software version: Intel® EE for Lustre* Software 2.4.0.0 or later
April 12, 2016
World Wide Web: http://www.intel.com

http://www.intel.com/

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

i

Disclaimer and legal information

Copyright©2015 Intel Corporation. All Rights Reserved.

The source code contained or described herein and all documents related to the source code ("Material") are
owned by Intel Corporation or its suppliers or licensors. Title to the Material remains with Intel Corporation or its
suppliers and licensors. The Material contains trade secrets and proprietary and confidential information of Intel or
its suppliers and licensors. The Material is protected by worldwide copyright and trade secret laws and treaty
provisions. No part of the Material may be used, copied, reproduced, modified, published, uploaded, posted,
transmitted, distributed, or disclosed in any way without Intel’s prior express written permission.

No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred
upon you by disclosure or delivery of the Materials, either expressly, by implication, inducement, estoppel or
otherwise. Any license under such intellectual property rights must be express and approved by Intel in writing.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS
AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Before using any third party software referenced herein, please refer to the third party software provider’s website
for more information, including without limitation, information regarding the mitigation of potential security
vulnerabilities in the third party software.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

ii

Contents

About this Document ... iii
Document Purpose ... iii
Intended Audience .. iii
Conventions Used ... iii
Related Documentation ... iii

Introduction - Lustre* over ZFS ... 1
Requirements ... 1
Supported Configurations ... 1
Environment Used in this Example ... 2
Software Stack .. 2

Installation .. 3
Mellanox OFED Installation ... 3
Lustre* and ZFS Installation ... 4
Lustre Network Configuration .. 5

Implementing High Availability .. 5
HA Framework Installation on Metadata Servers .. 5

ZFS Configuration ... 6
Lustre Formatting and Target Configuration ... 7

HA Framework Installation on Object Storage Servers 8
ZFS Configuration ... 9
Lustre Formatting and Target Configuration ... 11
Mount the File System on a Client ... 12
Compression .. 12

Detecting and Monitoring the File System at the Dashboard 12
Add Servers .. 12
Detect the New File System .. 12
Mounting the Lustre File System on a Client via the Dashboard 13

Troubleshooting ... 13
Procedure for Updating ZFS or Mellanox OFED .. 13
Mellanox OFED not installing .. 14

Appendix: LustreZFS .. 14

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

iii

About this Document

Document Purpose
Using an example configuration, this document describes how to create a ZFS file system and
use that as the backend for a Lustre* file system monitored by Intel® Manager for Lustre*
software. The document then describes how to use pacemaker and corosync to configure
high-availability. The system configuration described herein is an example only; your
configuration will likely be different.

Intended Audience
The intended audience for this guide are partners who are designing storage solutions based
on Intel® Enterprise Edition for Lustre* Software. Readers are assumed to be full-time Linux
system administrators or equivalent, who have:

• experience administering file systems and are familiar with storage components such
as block storage, SAN, and LVM

• experience or knowledge about Lustre* installation and setup

• proficiency in setting up, administering and maintaining networks

• familiarity in setting up and administering ZFS file systems

• familiarity with corosync and pacemaker configuration and PCS.

Conventions Used
Conventions used in this document include:

• # preceding a command indicates the command is to be entered as root
• $ indicates a command is to be entered as a user
• <variable_name> indicates the placeholder text that appears between the angle

brackets is to be replaced with an appropriate value

Related Documentation
The following documents are pertinent to Intel® Enterprise Edition for Lustre* software. This
list is not all-inclusive.

• Intel Manager® for Lustre* Software User Guide

• Intel® Enterprise Edition for Lustre* Partner Installation Guide

• Creating a Scalable File Service for Windows Networks using Intel® EE for Lustre*
Software

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

iv

• Installing Hadoop, the Hadoop Adapter for Intel® EE for Lustre*, and the Job Scheduler
Integration

• Hierarchical Storage Management Configuration Guide

• Creating an HBase Cluster and Integrating Hive on an Intel® EE for Lustre® File System

• Upgrading a Lustre file system to Intel® Enterprise Edition for Lustre* software (Lustre
only)

• Configuring LNet Routers for File Systems based on Intel* EE for Lustre* Software

• Intel® EE for Lustre* Hierarchical Storage Management Framework White Paper

• Architecting a High-Performance Storage System White Paper

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

1

Introduction - Lustre* over ZFS
ZFS is an attractive technology that can meet the requirements of the next generation of HPC
storage solutions. In recent years, the use of ZFS as a backend file system for Lustre* storage
targets has grown in popularity. There are many additional features to ZFS when compared to
the current common file system, ldiskfs. These features include mirroring, striping with parity,
and compression, to name a few.

