

Lustre* Installation and Configuration using
Intel® EE for Lustre* Software and OpenZFS

A system integrator’s guide to the Lustre parallel file system

High Performance Data Division

June 7, 2016
World Wide Web: http://www.intel.com

http://www.intel.com/

Disclaimer and legal information

Copyright 2016 Intel® Corporation. All Rights Reserved.

The source code contained or described herein and all documents related to the source code ("Material") are
owned by Intel® Corporation or its suppliers or licensors. Title to the Material remains with Intel® Corporation
or its suppliers and licensors. The Material contains trade secrets and proprietary and confidential information
of Intel® or its suppliers and licensors. The Material is protected by worldwide copyright and trade secret laws
and treaty provisions. No part of the Material may be used, copied, reproduced, modified, published, uploaded,
posted, transmitted, distributed, or disclosed in any way without Intel’s prior express written permission.

No license under any patent, copyright, trade secret or other intellectual property right is granted to or
conferred upon you by disclosure or delivery of the Materials, either expressly, by implication, inducement,
estoppel or otherwise. Any license under such intellectual property rights must be express and approved by
Intel® in writing.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL® ASSUMES NO LIABILITY WHATSOEVER AND INTEL® DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel® Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL® AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL® OR
ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL®
PRODUCT OR ANY OF ITS PARTS.

Intel® may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel® reserves these for future definition and shall have no responsibility whatsoever for conflicts
or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Before using any third party software referenced herein, please see the third party software provider’s website
for more information, including without limitation, information regarding the mitigation of potential security
vulnerabilities in the third party software.

Contact your local Intel® sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel®
literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Intel® and the Intel® logo are trademarks of Intel® Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

i

Contents

About this Document.. vi
Conventions Used .. vi

Related Documentation .. vi

Introduction to Lustre* ... 1

Overview ... 1

Architecture... 1

Metadata Server ... 2

Management Server ... 2

Object Storage Server ... 2

Clients... 3

Networking .. 3

High Availability and Data Storage Reliability .. 3

Lustre Storage ... 3

High Availability for Lustre Service Continuity .. 5

High Availability and GNU/Linux ... 6

Lustre Reference Architecture in this Guide ... 8

Overview ... 8

Network ... 9

Software .. 9

Operating System .. 9

Intel® Enterprise Edition for Lustre* Software .. 10

Metadata and Management Servers... 10

Object Storage Servers .. 11

Clients.. 12

Lustre Server Platform Preparation.. 13

Overview .. 13

Network Configuration... 15

Storage Preparation .. 15

Lustre Client Platform Preparation ... 17

Overview .. 17

Network Configuration... 18

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

i i

Operating System Configuration.. 19

Overview .. 19

Network Addresses.. 19

Date and Time Synchronization with NTP .. 19

Identity Management.. 20

SELinux and Firewall Configuration.. 20

Operating System Software Package Management .. 21

Using YUM to Manage Software Distribution .. 24

Device Drivers for High Performance Network Fabrics (RDMA, OFED) ... 25

Installing the Lustre Software .. 25

Installing Lustre Servers with OpenZFS ... 26

Lustre Client Software Installation .. 36

Configure Lustre Networking (LNet) ... 39

Introduction to Lustre Networks .. 39

LNet Configuration Overview ... 41

Configuration of LNet Using Modprobe Options Files ... 41

LNet networks syntax ... 42

LNet ip2nets syntax ... 43

Starting and Stopping LNet... 46

Optimizing o2iblnd Performance .. 50

Dynamic LNet Configuration and lnetctl.. 52

LNet automated startup and shutdown using sysvinit or systemd... 60

Multi-rail LNet Topologies ... 62

Enabling InfiniBand (o2ib) Bonding .. 62

Restrictions for Multi-rail LNet Topologies .. 64

LNet Configuration Edge Case Behaviors and Side-Effects .. 65

Lustre Storage Devices .. 67

Formatting Lustre Storage ... 67

Defining Service Failover (--failnode vs --servicenode) .. 68

Lustre Device and Mount Point Naming Conventions.. 71

ZFS OSDs... 71

ZFS Storage Pool Basics.. 72

Formatting a ZFS OSD using only the mkfs.lustre command .. 73

Formatting a ZFS OSD using zpool and mkfs.lustre.. 75

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

i i i

Working with ZFS Imports ... 78

Lustre and ZFS File System Datasets... 81

Examining ZFS Pools with zdb .. 83

Optimizing Performance of SSDs and Advanced Format Drives with zpool ashift 86

ZFS recordsize Property ... 87

Protecting File System Volumes from Concurrent Access .. 87

Using ZFS Properties to Protect Lustre OSDs... 91

Create the Management Service (MGS) .. 93

MGT Formatted as a ZFS OSD ... 94

Formatting the MGT using only the mkfs.lustre command ... 94

Formatting the MGT using zpool and mkfs.lustre .. 95

Starting and stopping the MGS Service.. 96

Create the Metadata Service (MDS) ... 100

MDT Formatted as a ZFS OSD .. 105

Formatting an MDT using only the mkfs.lustre command.. 105

Formatting an MDT using zpool and mkfs.lustre ... 106

Starting and stopping the MDS Service... 109

Create the Object Storage Services (OSS).. 112

OST Formatted as a ZFS OSD ... 116

Formatting an OST using only the mkfs.lustre command... 116

Formatting an OST using zpool and mkfs.lustre .. 117

Starting and stopping the OSS Service ... 119

Lustre Clients ... 122

Starting and stopping the Lustre Client .. 122

Starting and Stopping Lustre Services... 126

Lustre Start-up Sequence ... 126

Lustre Shutdown Sequence ... 127

Why not start the MDS after the OSSs? .. 127

High Availability and Failover.. 129

Controlling Service Failover Between Hosts... 129

Controlled Migration or Failover of a Lustre Service Between Hosts 130

Forced Migration of a Lustre Service Between Hosts .. 131

High Availability Automation – Pacemaker and Corosync .. 132

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

iv

Red Hat Enterprise Linux HA Framework Configuration for Two- Node Cluster.................... 134

Hardware and Server Infrastructure Prerequisites.. 134

Software Prerequisites.. 136

Install the HA software.. 136

Configure the Basic HA Framework ... 138

Changing the default security key .. 142

Starting and Stopping the cluster framework.. 142

Verify cluster configuration and status.. 143

Pacemaker Server Fault Isolation with Fencing .. 147

Configuring the IPMI Fence Agent For Pacemaker.. 148

Creating Pacemaker Resources for Lustre Storage Services ... 149

Lustre + ZFS Resource Agent Installation .. 150

Lustre + ZFS Resource Agent Configuration for MGT and MDT0 ... 150

Lustre + ZFS Resource Agent Configuration for the OSTs.. 151

Creating Additional Monitoring Resources In Pacemaker... 152

Detection of LNET Outage .. 152

Detection of MDS/OSS/MGS services outages.. 154

Appendix A: RHEL / CentOS Kickstart Template .. 156

Appendix B: Lustre ZFS Pacemaker Resource Agent ... 157

Appendix C: LNet monitor Pacemaker Resource Agent ... 164

Appendix D: Lustre services monitor Pacemaker Resource Agent... 171

References ... 176

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

v

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

vi

About this Document

Conventions Used
Conventions used in this document include:

• # preceding a command indicates the command is to be entered as root
• $ indicates a command is to be entered as a user
• <variable_name> indicates the placeholder text that appears between the angle

brackets is to be replaced with an appropriate value

Related Documentation
• Intel® Enterprise Edition for Lustre* Software Installation Guide

• Intel® Manager for Lustre* Software User Guide

• Hierarchical Storage Management Configuration Guide

• Installing Hadoop, the Hadoop Adapter for Intel® EE for Lustre*, and the Job Scheduler
Integration

• Creating an HBase Cluster and Integrating Hive on an Intel® EE for Lustre*® File System

• Creating a High-Availability Lustre* Storage Solution over a ZFS File System

• Upgrading a Lustre file system to Intel® Enterprise Edition for Lustre* Software (Lustre
only)

• Configuring LNet Routers for File Systems based on Intel* EE for Lustre* Software

• Configuring SELinux for File Systems based on Intel* EE for Lustre* Software

• Creating a Scalable File Service for Windows Networks using Intel® EE for Lustre*
Software

• Intel® EE for Lustre* Hierarchical Storage Management Framework White Paper

• Architecting a High-Performance Storage System White Paper

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

1

Introduction to Lustre*

Overview
Lustre* is a global single-namespace, POSIX-compliant, distributed parallel file system
architecture designed for scalability, high-performance, and high-availability. Lustre runs on
Linux-based operating systems and employs a client-server network architecture. Storage is
provided by a set of servers that can scale to populations measuring up to several hundred
hosts. Lustre servers for a single file system instance can, in aggregate, present up to tens of
petabytes of storage to thousands of compute clients, with more than a terabyte-per-second
of combined throughput.

Lustre is a file system that scales to meet the requirements of applications running on a range
of systems from small-scale HPC environments up to the very largest supercomputers and
has been created using object-based storage building blocks to maximize scalability.

Redundant servers support storage fail-over, while metadata and data are stored on separate
servers, allowing each file system to be optimized for different workloads. Lustre can deliver
fast IO to applications across high-speed network fabrics, such as Intel® Omni-Path
Architecture (OPA), InfiniBand* and Ethernet.

Architecture
The Lustre file system architecture is designed as a scalable storage platform for computer
networks and is based on distributed, object-based storage. The namespace hierarchy is
stored separately from a file’s content. Services in Lustre are separated into those supporting
metadata operations, and those supported file content operations.

There are two object types in Lustre. Data objects are simple arrays used to store the bulk data
associated with a file’s content, while index objects are used to store key-value information,
such as POSIX directories. Block storage management is delegated to back-end storage
servers and all application-level file system access is transacted on a network fabric between
clients and the storage servers.

The building blocks of a Lustre file system are the Metadata Servers and Object Storage
Servers, which provide namespace operations and bulk IO services respectively. There is also
the Management Server, a global resource that is functionally independent of any single
Lustre instance and the clients that present a coherent, POSIX interface to end-user
applications. Lustre’s network protocol, LNet, joins all of the components into a seamless
whole.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

2

Metadata Server
The Metadata Server (MDS) manages all name space operations for a Lustre file system. A file
system’s directory hierarchy and file information are contained on a storage device referred to
as a Metadata Target (MDT), and the MDS provides the logical interface to this storage. A
Lustre file system will always have at least one MDS and corresponding MDT, and more can be
added to meet the scaling requirements of a particular environment. One metadata server
(MDS) can have one or more metadata targets (MDT), and there can be more than one
metadata server per Lustre file system. The MDS controls the allocation of storage objects for
the file content when a file is created, and manages the opening and closing of files, file
deletions and renames, and other namespace operations. The MDS does not participate in I/O
after a file is opened, until it is time to close the file.

An MDT stores namespace metadata, such as filenames, directories, access permissions, and
file layout, effectively providing the index for the data held on the file system. The MDT data is
stored in a direct-attached disk storage system. The ability to have multiple MDTs in a single
file system allows directory subtrees to reside on the secondary MDTs, which is useful for
isolating workloads that are especially metadata-intensive onto dedicated hardware (one
could allocate an MDT for a specific set of projects, for example). Large, single directories can
be distributed across multiple MDTs as well, providing scalability for applications that
generate large numbers of files in a flat directory hierarchy.

Management Server
The Management Server (MGS) stores configuration information for all the Lustre file systems
in a cluster and provides this information to other Lustre components. Each Lustre target
contacts the MGS to provide information, and Lustre clients contact the MGS to retrieve
information. The MGS can be paired with an MDS in a high-availability configuration, with each
server connected to shared storage. Multiple Lustre file systems can be managed by a single
MGS.

Object Storage Server

The Object Storage Servers provide bulk storage for the contents of files in a Lustre file
system. One or more object storage servers (OSS) store file data on one or more object
storage targets (OST). A single OSS typically serves between two and eight OSTs (although
more are possible), with the OSTs stored on direct-attached storage. The capacity of a Lustre
file system is the sum of the capacities provided by the OSTs. OSSs are usually paired, with
each OST accessible via two servers, to provide failover in the event of a server or component
failure. Paired servers support improved throughput during normal operation and high-
availability of the file system.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

3

Clients
Applications access and use file system data by interfacing with a Lustre client. Lustre clients
present applications with a unified namespace for all of the files and data in the file system,
using standard POSIX semantics. A Lustre file system is mounted on the client operating
system just as for any other POSIX file system; each Lustre instance is presented as a separate
mount point on the client’s operating system, and each client can mount several different
Lustre file system instances concurrently.

Networking

LNet is the high-speed data network protocol that clients use to access the file system. LNet is
designed to meet the needs of large-scale compute clusters and is optimized for very large
node counts and high throughput. LNet supports Ethernet, InfiniBand*, Intel® Omni-Path
Architecture (OPA), and specific compute fabrics such as as Cray* Gemini.

LNet abstracts network details from the file system itself. LNet allows for full RDMA
throughput and zero copy communications when available.

LNet supports routing, which provides maximum flexibility for connecting different network
topologies. LNet routing provides an efficient protocol for bridging different networks, or
employing different fabric technologies, such as Intel® OPA and InfiniBand. In larger file
systems, with very large client counts, LNet can also support multihoming to improve
performance and reliability. For more details and guidance, see the document Configuring
LNet Routers for File Systems based on Intel* EE for Lustre* Software.

High Availability and Data Storage Reliability

Lustre Storage
Organizations must be able to trust in the reliability and availability of their IT infrastructure
resources if they are to be successful in the realization of their objectives. For storage systems,
this means that users must have confidence that their data is stored persistently and reliably
without loss or corruption of information, and that the data, once stored, is available for recall
on demand to an application.

Lustre is designed to keep up with the demands of the most data-intensive workloads from
applications running on the very largest supercomputers in the world. Any overheads that are
introduced into these environments reduces the usable bandwidth for applications and
reduces overall efficiency, which in turn increases the time it takes to arrive at a result.
Therefore, the Lustre file system architecture does not implement a redundant storage
pattern for data objects across storage servers, due to the inherent latency and bandwidth
overheads that replication and other data redundancy mechanisms introduce.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

4

Data reliability is implemented in the storage subsystem, where it can be isolated in large part
from user application-level I/O and communications. These storage systems typically
comprise multi-ported enclosures, each containing an array of disks or other persistent
storage devices. Arrays may be intelligent data storage systems with dedicated controllers or
simple trays with no dedicated control software (usually referred to as JBODs, “Just a Bunch
of Disks”).

Intelligent storage arrays have the benefit of abstracting the complexity of managing storage
redundancy through RAID configuration, and offloading the computational overheads for
checksum and parity calculations from the host server. Dedicated storage controllers are
typically configured with battery-backed cache for buffering data, thereby further isolating
from the storage services running on the host computer the IO overhead associated with
writing additional data blocks (e.g. in a RAID 6 or RAID 10 device layout).

JBOD enclosures are simpler and are less expensive than intelligent storage arrays (often
referred to as “hardware RAID arrays”). The low cost of acquisition is offset by more complex
software configuration in the host server’s operating system, as all data management tasks,
including redundant layout configuration, must be performed and monitored by the host. The
Linux kernel’s standard tools for storage volume management, MDRAID and LVM, provide the
basic tools for managing JBOD storage and allow for complex fault tolerant disk layouts to be
defined. After the block layout is defined, a file system can be formatted on top of the
software volume.

LVM and MDRAID, while prevalent, are somewhat complex and can be difficult to manage
efficiently on large-scale storage platforms. However in recent years, the JBOD architecture
has received a significant boost in popularity thanks to the development of advanced file
system technology, as exemplified by OpenZFS, which makes storage management easier
while at the same time improving reliability and data integrity. OpenZFS has disrupted many
of the assumptions regarding storage management and “software RAID” since its original
introduction in the Solaris operating system by Sun Microsystems (now Oracle Solaris).

The OpenZFS file system reduces the administrative complexity of maintaining software-
based storage by taking a holistic view of both the file system and storage management. ZFS
integrates volume management features with an advanced file system that scales efficiently
and provides enhancements including end-to-end checksums for protection against data
corruption, versatility in storage configuration, online data integrity verification, and a copy-
on-write architecture that eliminates the need to perform offline repairs. There is no fsck in
ZFS.

Advances in software-based storage architectures are also influencing storage hardware
design, creating hybrid server and storage enclosures that combine storage trays with
standard servers into a single high-density chassis. These integrated systems can offer higher
density per rack and less complex physical integration (including reduced cabling).

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

5

High Availability for Lustre Service Continuity
Lustre servers are responsible for transacting I/O requests from applications running on a
network of computers, and for managing the block storage used to maintain a persistent
record of the data. Lustre clients do not have direct connections to the block storage and are
often completely diskless, with no local data persistence. Because data is not replicated
between Lustre servers, loss of access to a server means loss of access to the data managed
by that server, which in turn means that a subset of the data managed by the Lustre file
system will not be available to clients.

To protect against service failure, Lustre data is usually held on multi-ported, dedicated
storage to which two or more servers are connected. The storage is subdivided into volumes
or LUNs, with each LUN representing a Lustre storage target (MGT, MDT or OST). Each server
that is attached to the enclosure has equal access to the storage targets and can be
configured to present the storage targets to the network, although only one server is
permitted to access an individual storage target in the enclosure at any given time. Lustre uses
an inter-node failover model for maintaining service availability, meaning that if a server
develops a fault, then any Lustre storage target managed by the failed server can be
transferred to a surviving server that is connected to the same storage array.

This configuration is usually referred to as a high-availability cluster. A single Lustre file
system installation will be comprised of several such HA clusters, each providing a discrete set
of services that is a subset of the whole. These discrete HA clusters are the building blocks for
a high-availability, Lustre parallel distributed file system that can scale to tens of petabytes in
capacity and to more than one terabyte-per-second in aggregate throughput performance.

Building block patterns can vary, which is a reflection the flexibility that Lustre affords
integrators and administrators when designing their high performance storage infrastructure.
The most common blueprint employs two servers joined to shared storage in an HA clustered
pair topology. While HA clusters can vary in the number of servers, a two-node configuration
provides the greatest overall flexibility as it represents the smallest storage building block that
also provides high availability. Each building block has a well-defined capacity and measured
throughput, so Lustre file systems can be designed in terms of the number of building blocks
that are required to meet capacity and performance objectives.

A single Lustre file system can scale linearly based on the number of building blocks. The
minimum HA configuration for Lustre is a metadata and management building block that
provides the MDS and MGS services, plus a single object storage building block for the OSS
services. Using these basic units, one can create file systems with hundreds of OSSs as well as
several MDSs, using HA building blocks to provide a reliable, high-performance platform.

Figure 1 shows a blue-print for a typical two-node, high-availability Lustre server building
block.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

6

Figure 1. Lustre Server High-Availability Building Blocks

Lustre doesn’t need to be configured for high availability – a Lustre file system will operate
perfectly well without HA protection, but be aware that a fault in the server infrastructure will
cause a service outage for the file system. Designing Lustre for high availability is therefore
recommended, and is the norm for the overwhelming majority of Lustre file system
installations.