Intel® Enterprise Edition for Lustre* software supports ZFS as a backend file system
replacement for ldiskfs. The Intel® Manager for Lustre* dashboard, the GUI-based
configuration and management tool of Intel® EE for Lustre* software, is able to configure and
manage high-availability Lustre storage solutions. However, version 2.4.0.0 of Intel® EE for
Lustre* software and later versions support ZFS file systems in monitor mode only, and thus
the dashboard cannot be used to manage high-availability.

Using an example configuration, this document describes how to create a ZFS file system and
use that as the backend for a Lustre file system monitored by Intel® Manager for Lustre*
software. The document then describes how to use pacemaker and corosync to configure
high-availability. The system configuration described herein is an example only; your
configuration will likely be different. For “production” Lustre file systems, Intel® encourages
high-availability configuration.

Requirements
The Lustre file system deployed with a ZFS file system backend must be created outside of
Intel® Manager for Lustre* software. The manager software will not provision a Lustre file
system with a ZFS backend in this release, version 2.4.n.n of Intel® EE for Lustre* software.
Using procedures provided and other sources referenced herein, the partner will be
responsible for installing and manually configuring ZFS and Lustre.

Supported Configurations
In this implementation using ZFS as the file system backend, we are employing the high-
availability framework included in the Red Hat distribution of Linux. For more information:
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-
On_with_Pacemaker/index.html

Note: Before using the Red Hat or RHEL software referenced herein, please refer to Red Hat’s
website for more information, including without limitation, information regarding the
mitigation of potential security vulnerabilities in the Red Hat software.

ZFS is a file system and logical volume manager designed by Sun Microsystems. The features
of ZFS include protection against data corruption, support for high storage capacities, efficient

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Configuring_the_Red_Hat_High_Availability_Add-On_with_Pacemaker/index.html

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

2

data compression, integration of the concepts of file system and volume management,
snapshots and copy-on-write clones, continuous integrity checking and automatic repair,
RAID-Z, and native NFSv4 ACLs.

Not all of the above features are supported by Lustre, and some of the features supported by
Lustre may not be supported by Intel EE for Lustre* software. These ZFS configurations are
supported by Intel® High Performance Data Division:

• ZFS in high availability mode using Pacemaker/Corosync
• Mirror + Stripe zpool (recommended for MDT and MGT)
• Compression
• L2ARC
• RAID-Z
• RAID-Z2 (recommended for OSTs)
• RAID-Z3 (recommended for very high-capacity drives)

Environment Used in this Example
Following are the file system servers, with their roles and addresses, that we will use in this
example.

Node
Name

Role LNET – ib0 Management and
Ring0 – eth0

Ring1 – eth1 IPMI device

Kzmds01 MDS 192.168.
211.211

192.168.
210.211

192.168.
214.211

192.168.
212.211

Kzmds02 MDS 192.168.
211.212

192.168.
210.212

192.168.
214.212

192.168.
212.212

Kzoss01 OSS 192.168.
211.213

192.168.
210.213

192.168.
214.213

192.168.
212.213

Kzoss02 OSS 192.168.
211.214

192.168.
210.214

192.168.
214.214

192.168.
212.214

Software Stack
This guide references the software listed in the following table.

Software Version

Red Hat Enterprise Linux
or CentOS Linux

6.7

Pacemaker 1.1.12

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

3

Corosync 1.4.7

PCS
(Pacemaker/Corosync CLI)

0.9.139

CMAN
(Cluster Manager)

3.0.12.1

OFED (optional) Either kernel built-in
OFED drivers, or
Mellanox OFED 2.4 or
3.0

ZFS Included with Intel® EE
for Lustre* software
version 2.4.0.0 and later.

Lustre Included with Intel® EE
for Lustre* software
version 2.4.0.0 and later.

Fence agents 4.0.15

Installation

Mellanox OFED Installation
Mellanox provides an OFED package that supports RDMA and kernel-bypass APIs called
“OFED verbs” over Infiniband and Ethernet. This software stack supports Ethernet and
Infiniband connectivity on the same card. As of this writing, MLNX_OFED versions 2.4 and 3.0
are supported. Mellanox recommends the most current release, and as of this writing, version
MLNX_OFED 3.0 is the most current.

If you’re using Mellanox network adapter cards, download and install the Mellanox OFED on
each server before installing Lustre and ZFS. In this way, the Lustre installation will compile
against the Mellanox OFED on each server. Download and install the OFED from the following
website, which is active as of this writing:

http://www.mellanox.com/page/mlnx_ofed_matrix?mtag=linux_sw_drivers

If for some reason the installation utility fails, perform these steps:

1. Ensure you have the correct operating system and version. Mellanox OFED for Red Hat
version 6.6 does not support systems running Red Hat version 6.7.

2. Force the install. Enter the following command:

./mlnxofedinstall -k $(head -1 .supported_kernels)

http://www.mellanox.com/page/mlnx_ofed_matrix?mtag=linux_sw_drivers

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

4

If you are adding Mellanox OFED after having installed Lustre software, perform the following
steps. Run these steps on each server (MDS/MGS/OSS):

1. Remove existing Lustre*: dkms remove lustre/2.5.39 –all

2. Run the Mellanox OFED installer as normal.

3. Re-install Lustre*: dkms install lustre/2.5.39

Lustre* and ZFS Installation
Note: When creating a standard Lustre file system (without ZFS for the backend), installing
Intel® EE for Lustre* on each server installs a modified Linux kernel. This is required to support
certain features provided by Intel® EE for Lustre* software. However, when creating this ZFS-
based Lustre file system, the unmodified Linux kernel included with RHEL or CentOS must
remain. Accordingly, do not perform the installation as described in the Intel® EE for Lustre*
Partner Installation Guide. Perform the following procedure to install ZFS and Lustre.

Note: If you are installing ZFS on servers that have been previously configured as Lustre file
system servers, first re-provision all servers with Red Hat 6.7. Then install ZFS as described
next. Any existing file system data will be lost.

Note: References herein to the manager server is that server running the Intel® Manager for
Lustre* software dashboard.

1. Download the installation archive to a directory on the manager server (e.g. /tmp).

2. Unpack the installation archive using tar: ieel-2.4.0.0.tar.gz (version is an example)

$cd /tmp
$tar -xzvf ieel-2.4.0.0.tar.gz (version is an example)

3. Create the ZFS installer.

$cd ieel-2.4.0.0 (version is an example)
$./create_installer zfs

4. Copy the installer to all servers that will comprise the ZFS file system.

$scp lustre-zfs-installer.tar.gz storage-server:/tmp

5. On each planned ZFS server, log in as root, untar the ZFS installer, and install ZFS
using these steps. Note that for each server, the installation may take thirty minutes or
longer. This process can also be scripted.

$ssh root@storage-server "cd /tmp
tar xzvf lustre-zfs-installer.tar.gz
cd lustre-zfs
./install"

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

5

Lustre Network Configuration
Enter the following command on all Lustre servers and clients (with appropriate network
parameters):

cat /etc/modprobe.d/lustre.conf
options lnet networks= o2ib0(ib0)

Implementing High Availability

HA Framework Installation on Metadata Servers
1. On each metadata server:

#yum install pcs fence-agents pacemaker cman

2. Change the hacluster password on each metadata server:

#passwd hacluster

3. Start the PCSD daemon and enable it at boot:

#service pcsd start

#chkconfig pcsd on

4. Disable corosync at start on each metadata server:

service corosync stop

chkconfig corosync off

5. Perform the remainder of these steps at a single server. Insert the credentials for the
hacluster user:

pcs cluster auth –u hacluster kzmds01 kzmds02

6. Create the cluster:

pcs cluster setup --start --name MDS01-02 kzmds01 kzmds02

7. Enable the autostart of the cluster:

pcs cluster enable –all

8. Create the stonith resources:

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

6

pcs stonith create kzmds01-ipmi fence_ipmilan
ipaddr="192.168.212.211" lanplus=true passwd="XXXXX" login="XXXX"
pcmk_host_list="kzmds01"

pcs stonith create kzmds02-ipmi fence_ipmilan
ipaddr="192.168.212.212" lanplus=true passwd="XXXXX" login="XXXX"
pcmk_host_list="kzmds02"