High Availability and GNU/Linux
Every major enterprise operating system offers a high-availability cluster software framework
that follows this basic model. In current1 GNU/Linux distributions, the de facto HA cluster
framework has consolidated around two software packages: Corosync for cluster membership
and communications, and Pacemaker for resource management.

Operating system distributions have each developed their own administration tools around
these applications. For example, Red Hat Enterprise Linux (RHEL) makes use of PCS2
(Pacemaker/Corosync Configuration System), while SuSE Linux Enterprise Server (SLES) has
CRMSH3 (Cluster Resource Management Shell). Both PCS and CRMSH are open-source

1 Current as of 2016
2 https://github.com/feist/pcs
3 http://crmsh.github.io

https://github.com/feist/pcs
http://crmsh.github.io/

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

7

applications. There are also a number of other tools available, including a web-based
application HAWK4, which interfaces to CRMSH. PCS has its own web-based UI.

While this diversity of tools has the effect of limiting portability of the specific procedures for
creating and maintaining clusters, the underlying technology remains the same.

Throughout the remainder of this text, Red Hat Enterprise Linux (RHEL) will be used as the
reference operating system platform, along with the PCS command line interface for HA
software configuration.

RHEL has a complex legacy of software tools for creating HA frameworks, but with the RHEL
6.4 release, and the release of RHEL 7, the operating platform has been simplified and
streamlined. RHEL 6 still has some legacy software infrastructure, being based on older
versions of Corosync and Pacemaker than RHEL 7, but for the most part this is hidden from
the systems administrator by PCS. Where there are differences in procedure between RHEL 6
and 7, they will be identified herein.

4 https://github.com/ClusterLabs/hawk

https://github.com/ClusterLabs/hawk

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

8

Lustre Reference Architecture in this Guide

Overview
Figure 2 depicts the overall architecture of a typical Lustre file system installation. Lustre can
support up to 32 Metadata servers (MDS) and up to 2000 Object Storage servers (OSS) per file
system. This guide will focus on file systems that require only a single MDS, which represents
the majority of Lustre installations in production today.

Figure 2. Lustre High-Availability Network Architecture

The guide will use tested examples based on this basic system architecture:

• one administration server from which to coordinate tasks

• two metadata servers, each equipped with:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

9

o three network interface cards

o one storage enclosure accessible from both hosts to contain the MGT and MDT0

• two object storage servers (HA pair #1), each equipped with:

o three network interface cards

o one storage enclosure accessible from both hosts to contain OST0 and OST1

• two object storage servers (HA pair #2), each equipped with:

o three network interface cards

o one enclosure accessible from both hosts to contain OST2 and OST3

• four Lustre clients

• one management network

• one high performance data network

Network
The examples in this guide will for the most part use Ethernet networking for both the
management and high performance data networks. However, it should be noted that it is
common for Lustre file systems to be incorporated onto high throughput, low-latency fabrics
such as Intel® OPA and InfiniBand, and the Lustre Networking protocol has drivers specifically
developed to exploit the performance available in these fabrics.

Software

Operating System
The reference architecture in this guide has been developed on Red Hat Enterprise Linux and
covers the RHEL 6.x and 7.x distributions, as well as CentOS. Configuration of SuSE Linux is
not within the scope of the guide.

YUM is used extensively in the reference architecture examples to manage the installation of
software. The documentation examples herein assume that access is available to RPM
package repositories on Red Hat Network (RHN) or via Red Hat Satellite (RHS), or the CentOS
updates repositories.

If using RHEL, an active subscription is required for the HA add-on software in RHN.

The Lustre binary packages are created for very specific versions of the operating system’s
Linux kernel. This does vary over time, as OS distribution vendors such as Red Hat release
periodic updates to the kernel packages. Prior to commencing an installation of Lustre, be
sure to download the latest Lustre software distribution to ensure the best compatibility with
the most current OS update.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

10

The MGS, MDS and OSS servers as well as the Lustre clients can use the same core operating
platform and can be installed from a common template. A sample Lustre kick start template
has been included in Appendix X for reference, and is suitable for both RHEL 6 and RHEL 7
based servers and clients.

It is common practice to align the operating system installations for Lustre servers as closely
as possible. Ideally, each server will have the same core operating system environment
installed from a common template, and the software package manifests and versions will
match across all of the server assets. Variation of software and hardware is discouraged, but
can occur when the deployment has been in place for some years and inevitable changes in
hardware catalogues mandate a change in the design of individual servers.

In high availability configurations, each server of the HA group should ideally be identical, or
as similar as possible in every design aspect, from server hardware to slot placement for cards,
CPU choices and memory configuration. Each server should have an identical software
package manifest to ensure consistent performance and application behavior during
operation of the cluster group.

Lustre clients tend to be more heterogeneous, with a wider variety of operating systems and
hardware configurations. This is especially true in data centers where the Lustre file system is
a resource shared across multiple HPC clusters, or is a globally-deployed asset within an
organization. While keeping the Lustre servers and clients aligned is generally recommended,
it is nevertheless quite common for the Lustre servers to differ from Lustre clients in OS
distributions and Lustre versions.

Intel® Enterprise Edition for Lustre* Software
The examples in this guide will use the Intel® Enterprise Edition for Lustre* software
distribution, although the principals and practices apply equally to all Lustre distributions.

For information on the Intel’s Lustre solutions portfolio, including Intel® Enterprise Edition for
Lustre software, visit www.intel.com/lustre.

Metadata and Management Servers
Figure 3 below shows a typical blue print for the Metadata server high availability building
block. The building block comprises two servers, connected to a common external storage
enclosure. The storage array in the diagram has been configured to hold the MGT as well as
MDT0 for a Lustre file system. Two of the drives have been retained as spares. Each server has
some internal, node-local storage to host the operating system, typically two disks in a RAID 1
mirror. There are three network interfaces on each server: a high performance data network
for Lustre and other application traffic, a management network for administration of the
servers, and a dedicated point-to-point server connection for use as a communication ring in
high availability framework, such as might be provided by a combination of Pacemaker and

http://www.intel.com/lustre

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

11

Corosync. Corosync is used for communications in HA clusters, and can be configured to use
multiple networks for its communications rings. In this reference topology, both the dedicated
point-to-point connection and the management network can be used in Corosync rings.
Pacemaker high-availability clusters also commonly include a connection to a power
management interface (not pictured), which is used to isolate, or fence, machines when a fault
is detected in the cluster. Examples of the power management interface include a network or
serial device connection to a smart PDU, or to a server’s BMC via IPMI. The management
network is sometimes used to provide the connection to these power management interfaces.

Figure 3. MGS and MDS (MDT0) HA Cluster Building Block

Object Storage Servers
The physical structure of a typical OSS building block is very similar to that of the MDS. The
most significant external difference is the storage configuration, which is typically designed to
maximize capacity and read/write bandwidth. Storage volumes are commonly formatted for
RAID 6, or in the case of ZFS, RAID-Z2. This provides a balance between optimal capacity and
data integrity. The example in Figure 4 is a low-density configuration with only 48 disks across
two enclosures, and it is not uncommon to see much higher density storage enclosures with
60 disks or more attached to object storage servers.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

12

Figure 4. OSS HA Cluster Building Block

Clients
Lustre clients are responsible for creating a coherent, aggregate view of the Lustre file system
as a POSIX storage entity. The client establishes connections with the metadata and object
storage servers. The metadata for a file includes the file layout information (also referred to as
file striping), which is a list of the objects held on the OSTs (each object represents one stripe),
and the access pattern. Clients communicate with the OSS servers directly; the MDS does not
participate in file IO once the file is opened, until the file is closed.

Lustre uses a cache-coherent distributed lock manager for controlling file IO, ensuring that all
Lustre clients can access all files in the file system in parallel, with both read and write
concurrency.

Lustre aims for very close compliance with the POSIX standard. From the Lustre Operations
Manual:

The full POSIX test suite passes in an identical manner to a local EXT4 file system, with
limited exceptions on Lustre clients. In a cluster, most operations are atomic so that
clients never see stale data or metadata. The Lustre software supports mmap() file I/O.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

13

Lustre Server Platform Preparation

Overview

Figure 5. HA Lustre Server Building Blocks

In the reference architecture (depicted in Figure 5) the operating system installation is the
same for all servers. Use the Kickstart template in the appendix as a guide for the baseline
installation.

Lustre servers commonly have a minimum of two network interfaces:

1. A network for management and maintenance, including software management, health
monitoring, remote administrator access.

2. A high-performance data network exclusively for carrying Lustre traffic.

Additional network interfaces can be introduced to provide support for the HA software
framework, for example to support additional redundancy in Corosync communications. The
hardware and operating system requirements for Pacemaker and Corosync HA framework are
described in High Availability and Failover.

The operating system storage requires relatively little capacity, as the footprint of installed
packages is quite modest and is unlikely to exceed 10GB overall (this represents something of

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

14

an upper limit, and can be revised depending on the final server configuration. Many factors
influence the OS payload, including requirements for development tools and additional
system management tools). Log file storage must also be accommodated, as well as space for
crash dumps, if configured.

A swap partition should also be included in estimates for OS storage needs. Follow the
operating system vendor’s guide for configuration of swap. In the case of Red Hat, the
guidance is to allocate a fixed 4GB swap partition for systems with 64GB or more or system
RAM. System performance can degrade markedly when swap is actually used, so the goal is to
configure the system with sufficient RAM that it that never needs to use swap. Note that Lustre
itself will never use swap, since Lustre is implemented as kernel modules and it is not possible
to swap kernel memory. However, there will always be a small number of programs running in
user space on the host and because of this, allocating some storage for swap is essential as a
contingency.

Two disks, internal to the server chassis and configured as a RAID-1 mirror, provide some fault
tolerance. Where possible, use a hardware RAID controller supplied with the server to manage
the root disk mirror; this will reduce complexity in the operating system configuration.
Otherwise, use LVM to create a root disk mirror. LVM has the added advantage of supporting
snapshots, which can be useful when conducting system maintenance, such as a software
upgrade. Refer to the documentation from the Linux operating system distribution used for
installation for more detailed information on establishing LVM storage volumes.

Lustre servers should be configured with a large amount of system memory in order to take
advantage of Lustre’s caching features. Metadata servers, in particular, benefit from being able
to cache the file system namespace in memory.

While a test system can be configured with as little as 2GB RAM, a production Lustre server
should be equipped with at least 64GB for an entry-level platform; ideally 256GB or more
should be installed in each server. Insufficient memory capacity can lead to out-of-memory
errors when the servers are exposed to demanding, high-performance, production workloads,
destabilizing the server and, by extension, the file system.

The block file system type (LDISKFS or ZFS) used by the Lustre servers will also affect
memory-sizing considerations. LDISKFS is based on EXT4, and uses a journal device to
improve performance. A copy of the journal will also be kept in system memory when the
storage is mounted. While the default LDISKFS journal size on OSTs is 400MB, it is common to
see OST journals 2-4GB in size due to the performance benefits this brings, particularly for
metadata (metadata operations affect OST storage targets to some degree, not just MDTs).
The default LDISKFS journal size on the MDT is 4GB. A server must have enough available
RAM to hold the journals for all of the storage targets in the HA cluster group, including the
storage that will be mounted after a failover event.

For example, if an OSS HA cluster group with two servers has 12 LDISKFS OSTs, each with a
4GB journal, each server will require a minimum of 48GB RAM just for the journals, even

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

15

though each server will normally only mount 50% of the OSTs. This is because if one server
fails, all the storage targets it normally serves will have to be migrated to the surviving server.

In addition to the journal, cache needs to be reserved, plus metadata space and operating
system overheads. To accommodate a journal cache plus metadata on LDISKFS-based
servers, a very approximate rule of thumb for the minimum amount of RAM required is: 2.5
times the journal size, times the number of OSTS.

ZFS-based servers also make extensive use of RAM for caching, in particular for the ARC
(adaptive replacement cache). By default, up to 50% of the available RAM will be used for the
ARC, and this can be tuned as required. Sites have seen good success with as much of 75% of
the available RAM allocated for ARC. When configuring ZFS-based Lustre servers, 256GB RAM
is recommended.

Network Configuration
Lustre servers are recommended to have 3 network interfaces for high availability
configurations, although it is possible to create a Lustre storage server that has only a single
network interface. Typically, one network interface is connected to the system management
network in order to get access to the broader network infrastructure such as time servers,
software package repositories, monitoring and systems management platforms. Lustre traffic
is usually contained on a high-speed data network, separate from the management traffic.

A point-to-point or cross-over cable connection between two hosts in a common HA
framework is an optional third connection.

Note that Lustre does allow for multi-homed configurations, meaning that servers can be
connected to multiple Lustre data networks.

Storage Preparation

In the reference architecture, servers are grouped into pairs, and each pair is connected to a
multi-ported storage enclosure. This grouping will be referred to as an HA cluster pair or HA
cluster group throughout this documentation. A high availability Lustre file system using the
reference architecture in this guide will be comprised of at least two HA cluster groups: one
group for the MGS and MDS, usually referred to as the metadata cluster (or individually as
metadata servers), and one or more HA groups for the object storage servers.

The storage devices in the enclosure are grouped into Logical Units (LUs), and the logical units
are visible to each of the servers in an HA group.

Storage enclosures are usually attached to each of the servers with redundant cable
connections, to protect against individual component-level failures, such as a broken cable or
host bus adapter (HBA). This is commonly referred to as multipathing. Multipathing
configuration is specific to the storage hardware vendor, although some basic guidance is
available from the operating system distribution providers. In most Linux distributions,

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

16

multipath capability is managed by a software package called Device Mapper Multipath (DM-
Multipath). Some storage vendors will provide their own software for managing multipath
configuration, but this practice is becoming less and less common.

The device-mapper multipath software is not installed by default on RHEL or CentOS systems
using the @core and @base package groups. This software is usually required when working
with external storage systems, although one should check with the storage vendor’s
documentation for information regarding integration of the storage with the Linux distribution
in use.

RHEL and CentOS systems provide the multipath software in two packages: device-
mapper-multipath and device-mapper-multipath-libs. To install, use YUM:

yum [-y] install device-mapper-multipath

YUM will automatically resolve any dependencies and include those packages in the
installation manifest. In this case, device-mapper-multipath depends on device-
mapper-multipath-libs, which YUM will automatically include so that the -libs
package does not have to be specified on the yum command line.

Configuration of multipath devices is out of the scope of this document, but material is
available from all of the major Linux distributions, and from several storage hardware
manufacturers.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-
single/DM_Multipath/

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-
single/DM_Multipath/

https://access.redhat.com/labsinfo/multipathhelper

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/DM_Multipath/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/DM_Multipath/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/DM_Multipath/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/DM_Multipath/
https://access.redhat.com/labsinfo/multipathhelper

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

17

Lustre Client Platform Preparation

Overview
Lustre clients have relatively modest configuration requirements in order to connect to a
Lustre file system. The number of Linux-based operating systems capable of running the
Lustre client software is much broader than that for the Lustre servers, providing more
flexibility in the management of compute resources. Lustre has been ported to a variety of
Linux distributions and hardware architectures. Nevertheless, the most common deployments
use RHEL or CentOS.

The operating system can be installed on a modest internal disk or SSD. Depending on the
characteristics of the host’s anticipated workload, it may be desirable to make the OS storage
fault-tolerant, using a mirrored device, but this is at the discretion of the system owner. Lustre
clients can also be diskless because Lustre makes no use of client-side persistence: all I/O is
transacted over the LNet protocol between clients and servers. Lustre clients never write
directly to storage devices. Because clients can be diskless, the OS footprint is also typically
small, at least as far as the Lustre client’s requirements are concerned. Lustre clients can use
the same base OS template as the servers. An example RHEL kickstart template is included in
the appendix.

Lustre client host hardware requirements are generally determined by the operating system
distribution and the intended application workload for the host. Lustre can be deployed on a
range of platforms, from simple, single-core systems with 2GB RAM, up through multi-socket,
multi-core platforms with 512GB+ RAM. The minimum amount of RAM needed for a client is
2GB, but keep in mind when sizing client memory that the application workload and the
number of Lustre servers in the file system has an affect on the amount of RAM consumed. For
Linux kernel minimum requirements, see the operating system documentation.

Lustre does not make any specific requirements for swap space. Swap allocation guidance
should be taken from the OS distribution. Red Hat recommends 4GB for systems with more
than 64GB RAM installed. There are, however, examples of HPC installations allocating high-
performance flash storage for swap space. Note that for HPC applications, paging out data
from memory to swap is generally considered to be a performance impediment.

Network requirements are entirely dependent on the site installation. Some HPC systems limit
client connectivity to a single fabric for all communications, including system management,
while others separate traffic over two or more network connections, in a manner similar to the
Lustre servers. Using multiple fabrics allows the isolation of system-management traffic from
application IO.

The reference architecture does not specify networking requirements beyond a single
connection to the high-performance data fabric for Lustre communications.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

18

Network Configuration
A single high-speed interface capable of connecting to the Lustre file system network is the
minimum requirement for clients. A secondary interface for system management and
monitoring (host provisioning, health checking, software updates and job scheduler traffic,
etc.) is common but not strictly required.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

19

Operating System Configuration

Overview
This guide does not provide OS management instructions except as they directly relate to the
installation and management of Lustre software. Refer to the documentation supplied with the
OS for the details of what is required. The guide has been developed using RHEL 7 as the base
operating system platform, and all examples have been taken from the same OS unless
otherwise stated.

Lustre servers and clients can be configured from a common operating system base. A
minimal installation consisting of the @core and @base package clusters is the recommended
starting point for both server and client OS installations running RHEL or CentOS.

There is a Kickstart template for the base OS included as an appendix to this guide.

With modern package management systems such as YUM and DNF, package updates and
dependency resolution are automatically managed, further simplifying the installation
process. It is recommended that the operating system installation be as small and simple as
possible, given that additional packages will automatically be installed through dependency
resolution when the Lustre packages are installed.

Network Addresses
Lustre servers must have a globally unique and persistent network identifier and this is
derived from the IPv4 address of the interfaces used for Lustre network communications. The
network interfaces for the Lustre servers must therefore be provided with static IPv4 address
allocations. Lustre clients can be assigned static IP addresses or use DHCP. Lustre does not
support the use of IPv6 addresses.

Date and Time Synchronization with NTP
While not a strict requirement of Lustre itself, time synchronization across the cluster is very
important for overall consistency and coherence. Many applications and file management
tools rely on accurate, or at least consistent, time-stamp information. Using NTP to keep time
synchronized across the network ensures that time stamps for files are read and written
consistently, so that applications get accurate information regardless of where they run in the
cluster.