9. Add an additional network to increase the reliability:

ccs -f /etc/cluster/cluster.conf --addalt kzmds01 192.168.214.211
port=7909 mcast=239.192.2.2 ttl=2

ccs -f /etc/cluster/cluster.conf --addalt kzmds02 192.168.214.212
port=7909 mcast=239.192.2.2 ttl=2

ccs -f /etc/cluster/cluster.conf --settotem rrp_mode="active"

10. Sync the cluster:

#pcs cluster sync

11. Reboot both the servers.

Storage servers can become overloaded, which may cause failover to occur. It may be
necessary to increase the token value of the cluster. If no token value is specified in the cluster
configuration, the default is 10000 ms, or 10 seconds. To use a value other than the default,
add or edit the totem line in /etc/cluster/cluster.conf as a child of the <cluster>
element. Please refer to the Red Hat Knowledgebase for more information.

ZFS Configuration
In a ZFS configuration we have access to all the individual disks available in the JBOD attached
to the cluster. Each individual disk is reachable thought two or more paths for high availability.
You can use the device multi-mapper technology included in Red Hat Linux to create the ZFS
pool and maintain a high-availability solution.

A ZFS pool will represent a Lustre Target. Each of the entities in a pool are VDEVs. A VDEV can
be a single storage device organized in a RAID group, as in the example below.

zpool create mgt mirror mpatha mpathb mirror mpathc mpathd
zpool create mdt0000 mirror mpathe mpathf mirror mpathg mpathh

We need to be sure that each zpool is available on both nodes of the cluster. Please perform
the following procedure for the mgt and mdt0000 pools:

zpool export mdt0000

Now go to the other node:

https://access.redhat.com/knowledgebase

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

7

partprobe
zpool import -o cachefile=none mdt0000

We suggest creating the MDT in mirror to get best performance. In this example we will create
one ZFS pool for each server:

• mgt on kzmds01

• mdt0000 on kzmds02

Lustre Formatting and Target Configuration
1. Manually import the MGT on kzmds01 and format the zfs pool as follows:

mkfs.lustre --mgs --backfstype=zfs --fsname=lustrefs --
servicenode=192.168.211.211@o2ib0 --
servicenode=192.168.211.212@o2ib0 --reformat mgt/mgt

2. Manually import the MDT on kzmds02 and format the zfs pool as follows:

mkfs.lustre --mdt --backfstype=zfs --fsname=lustrefs --index=0 --
mgsnid=192.168.211.211@o2ib0 --mgsnid=192.168.211.212@o2ib0 --
servicenode=192.168.211.212@o2ib0 --
servicenode=192.168.211.211@o2ib0 --reformat mdt0000/mdt0000

3. Create the mount points on all the servers:

mkdir -p /lustrefs/mgt
mkdir -p /lustrefs/mdt0000

4. Mount manually for the first time to verify each node:

mount -t lustre mgt/mgt /lustrefs/mgt (on kzmds01)

mount -t lustre mdt0000/mdt0000 /lustrefs/mdt0000 (on kzmds02)

5. Then unmount.

6. Add the LustreZFS script available in the Appendix to each host at the location
/usr/lib/ocf/resource.d/heartbeat/. Set the script’s filename to LustreZFS
and set the permissions for the script to 755.

7. Create the resources in pacemaker:

pcs resource create lustrefs-MGS ocf:heartbeat:LustreZFS
pool="mgt" volume="mgt" mountpoint="/lustrefs/mgt”

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

8

pcs resource create lustrefs-MDT0000 ocf:heartbeat:LustreZFS
pool="mdt0000" volume="mdt0000" mountpoint="/lustrefs/mdt0000"

… where pool is the name of the ZFS pool created previously, volume is the name of the
Lustre volume in the pool and mountpoint is the directory where the volume will be
mounted.