In addition to maintaining consistency in the time stamp records for metadata inodes and file
objects, ensuring consistent time representation across a distributed IT infrastructure greatly
aids with forensic tasks, such as application debugging or investigations into system failure.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

20

When the hosts all report the same time and date, it is much easier to establish correlations
between events reported in the logs for the hosts.

Identity Management
Identity management is an important component of IT infrastructure and cannot be
overlooked in Lustre. Users and groups are managed by the host operating system, not by
Lustre, and all UIDs and GIDs must be made globally consistent across all Lustre clients and
metadata servers. Object storage servers don’t have the same requirement, because they do
not need to perform permissions checking for Lustre file access.

Any identity services supported by the C library Name Service Switch (NSSwitch) will be
compatible with Lustre installations. It is the administrator’s choice whether the UNIX identity
databases (passwd, shadow, group and gshadow) are used, or a centralized system such as
LDAP.

SELinux and Firewall Configuration
For community Lustre versions prior to 2.8, and for Intel® Enterprise Edition for Lustre*
software versions older than 3.0.0.0, SELinux is not supported and must be disabled across all
servers and clients participating in a Lustre file system. For the Intel® Enterprise Edition for
Lustre* software version 3.0.0.0 and later, see the guide: Configuring SELinux for File Systems
based on Intel* EE for Lustre* Software.

For ease of installation and management, it is suggested that firewall software is disabled. If
there is a strong requirement for the operating system firewall to be in place, then make sure
that port 988 is open to facilitate LNet communications on TCP/IP infrastructure, and that the
NTP port (default: UDP/123) is also open to allow time synchronization.

On Lustre servers using a Pacemaker and Corosync HA framework, ports must be opened to
enable Corosync communications and to support the pcsd helper daemon for the PCS
cluster management software. Instructions on how to do this are provided in the section titled
Red Hat Enterprise Linux HA Framework Configuration for Two- Node Cluster. Please refer to
the documentation provided by the operating system vendor for further information on the
configuration of high availability software on systems where the firewall is enabled.

Firewalls and SELinux add complexity and overheads to installations, and if communications
issues appear when setting up an environment, disabling these features as a first step in
debugging will often save time in identifying a root cause.

Note that Lustre communications on high-performance fabrics such as Intel® OPA and
InfiniBand do not not use TCP/IP for communication, only for node addressing, and are thus
not affected by firewall software.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

21

Operating System Software Package Management
Red Hat Enterprise Linux and CentOS both rely heavily on the YUM package manager to install
software. Software repositories can be local to the host, in the form of a directory tree or a
locally-mounted DVD-ROM or ISO, or made accessible from a network server, usually via the
HTTP protocol. Both Red Hat and CentOS maintain repositories accessible via the Internet.
CentOS, being a free distribution with no subscription support, provides access to these
repositories free of charge. Systems running Red Hat software require an active subscription
to the Red Hat Content Delivery Network.

Note that the RHEL High Availability Add-on entitlement is required for Lustre systems that
will make use of the Pacemaker and Corosync HA framework software in Red Hat supported
systems.

At a minimum, the following subscriptions are required for Lustre systems running RHEL 6:

[root@rh6-adm ~]# subscription-manager list
+---+
 Installed Product Status
+---+
Product Name: Red Hat Enterprise Linux High Availability (for RHEL
Server)
Product ID: 83
Version: 6.7
Arch: x86_64
Status: Subscribed
Status Details:
Starts: 09/11/15
Ends: 08/11/16

Product Name: Red Hat Enterprise Linux Server
Product ID: 69
Version: 6.7
Arch: x86_64
Status: Subscribed
Status Details:
Starts: 09/11/15
Ends: 08/11/16

[root@rh6-adm ~]# subscription-manager repos --list-enabled
+--+
 Available Repositories in /etc/yum.repos.d/redhat.repo
+--+
Repo ID: rhel-6-server-rpms

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

22

Repo Name: Red Hat Enterprise Linux 6 Server (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/6/$releasever/$basea
rch/os
Enabled: 1

Repo ID: rhel-ha-for-rhel-6-server-rpms

Repo Name: Red Hat Enterprise Linux High Availability (for RHEL 6
Server) (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/6/$releasever/$basea
rch/highavailability/
 os
Enabled: 1

Repo ID: rhel-lb-for-rhel-6-server-rpms
Repo Name: Red Hat Enterprise Linux Load Balancer (for RHEL 6
Server) (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/6/$releasever/$basea
rch/loadbalancer/os
Enabled: 1

Repo ID: rhel-6-server-optional-rpms
Repo Name: Red Hat Enterprise Linux 6 Server - Optional (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/6/$releasever/$basea
rch/optional/os
Enabled: 1

For RHEL 7-based systems:

[root@rh7z-adm log]# subscription-manager list

+---+
 Installed Product Status
+---+
Product Name: Red Hat Enterprise Linux Server
Product ID: 69
Version: 7.2
Arch: x86_64
Status: Subscribed
Status Details:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

23

Starts: 09/11/15
Ends: 08/11/16

[root@rh7z-mds1 ~]# subscription-manager repos --list-enabled
+--+
 Available Repositories in /etc/yum.repos.d/redhat.repo
+--+
Repo ID: rhel-7-server-rpms
Repo Name: Red Hat Enterprise Linux 7 Server (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/7/$releasever/$basea
rch/os
Enabled: 1

Repo ID: rhel-ha-for-rhel-7-server-rpms
Repo Name: Red Hat Enterprise Linux High Availability (for RHEL 7
Server) (RPMs)
Repo URL:
https://cdn.redhat.com/content/dist/rhel/server/7/$releasever/$basea
rch/highavailability/
 os
Enabled: 1

To register a subscription entitlement for a server, use the subscription-manager
command. For example:

subscription-manager register --autosubscribe

This will automatically select the most suitable subscription for the registered server based on
the entitlements granted to the licensee. For more information on managing Red Hat software
subscriptions, see the relevant product documentation for the operating system release5.

The subscription-manager command can also be used to configure specific RHEL package
repositories:

subscription-manager repos --enable <repo name>

5 RHEL 7: https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
RHEL 6: https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

24

For example:

subscription-manager repos \
 --enable rhel-ha-for-rhel-7-server-rpms

Disabling a repository is achieved by using the --disable option in place of --enable:

subscription-manager repos --disable <repo name>

To get a list of the available RHEL repositories for a given subscription, use the following
command:

subscription-manager repos --list

To get the list of currently enabled repos:

subscription-manager repos --list-enabled

Using YUM to Manage Software Distribution
To streamline the installation process, the Intel® EE Lustre* package bundles can be copied to
an HTTP server on the network and used as local YUM repositories. The bundles distributed
with Intel® EE Lustre* software are pre-configured for use as YUM repositories.

Using YUM repositories simplifies the distribution of software packages to computers, aiding
provisioning and configuration automation, and simplifying tasks such as auditing and
updating.

To install a YUM repository, create a directory for each bundle on a computer that is hosting a
web server accessible by the target systems, and extract the tarball into that directory. Apply
any configuration changes that may be necessary for the web server to incorporate the new
bundle directories. The configuration may need to be reloaded, or the web service restarted
when done.

On each server, create a file in /etc/yum.repos.d that contains a description for each of
the bundles. The configuration file can have any name, provided that it includes the suffix
.repo. For example, the following entry is for a YUM repository containing Lustre server
packages for RHEL 7:

[el7-lustre-server]
name = Intel EE Lustre RHEL 7 Lustre Server
baseurl = http://10.70.227.1/el7/lustre-server
enabled = 1

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

25

There are several options available to describe YUM repositories in the configuration file.
Refer to the yum and yum.conf manual pages for details.

A single file can contain many repository descriptions. Each entry begins with a title contained
in square brackets. The title must not contain any white space and should be as simple as
possible while still conveying some useful meaning. Shorter titles are preferred, as this helps
with output formatting when working with certain YUM commands. There are also times when
the operator may wish to temporarily exclude a repository from searches, or only enable
certain repositories. Having to type long titles into the command-line to manage the
repositories can be cumbersome.

Device Drivers for High Performance Network Fabrics (RDMA, OFED)
Examples herein don’t make use of specific 3rd-party device drivers for network interfaces,
storage, or other hardware. Where possible, this document references the device driver
software supplied by the operating system vendor. There are circumstances where the
networking software stack provided by the operating system will need to be replaced by a
specific vendor version. This requirement is most common when working with InfiniBand
network fabrics, which use specific versions of the OFED software distribution from either the
OpenFabrics Alliance or InfiniBand vendors (Intel® or Mellanox*). In this case, the Lustre
network drivers need to be recompiled to make use of the 3rd-party network drivers. Building
Lustre packages from source is out of the scope of this document but help is available from
Intel, or from the Lustre community.

Installing the Lustre Software
Intel® Enterprise Edition for Lustre* software provides packages for servers and clients in
compressed tarball bundles for each of the supported OS distributions. The distribution also
contains packages for the OpenZFS software developed by the ZFS on Linux project6. Due to
incompatibilities in distribution clauses of the GPL license used by Lustre and the Common
Development and Distribution License (CDDL) used by OpenZFS, the ZFS software is
distributed as source code. However, the Intel® EE for Lustre* software makes the process of
installing ZFS software straightforward.

Because of differences in the installation processes for servers that using the EXT4-based
LDISKFS block storage file system format, versus servers using ZFS storage, each is discussed
separately in this guide.

6 http://zfsonlinux.org/

http://zfsonlinux.org/

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

26

Lustre software is also available as source code from the Git repository of the community
project, which also provides a set of pre-compiled binary packages. Similarly, the ZFS on Linux
project provides source code directly from their project site.

Information on the Lustre community Git repository is here:

https://wiki.hpdd.intel.com/display/PUB/Lustre+Development

The ZFS on Linux project source code is hosted on GitHub:

https://github.com/zfsonlinux

Throughout the instructions in this section of the guide, the Intel® EE for Lustre* software is
the Lustre software distribution, and Red Hat Enterprise Linux (RHEL) version 7 is the example
host operating system. The same principals of installation and configuration generally apply
when working with the community Lustre software and all supported Linux-based operating
systems.

Installing Lustre Servers with OpenZFS

OpenZFS support for Lustre Object Storage Devices (OSDs) was introduced in Lustre version
2.4. ZFS is an integrated file system and storage management platform with strong data
integrity and volume management features that complement the performance and scalability
of Lustre.

The installation process for ZFS-based builds is more complex than for LDISKFS due to
complications arising from an incompatibility in the distribution clauses of the licenses for the
Linux kernel and OpenZFS. Linux is distributed under the terms of the GPLv2, while OpenZFS
is governed by the CDDL. Both GPL and CDDL are free software open source licenses, but
certain clauses create an incompatibility that prevents their distribution together in binary
form. To accommodate this incompatibility, the ZFS software is therefore distributed as
source code.

Fortunately, by making use of a software distribution framework called Dynamic Kernel
Modules Support (DKMS), OpenZFS is packaged in a form that is easy for system integrators
and operators to build and install. DKMS also ensures that any kernel modules are
automatically recompiled if the kernel is updated. Software installation and management for
Lustre with ZFS is dependent upon DKMS for successful operation.

Note that for the DKMS mechanism to work, compiler tools and some additional libraries will
be needed on each OpenZFS-based Lustre server, regardless of the original build and
distribution method. DKMS recompiles DKMS-enabled kernel modules whenever a kernel
update is installed, which means the compiler tool-chain must be present on all systems using

https://wiki.hpdd.intel.com/display/PUB/Lustre+Development
https://github.com/zfsonlinux

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

27

the OpenZFS file system. The kernel-devel and kernel-headers packages for any
new Linux kernel are also required.

In the Intel® EE for Lustre* 3.0 software distribution, RHEL 6 and RHEL 7 package bundles are
kept in the el6 and el7 subdirectories, respectively.

RHEL 6:

[root@rh7z-adm ~]# ls -1 ee-3.0.0.0/el6
e2fsprogs-1.42.13.wc4-bundle.tar.gz
iml-agent-3.0.0.0-bundle.tar.gz
iml-manager-3.0.0.0.tar.gz
lustre-2.7.15.3-bundle.tar.gz
lustre-client-2.7.15.3-bundle.tar.gz
robinhood-2.5.5-bundle.tar.gz
zfs-0.6.5.3-bundle.tar.gz

RHEL 7:

[root@rh7z-adm ~]# ls -1 ee-3.0.0.0/el7
e2fsprogs-1.42.13.wc4-bundle.tar.gz
iml-agent-3.0.0.0-bundle.tar.gz
iml-manager-3.0.0.0.tar.gz
lustre-2.7.15.3-bundle.tar.gz
lustre-client-2.7.15.3-bundle.tar.gz
robinhood-2.5.5-bundle.tar.gz
zfs-0.6.5.3-bundle.tar.gz

The following files will be needed from lustre-<version>-bundle-tar.gz:

lustre-<lu version>-<kernel ver>.el[6,7]_lustre.x86_64.x86_64.rpm
lustre-dkms-<lu version>.el[6,7].noarch.rpm
lustre-osd-zfs-mount-<lu ver>-<kernel>.el[6,7]_lustre.x86_64.x86_64.rpm
lustre-osd-zfs-<lu ver>-<kernel ver>.el[6,7]lustre.x86_64.x86_64.rpm

And from the ZFS bundle (zfs-<version>-bundle.tar.gz):

dkms-<version>.el[6,7].noarch.rpm
spl-<zfs version>.el[6,7].src.rpm
spl-dkms-<zfs version>.el[6,7].noarch.rpm
zfs-<zfs version>.el[6,7].src.rpm
zfs-dkms-<zfs version>.el[6,7].noarch.rpm

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

28

The OpenZFS bundle contains two source RPM (SRPM) packages, one for ZFS and one for SPL
(Solaris Portability Layer). These packages contain source code for ZFS and must be compiled
before they can be installed.

The kernel does not require Lustre-specific patches when using ZFS as the storage platform
for Lustre servers, so the Lustre-patched kernel is not included in the installer bundle. The ZFS
kernel modules will be compiled against the kernel currently running on the target host.

Note: it is strongly recommended that the host operating system always be installed with the
latest kernel release supported by the operating system vendor. This ensures that the kernel
is protected against known security vulnerabilities and has the latest bug fixes. The Lustre
developers work to ensure that Lustre remains compatible across operating system kernel
updates for supported platforms.

To compile and install the Open ZFS software for Linux, run the following process on each of
the Lustre servers:

1. Install the compiler toolchain and dependencies for ZFS:

yum -y install rpm-build zlib-devel libuuid-devel \
libattr-devel systemd-devel gcc

Even if the intention is to create a single build server, separate from the production
systems in order to manage package creation, DKMS requires a working development
environment on all target hosts, which in this case means all of the Lustre servers that
have ZFS OSDs.

2. Install the kernel, kernel-headers, and kernel-devel packages for the target
kernel. The process for building the ZFS kernel modules is intended to work with the
active, running kernel. Make sure that the target kernel version is installed along with
the development packages and that the host has booted using the intended target
kernel, otherwise the later steps in the installation process may not be completed
correctly and the system will not be left in a consistent state. The target kernel is the
version of the operating system kernel that will be used to run the Lustre services and
ZFS kernel modules.

To install the latest version of the OS kernel, use the following command:

yum -y install kernel kernel-devel kernel-headers

To install a specific version of the kernel, the full version and release number will need
to be supplied to the YUM command line for each of the kernel, kernel-devel
and kernel-headers packages. For example:

yum install \
 kernel-3.10.0-327.13.1.el7 \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

29

 kernel-devel-3.13.0-327.13.1.el7 \
 kernel-headers-3.10.0-327.13.1.el7

Reboot the host when the kernel installation is complete.

In following example, the target kernel is the one already active and running on the
host, so all that is required is installation of the development RPMs. (In this case,
because the target kernel is already running, a reboot is not required):

yum install \
 kernel-devel-$(uname -r) \
 kernel-headers-$(uname -r)

3. Copy the Lustre server and ZFS bundles from the Intel® EE for Lustre* software
distribution onto the host.

4. Untar the lustre and zfs server bundles into a temporary directory:

mkdir -p $HOME/lz
cd $HOME/lz
tar zxf $HOME/lustre-[0-9].*-bundle.tar.gz
tar zxf $HOME/zfs-[0-9].*-bundle.tar.gz

5. Build the SPL and ZFS Linux binary packages:

cd $HOME/lz
rpmbuild --rebuild spl-[0-9].*.el?.src.rpm
rpmbuild --rebuild zfs-[0-9].*.el?.src.rpm

Note: If you examine the spec files for the SPL and ZFS packages, it can be seen that
they are only intended to build the user-space tools, not the kernel modules
themselves. This is because DKMS will create the kernel modules.

One could build these packages on one machine and then distribute the results to the
other hosts, but the time and effort saving is modest at best.

6. Install the DKMS packages and the newly created SPL and ZFS RPMs on the target:

cd $HOME/lz
RPMDIR=$(rpm --eval %_rpmdir)
yum -y install \
dkms-*.el?.noarch.rpm \
zfs-dkms-*.noarch.rpm spl-dkms-*.noarch.rpm \
lustre-dkms-*.noarch.rpm lustre-osd-zfs-[0-9]*.rpm \
lustre-osd-zfs-mount-[0-9]*.rpm lustre-[0-9]*.rpm \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

30

$RPMDIR/x86_64/spl-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/libnvpair1-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/libuutil1-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/libzfs2-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/libzpool2-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/zfs-[0-9].*.el?.x86_64.rpm \
$RPMDIR/x86_64/zfs-dracut-[0-9].*.el?.x86_64.rpm

Note: The above command line uses regular expressions so that it is portable across
version number changes in the packages.

Note: The installation process will take a long time to complete, on the order of several
minutes. This is because DKMS compiles the kernel modules. Be sure to factor this
time into processes that cover installation of servers, as well as maintenance work and
upgrades (updates to the kernel, Lustre or ZFS may trigger a rebuild of the DKMS
kernel modules). If a site is subject to the conditions of a service level agreement (SLA)
for system availability, this will also need consideration when planning an installation
or update.

There is no option on first install through YUM/RPM to create DKMS modules for a
specific kernel, only for the kernel currently installed. DKMS effectively requires that
the target kernel for the build is installed and running on the host.

One can of course use DKMS to enable matching of any kernel, either through a rebuild
or with the weak updates support available on RHEL and CentOS. (The weak updates
feature exploits Red Hat’s kernel ABI stability guarantee to ensure that kernel symbols
remain consistent across kernel updates). However, for the first-time installation, it is
far better to build the packages with an exact match to the intended run-time kernel.

7. Verify that the packages have been installed correctly:

rpm -qa --last |less

The packages should be listed in the rpm command output. If not, review the
command history to identify what has gone wrong.

8. Verify that DMS is able to recognize the modules and provide status information:

dkms status

DKMS should report that the lustre, spl and zfs modules are in the “installed”
state with a report similar to the following output:

[root@rh7z-oss2 ~]# dkms status
lustre, 2.7.15.3, 3.10.0-327.el7.x86_64, x86_64: installed
spl, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

31

zfs, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed

If there are multiple kernels installed on the host, there will also be entries listed in the
output that see the other kernels. These will have a status of “installed-weak”
with a reference to the version of the kernel against which the modules were originally
compiled. The following example shows a system with two installed kernels:

[root@rh7z-oss3 lz]# dkms status
lustre, 2.7.15.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
spl, 0.6.5.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
zfs, 0.6.5.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
lustre, 2.7.15.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak
from 3.10.0-327.13.1.el7.x86_64
spl, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak from
3.10.0-327.13.1.el7.x86_64
zfs, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak from
3.10.0-327.13.1.el7.x86_64

The entries that have status “installed” are modules that have been compiled
against the 3.10.0-327.13.1.el7.x86_64 kernel. Entries that have status
“installed-weak” are exploiting the weak-updates support in the OS kernels that
enables the modules to be loaded into a kernel that is different from the one for which
the module was originally compiled.

9. Review the module information for one of the Lustre modules and one of the ZFS
modules. (Note that the following output may differ slightly from the output observed
on the target system and is provided as an example only.):

modinfo lustre
modinfo zfs
For example:
[root@rh7z-oss3 ~]# modinfo lustre
filename: /lib/modules/3.10.0-
327.13.1.el7.x86_64/extra/lustre.ko
license: GPL
description: Lustre Lite Client File System
author: Sun Microsystems, Inc. <http://www.lustre.org/>
rhelversion: 7.2
srcversion: ED55C746EC393D287A01DAA
depends: obdclass,ptlrpc,libcfs,lov,lmv,mdc,lnet
vermagic: 3.10.0-327.13.1.el7.x86_64 SMP mod_unload
modversions

[root@rh7z-oss3 ~]# modinfo zfs

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

32

filename: /lib/modules/3.10.0-
327.13.1.el7.x86_64/extra/zfs.ko
version: 0.6.5.3-1
license: CDDL
author: OpenZFS on Linux
description: ZFS
rhelversion: 7.2
srcversion: CEB8F91B3D53F4A2844D531
depends: spl,znvpair,zcommon,zunicode,zavl
vermagic: 3.10.0-327.13.1.el7.x86_64 SMP mod_unload
modversions
…
<output truncated for brevity>

If the installation fails, check the following:

1. If the output of dkms status shows components as added, but not installed, then
try to use the dkms command to manually install the affected packages. The following
example shows that none of the DKMS modules are properly integrated into the
operating system, although each module package has been added to the host:

[root@rh7z-oss2 ~]# dkms status
lustre, 2.7.15.3: added
spl, 0.6.5.3: added
zfs, 0.6.5.3: added

2. To attempt to install the modules into the kernel, use the dkms install command,
starting with the spl module, then zfs, and the lustre module last of all. If some
modules are already marked as installed, they can be skipped. To install a module into
the running kernel, use the following syntax:

dkms install <module name>/<module version>

For example:

dkms install spl/0.6.5.3

3. If the manual install step does not work, it may be necessary to build the modules
again first. For the most consistent results, run dkms build for each of the modules
in order: spl, then zfs, then lustre. The syntax is as follows:

dkms build <module name>/<module version>

For example:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

33

dkms build spl/0.6.5.3

Note that after the module is built, it will need to be installed using the dkms
install command. The dkms build command is not often used directly, because
the install command will also attempt to build the DKMS modules if they have not
been already.

4. The Lustre DKMS module is the most complex due to its dependencies on both the
SPL and ZFS modules, as well as the OS kernel and in some cases 3rd party kernel
modules for storage and network devices. It is, therefore, the most susceptible to
issues when the build environment is not correctly configured.

If the lustre-dkms package did not install correctly and the Lustre DKMS module is
not in the “installed” state, it may have a corrupted DKMS configuration. The most
typical symptom of a corrupt Lustre DKMS configuration occurs when execution of
either the dkms build or dkms install command on the Lustre module fails
with output similar to the following:

dkms.conf: Error! Directive 'DEST_MODULE_LOCATION' does not begin with
/kernel', '/updates', or '/extra' in record #0.

There may be several similar lines of output. In this case, the only safe action is to
remove all of the Lustre RPMs, verify that the run-time environment meets the
minimum requirements for Lustre and ZFS, and then re-install the Lustre RPMs. To
remove the Lustre packages, run:

rpm -e lustre lustre-dkms lustre-osd-zfs lustre-osd-zfs-mount

Check that the SPL and ZFS packages are correctly installed and configured:

dkms status

Healthy status for the spl and zfs modules will look similar to this output:

[root@rh7z-oss2 ~]# dkms status
spl, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed
zfs, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed

Re-install the Lustre RPMs:

yum install \
lustre-[0-9].*.el?_lustre.x86_64.x86_64.rpm \
lustre-dkms-[0-9].*.el?.noarch.rpm \
lustre-osd-zfs-[0-9].*.el?_lustre.x86_64.x86_64.rpm \
lustre-osd-zfs-mount-[0-9].*.el?_lustre.x86_64.x86_64.rpm

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

34

As mentioned before in the main installation process, the installation of the Lustre
packages can take a long time to complete, as the DKMS kernel modules will be
compiled from source code.

The Intel® EE for Lustre* software distribution includes helper scripts to assist with the
installation process for ZFS installations. There are two basic scripts that are relevant. First is a
script that will create the basic software bundle that is distributed to each server.

To create the distribution bundle, extract the main Intel® EE for Lustre* software tarball, then
run the script create_installer, which is inside the top level directory of the extracted
tarball. The following example shows how to create a ZFS server distribution bundle for Intel®
EE for Lustre* software, version 3.0. Enter the command appropriate for your software version.

[root@rh7z-mds1 ~]# tar zxf ee-3.0.0.0.tar.gz
[root@rh7z-mds1 ~]# cd ee-3.0.0.0
[root@rh7z-mds1 ee-3.0.0.0]# ./create_installer zfs

The create_installer script will generate gzip-compressed tarballs for distribution to
the Lustre storage servers, one for each of RHEL 6 and RHEL 7:

lustre-zfs-el6-installer.tar.gz
lustre-zfs-el7-installer.tar.gz

The script repackages the Lustre RPMs with the OpenZFS RPMS and creates a new bundle.
This can be distributed to the hosts that are to be configured as Lustre servers.

The second script, called install, is part of the bundle generated by create_installer
and encapsulates the requisite yum and rpmbuild commands to create binary packages and
installs them on the target host.

The Intel® EE for Lustre scripts will not update the kernel on target hosts, so make sure that all
of the Lustre server hosts are loaded with and running the latest kernel release distributed by
the OS vendor or the target version mandated by the system design. (The OS release and
package versions may be subject to strict compliance and audit controls for a given site in an
organization, or there may be a project or program restriction that governs the operating
system software.)

After it’s created, distribute the bundle to all of the target servers and run the install script on
each target. The following example creates the bundle on an admin server, copies the result
over to an OSS, and runs the install script (output is truncated for brevity).

Create the Lustre ZFS server bundle and copy it to the target OSS node:

[root@rh7z-adm ~]# cd ee-3.0.0.0/

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

35

[root@rh7z-adm ee-3.0.0.0]# ./create_installer zfs

[root@rh7z-adm ee-3.0.0.0]# scp lustre-zfs-el7-installer.tar.gz rh7z-
oss4:

lustre-zfs-el7-installer.tar.gz 100% 13MB
13.3MB/s 00:00

On the target node:

[root@rh7z-oss4 ~]# yum -y install kernel kernel-devel kernel-
headers >/dev/null 2>&1
reboot

After reboot, login and execute the installer:

[root@rh7z-oss4 ~]# tar zxf lustre-zfs-el7-installer.tar.gz
[root@rh7z-oss4 ~]# cd lustre-zfs/
[root@rh7z-oss4 lustre-zfs]# ls
dkms-2.2.0.3-28.git.7c3e7c5.el6.noarch.rpm
install
lustre-2.7.15.3-3.10.0_327.13.1.el7_lustre.x86_64.x86_64.rpm
lustre-dkms-2.7.15.3-1.el6.noarch.rpm
lustre-osd-zfs-2.7.15.3-3.10.0_327.13.1.el7_lustre.x86_64.x86_64.rpm
lustre-osd-zfs-mount-2.7.15.3-
3.10.0_327.13.1.el7_lustre.x86_64.x86_64.rpm
spl-0.6.5.3-1.el7.src.rpm
spl-dkms-0.6.5.3-1.el7.noarch.rpm
zfs-0.6.5.3-1.el7.src.rpm
zfs-dkms-0.6.5.3-1.el7.noarch.rpm
[root@rh7z-oss4 lustre-zfs]# ./install

When the installation is finished, the server is ready to run Lustre with ZFS storage:

[root@rh7z-oss4 lustre-zfs]# dkms status
lustre, 2.7.15.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
spl, 0.6.5.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
zfs, 0.6.5.3, 3.10.0-327.13.1.el7.x86_64, x86_64: installed
lustre, 2.7.15.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak from
3.10.0-327.13.1.el7.x86_64
spl, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak from
3.10.0-327.13.1.el7.x86_64
zfs, 0.6.5.3, 3.10.0-327.el7.x86_64, x86_64: installed-weak from
3.10.0-327.13.1.el7.x86_64
[root@rh7z-oss4 lustre-zfs]# modinfo lustre

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

36

filename: /lib/modules/3.10.0-
327.13.1.el7.x86_64/extra/lustre.ko
license: GPL
description: Lustre Lite Client File System
author: Sun Microsystems, Inc. <http://www.lustre.org/>
rhelversion: 7.2
srcversion: ED55C746EC393D287A01DAA
depends: obdclass,ptlrpc,libcfs,lov,lmv,mdc,lnet
vermagic: 3.10.0-327.13.1.el7.x86_64 SMP mod_unload
modversions
[root@rh7z-oss4 lustre-zfs]# modinfo zfs
filename: /lib/modules/3.10.0-327.13.1.el7.x86_64/extra/zfs.ko
version: 0.6.5.3-1
license: CDDL
author: OpenZFS on Linux
description: ZFS
rhelversion: 7.2
srcversion: CEB8F91B3D53F4A2844D531
depends: spl,znvpair,zcommon,zunicode,zavl
vermagic: 3.10.0-327.13.1.el7.x86_64 SMP mod_unload
modversions
…

Lustre Client Software Installation
The Lustre client software comprises a package containing the kernel modules and a package
of user-space tools used to manage the client software. In the Intel® EE for Lustre* software,
these packages are collected into client bundles, one bundle for each supported operating
system.

In the Intel® EE for Lustre* 3.0 distribution, RHEL 6 and RHEL 7 package bundles are kept in
the el6 and el7 subdirectories, respectively.

RHEL 6:

[root@rh7z-adm ~]# ls -1 ee-3.0.0.0/el6/lustre-client*
lustre-client-2.7.15.3-bundle.tar.gz

RHEL 7:

[root@rh7z-adm ~]# ls -1 ee-3.0.0.0/el7/lustre-client*
lustre-client-2.7.15.3-bundle.tar.gz

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

37

The Lustre client kernel module packages are compiled against specific kernel versions but
because the kernel for Lustre clients does not require Lustre-specific patches, there is no
Linux kernel included in the client bundles. Instead, when the Lustre client kernel modules are
installed using package management software (YUM on RHEL-based systems), the appropriate
kernel will be automatically included in the installation manifest as part of the dependency
resolution step. For this to work, the operating system must be configured to install packages
using package repositories, usually via the network. If this is not possible, then the
dependencies will need to be downloaded and installed manually.

Note: as for all Lustre assets, it is strongly recommended that the host operating system
always be installed with the latest kernel release supported by the operating system vendor.
This ensures that the kernel is protected against known security vulnerabilities and has the
latest bug fixes. The Lustre developers work to ensure that Lustre remains compatible across
operating system kernel updates for supported platforms.

All of the Lustre clients should be installed using the same procedure. To install the Lustre
client software, run the following process on each of the Lustre client hosts:

1. Extract the Lustre distribution tarball into a temporary directory on one of the servers.
For example:

tar zxf ee-3.0.0.tar.gz

2. Copy the lustre-client package bundle for the target OS onto each of the Lustre
clients. For example, to copy the client bundle named el7/lustre-client-
2.7.15.3-bundle.tar.gz to four hosts named rh7z-c1, rh7z-c2, rh7z-c3,
rh7z-c4:

cd ee-3.0.0
for i in {1..4}; do
 scp el7/lustre-client-2.7.*-bundle.tar.gz root@rh7z-c$i:
done

3. On each client host, execute the following commands to install the Lustre client
packages. The installation command must be run with super-user privileges:

mkdir -p $HOME/lu
cd $HOME/lu
tar zxf $HOME/lustre-client-2.7.*-bundle.tar.gz
yum [-y] localinstall lustre-client-?.* lustre-client-modules-*

4. Verify that the installation of the packages has completed successfully by reviewing
the package installation history on the host:

rpm -qa --last | less

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

38

This will show the list of packages installed in descending date order, newest entry at
the top. Installing the lustre-client and lustre-client-modules packages
will also trigger the installation of the matching kernel package and some additional
tools and libraries, notably libyaml, net-snmp-libs and net-snmp-agent-
libs.

5. When installation of the software is complete, and if the operating system kernel was
updated, reboot the host so that the OS boots from the newly-installed kernel.

6. When the system returns to operation after a reboot, the running kernel should now be
the version that was installed during this process. If this is not the case, then review the
RPM database, the YUM installation log (/var/log/yum.log) and the syslog
(/var/log/messages) to ensure that the packages were installed without error.
Also check the GRUB boot loader configuration to ensure that there is a valid entry for
the new kernel included in the configuration, and that the new kernel is set as the
default.

If the required kernel version (matching the kernel against which the Lustre client modules
were compiled) is not available, it may have been archived to a maintenance version of the
operating system (for example, when minor releases of CentOS are made, the previous
versions are archived to repositories at http://vault.centos.org).

RHEL has an equivalent set of repositories for older OS releases that are not made available as
part of the normal subscription entitlements.

Generally, if the kernel version is not found by YUM, it indicates that the packages being
considered for installation are from an older release of operating system. Because kernels are
routinely patched for security and other bug fixes, users should always attempt to install the
latest versions of the kernel packages and Lustre client packages. If a Lustre build is
unavailable for the latest kernel release, it can be requested through a Lustre integration
partner or by rebuilding the packages from source. A source code package is included in the
Intel® EE Lustre* client distribution for this purpose.

http://vault.centos.org/

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

39

Configure Lustre Networking (LNet)

Introduction to Lustre Networks
Lustre’s network communication protocol, LNet, was originally derived from a project called
Portals, developed by Sandia National Labs. LNet is designed to be lightweight and efficient
and supports message passing for RPC request processing and RDMA for bulk data
movement. All network metadata and file data I/O is managed through the LNet protocol and
API. LNet is lightweight and versatile, capable of operating over different network fabrics,
including Ethernet, InfiniBand and Intel® OPA. In common with the other major components of
Lustre, LNet is implemented as a Linux kernel module.

All participants in a Lustre file system, including servers and clients, must have a valid LNet
configuration and be connected either directly on a common network fabric, or via a router
between networks.

To support the various types of networks, LNet has a low-level device layer called a Lustre
Network Driver (LND), implemented as a pluggable driver module. The LND provides an
interface abstraction between the upper level LNet protocol and the kernel device driver for
the network interface. Each low-level network protocol requires a separate LND and multiple
LNDs can be active on a host simultaneously, if the server requires access to more than one
type of network. The most commonly used LNet drivers are the ksocklnd.ko module for
TCP/IP networks, and the ko2iblnd.ko module for RDMA networks that make use of the
OpenFabrics Enterprise Distribution (OFED) network driver. The ksocklnd.ko module is
usually abbreviated to socklnd or referred to as the sockets LND. The ko2iblnd.ko
module (usually referred to as the o2ib LND or just called o2ib) supports fabrics running
InfiniBand, Omni-Path, and RDMA over Converged Ethernet (RoCE). The letter “k” prefix in the
LND names is there to emphasize that these are kernel modules, which is true for the majority
of the Lustre software stack. It is often omitted from documentation, to improve readability.

LNet also supports the ability to route Lustre communications between different networks.
Dedicated computers called LNet Routers (once again, imagination in the naming of services
makes way for ruthless pragmatism) can direct traffic between multiple LNets.

Network interfaces on computer systems running LNet are addressed with a node identifier
(the IPv4 address of a network device on the host) and also with a protocol identifier and
network number for that protocol. The format is as follows:

<IPv4 address>@<LND protocol><lnd#>

The complete string is called an LNet Network Identifier (NID) and it uniquely defines an
interface for a host on an LNet communications fabric.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

40

The following example is a NID for an Ethernet interface:

10.70.207.11@tcp0

This is a unique ID for a host with an Ethernet NIC on LNet tcp0 using the socket LND (as
indicated by the tcp network type). A second configuration could also be added for a
different interface:

192.168.70.11@tcp1

The number appended to the LND protocol type must be a non-negative integer and must be
the same for all Lustre hosts (client and server) that participate on the same network. For
example, the following two NIDs are not on the same LNet:

10.70.207.11@tcp0
10.70.207.11@tcp1

Even though each NID has the same IPv4 address, they belong to two different LNets, because
the LND instance numbers are different (tcp0 and tcp1, respectively).

The inverse case is not true: it is not possible for multiple interfaces to belong to the same
LNet on a host. For example, the following NIDs cannot be created on the same host:

10.70.207.11@tcp0
10.70.207.22@tcp0

If there is a requirement for a host to have multiple interfaces connected to the same subnet,
then network bonding of the underlying devices should be used, with the resulting bonded
interface then being presented to the LNet configuration. Note that for InfiniBand fabrics, the
kernel bonding driver only supports active-passive, or failover, operation. That is, only one
interface in the bond can be used to send or receive traffic at a given point in time.

RDMA networks have a similar NID format. For example:

10.20.30.11@o2ib0

Note that even though RDMA is being used for communications in the o2ib driver, the LNet
NID still makes use of an IPv4 address to identify the NID. In fact, LNet requires that the HCA
or HFI is configured with an IPv4 address, even though the LND does not use the IPoIB upper
level protocol (ULP). LNet uses the IP address to identify which physical interface to use for
communications – it is a convenient label for the device. Arguably, LNet could have
implemented the NID using the MAC address or GUID of the device, but using an IPv4 address
provides a level of consistency in defining the interfaces, regardless of the underlying network
fabric or protocol.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

41

LNet Configuration Overview
LNet configuration is straightforward, and it is easy to create a working LNet environment.
After installing the Lustre packages, configuration of LNet is the first task an administrator will
perform on a host.

In releases of Lustre prior to version 2.7.0, configuration of the LNet device driver is managed
exclusively by supplying options to the lnet kernel module. The options are read from a
modprobe configuration file when the kernel module is first loaded. With the release of
Lustre 2.7.0, administrators can instead make use of the Dynamic LNet feature, controlled by a
utility called lnetctl, as an alternative to static modprobe options files. Both methods are
covered in the following sections.