8. To configure a preferred server for this resource, please use the primary and secondary
node selected during the format phase:

pcs constraint location lustrefs-MGS prefers kzmds01=20
pcs constraint location lustrefs-MGS prefers kzmds02=10
pcs constraint location lustrefs-MDT0000 prefers kzmds02=20
pcs constraint location lustrefs-MDT0000 prefers kzmds01=10

9. Verify the final configuration:

pcs config --full

HA Framework Installation on Object Storage Servers
1. Enter this command on all the Object Storage Servers in the pair:

yum install pcs fence-agents pacemaker cman

2. Change the hacluster password on all the servers:

passwd hacluster

3. Start the PCSD daemon and enable it at boot:

service pcsd start
chkconfig pcsd on

4. Disable corosync at start from all the servers:

service corosync stop
chkconfig corosync off

5. Perform the remainder of these steps at a single server. Add the credentials for the
hacluster user:

pcs cluster auth –u hacluster kzoss01 kzoss02

6. Create the cluster:

pcs cluster setup --start --name OSS01-02 kzoss01 kzoss02

7. Enable the autostart of the cluster:

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

9

pcs cluster enable -–all

8. Create the stonith resources:

pcs stonith create kzoss01-ipmi fence_ipmilan
ipaddr="192.168.212.213" lanplus=true passwd="XXXXX" login="XXXX"
pcmk_host_list="kzoss01"

pcs stonith create kzoss02-ipmi fence_ipmilan
ipaddr="192.168.212.214" lanplus=true passwd="XXXXX" login="XXXX"
pcmk_host_list="kzoss02"

9. Add an additional network to increase the reliability:

ccs -f /etc/cluster/cluster.conf --addalt kzoss01 192.168.214.213
port=7809 mcast=239.192.1.2 ttl=2

ccs -f /etc/cluster/cluster.conf --addalt kzoss02 192.168.214.214
port=7809 mcast=239.192.1.2 ttl=2

ccs -f /etc/cluster/cluster.conf --settotem rrp_mode="active"

10. Sync the cluster:

#pcs cluster sync

11. Now reboot both the servers.

Storage servers can become overloaded and we don’t want failover to occur for this reason. It
may be necessary to increase the token value of the cluster. If no token value is specified in
the cluster configuration, the default is 10000 ms, or 10 seconds. To use a value other than
the default, add or edit the totem line in /etc/cluster/cluster.conf as a child of the <cluster>
element, please refer to Red Hat Knowledgebase for more information

ZFS Configuration
In a ZFS configuration, we have access to all the individual disks available in the JBOD
attached to the cluster. Each individual disk is reachable through two or more paths for high
availability. You can use the device multi-mapper technology included in Red Hat Linux to
create the ZFS pool.

Create zpool ost0000

A ZFS pool will represent a Lustre OST. All entities in a pool are VDEVs. A VDEV can be a
single storage device or a RAIDZ2 group composed of multiple storage devices. Perform the
following procedure to create zpool ost0000.

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

10

zpool create ost0000 -o cachefile=none raidz2 mpathaa mpathab
mpathac mpathad mpathae mpathaf mpathag mpathah mpathai mpathaj
zpool list
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH
ALTROOT
ost0000 1.33T 152K 1.33T - 0% 0% 1.00x ONLINE -

 [root@kzoss01 ~]# zpool status
 pool: ost0000
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 ost0000 ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 mpathaa ONLINE 0 0 0
 mpathab ONLINE 0 0 0
 mpathac ONLINE 0 0 0
 mpathad ONLINE 0 0 0
 mpathae ONLINE 0 0 0
 mpathaf ONLINE 0 0 0
 mpathag ONLINE 0 0 0
 mpathah ONLINE 0 0 0
 mpathai ONLINE 0 0 0
 mpathaj ONLINE 0 0 0

We need to be sure that the zpool is available on both the nodes of the cluster:

zpool export ost0000

Now go to the other node:

partprobe
zpool import -o cachefile=none ost0000

For a perfect alignment with the Lustre typical “block” size, we suggest creating RAIDZ2
groups with 10 storage devices. It is also possible to organize a single pool with several
RAIDZ2 groups, each of 10 storage devices.

Create zpool ost0001

Now, repeat the same procedure above to create zpool ost0001.

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

11

Lustre Formatting and Target Configuration
Next, we will associate one ZFS pool for each server:

• ost0000 on kzoss01

• ost0001 on kzoss02

1. Manually import ost0000 on kzoss01 and format the zfs pool as follows:

mkfs.lustre --ost --backfstype=zfs --fsname=lustrefs --index=0 --
mgsnid=192.168.211.211@o2ib0 --mgsnid=192.168.211.212@o2ib0 --
servicenode=192.168.211.213@o2ib0 --
servicenode=192.168.211.214@o2ib0 --reformat ost0000/ost0000

2. Manually import ost0001 on kzoss02 and format the zfs pool as follows:

mkfs.lustre --ost --backfstype=zfs --fsname=lustrefs --index=1 --
mgsnid=192.168.211.211@o2ib0 --mgsnid=192.168.211.212@o2ib0 --
servicenode=192.168.211.214@o2ib0 --
servicenode=192.168.211.213@o2ib0 --reformat ost0001/ost0001

3. Create the mount points on all the servers:

mkdir -p /lustrefs/ost0000
mkdir -p /lustrefs/ost0001

4. Mount manually for the first time to verify on each node (MGT and MDT must be
already up and running):

mount -t lustre ost0000/ost0000 /lustrefs/ost0000
mount -t lustre ost0001/ost0001 /lustrefs/ost0001

5. Then unmount.

6. Add the LustreZFS script available in the Appendix to each host at the location
/usr/lib/ocf/resource.d/heartbeat/. Set the script’s filename to LustreZFS and set the
permissions for the script to 755.

7. Create the resources in pacemaker. Enter the following commands:

pcs resource create lustrefs-OST0000 ocf:heartbeat:LustreZFS
pool="ost0000" volume="ost0000" mountpoint="/lustrefs/ost0000"

pcs resource create lustrefs-OST0001 ocf:heartbeat:LustreZFS
pool="ost0001" volume="ost0001" mountpoint="/lustrefs/ost0001"

… where pool is the name of the ZFS pool created previously, volume is the name of
the Lustre volume in the pool, and mountpoint is the directory where the volume will
be mounted.

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

12

8. To configure a preferred server for this resource, please reflect the primary and
secondary node selected during the format phase:

pcs constraint location lustrefs-OST0000 prefers kzoss01=20
pcs constraint location lustrefs-OST0000 prefers kzoss02=10
pcs constraint location lustrefs-OST0001 prefers kzoss02=20
pcs constraint location lustrefs-OST0001 prefers kzoss01=10

Mount the File System on a Client
mount -t lustre
192.168.211.211@o2ib0:192.168.211.212@o2ib0:/lustrefs /mnt/

Compression
ZFS can compress data on file systems. While not appropriate for every situation, compression
can increase system performance by improving IO at the cost of CPU. In most cases, disk IO,
more than CPU, is the performance bottleneck for storage systems.

zfs compression=on ost0000
zfs compression=on ost0001

Detecting and Monitoring the File System at the Dashboard
To be able to detect and monitor the ZFS-based Lustre file system using Intel® Manager for
Lustre* software, perform the following procedures.

Add Servers
To add all of the servers to your file system so that Intel® Manager for Lustre* software is
aware of them, open the Open the Intel® Manager for Lustre* dashboard and click Help, or
open the User Guide. Perform the procedure Add servers to be monitored only. In this
procedure, add all of the ZFS servers that will comprise your file system as instructed.
Remember to use the Monitored storage server profile for each server.

Note: You don’t need to add all servers at the same time or in the same session, but be sure to
add all of them before performing the next step: Detect the new file system.

Note: If you configured your file system for high availability, be sure to also add those servers
you have configured as failover servers. Remember that for ZFS-based Lustre file systems,
Intel® Manager for Lustre* software does not perform HA configuration.

Detect the New File System
Note: Assuming that you have configured this system for HA, be sure to test failover for the
system before detecting the new file system. This is so that all servers will be detected.

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

13

After adding all file system servers, open the Intel® Manager for Lustre* Help (or user guide)
and perform the procedure Detect file systems. This section is located in Detecting and
monitoring existing Lustre file systems. Be sure to select all listed servers that belong to this
new file system.

The ZFS-based Lustre file system should now be visible on the Intel® Manager for Lustre*
dashboard. See the integrated Help for extensive information about how to monitor the file
system.

Mounting the Lustre File System on a Client via the Dashboard
Make sure the Intel® Enterprise Edition for Lustre* client software has been installed on each
client before attempting to mount the file system.

To obtain the command to use to mount your file system:

1. At the manager Dashboard menu bar, click the Configuration drop-down menu and
click File Systems.

2. Each Lustre file system created or detected using Intel® Manager for Lustre* software is
listed. Select the file system to be mounted. A window opens that shows information
for that file system.