If no explicit configuration is supplied to LNet, it will attempt to create a valid TCP/IP (socklnd)
NID for LNet tcp0 using the first network interface that is detected by the operating system
(e.g. eth0) when the module is loaded and the LNet service started. The order of interface
detection is entirely at the discretion of the operating system, which means that there is no
guarantee that the ordering of interfaces will be preserved between reboots and on the
insertion of a new hardware device. It also means that the default behavior for a host will differ
depending on its hardware configuration. Most operating systems do try to ensure that a
device, after it is detected, maintains the same device name (eth0, eth1, etc.) between reboots.
Nevertheless, it is strongly recommended that all configuration be stated explicitly: defining
the configuration also defines the expected behavior of the system, making it easier to audit.

Configuration of LNet Using Modprobe Options Files
To configure an LNet interface by supplying parameters directly to the lnet module when it
is loaded by the kernel, create a file in the normal modprobe configuration options directory
(usually /etc/modprobe.d), and add an entry for the LNet module. By convention, Lustre
module configuration options are recorded in a file called
/etc/modprobe.d/lustre.conf (although tuning parameters for devices can be
separated into device-specific files, such as /etc/modprobe.d/ko2iblnd.conf – see
the section Optimizing o2iblnd Performance for an example of this, which shows an example
of an optimized configuration that is automatically applied when an Intel® Omni-Path interface
is detected).

There are two ways to define an LNet configuration using module options: networks and
ip2nets. The networks parameter is the easiest to understand and uses a very simple
syntax, while ip2nets gives administrators the greatest flexibility at the expense of much
greater complexity. The networks syntax is strongly recommended unless there is a specific
requirement that can be more readily fulfilled by the ip2nets syntax.

There should be only one networks or ip2nets parameter defined for the lnet module.
The parameters are mutually exclusive; choose one or the other but not both. If both options

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

42

are referenced in the modules configuration, then the following warning will be reported in
the kernel ring buffer (dmesg) and system console:

[46290.641911] LNetError: 101-0: Please specify EITHER 'networks' or
'ip2nets' but not both at once
[46290.645288] LNetError:
3483:0:(config.c:199:lnet_parse_networks()) networks string is
undefined

The second line in the error output is a side-effect of the conflict between ip2nets and
networks options. The key error report is the first line of the above output. Remove one or
other of the networks or ip2nets options to resolve the conflict.

If there is more than one networks or ip2nets declaration defined through successive
entries in one or more kernel module configuration files (i.e., multiple networks declarations
or multiple ip2nets declarations), the last entry that is read by the module loader will be
used. Make sure that there is no more than one LNet configuration defined in the modprobe
directory (/etc/modprobe.d in RHEL and CentOS) when using this method to define LNet
parameters.

Kernel module options are read only when the kernel module is loaded, passed to the kernel
by the module loader. As a consequence, changes in the configuration will not be applied until
the lnet module is stopped, unloaded from the kernel, and then reloaded.

LNet networks syntax

The simplest configuration has the following syntax:

options lnet networks="<lnd><#>(<dev>)[,…]"

For example, to add a TCP/IP (socklnd) LNet NID for an Ethernet device using the eth1 NIC:

options lnet networks="tcp0(eth1)"

Notice that the IP address is not mentioned in the configuration, only the device name. The
syntax is simple and readable.

The next example creates an RDMA verbs (o2iblnd) LNet interface:

options lnet networks="o2ib0(ib0)"

If there is more than one network interface on the host that will carry LNet traffic, additional
interfaces can be added to the networks variable:

options lnet networks="tcp0(eth1),o2ib0(ib0),o2ib1(ib1)"

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

43

The above example configures three LNet interfaces: a socklnd NID on eth1, and o2iblnd
NIDs for ib0 and ib1.

To create a configuration where one physical interface belongs to two LNets, specify each
LNet in a comma-separated format, with the same physical interface in brackets for each LNet.
For example:

options lnet networks="tcp0(eth1),tcp1(eth1)"

This is not a common configuration, because its practical application is limited (both LNets will
be on the same subnet and connect to the same physical interface, so there is no advantage in
creating two LNets in this case).

LNet ip2nets syntax

The ip2nets configuration syntax makes use of regular expressions to programmatically
create a host’s LNet configuration from a single global definition. The administrator creates
pattern-matching rules based on the IPv4 address of the network interfaces of the target
hosts, and the first matching rule is used to determine the configuration that will be applied. In
this way, a single configuration file can be applied to both clients and servers across a
heterogeneous network environment, and across multiple networks. The IP addresses are
only used to identify the network interfaces on the target hosts, and are not used for
communications purposes. All Lustre communications are managed by the LNet protocol,
regardless of the underlying transport.

This flexibility comes at the cost of simplicity and readability. The ip2nets rules can be
complex, making it difficult to interpret the effects of a rule on a given set of hosts. A syntax
error introduced into the rules, such as an incorrectly scoped pattern matching expression,
can have a wide-ranging, negative impact on the configuration of the entire host population, if
it is distributed before the error is caught. Testing the ip2nets configuration is more
complex as a result.

The general syntax is as follows:

options lnet ip2nets="<lnd>[<#>][(<dev>)][, <lnd>[<#>][(<dev>)]]
<pattern>[; …]"

Each rule is separated by a semi-colon and rules are evaluated in left-to-right order when
lnet is started. The first match for each LNet will be applied to the configuration. Evaluation
continues until all unique LNets are created or the last rule has been evaluated. This allows a
single rule to define multiple NIDs for a single server, each one for a different LNet on a
different network interface.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

44

It is simplest to illustrate how to use ip2nets with an example. The following describes a
configuration for two different LNets on different types of network fabric:

options lnet ip2nets="tcp0(eth1) 10.10.100.*; o2ib0(ib0)
192.168.200.*"

Hosts having an IP address that matches the pattern 10.10.100.* will be configured with a NID
on the tcp0 LNet, and hosts that match the 192.168.200.* pattern will be configured with an
o2ib0 LNet. Should a host match both patterns, then both LNets will be configured for that
host.

The pattern-matching syntax includes numeric ranges in the format [x-y], for example [2-20].
This can be further refined with a divisor to allow for stepping in the range: [2-20/2] will match
all of the even numbers in the range, and [1-19/2] can be used to match all of the odd
numbers in a range.

In the next example, some of the hosts will use eth0 while others use eth1 to connect to the
LNet tcp0. This configuration is most likely when there are hardware differences between
systems and they are using different NICs to connect to the same subnet:

options lnet ip2nets="tcp0(eth0) 10.10.100.[1-50]; tcp0(eth1)
10.10.100.[100-200]"

If the interface definition is omitted, then the host interface that matches the IP address will be
used. So the above example could be re-written as:

options lnet ip2nets="tcp0 10.10.100.*"

If no match is found in the configuration, LNet will report an error:

[257641.245272] LNetError: 11a-a: ip2nets does not match any local
IP interfaces
[257641.247813] LNetError:
8881:0:(config.c:199:lnet_parse_networks()) networks string is
undefined

Contrary perhaps to expectations, if ip2nets does not find a match, the LNet kernel module
will not fall back to the networks option or load a default configuration. A failure to match a
pattern in the ip2nets options declaration is considered to be implicit confirmation that the
target system is not meant to have an LNet configuration applied.

A more complex demonstration:

options lnet ip2nets="tcp0(eth1) 10.70.207.[11,12]; \
 tcp0(eth2) 10.70.207.[21-24]; \
 tcp0 10.70.*.*"

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

45

There are two hosts that will create an LNet NID on the eth1 device, four hosts using eth2,
and the remainder of the 10.70/16 network will create an LNet NID for the tcp0 LNet on
the first interface presented by the operating system, provided that the interface has an IPv4
address on the 10.70/16 subnet.

This last item requires further explanation. The configuration entry “tcp0 10.70.*.*” is open to
misinterpretation, as the syntax is ambiguous to a human reader. Contrary to expectation, this
does not mean “configure the interface that matches the pattern 10.70.*.* as LNet tcp0”.
It is in fact far more specific. It means “configure the first interface detected by the host
operating system as LNet tcp0 if it also matches the pattern 10.70.*.*”. If either
condition is false, then no LNet NID will be configured.

One can also mix LNDs in the ip2nets syntax, should this be required:

options lnet ip2nets="o2ib0(ib0) 192.168.207.[11,12]; \
 o2ib0(ib2) 192.168.207.[21-24]; \
 tcp0 10.70.*.*"

Comments are also supported, but take care with placement of the comment relative to the
semi-colon that separates rules. A comment marker instructs the parser to ignore everything
between the comment marker and the next semi-colon in the string, or the end of the string,
whichever comes first. If a comment is started after a semi-colon, that could have the effect of
causing the parser to ignore an important part of the configuration.

For example, the following syntax is correct:

options lnet ip2nets="tcp0(eth1) 10.70.207.[11-12] # MGS/MDS;
\
 tcp0(eth2) 10.70.207.[21-24] # OSS; \
 tcp0 10.70.*.* # Everything else"

In the next example, the second line will be ignored because the comment marker (#) is placed
after the semi-colon, causing the next line to be treated as comment text, not configuration
syntax:

options lnet ip2nets="tcp0(eth1) 10.70.207.[11-12] ; # MGS/MDS \
 tcp0(eth2) 10.70.207.[21-24] # OSS; \
 tcp0 10.70.*.* # Everything else"

All of the text highlighted in the example will be treated as a comment

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

46

Starting and Stopping LNet
LNet, like most of the services that comprise a Lustre file system, runs in the Linux kernel and
is incorporated as a kernel module. LNet is started in two steps:

1. Load the kernel modules

2. Start the services

The lnet kernel module can be loaded directly through the modprobe command or
indirectly by loading a kernel module that has a dependency on LNet. In normal operation, the
lnet module will be loaded indirectly as a consequence of attempting to start a Lustre
service, e.g. by mounting a file system on a client. However, one can treat LNet as independent
of Lustre and start it on its own. This is useful for testing and debugging purposes, and to
provide some verification of correctness when a system boots up prior to committing to
loading the higher-level services (i.e. Lustre).

To load the LNet kernel module, run:

modprobe [-v] lnet

The -v flag is optional and provides verbose output. This is useful for debugging purposes,
but it is normally omitted. For example:

[root@rh7z-pe ~]# modprobe -v lnet
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/libcfs.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/lnet.ko
networks="tcp0(eth1)"

Notice that a second module, called libcfs.ko, was also loaded. The libcfs module is an
API used throughout Lustre and LNet and provides primitives for things like process
management, memory management, and debugging.

After the module is loaded, the LNet service needs to be started:

lctl network up
or
lctl network configure

The lctl network command works on all versions of Lustre, and prior to version 2.7, it is
the only way to manually start LNet. In Lustre 2.7 and onward, there is also the lnetctl
utility:

lnetctl lnet configure [--all]

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

47

The lnetctl configure command will not automatically configure networks that are
specified in the kernel module parameters; the lnet service will start, but the interfaces will
not be configured. Supplying the --all flag will cause all of the networks defined as kernel
module options to be loaded and started.

To view the loaded configuration:

lctl list_nids

or for dynamic lnet in Lustre 2.7+
lnetctl net show [--verbose]
lnetctl export

The lnetctl export command is equivalent to lnetctl net show --verbose.

To shut down LNet and unload the kernel modules, first stop the LNet networks on the host:

lctl network down
or
lctl network unconfigure

Then use the lustre_rmmod command to unload the kernel modules:

lustre_rmmod

One can unload the module by using rmmod directly:

rmmod lnet
rmmod libcfs

The lustre_rmmod is the recommended method for unloading Lustre and LNet kernel
modules, because it will check for dependencies and eliminates any guesswork on the part of
the systems administrator in trying to identify all of the modules to unload and the correct
sequence for doing so.

LNet can also be loaded indirectly, as a dependency of the lustre kernel module. If LNet is
loaded in this way, its start-up behavior is different, as the LNet networks defined in kernel
module options will be automatically configured and brought online. This is easily illustrated
just by loading the Lustre module:

[root@rh7z-pe ~]# modprobe -v lustre
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/libcfs.ko

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

48

insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/lnet.ko
networks="tcp0(eth1)"
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/obdclass.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/ptlrpc.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/fld.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/fid.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/lov.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/mdc.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/lmv.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/fs/lustre/lustre.ko

Notice that the lnet.ko module is loaded as a dependency. The console and kernel ring
buffer output will look something like this:

[266699.213610] LNet: HW CPU cores: 2, npartitions: 1
[266699.232630] alg: No test for adler32 (adler32-zlib)
[266699.234184] alg: No test for crc32 (crc32-table)
[266707.286906] Lustre: Lustre: Build Version: jenkins-
arch=x86_64,build_type=server,distro=el7,ib_stack=inkernel-40--
PRISTINE-3.10.0-327.13.1.el7_lustre.x86_64
[266707.338890] LNet: Added LNI 192.168.207.2@tcp [8/256/0/180]
[266707.339851] LNet: Accept secure, port 988

As can be seen in the above output, the LNet networks were automatically loaded.

The lustre_rmmod behavior is also different in this circumstance, compared to loading
LNet on its own. If the administrator loads and configures LNet on its own, independently of
the Lustre module, then it is necessary to unconfigure the LNet networks before removing the
kernel modules:

[root@rh7z-pe ~]# modprobe lnet
[root@rh7z-pe ~]# lctl network up
LNET configured
[root@rh7z-pe ~]# lctl list_nids
192.168.207.2@tcp
[root@rh7z-pe ~]# lustre_rmmod

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

49

Modules still loaded:
lnet/klnds/socklnd/ksocklnd.o lnet/lnet/lnet.o
libcfs/libcfs/libcfs.o
[root@rh7z-pe ~]# lctl network down
LNET ready to unload
[root@rh7z-pe ~]# lustre_rmmod
[root@rh7z-pe ~]# lsmod |grep lnet

However, if the lnet module is loaded indirectly, as a dependency of the Lustre kernel
module, then lustre_rmmod will gracefully unload all modules including lnet:

[root@rh7z-pe ~]# modprobe lustre
[root@rh7z-pe ~]# lctl list_nids
192.168.207.2@tcp
[root@rh7z-pe ~]# lustre_rmmod
[root@rh7z-pe ~]# lsmod | grep -E lnet\|lustre

This behavior is consistent, but not entirely intuitive. The reason for this behavior has to do
with a special function of LNet: routing. LNet routing enables a node that is connected to more
than one LNet fabric to route traffic between the networks. LNet routing is a complex topic
and is not discussed in this guide. For more information on LNet routers, see:

http://www.intel.com/content/www/us/en/software/configuring-lnet-routers-file-systems-
lustre-guide.html

Because routing is a function of the network, not of the Lustre file system itself,
lustre_rmmod will effectively assume that if a host has only the lnet module loaded and
running, then it is providing routing services. lustre_rmmod will therefore refuse to unload
the modules unless the lnet service is explicitly unconfigured.

If, on the other hand, the lustre kernel module is also loaded, and there are no file systems
mounted, then lustre_rmmod will assume that the host is either an idle server or client and
will unload the entire stack, including the lnet modules.

If a Lustre OSD is mounted on a host, then the lustre_rmmod command will not unload the
Lustre kernel modules and will report an error:

[root@rh7z-mds1 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
mgspool/mgt 960M 2.2M 956M 1% /lfs/mgt

[root@rh7z-mds1 ~]# lustre_rmmod
 0 UP osd-zfs MGS-osd MGS-osd_UUID 5
 1 UP mgs MGS MGS 7

http://www.intel.com/content/www/us/en/software/configuring-lnet-routers-file-systems-lustre-guide.html
http://www.intel.com/content/www/us/en/software/configuring-lnet-routers-file-systems-lustre-guide.html

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

50

 2 UP mgc MGC192.168.227.11@tcp1 c2108a9c-a62f-6626-48e4-
68f1caf1bce3 5
Modules still loaded:
lustre/mgs/mgs.o lustre/mgc/mgc.o lustre/quota/lquota.o
lustre/fid/fid.o lustre/fld/fld.o lnet/klnds/socklnd/ksocklnd.o
lustre/ptlrpc/ptlrpc.o lustre/obdclass/obdclass.o lnet/lnet/lnet.o
libcfs/libcfs/libcfs.o

[root@rh7z-mds1 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
mgspool/mgt 960M 2.2M 956M 1% /lfs/mgt

From this example, it can be seen that because the MGS is mounted, lustre_rmmod takes
no action to remove the kernel modules. Instead, it shows that there are active services
running on the host and exits. The MGT is still mounted and the MGS is running. The
lustre_rmmod command is a very useful tool for ensuring the correct and safe unloading of
Lustre kernel modules.

Optimizing o2iblnd Performance
In addition to defining the LNet interfaces, the kernel module files can be used to supply
parameters to other kernel modules used by Lustre. This is commonly used to supply tuning
optimizations to the LNet drivers, to maximize performance of the network interface. An
example of this optimization can be seen in Lustre version 2.8.0 and the Intel® EE for Lustre*
software version 3.0 and later, in the file /etc/modprobe.d/ko2iblnd.conf, which
includes the following:

alias ko2iblnd-opa ko2iblnd
options ko2iblnd-opa peer_credits=128 peer_credits_hiw=64
credits=1024 concurrent_sends=256 ntx=2048 map_on_demand=32
fmr_pool_size=2048 fmr_flush_trigger=512 fmr_cache=1

This configuration is automatically applied to the LNet kernel module when an Intel Omni-
Path interface is installed, but not when a different network interface is present.

The following set of options has been defined to optimize the performance of Intel® Omni-
Path Architecture. A detailed description is beyond the scope of this exercise, but the
following summary provides an overview:

• peer_credits=128 - the number of concurrent sends to a single peer

• peer_credits_hiw=64 - Hold in Wait – when to eagerly return credits

• credits=1024 - the number of concurrent sends (to all peers)

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

51

• concurrent_sends=256 - send work-queue sizing

• ntx=2048 - the number of message descriptors that are pre-allocated when the
ko2iblnd module is loaded in the kernel

• map_on_demand=32 - the number of noncontiguous memory regions that will be
mapped into a virtual contiguous region

• fmr_pool_size=2048 - the size of the Fast Memory registration (FMR) pool (must
be >= ntx/4)

• fmr_flush_trigger=512 - the dirty FMR pool flush trigger

• fmr_cache=1 - enable FMR caching

The default values used by Lustre if no parameters are given is:

• peer_credits=8

• peer_credits_hiw=8

• concurrent_sends=8

• credits=64

Optimizations are applied automatically on detection of an Intel® high performance network
interface. Some of the parameters, such as FMR, are incompatible with other devices, such as
Mellanox InfiniBand products using the MLX5 driver. It can be disabled by setting
map_on_demand=0 (the default). The configuration file can be modified or deleted to meet
the specific requirements of a given installation.