3. On the file system page, click View Client Mount Information.

4. The mount command to be used to mount the file system is displayed. On the client,
enter the actual command. Following is an example only:

 mount -t lustre
192.168.214.211@o2ib0:192.168.214.212@o2ib0:/lustrefs
/mnt/lustrefs

Troubleshooting

Procedure for Updating ZFS or Mellanox OFED
This procedure is for updating the ZFS version or Mellanox OFED version without updating the
version of Lustre* software. This procedure is also valid for adding Mellanox OFED support
after Lustre* and ZFS have been installed. The following instructions are to be run on each
server (MDS/MGS/OSS) that the update is required.

1. Remove existing Lustre*: dkms remove lustre/2.5.39 –all

2. Update ZFS or Mellanox accordingly.

3. Re-install Lustre*: dkms install lustre/2.5.39

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

14

Mellanox OFED not installing
1. Ensure you have the correct version

a. Correct operating system.

b. Correct version of OS (e.g. rhel6.6 does not support rhel6.7 systems)

2. Force the install: ./mlnxofedinstall -k $(head -1 .supported_kernels)

This procedure is for updating ZFS version or Mellanox OFED version without updating Lustre*
version.

Appendix: LustreZFS
The following script can be used to manage ZFS and Lustre on shared storage. For each host,
save this script as “LustreZFS” at the location: /usr/lib/ocf/resource.d/heartbeat/
Set the script’s permissions to 755.

#!/bin/sh

License: GNU General Public License (GPL)v2
Description: Manages ZFS and Lustre on a shared storage
Written by: Gabriele Paciucci
Release Date: 01 Oct 2015
Release Version: 0.9
Copyright © 2015, Intel Corporation

This program is free software; you can redistribute it and/or modify
it under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.

This program is distributed in the hope it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

usage: ./LustreZFS {start|stop|status|monitor|validate-all|meta-data}

OCF parameters are as follows
OCF_RESKEY_pool - the pool to import/export
OCF_RESKEY_volume - the volume to mount/umount
OCF_RESKEY_mountpoint - the mountpoint to use

Initialization:

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

15

: ${OCF_FUNCTIONS_DIR=${OCF_ROOT}/lib/heartbeat}
. ${OCF_FUNCTIONS_DIR}/ocf-shellfuncs

Defaults

Variables used by multiple methods

USAGE

usage() {
 usage: $0 {start|stop|status|monitor|validate-all|meta-data}
}

META-DATA

meta_data() {
 cat <<END
<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="LustreZFS">
<version>0.9</version>
<longdesc lang="en">
This script manages ZFS pools and Lustre volumes. The script is able to
import and export ZFS pools and mount/umount Lustre.
</longdesc>
<shortdesc lang="en">Lustre and ZFS management</shortdesc>

<parameters>

<parameter name="pool" unique="1" required="1">
<longdesc lang="en">
The name of the ZFS pool to manage.
</longdesc>
<shortdesc lang="en">ZFS pool name</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="volume" unique="1" required="1">
<longdesc lang="en">
The name of the volume created during the Lustre format on the ZFS pool.
</longdesc>
<shortdesc lang="en">Lustre volume name in the pool</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="mountpoint" unique="1" required="1">

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

16

<longdesc lang="en">
The mount point where the Lustre target will be mounted.
</longdesc>
<shortdesc lang="en">Mount point for Lustre</shortdesc>
<content type="string" default="" />
</parameter>

</parameters>

<actions>
<action name="start" timeout="300s" />
<action name="stop" timeout="300s" />
<action name="monitor" depth="0" timeout="300s" interval="20s" />
<action name="validate-all" timeout="30s" />
<action name="meta-data" timeout="5s" />
</actions>
</resource-agent>
END
 exit $OCF_SUCCESS
}

FUNCTIONS

zpool_is_imported () {
 zpool list -H "$OCF_RESKEY_pool" > /dev/null
}

lustre_is_mounted () {
 # Verify if this is consistent
 cat /proc/mounts |grep "$OCF_RESKEY_mountpoint" >/dev/null 2>&1;

}

zpool_import () {
 if ! zpool_is_imported; then
 ocf_log info "Starting to import $OCF_RESKEY_pool"

The meanings of the options to import are as follows:
-f : import even if the pool is marked as imported
-o cachefile=none : the import should be temporary
 if zpool import -f -o cachefile=none "$OCF_RESKEY_pool" ; then
 ocf_log info "$OCF_RESKEY_pool imported successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_pool import failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