In general, the default ko2iblnd settings work well with Mellanox InfiniBand HCAs and no
tuning is normally required. Architecture differences between Intel® fabrics and Mellanox
mean that setting universal defaults is very difficult. Intel® OPA and Intel® True Scale Fabric
have an architecture that favors lightweight, high-frequency message-passing
communications, compared to Mellanox, which has historically placed an emphasis on
throughput-oriented workloads. Because Mellanox InfiniBand has historically been the
dominant high-speed fabric, LNet driver development has naturally tended in the past to align
with this technology, aided by interfaces that are intended to support storage-like workloads.
What the above settings do is tune the LNet driver for communications on Intel® fabrics, if
present.

Note: It is possible to use the socklnd driver on RDMA fabrics if there is an upper-level
protocol that supports TCP/IP traffic, such as the IPoIB driver for InfiniBand fabrics. This use of
socklnd on InfiniBand, RoCE, and Intel® OPA networks is not recommended because it will
compromise the performance of LNet compared to the RDMA-based o2iblnd, and can have
a negative impact on the stability of the resulting network connection. Instead, it is strongly

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

52

recommended that o2iblnd is used wherever possible; it provides the highest performance
with the lowest overheads on these fabrics.

Dynamic LNet Configuration and lnetctl
In versions of Lustre up to and including Lustre version 2.6, if a modification to the LNet
configuration is required, the modules need to be unloaded from the running kernel and then
reloaded to pick up the changes. Because the Lustre kernel module depends on LNet for
communication, the lnet module cannot be unloaded without also affecting the Lustre
kernel module. Because Lustre is a network-based file service, this effectively means that the
whole Lustre software stack for the affected host has to be stopped and then restarted.

Administrators of Lustre file systems will be most familiar with using the modprobe interface
to configure LNet devices (described in an earlier section), and this remains the most common
mechanism.

However, with the release of Lustre version 2.7.0, there is a new utility, called lnetctl, that
offers a more flexible way to manage LNet configuration. With this new utility, LNet can also
be updated while the kernel module is still running, a feature referred to as Dynamic LNet
Configuration (DLC). Amongst other things, Dynamic LNet means tuning can be applied to an
LNet interface on a host without incurring an outage.

The lnetctl utility can completely replace the older modprobe configuration method, but
it is not mandatory; administrators can choose the tools that best match their needs.
lnetctl is straightforward to use and helps to guide administrators to a valid, working
configuration. The lnetctl man page has a comprehensive description of the configuration
commands and options, as does the Lustre Operations Manual.

Dynamic LNet configuration is powerful and versatile, and provides administrators with easy
tools to view and alter the running configuration of LNet on a host.

The LNet modules need to be loaded into the kernel prior to making any configuration
changes using lnetctl. To load the lnet modules, use the modprobe command:

modprobe [-v] lnet

For example:

[root@rh7z-pe ~]# modprobe -v lnet
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/libcfs.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/lnet.ko

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

53

After the modules are loaded, run the lnet configure sub-command to initialize the
LNet service in the kernel:

lnetctl lnet configure [--all]

If the --all flag is used, lnetctl will try to load any LNet interfaces referenced as either
networks or ip2nets options in the modprobe configuration files. Otherwise, lnetctl
lnet configure will not attempt to initialize any networks. When using Dynamic LNet
Configuration to manage the LNet interface for a host, using the --all flag is not
recommended unless one is migrating from a legacy configuration with complex module
options defined.

If there is no other configuration on the server, LNet will have a reference to the loopback
interface and nothing else. For example:

[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up

If the LNet kernel module is not loaded, then lnetctl will report an error when any of the
commands are executed:

[root@rh7z-pe ~]# lnetctl lnet configure
opening /dev/lnet failed: No such device
hint: the kernel modules may not be loaded
configure:
 - lnet:
 errno: -19
 descr: "LNet configure error: No such device"

After loading the kernel module and running the lnetctl lnet configure command,
lnetctl can now be used to create new LNet interfaces on the host. The syntax is explained
in the lnetctl man page, but the basic format is as follows:

lnetctl net add --net <lnet name> --if <net interface> [<options> …]

Here is a simple example that creates a new NID configuration for LNet tcp1 using the TCP/IP
sockets LND on eth1:

lnetctl net add --net tcp1 --if eth1

This next example creates a new NID for an InfiniBand device using the OFED LND:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

54

lnetctl net add --net o2ib0 --if ib0

To delete a NID from the LNet configuration, use the lctl net del command:

lnetctl net del --net <lnet name>

For example:

lnetctl net del --net tcp1

To review the currently configured NIDs, use:

lnetctl net show [--verbose]

For example:

[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up
 - net: tcp
 nid: 192.168.207.2@tcp
 status: up
 interfaces:
 0: eth1

When invoked without any options, the lnetctl command also provides a command shell
for interactive configuration:

[root@rh7z-pe ~]# lnetctl
lnetctl > help

Available commands are:
 lnet
 route
 net
 routing
 set
 import
 export
 stats
 peer_credits
 help

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

55

 exit
 quit
For more help type: help command-name
lnetctl > net
net {add | del | show | help}
lnetctl >

Configuration applied by lnetctl will be lost when the lnet kernel module is unloaded or
the host is rebooted. To preserve the configuration, it can be exported to a file so that it can be
re-imported when the host is restarted.

To save an LNet configuration, use:

lnetctl export [{file}]

If a file is not specified, the configuration is directed to <stdout>. For example:

[root@rh7z-pe ~]# lnetctl export
net:
 - net: lo
 nid: 0@lo
 status: up
 tunables:
 peer_timeout: 0
 peer_credits: 0
 peer_buffer_credits: 0
 credits: 0
 - net: tcp1
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256

The output for the export command is the same as for lnetctl net show --
verbose.

All lnetctl output is formatted in YAML (Yet Another Markup Language), a relatively simple
data structure syntax that is intended to be portable and has the benefit of being

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

56

straightforward to interpret. Libraries for parsing YAML exist for a wide variety of
programming languages.

The export command is a great way to migrate hosts that have been using the kernel
module options files via modprobe to use Dynamic LNet configuration. If a host has a running
configuration that was provided using kernel module options, it can be exported using
lnetctl into the YAML syntax.

There is, of course, a corresponding import command for lnetctl:

lnetctl import [--add|--del|--show] {file}

The file used as input must be formatted in YAML. The import command will also parse
YAML input from <stdin>. The following example shows a simple configuration in YAML
syntax:

net:
 - net: tcp1
 interfaces:
 0: eth1

This YAML configuration is equivalent to the following, expressed as a modprobe option:

options lnet networks="tcp1(eth1)"

When a configuration is exported by lnetctl, it will also include host-specific information
such as the NID, interface status and tunables. However, the basic configuration need only
describe the LNet (e.g. tcp1, o2ib0) and the interfaces, as above.

Note: To provide an effective and simple means to audit a host’s lnet configuration, consider
using the lnetctl --add command to create the lnet configuration for the first time,
then use lnetctl export to capture a persistent record. In that way, one can create a
tailored audit per host to verify that the recorded and running configurations match.

The default behavior of the import command is to add the interfaces described in the
configuration file. The following two commands are therefore equivalent:

lnetctl import --add {file}
lnetctl import {file}

The following transcript shows an example of how the lnetctl import --add command
works:

[root@rh7z-pe ~]# modprobe lnet # load the lnet kernel module
[root@rh7z-pe ~]# lnetctl lnet configure # start the lnet service

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

57

[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up
[root@rh7z-pe ~]# cat lnet.cf
net:
 - net: tcp1
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
[root@rh7z-pe ~]# lnetctl import --add lnet.cf
[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up
 - net: tcp1
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1

If an LNet NID is already configured, then lnetctl import [--add] will return an error.
For example, the following transcript shows an attempt to import a configuration for
tcp1(eth1) on a host where the NID is already configured:

[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up
 - net: tcp
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1
[root@rh7z-pe ~]# cat lnet.cf

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

58

net:
 - net: tcp
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
[root@rh7z-pe ~]# lnetctl import lnet.cf
add:
 - net:
 errno: -17
 descr: "cannot add network: File exists"

The kernel will also report an error to the ring buffer and system console:

Mar 7 04:06:38 rh7z-pe kernel: LNetError: 2678:0:(api-
ni.c:1252:lnet_startup_lndni()) Net tcp1 is not unique

Note that lnetctl export will include the loopback interface in the output that it
generates. Because the loopback NID is always created by the LNet module, regardless of the
supplied configuration, it is not needed in the exported file output and LNet will actually
generate an error when an attempt is made to import a configuration that contains the
loopback NID. The error will not prevent the rest of the configuration file from being
processed, but it does add unneeded noise to the host’s log files and can be disconcerting to
users who are not expecting this behavior. Unfortunately, there is not an easy way to exclude
interfaces from the exported configuration and the loopback NID has to be removed by hand.

The import --del command will attempt to delete any NIDS configured on the host that
match the specification described in the YAML configuration file. If the command is successful,
then it will not return any output to the shell, but there will be an entry logged to the system
console and to syslog. For example, if a file called lnet.cf contained an entry for NID
192.168.207.2@tcp1, then the command:

[root@rh7z-pe ~]# lnetctl import --del lnet.cf

…will create an entry in the kernel ring buffer and syslog similar to the following:

Mar 7 04:46:00 rh7z-pe kernel: LNet: Removed LNI 192.168.207.2@tcp1

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

59

Any mismatched entries will generate an error – that is, if there is an entry in the YAML
configuration that does not match a configured NID on the host, lnetctl will return an error
for each such entry:

[root@rh7z-pe ~]# lnetctl import --del ln-mismatch.cf
del:
 - net:
 errno: -22
 descr: "cannot delete network: Invalid argument"

The lnetctl import --show command is used to identify which of the interfaces
defined in the configuration file are actually active LNet NIDs configured on the host. If there
are no matching NIDs, lnetctl import --show will not return any output.

[root@rh7z-pe ~]# lnetctl net show
net:
 - net: lo
 nid: 0@lo
 status: up
[root@rh7z-pe ~]# cat lnet.cf
net:
 - net: tcp1
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
[root@rh7z-pe ~]# lnetctl import --show lnet.cf
[root@rh7z-pe ~]# lnetctl import --add lnet.cf
[root@rh7z-pe ~]# lnetctl import --show lnet.cf
net:
 - net: tcp1
 nid: 192.168.207.2@tcp1
 status: up
 interfaces:
 0: eth1

In the above example, the lnet kernel module on the host initially has only the loopback NID
configured. When lnetctl import --show is run for the first time, it does not find a NID
on the host that corresponds to the configuration, so it does not return any matches in its

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

60

output. After the configuration is added to LNet, the second invocation of lnetctl import
--show lists a match. The lnetctl import --show command is most useful when
debugging more complex configurations with the YAML syntax.

LNet automated startup and shutdown using sysvinit or systemd

Lustre provides a script for managing startup and shutdown of LNet on a host. It is written for
use with sysvinit, and follows the Linux Standards Base format.

RHEL 7 has a new system and service management application used to control the startup and
shutdown of services called systemd. This new application replaces the sysvinit service that is
used in RHEL 6 and previous generations of Red Hat’s operating system.

Currently, there is no direct support in Lustre for systemd, insofar as there is no specific
systemd service unit for Lustre or LNet, but the lnet sysvinit script can be used by systemd
without modification. In fact, RHEL 7 still includes the chkconfig and service tools in
support of legacy init scripts.

Systemd is more powerful and flexible than sysvinit, and is able, for example, to support
parallelism in the system boot and shutdown processes in a way that the venerable init
process was unable to accomplish. Naturally, systemd is also far more complex than sysvinit,
but it does maintain backwards compatibility with the older init scripts. This is good news for
developers and documentation writers that would otherwise feel the need to editorialize on
the merits or otherwise of this new, arbitrarily complex replacement for something that was
already working.

The LNet init script is provided as a convenience to Lustre users and is not essential to
operation of a Lustre environment. It is able to detect whether or not a host is using Dynamic
LNet and will automatically load a configuration if it is found. Otherwise, the lnet module will
be loaded with a static configuration based on module options recorded in the
/etc/modprobe.d directory, or with the lnet default configuration if no module options are
found.

To load lnet on system boot:

chkconfig lnet on

To start the lnet module manually:

service lnet start

To stop lnet:

service lnet stop

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

61

Running lnet as a separate service in this way is most useful when the host is configured as an
LNet router. This is because routers do not run any other Lustre services: they only require the
LNet kernel module, not the full Lustre software stack.

The lnet init script is also recommended when Dynamic LNet Configuration (DLC, i.e., the
lnetctl command) is used to configure the LNet interfaces of a host. In the DLC, starting the
LNet service needs to be separated from the startup of Lustre services (whether for server or
client), because DLC explicitly imports the LNet configuration using the lnetctl import
command as a separate step after the module is loaded; the configuration is not imported at
the same time as the module load, which is the case with static LNet configurations.

If lnetctl is available on the target, and a YAML configuration is stored in
/etc/sysconfig/lnet.conf, then the init script will load and configure the lnet
kernel module. The simplest way to create the configuration file, is to configure LNet, then use
the lnetctl export command to save the configuration:

lnetctl export /etc/sysconfig/lnet.conf

It is not always necessary to explicitly start and stop LNet on system boot or shutdown, and in
fact one of the benefits of using the old static kernel module options configuration via
modprobe is that the LNet configuration is automatically included. This is most obviously
useful when the host is running Lustre services in addition to Lnet; loading the Lustre kernel
module will cause its dependencies to be loaded automatically as well, including the LNet
module. So with a single command, one can load the entire Lustre software stack.

However, reliance on implicit dependencies can also have negative consequences. For
example, fault diagnosis and auditing can be more complex, as the relationship between
modules with respect to startup and shutdown sequences may be poorly defined. And it can
be beneficial to an administrator to have some assurance that the networking is correctly
configured and working before committing to start services that depend on the network.

Reliance on implicit dependencies can also affect shutdown. If an assumption is made about
the shutdown sequence of services, then it is possible for a service to be stopped out of
sequence, causing a dependency to hang on shutdown rather than cleanly exit. On some
releases of the Open Fabrics Enterprise Distribution (OFED) InfiniBand driver software, there is
a shutdown script that is by default scheduled to execute while the LNet driver is still loaded.
For these releases, because LNet depends on the OFED module, the OFED module will not be
be unloaded, but because the module is not be unloaded, the init script will not exit, causing
the host to hang on shutdown or reboot. To resolve this issue, ensure that the LNet init script
is scheduled to execute prior to other network driver init scripts during shutdown.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

62

Multi-rail LNet Topologies
Lustre does not have comprehensive support for single-fabric, multi-rail networks, although
LNet can be configured to take advantage of bonded network interfaces when presented as a
single device by the underlying transport. Be aware that devices using OFED drivers or the in-
kernel InfiniBand drivers will only support active-passive, or failover, network bonding, which
means that only one physical interface is active at any one point in time.

As a consequence, while it is possible to use a single network interface to join multiple LNets,
lnetctl does not allow the inverse: one cannot use lnetctl to join multiple network interfaces to
a single LNet. This behavior is consistent with best practices for LNet, because multi-rail
configurations can lead to inconsistent routing across interfaces configured in this way.

A host can have multiple independent LNet interfaces configured and connected to separate
networks. This enables servers to be directly connected to multiple fabrics simultaneously, or
for a Lustre client to mount file systems that have been presented over different fabrics. It is
only when a host tries to connect multiple interfaces to the same fabric that the limitations on
multi-rail apply.

Multiple InfiniBand connections on a single fabric and configured into a bonded interface are
currently only supported for the purposes of improving fault-tolerance, not for increasing
throughput.

The ko2iblnd LND provides support for InfiniBand network device bonding in an active-
passive configuration, for the purposes of high availability (HA). Because the bonded interface
is active-passive, there is no improvement in throughput performance, so the feature is only
suitable for use in situations where service availability is a mandated requirement (mission-
critical platforms).

With this form of bonding, the server actively uses one interface in the bonded group at a
time. If the active interface fails, traffic fails over to the remaining interface in the bond group.

This form of InfiniBand bonding support is distinct from the use of bonded network interfaces
with ksocklnd, which runs over TCP/IP sockets. For Ethernet devices, socklnd is used,
whether for bonded network connections or single interfaces.

Enabling InfiniBand (o2ib) Bonding
To enable failover support in LNet for bonded InfiniBand (or other network interfaces
supported by OFED), add the following option into the kernel modules configuration:

options ko2iblnd dev_failover=1

The common convention is to create files in the directory /etc/modprobe.d containing
options for loadable kernel modules.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

63

With this option enabled, one can refer to the bonded network interface in the LNet
configuration. For example:

options lnet networks=o2ib0(bond1)

The following example, based on a RHEL / CentOS operating platform, illustrates a bonded
network configuration for a Lustre system with two InfiniBand interfaces.

/etc/modprobe.d/lustre.conf:
alias ibbond bonding
options lnet networks=o2ib0(ibbond)
options ko2iblnd dev_failover=1

/etc/sysconfig/network-scripts/ifcfg-ibbond:
DEVICE=ibbond
BOOTPROTO=none
IPADDR=10.0.0.11
NETMASK=255.255.0.0
ONBOOT=yes
TYPE=Bonding
USERCTL=no
MTU=2044
BONDING_OPTS="mode=1 miimon=100 primary=ib0"

/etc/sysconfig/network-scripts/ifcfg-ib0:
DEVICE=ib0
USERCTL=no
ONBOOT=yes
MASTER=ibbond
SLAVE=yes
BOOTPROTO=none
TYPE=InfiniBand

/etc/sysconfig/network-scripts/ifcfg-ib1:
DEVICE=ib1
USERCTL=no
ONBOOT=yes
MASTER=ibbond
SLAVE=yes
BOOTPROTO=none
TYPE=InfiniBand

The ibbond alias name is arbitrary, but is more descriptive than e.g. bond0, which is useful
when there are multiple networks that the host is connected to. It is common to encounter

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

64

installations where there are both bonded Ethernet and bonded IB interfaces on the same
host.

Restrictions for Multi-rail LNet Topologies

Because LNet does not natively support multi-rail topologies, i.e., multiple network interfaces
connected to the same subnet, attempts to assign two interfaces to the same LNet will fail.

For example:

options lnet networks="tcp0(eth0),tcp0(eth1)"

The above configuration will cause a syntax error when the kernel module is loaded and an
attempt is made to start the network. The following transcript shows the behavior when this
unsupported configuration is attempted:

[root@rh7z-pe ~]# modprobe -v lnet
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/libcfs.ko
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/lnet.ko
networks="tcp0(eth0),tcp0(eth1)"
[root@rh7z-pe ~]# lctl network up
LNET configure error 22: Invalid argument

The kernel ring buffer will have a record of the error reported by the LNet driver, for example:

[root@rh7z-pe ~]# dmesg | tail -1
[6620.324053] LNetError: 111-1: Duplicate network specified: tcp

The kernel will also log the error in the syslog:

[root@rh7z-pe ~]# tail -1 /var/log/messages
Feb 21 21:11:28 rh7z-pe kernel: LNetError: 111-1: Duplicate network
specified: tcp

Similarly, one cannot specify multiple interfaces within the parentheses associated with an
LNet LND. In the following example, only the first interface, eth0, will be used to create an
NID for the host; the second parameter, eth1, will be ignored:

eth0 inet 192.168.207.2/24
eth1 inet 192.168.207.111/24
[root@rh7z-pe ~]# modprobe -v lnet
insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/libcfs.ko

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

65

insmod /lib/modules/3.10.0-
327.13.1.el7_lustre.x86_64/extra/kernel/net/lustre/lnet.ko
networks="tcp0(eth0,eth1)"
[root@rh7z-pe ~]# lctl network up
LNET configured
[root@rh7z-pe ~]# lctl list_nids
192.168.207.2@tcp

LNet Configuration Edge Case Behaviors and Side-Effects
If there is no configuration defined, either through a modprobe options file or a YAML
description for lnetctl, LNet will create a NID on the first network interface detected by the
OS (usually eth0) when the lnet kernel module is loaded and the LNet service is brought
online with lctl network up.

The ip2nets option for the LNet kernel module is a list of network definition and IP-match
pairs. These pairs are processed in sequence. If there is a match for a local IP address, then
that network definition is used for the node, and further pairs for that network are ignored.
Multiple networks can be matched.

For example:

ip2nets="tcp(eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

This set of rules is used to create network tcp0 (the 0 is implied, since the LNet network
number is omitted). If a local IP address matches 134.32.1.[4-10/2], meaning it is one of
134.32.1.4, 134.32.1.6, 134.32.1.8, or 134.32.1.10, then tcp0 is created using
interface eth2. Otherwise the second pair is used, and because "*.*.*.*" matches every
address, it always creates tcp0 on eth1.

Note that ip2nets will use the IP address definition to match the host, not the interface. The
ip2nets definition will not verify or otherwise qualify that the IP address matched is associated
with the physical network interface in the specification. This means that a pattern can match
the IP address of an interface that will not actually be used for LNet communications. From the
above example, if a host has an interface eth3 with IP address 134.32.1.4, then that would be
considered a match good enough to trigger the creation of the NID on tcp0(eth2).

Also, if the device is not specified in an ip2nets definition, LNet will pick up the first available
device rather than the device that matches the IP address pattern. For example, if the IP
address pattern matches the IP address on eth1, but no device is mentioned in the ip2nets
definition, then eth0 will get an LNet configuration. As an illustration, consider a host with a
10.70/16 IP address on eth0, and a 192.168/24 address on eth1. The following ip2nets
definition will create a NID on eth0, even though the pattern matches the eth1 device:

options lnet ip2nets="tcp0 192.168.*.*"

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

66

If, instead, the device is included in the spec, then the configuration will be applied to eth1:

options lnet ip2nets="tcp0(eth1) 192.168.*.*"

The definition is interpreted as follows: configure the first socklnd NID that is found on the
host where there is an IP Address matching 192.168.*.*. In this respect, it's consistent with
the behavior of the much simpler networks syntax in the following example:

options lnet networks="tcp0"

This example creates a NID on the first network device detected by the operating system,
because no device was specified. In common with the ip2nets parameter, the lack of definition
of a specific network interface means that LNet will configure the first interface that was
detected by the host operating system.

If an interface is explicitly specified as well as a pattern, the interface matched using the IP
pattern will be compared against the explicitly defined interface. For example, if the ip2nets
definition is “tcp(eth0) 192.168.*.3” and there exists in the system a device eth0
with IP address 192.0.19.3 and a device eth1 with IP address 192.168.3.3, then
configuration will fail, because the pattern contradicts the interface specified. A clear warning
will be displayed if inconsistent configuration is encountered.

If the LNet number for a NID is 0 (zero), for example, tcp0, or o2ib0, the number will
sometimes be omitted from command output, and can usually be omitted from configuration
files as well (although it is not recommended -- for reasons of clarity alone, it is recommended
to supply as much information as is reasonable when creating configuration information).

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

67

Lustre Storage Devices
All persistent information for a Lustre file system is contained on block storage file systems
distributed across a set of storage servers. Lustre’s architecture is built on a distributed object
storage model where back-end block storage is abstracted by an API called the Object
Storage Device, or OSD. The OSD enables Lustre to use different back-end file systems for
persistence, of which LDISKFS (based on EXT4) and ZFS are the two currently supported. The
term OSD is also used as a generic term for an instance of a Lustre storage target, such as an
MGT, MDT or OST. For example, if an action can be applied to any storage target, the term
OSD will normally be used, rather than writing out all three types of storage.

Lustre objects can either be data objects holding a byte stream for file data, or index objects,
which are typically used for metadata such as directory information.

A single OSD instance corresponds to precisely one back-end storage volume. Physical
devices are assembled into logical units or volumes and these are used to create OSD
instances. Lustre has three types of OSD instance, corresponding to the types of Lustre
services. These are:

• Management Target (MGT): used by the Management Service (MGS) to maintain file
system configuration data used by all hosts in the Lustre environment.

• Metadata Target (MDT): used by the Metadata Service (MDS) to record the file system
name space (file and directory information for an instance of Lustre)

• Object Storage Target (OST): used by the Object Storage Service (OSS) to record data
objects representing the contents of files.

The term OSD can also used as a generic term for a physical Lustre object store, in place of
MGT, MDT or OST. In this case, what is meant is any storage device or LUN that has been
formatted with Lustre on-disk data structures.

Formatting Lustre Storage
Lustre storage has to be formatted for each supported service: MGT, MDT or OST. The
mkfs.lustre command is supplied with the Lustre server software for this purpose. The general
command syntax is as follows:

mkfs.lustre { --mgs | --mdt | --ost } \
 [--reformat] \
 [--fsname <name>] \
 [--index <n>] \
 [--mgsnode <MGS NID> [--mgsnode <MGS NID> …]] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

68

 [--backfstype=zfs] \
 [--mkfsoptions <options>] \
 { <pool name>/<dataset> [<zpool specification>]] | <device> }

Formatting storage targets is covered in detail later on; for now, just be aware that all Lustre
OSDs are created using the same mkfs.lustre command-line application.

The purpose of the storage target is determined at format time through selection of one of --
mgs, --mdt or --ost. The software also defines the extent to which a storage target is to be
made highly-available, through the --failnode or --servicenode flags. For MDTs and
OSTs, the administrator must supply a name (--fsname) for the Lustre file system to which
they are allocated, and an index number (--index), which is a unique non-negative integer
within the file system storage population. Additional formatting options can be supplied to the
underlying backing store file system with the --mkfsoptions parameter; EXT4 and ZFS file
system datasets options can be supplied, but note that zpool options cannot be included
directly using mkfs.lustre.

When working with ZFS-based storage, one can use the mkfs.lustre command to
assemble the ZFS pools, and also create the file system datasets that will contain the Lustre
on-disk data. In this case, the ZFS pool specification is supplied along with the pool name and
dataset name. However, as will be explained later in this chapter, this approach is not always
suitable when working with production configurations because it does not allow an
administrator to set or override properties of the ZFS pool.

Defining Service Failover (--failnode vs --servicenode)

All Lustre file system storage services are associated with block storage targets that contain a
set of data for a given file system. The content varies by service type, but the sum of all of the
data on all of the storage targets represents each file system as a whole. Loss of access to a
service, for example because the host running the service has crashed, effectively means loss
of access to the associated storage targets and the data they contain.

Because data is not replicated in Lustre (due to the large performance and latency overheads
that replication entails), loss of a server can mean loss of access to data unless some other
provision is made to ensure continuity. To protect against server loss, Lustre makes use of a
standard high availability paradigm called failover, whereby a service can be run on one of a
set of hosts, and if it fails, one of the other hosts in the set can restart the services that were
running on the host that failed. For this to work with Lustre, the storage targets must be
accessible by each host in the failover group. This is accomplished by connecting the servers
to one or more arrays of stand-alone, shared storage (i.e., storage that is external to the server
and contained in its own chassis).

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

69

Lustre services are usually grouped into HA pairs – two servers connected to a common pool
of shareable block storage.

Failover is an attribute of each Lustre storage target, and is written into each storage target’s
configuration. Each target contains a list of the host NIDs that are able to mount the storage
and present it to the network. This list of NIDs is registered with the MGS on mount, so that
the clients know which NIDs to connect to. If one of the NIDs does not respond, the client
service will try the next NID in the list for that service. When it runs out of unique NIDs, the
client will retry the list in order from the top until a connection is made. By using failover with
shared storage, Lustre is resilient to failures and clients are able to tolerate outages in server
infrastructure.

There are two ways to define the failover configuration for a Lustre storage target:

1. failnode: this is the original method for defining failover groups, and it creates a
configuration where there is a primary or preferred host for a given target, and one or
more failover hosts.

2. servicenode: this is a newer option for defining the set of hosts where a given
target can be mounted. With servicenode, there is no defined primary node for a
service. Notionally, all hosts are equally able to run a given service, with no defined
preferred primary. This is the recommended method for defining failover.

Each method is valid and supported by Lustre, but the methods are mutually incompatible. A
storage target can contain either a failnode configuration or a servicenode configuration, but
not both.

Using the failnode configuration syntax, the administrator lists the set of failover nodes that a
storage target can be accessed from, but does not explicitly define the primary node. The
primary node is not determined until the first time that a formatted storage target is mounted,
at which point the configuration is updated with the NID of the server where the mount
command is executed.

This means that the primary node must be online and available for service when the storage
target is mounted the first time. It also means that there is potential for mistakes to creep into
process execution, because the failnode configuration is dependent on a very specific start-up
sequence for the first time mount of a Lustre device.

Also note that the tunefs.lustre command will only list the hosts listed as “failnodes” in
the command line, and this does not get updated with information about the primary node,
even after the OSD is mounted. For example:

[root@rh7z-mds1 ~]# mkfs.lustre --reformat --mgs --failnode
192.168.227.12@tcp1 --backfstype=zfs mgspool/mgt

 Permanent disk data:
Target: MGS

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

70

Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x64
 (MGS first_time update)
Persistent mount opts:
Parameters: failover.node=192.168.227.12@tcp1

mkfs_cmd = zfs create -o canmount=off -o xattr=sa mgspool/mgt
Writing mgspool/mgt properties
 lustre:version=1
 lustre:flags=100
 lustre:index=65535
 lustre:svname=MGS
 lustre:failover.node=192.168.227.12@tcp1
[root@rh7z-mds1 ~]# tuner^C
[root@rh7z-mds1 ~]# ^C
[root@rh7z-mds1 ~]# tunefs.lustre --dryrun mgspool/mgt
checking for existing Lustre data: found

 Read previous values:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x44
 (MGS update)
Persistent mount opts:
Parameters: failover.node=192.168.227.12@tcp1

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x44
 (MGS update)
Persistent mount opts:
Parameters: failover.node=192.168.227.12@tcp1

exiting before disk write.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

71

The servicenode syntax defines a list of peers equally capable of mounting the storage
target and there is no implied primary host. Any one of the defined peers can mount the
storage and start the services for that storage. This method is much easier to implement and
maintain, because all server NIDs are written directly into the configuration – there is no
ambiguity about which hosts are associated with the storage target.

It is recommended that the servicenode method be used for creating HA failover
configurations for Lustre storage targets, given the increased flexibility in adding new services,
explicit definition of the hosts that are able to run the service, and the ability to better exploit
the resource management features of HA software frameworks like Pacemaker.

Lustre Device and Mount Point Naming Conventions
There are three device types for Lustre storage: MGT, MDT and OST. These correspond to the
MGS, MDS and OSS Lustre services, respectively. The following guidance has been developed
as a recommended naming convention for Lustre’s persistent storage components:

Service
Name

ZFS Pool Name* ZFS Dataset
Name*

Mount Point

MGS mgspool mgt /lustre/mgt

MDS <fsname>mdt<n>pool mdt<n> /lustre/<fsname>/mdt<n>

OSS <fsname>ost<n>pool ost<n> /lustre/<fsname>/ost<n>

Client n/a n/a /lustre/<fsname>

* ZFS Pool Name and Dataset name only apply to ZFS-based storage targets.

Note that the Lustre file system name is limited to eight characters. Yes, like DOS.

The naming of pools, datasets and mount points presented here is provided as a
recommendation only. Administrators can make their own choices about naming. The
convention chosen here has been designed to provide a standard for describing the
components that is unambiguous and easy to interpret.

The MGT is the persistent data store for the MGS, which is a global resource, and the only
Lustre service that is independent of any specific Lustre file system. As such, the ZFS dataset
name and file system mount point do not make reference to a Lustre file system instance.

All other Lustre storage devices should make reference to the file system name.

ZFS OSDs
When working with ZFS OSDs, one can bundle the entire process into a single command using
mkfs.lustre, or split the work into two smaller, more finely-controlled steps where

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

72

creation of the zpool is separated from formatting the OSD. Both methods are discussed in
this section, however we recommend creating the ZFS storage pools separately from
formatting the Lustre OSD. By separating these tasks, it is easier to apply tuning options to
ZFS, and it becomes clearer which options affect ZFS and which affect Lustre.

Furthermore, for high-availability configurations where the ZFS volumes are kept on shared
storage, the zpools must be created independently of the mkfs.lustre command in order
to be able to correctly prepare the zpools for use in a high-availability, failover environment.

ZFS Storage Pool Basics
ZFS separates storage volume definition from the file system specification, providing two
separate tools to manage each. The zpool command is used to define the volumes and
manages the physical storage assets, while the zfs command provides management of the ZFS
file system datasets themselves.

A ZFS pool is comprised of one or more entities called Virtual Devices or vdevs. There are two
basic categories of vdev: physical and logical. A physical vdev can be a complete physical
storage device such as a disk drive, a partition on a disk drive, or a file. For Lustre file systems,
it is strongly recommended that whole disks are used, with no pre-defined partition table.

Logical vdevs are assemblies of physical vdevs, arranged into groups, usually for the purpose
of providing additional storage redundancy. Logical vdevs include mirrors and RAIDZ data
protection layouts. There can be many vdevs assigned per ZFS pool, and data is written in
stripes across the vdevs in the pool. The following examples illustrate how ZFS pools are
created.

Simple stripe across two physical vdevs:
zpool create tank sda sdb

The result of this command is the creation of a pool named tank containing two physical
vdevs, sda and sdb, in a stripe (equivalent to RAID 0).

Two-disk mirror:
zpool create tank mirror sda sdb

Striped mirrors (equivalent to RAID 1+0):
zpool create tank mirror sda sdb mirror sdc sdd mirror sde sdf

The above example has a single pool consisting of three mirrored vdevs. Data is striped across
the three mirrors.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

73

Pool with single RAIDZ2 vdev (equivalent to RAID 6):
zpool create tank raidz2 sda sdb sdc sdd sde sdf

Pool with two RAIDZ2 vdevs (equivalent to RAID 6+0):
zpool create tank raidz2 sda sdb sdc sdd sde sdf \
 raidz2 sdg sdh sdi sdj sdk sdl

Formatting a ZFS OSD using only the mkfs.lustre command

The basic syntax for creating a ZFS-based OSD using only the mkfs.lustre command is as
follows:

mkfs.lustre --mgs | --mdt | --ost \
 [--reformat] \
 [--fsname <name>] \
 [--index <n>] \
 [--mgsnode <MGS NID> [--mgsnode <MGS NID> …]] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset> \
 <zpool specification>

The servicenode and failnode command-line options are used to identify the NIDs of
the hosts that are able to run the Lustre service in a high-availability configuration. The
options servicenode and failnode are mutually incompatible: choose one or the other
when defining the HA failover hosts that are expected to provide the Lustre service.

The servicenode syntax defines all of the NIDs of all of the hosts that will be able to run
the Lustre service. All of the hosts must be referenced, including the host that is expected to
be the preferred primary for running the service (this is usually the host where the format
command is running).

This example uses the --servicenode syntax to create an MGT that can be run on two
servers as an HA failover resource:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
 --servicenode 192.168.227.11@tcp1 \
 --servicenode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt mirror sda sdc

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

74

The command line formats a new MGT that will be used by the MGS for storage. The
command further defines a mirrored zpool called mgspool consisting of two devices, and
creates a ZFS dataset called mgt. Two server NIDs are supplied as service nodes for the MGS,
192.168.227.11@tcp1 and 192.168.227.12@tcp1.

The failnode syntax is similar, but is used to define only a failover target for the storage
service. The failnode syntax is an older method for creating services and implicit in the
definition of the storage service is the notion of a primary server and one or more secondary,
or failover servers. Only the failover servers are included in the command-line definition. The
primary is only written to the storage service configuration the first time that the formatted
device is mounted. Whichever host mounts the storage first will have its NID written in as the
effective primary server.

Example format command with the failnode syntax:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
 --failnode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt mirror sda sdc

Here, the failover host is identified as 192.168.227.12@tcp1, one MDS server in an HA
pair (and which, incidentally, has the hostname rh7z-mds2). The mkfs.lustre command
was executed on rh7z-mds1 (NID: 192.168.227.11@tcp1), and the mount command
must also be run from this host when the MGS service starts for the very first time. Otherwise,
the primary NID will not be written to the storage configuration, and the failover mechanism
will not work as expected. Note that if after formatting the storage, MGT is mounted on
192.168.227.12@tcp1, then both the primary NID and the failover NID would be the
same. The intended primary host, 192.168.227.11@tcp1, would be excluded from being
able to run the MGS service.

Wherever possible, use the servicenode syntax to define the high availability configuration
for Lustre services.

The mkfs.lustre command can pass additional command flags to the underlying file
system creation software using the --mkfsoptions flag. The command was originally used
to pass through options for EXT-based storage, but can also be used in a limited way for ZFS.
The --mkfsoptions parameter allows a user to pass through commands that are added to
the zfs command line utility, but cannot be used to modify the zpool command line
invocation. There are times when the zpool command defaults are not sufficient to support a
production Lustre file system, especially when the storage system is on shared drives and
there is a failover configuration in place.