17

zpool_export () {
 if zpool_is_imported; then
 ocf_log info "Starting to export $OCF_RESKEY_pool"

The meanings of the options to export are as follows:
-f : export in every case

 if zpool export -f "$OCF_RESKEY_pool" ; then
 ocf_log info "$OCF_RESKEY_pool exported successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_pool export failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

lustre_mount () {
 if ! lustre_is_mounted; then
 ocf_log info "Starting to mount $OCF_RESKEY_volume"

The meanings of the options to export are as follows:

 if mount -t lustre "$OCF_RESKEY_pool/$OCF_RESKEY_volume"
$OCF_RESKEY_mountpoint ; then

 ocf_log info "$OCF_RESKEY_volume mounted successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_volume mount failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

lustre_umount () {

if lustre_is_mounted; then
 ocf_log info "Starting to unmount $OCF_RESKEY_volume"

The meanings of the options to export are as follows:
-f : force umount

 if umount -f $OCF_RESKEY_mountpoint; then

 ocf_log info "$OCF_RESKEY_volume unmounted successfully"

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

18

 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_volume unmount failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

zpool_monitor () {

If the pool is not imported, then we can't monitor its health
 if ! zpool_is_imported; then
 ocf_log warn "$OCF_RESKEY_pool not imported"
 return $OCF_NOT_RUNNING
 fi

 # Check the pool status
 # Possible status:
 # DEGRADED
 # FAULTED
 # OFFLINE
 # ONLINE
 # REMOVED
 # UNAVAIL

 HEALTH=$(zpool list -H -o health "$OCF_RESKEY_pool")
 case "$HEALTH" in
 ONLINE) #to debug ocf_log info "$OCF_RESKEY_pool is
$HEALTH"
 return $OCF_SUCCESS
 ;;
 DEGRADED) ocf_log warn "$OCF_RESKEY_pool is $HEALTH"
 return $OCF_SUCCESS
 ;;
 FAULTED) ocf_log err "$OCF_RESKEY_pool is $HEALTH"
 return $OCF_NOT_RUNNING
 ;;
 *) ocf_log err "$OCF_RESKEY_pool is $HEALTH"
 return $OCF_ERR_GENERIC
 ;;
 esac
}

lustre_monitor () {

if ! lustre_is_mounted; then
 ocf_log err "$OCF_RESKEY_volume is not mounted"

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

19

 return $OCF_NOT_RUNNING

 else
 # to debug ocf_log info "$OCF_RESKEY_volume is mounted"
 return $OCF_SUCCESS

fi

}

all_start () {

 # Import first the pool
 zpool_import

 # Sleep few seconds
 sleep 5

 # Mount Lustre
 lustre_mount

}

all_stop () {

 # Unmount Lustre
 lustre_umount

 # Sleep few seconds
 sleep 5

 # Export the pool
 zpool_export

}

all_monitor () {

 zpool_monitor

 lustre_monitor

}

Creating a High-Availability Lustre* Storage Solution over a ZFS File System

20

validate () {

 # Maybe we can implement some validation
 return $OCF_SUCCESS

}

case $1 in
 meta-data) meta_data;;
 start) all_start;;
 stop) all_stop;;
 status|monitor) all_monitor;;
 validate-all) validate;;
 usage) usage
 exit $OCF_SUCCESS
 ;;
 *) exit $OCF_ERR_UNIMPLEMENTED;;
esac

exit $?

	About this Document
	Document Purpose
	Intended Audience
	Conventions Used
	Related Documentation

	Introduction - Lustre* over ZFS
	Requirements
	Supported Configurations
	Environment Used in this Example
	Software Stack

	Installation
	Mellanox OFED Installation
	Lustre* and ZFS Installation
	Lustre Network Configuration

	Implementing High Availability
	HA Framework Installation on Metadata Servers
	ZFS Configuration
	Lustre Formatting and Target Configuration

	HA Framework Installation on Object Storage Servers
	ZFS Configuration
	Lustre Formatting and Target Configuration
	Mount the File System on a Client
	Compression

	Detecting and Monitoring the File System at the Dashboard
	Add Servers
	Detect the New File System
	Mounting the Lustre File System on a Client via the Dashboard

	Troubleshooting
	Procedure for Updating ZFS or Mellanox OFED
	Mellanox OFED not installing

	Appendix: LustreZFS