For this reason, it is recommended that ZFS pools always be created explicitly and separately
from the mkfs.lustre command.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

75

Formatting a ZFS OSD using zpool and mkfs.lustre

To create a ZFS-based OSD suitable for use as a high-availability failover storage device, first
create a ZFS pool to contain the file system dataset, then use mkfs.lustre to actually
create the file system inside the zpool:

zpool create [-f] -O canmount=off \
 [-o ashift=<n>] \
 -o cachefile=/etc/zfs/<zpool name>.spec | -o cachefile=none \
 <zpool name> <zpool specification>

mkfs.lustre --mgs | --mdt | --ost \
 [--reformat] \
 [--fsname <name>] \
 [--index <n>] \
 [--mgsnode <MGS NID> [--mgsnode <MGS NID> …]] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset name>

For example:

Create the zpool
zpool create -O canmount=off \
 -o cachefile=none \
 mgspool mirror sda sdc

Format the Lustre MGT
mkfs.lustre --mgs \
 --servicenode 192.168.227.11@tcp1 \
 --servicenode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt

After formatting, use tunefs.lustre to review the newly created OSD. The command line
format is:

tunefs.lustre --dryrun <pool name>/<dataset name>

For example:

[root@rh7z-mds1 ~]# tunefs.lustre --dryrun mgspool/mgt
checking for existing Lustre data: found

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

76

 Read previous values:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1044
 (MGS update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1044
 (MGS update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

Use the zfs get command to retrieve comprehensive metadata information about the file
system dataset and to confirm that the Lustre properties have been set correctly:

zfs get all | awk '$2 ~ /lustre/'

For example:
[root@rh7z-mds1 ~]# zfs get all | awk '$2 ~/lustre/'
mgspool/mgt lustre:version 1 local
mgspool/mgt lustre:index 65535 local
mgspool/mgt lustre:failover.node 192.168.227.11@tcp1:192.168.227.12@tcp1 local
mgspool/mgt lustre:svname MGS local
mgspool/mgt lustre:flags 4196 local

Only the zpool is created directly by the administrator. The mkfs.lustre command is still
used to control creation of the file system dataset from the pool. Additional properties of the
data set can be applied by mkfs.lustre using the --mkfs.options flag. The
mkfs.lustre command will fail with an error if an attempt is made to format an existing
dataset:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
> --servicenode 192.168.227.11@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --backfstype=zfs mgspool/mgt

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

77

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1064
 (MGS first_time update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

checking for existing Lustre data: not found
mkfs_cmd = zfs create -o canmount=off -o xattr=sa mgspool/mgt
 cannot create 'mgspool/mgt': dataset already exists

mkfs.lustre FATAL: Unable to create file system mgspool/mgt (256)

mkfs.lustre FATAL: mkfs failed 256

One can force the dataset to be formatted as a Lustre OSD by adding the --reformat flag
to mkfs.lustre:

[root@rh7z-mds1 ~]# mkfs.lustre --reformat --mgs \
> --servicenode 192.168.227.11@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --backfstype=zfs mgspool/mgt

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1064
 (MGS first_time update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

mkfs_cmd = zfs create -o canmount=off -o xattr=sa mgspool/mgt
Writing mgspool/mgt properties
 lustre:version=1
 lustre:flags=4196
 lustre:index=65535
 lustre:svname=MGS
 lustre:failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

78

Alternatively, destroy the dataset and have mkfs.lustre recreate it:

zfs destroy <pool name>/<dataset name>

mkfs.lustre --mgs \
 [--servicenode <NID> [--servicenode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset>

If the dataset is reformatted, then previously applied properties will obviously be lost.
Remember to include any ZFS-specific properties by making use of the --mkfsoptions
flag.

Working with ZFS Imports

The assembly and incorporation of a ZFS storage pool into the operating system run-time
environment is managed by a command called zpool import. Existing pools are
incorporated into a host’s run-time environment using the zpool import command, and
can be released using the zpool export command. The basic syntax to import a pool is:

zpool import [-f] [-o <properties>] <pool name>

This technique enables storage pools to migrate between hosts in a consistent and reliable
manner. Any host that is connected to a pool of storage in a shared enclosure can import the
ZFS pool, making it straightforward to facilitate high availability failover.

A ZFS storage pool can only be imported to a single host at a time. If a pool has been imported
onto a host, it must be exported before it can be safely imported to a different host. If a zpool
in a shared storage enclosure is simultaneously imported to more than one host, the pool data
will be corrupted. To reduce the risk of this happening, all servers must be configured with a
unique hostid that is used to label each zpool with the current active host that has imported
the pool. Please see “Protecting File System Volumes from Concurrent Access (Multi-mount
Protection)” for how to enable and verify that this protection is properly configured.

If the pool is not exported, it will appear to still be active on its original host, even if that host is
offline (regardless of whether it was powered off cleanly or crashed). In this case, the import
will fail, provided that the hostids for the servers have been correctly configured, and the
import will need to be forced.

If an import fails, it could mean that the pool is already imported on a different host. Before
trying to force the importation of a pool onto a host, check that the storage has not already
been imported to another system. If the zpool has been configured correctly, and all hosts

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

79

have valid “hostids”, then the import command will indicate the host that last had the pool
imported. The remainder of this chapter will outline ways to verify the status of a ZFS pool.

The zpool import command can be used to list pools that are not currently imported on
the host, without actually performing any import:

zpool import [-d <dev directory>] [-D]

When invoked using this syntax, zpool import lists the pools that are potentially available
for import, and will ignore zpools that are already imported to the host. The -d (lower case)
flag is used to specify a directory containing block devices, for example /dev/disk/by-id.
This flag is not often required. The -D (upper case) flag is used to list zpools that have been
destroyed.

In the following example, the import fails because the zpool cannot be found:

[root@rh7z-mds2 system]# zpool import demo-mdtpool
cannot import 'demo-mdtpool': no such pool available

This could be because the zpool does not exist, or because the pool has the wrong name, but
it could also mean that the pool has been destroyed. To check, run zpool import without
any other options to get a list of the zpools that the operating system can locate, that are not
already imported to the host:

[root@rh7z-mds2 system]# zpool import
 pool: mgspool
 id: 2186474330384511828
 state: ONLINE
 status: The pool was last accessed by another system.
 action: The pool can be imported using its name or numeric
identifier and
 the '-f' flag.
 see: http://zfsonlinux.org/msg/ZFS-8000-EY
 config:

 mgspool ONLINE
 mirror-0 ONLINE
 sda ONLINE
 sdc ONLINE

The output only lists a single zpool, called mgspool. There is no obvious sign of any other
configured zpool available to the operating system. If the list of ZFS pools does not match
expectations, perhaps one or more of the pools has been deleted. Check using zpool
import -D:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

80

[root@rh7z-mds2 system]# zpool import -D
 pool: demo-mdtpool
 id: 6641674394771267657
 state: ONLINE (DESTROYED)
 action: The pool can be imported using its name or numeric
identifier.
 config:

 demo-mdtpool ONLINE
 mirror-0 ONLINE
 scsi-0QEMU_QEMU_HARDDISK_EEMDT0001 ONLINE
 scsi-0QEMU_QEMU_HARDDISK_EEMDT0000 ONLINE

From this, it can be seen that at some point in the past, another zpool existed on the system,
but that it was destroyed. It is possible to recover a destroyed pool as follows:

zpool import -D <pool name>

Provided that the storage from which the pool was originally assembled has not been
modified or the data over-written, the pool will be re-assembled and can be used as normal.

The zdb command can be helpful in determining where a zpool has been imported. If an
exported pool cannot be imported cleanly into a host, use zdb to check the MOS
configuration to see if it is perhaps “registered” with another host:

zdb -e <zpool name> | awk '/^MOS/,/^$/{print}'

The hostid and hostname fields will indicate the last host known to have imported the
pool or dataset. For example:

[root@rh7z-mds1 ~]# zdb -e mgspool | awk '/^MOS/,/^$/{print}'
MOS Configuration:
 version: 5000
 name: 'mgspool'
 state: 0
 txg: 34351
 pool_guid: 11089712772589408485
 errata: 0
 hostid: 1386610045
 hostname: 'rh7z-mds2'
 vdev_children: 1
 vdev_tree:
…
<output truncated for brevity>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

81

In this example, it would be prudent to check the host rh7z-mds2 to see if the pool has been
imported there before taking any further action.

Lustre and ZFS File System Datasets
When working with ZFS-based storage, each Lustre storage target is held on a file system
dataset inside a ZFS pool. The dataset will be created by Lustre when the storage is formatted
with the mkfs.lustre command and --backfstype=zfs has been selected. While it is
possible to create multiple file system datasets within a single storage pool and use those for
Lustre, this is not recommended: each dataset will compete for the pool’s resources, affecting
performance and making it more difficult to balance IO across the storage cluster. Also bear in
mind that the unit of failover is the ZFS pool, not the dataset. One cannot migrate a dataset in
a pool without migrating the entire pool. For example, if the MGT and MDT0 are created within
the same ZFS pool, then the MGS and MDS services will always have to run on the same host,
because the pool can only be imported to one host at a time. The MGS therefore loses its
independence from the MDS for MDT0.

Don’t use the zfs command directly to create datasets that will be used as Lustre targets. ZFS
datasets created independently of the mkfs.lustre command will have be unmounted or
destroyed and then reformatted. The properties of Lustre file system datasets can be altered
after formatting or can be supplied as options to the mkfs.lustre command by using the -
-mkfsoptions flag. Refer to the mkfs.lustre manual page for details.

If a ZFS dataset already exists and is not unmounted, the mkfs.lustre command will not
report an error when an attempt is made to format, but it will not be able to format the
volume. The only immediate indication of a failure is that the mkfs.lustre output will be
truncated:

[root@rh7z-mds1 ~]# zpool create -O canmount=off -o cachefile=none
mgspool mirror sda sdc

Create a file system dataset using the default properties.
The dataset will be automatically mounted once created.
[root@rh7z-mds1 ~]# zfs create mgspool/mgt

Try to format the dataset for Lustre.
The command will fail but will not report an error.
[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
> --servicenode 192.168.227.11@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --backfstype=zfs \
> mgspool/mgt

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

82

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1064
 (MGS first_time update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1
[root@rh7z-mds1 ~]#

Administrators must use the mount.lustre command whenever starting Lustre services,
and the standard umount command when stopping services.

For the purposes of comparison, let’s examine what the mkfs.lustre command itself is
doing when it creates/formats a ZFS OSD. The following example command output shows an
MGT being created from a ZFS mirrored zpool consisting of two disks:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
> --servicenode 192.168.227.11@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --backfstype=zfs mgspool/mgt

 Permanent disk data:
Target: MGS
Index: unassigned
Lustre FS:
Mount type: zfs
Flags: 0x1064
 (MGS first_time update no_primnode)
Persistent mount opts:
Parameters: failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1

checking for existing Lustre data: not found
mkfs_cmd = zfs create -o canmount=off -o xattr=sa mgspool/mgt
Writing mgspool/mgt properties
 lustre:version=1
 lustre:flags=4196
 lustre:index=65535
 lustre:svname=MGS
 lustre:failover.node=192.168.227.11@tcp1:192.168.227.12@tcp1
[root@rh7z-mds1 ~]#

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

83

Note that the mkfs.lustre command hands creation of the mgspool zpool and mgt
dataset to the relevant ZFS commands, acting as a convenient wrapper that encapsulates
creation of the ZFS dataset and the Lustre formatted storage devices. The complete zpool
and zfs command-line invocations are displayed in the mkfs.lustre output, providing
transparency in the way that the underlying storage is configured.

Unfortunately, the zpool command line options used by mkfs.lustre cannot be
modified, other than to define the zpool specification. The mkfs.lustre command
therefore should not be used to automatically create the zpool when working with failover
shared storage. This is because the restriction prevents a user from defining the correct
cachefile property for the zpool to prevent multiple hosts from automatically importing a
zpool. The mkfs.lustre command also will not allow a user to provide tuning options at
file system create time, notably the ashift property that helps with write alignment for
storage devices that do not correctly report the underlying sector size.

Examining ZFS Pools with zdb

The zdb (ZFS Debug) command is a useful tool for examining the low-level structure and
metadata of a ZFS pool or dataset, and can read the information from the on-disk data
structures of exported pools as well as from the ZFS pool cache file. The output is subject to
change over time as ZFS is further developed, which means that the exact content contained
in the output may vary depending on which version of ZFS is being used.

This guide will not go into the details of the zdb command but will highlight one or two useful
features for examining the file system data structures.

To read the configuration of a zpool that is imported on a host, use the following command:

zdb -C[C] <poolname>

If the -C option is used, the output will display the cached content from the zpool
configuration cache, as well as the on-disk configuration (called the Meta Object Set, or MOS).

For example:

[root@rh7z-mds1 ~]# zpool list mgspool
NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH
ALTROOT
mgspool 1008M 2.23M 1006M - 1% 0% 1.00x ONLINE
-
[root@rh7z-mds1 ~]# zdb -C mgspool

MOS Configuration:
 version: 5000
 name: 'mgspool'

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

84

 state: 0
 txg: 34022
 pool_guid: 11089712772589408485
 errata: 0
 hostid: 1489912803
 hostname: 'rh7z-mds1'
 vdev_children: 1
 vdev_tree:
 type: 'root'
 id: 0
 guid: 11089712772589408485
 children[0]:
 type: 'mirror'
 id: 0
 guid: 10014780520217715169
 metaslab_array: 34
 metaslab_shift: 24
 ashift: 9
 asize: 1058537472
 is_log: 0
 create_txg: 4
 children[0]:
 type: 'disk'
 id: 0
 guid: 12166736421740210173
 path: '/dev/sda1'
 whole_disk: 1
 create_txg: 4
 children[1]:
 type: 'disk'
 id: 1
 guid: 8586593287004549671
 path: '/dev/sdc1'
 whole_disk: 1
 create_txg: 4
 features_for_read:
 com.delphix:hole_birth
 com.delphix:embedded_data

If the pool has not been imported to the current host, or if there is no zpool cache file on the
host for a currently imported pool, use the following command:

zdb -e <poolname>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

85

This will provide a very large amount of output. To get the MOS configuration, use the
following:

zdb -eC[C] <poolname>

For example:

[root@rh7z-mds1 ~]# zdb -eC mgspool

MOS Configuration:
 version: 5000
 name: 'mgspool'
 state: 1
 txg: 34189
 pool_guid: 11089712772589408485
 errata: 0
 hostid: 1489912803
 hostname: 'rh7z-mds1'
 vdev_children: 1
 vdev_tree:
 type: 'root'
 id: 0
 guid: 11089712772589408485
 children[0]:
 type: 'mirror'
 id: 0
 guid: 10014780520217715169
 metaslab_array: 34
 metaslab_shift: 24
 ashift: 9
 asize: 1058537472
 is_log: 0
 create_txg: 4
 children[0]:
 type: 'disk'
 id: 0
 guid: 12166736421740210173
 path: '/dev/sda1'
 whole_disk: 1
 create_txg: 4
 children[1]:
 type: 'disk'
 id: 1
 guid: 8586593287004549671
 path: '/dev/sdc1'

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

86

 whole_disk: 1
 create_txg: 4
 features_for_read:
 com.delphix:hole_birth
 com.delphix:embedded_data

Note that the MOS includes the hostid of the last host to import the zpool. If the hostid of the
SPL that imported the zpool was 0 (zero), then this field will not be presented in the zdb MOS
output. If there is no hostid in the MOS, then this strongly indicates that the hosts are not
configured with SPL hostids, and the ZFS volume will not be protected from multiple
concurrent accesses from multiple hosts. Please see the chapter Protecting File System
Volumes from Concurrent Access (Multi-mount Protection) for details on the importance of
correctly setting the hostid for SPL when working with high availability failover storage
configurations.

Optimizing Performance of SSDs and Advanced Format Drives with zpool ashift

The following information is taken from a FAQ entry on the ZFS on Linux project web site,
reference: https://github.com/zfsonlinux/zfs/wiki/faq.

Advanced Format (AF) is a disk format that natively uses a sector size of 4,096 bytes instead of
512 bytes. To maintain compatibility with legacy systems, AF disks emulate a sector size of
512 bytes.

The default behavior of ZFS is to automatically detect the sector size of the drive. However,
when attempting to detect the sector size of an AF drive, ZFS will not be able to detect the
native sector size, and will instead trust the drive when it reports the emulated size. This can
result in poorly aligned disk access that degrades performance of the pool.

Therefore, the ability to set the ashift property has been added to the zpool command.
This allows users to explicitly assign the sector size when devices are first added to a pool
(typically at pool creation time or when adding a vdev to the pool). The ashift values range
from 9 to 16, with the default value 0 meaning that ZFS should auto-detect the sector size.

This issue is rare on hard disk drives, and so it might not be necessary to alter the ashift value.
However, there are reports that SSDs can benefit from setting the ashift property explicitly to
match the 4096 byte sector size.

The value of ashift is actually a bit shift value, so the ashift value for 512 bytes is 9 (29 =
512) while the ashift value for 4,096 bytes is 12 (212 = 4,096). To force the pool to use
4,096 byte sectors at pool creation time:

$ sudo zpool create -o ashift=12 tank mirror sda sdb

To force the pool to use 4,096 byte sectors when adding a vdev to a pool:

https://github.com/zfsonlinux/zfs/wiki/faq

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

87

$ sudo zpool add -o ashift=12 tank mirror sdc sdd

ZFS recordsize Property

The recordsize property of ZFS datasets is used to specify the maximum block size for
files in the file system. Normally this property should not be changed, but for workloads that
create very large files, increasing the value of recordsize can deliver a performance
benefit. The chosen size must be a power of 2 with the minimum allowed size being 512
bytes. For ZFS on Linux, the maximum value is 1MiB in version 0.6.5. Prior to this release, the
maximum value was 128K (which is also the default setting).

The default setting is not sufficient to sustain the performance of the throughput oriented
workloads that are typical of the I/O patterns for OSTs, and it is recommended to increase the
recordsize to 1MiB (1024K), in order to better match the Lustre IO transaction sizes for
block I/O.

Protecting File System Volumes from Concurrent Access
Storage volumes formatted for ldiskfs (itself based on EXT4) and ZFS are not SAN-aware
parallel file systems and do not support multiple concurrent accesses from different
computers. If two or more computers attempt to write directly to the same storage, the write
operations will not be coordinated, which could lead to data corruption: each host that has the
storage mounted will assume that they have unique access to the data and will not take into
account any IO transactions external to that host.

For this reason, Lustre OSDs must be mounted by no more than one host at any single point in
time. This also has the consequence when working with high availability frameworks that each
individual storage target can only participate in an HA cluster as a failover resource (also
referred to as an active-passive resource).

Administrators must take this into consideration when planning Lustre file system
deployments and when conducting any maintenance.

To protect against data corruption, the ldiskfs OSD format has built-in protection against
multiple concurrent mounts of a storage volume, which is referred to as “multi-mount
protection” (MMP). The storage will refuse to mount if the host detects that the storage might
already be mounted elsewhere.

OpenZFS also provides some limited protection against concurrent mounts, although this is a
superficial mechanism that can be circumvented if one is not careful. OpenZFS is not a multi-
host aware file system, so it relies on external controls, such as the resource agents in a
Pacemaker framework, to enforce isolation of zpools to a single host when running in an HA
cluster. In OpenZFS on Linux, the Solaris Portability Layer (SPL) relies on a system setting
called the hostid, which is intended to uniquely identify a computer. To help reduce the risk

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

88

of a zpool against being imported by many hosts concurrently, the hostid of the system where
the zpool was created, or where the zpool was last successfully imported, is written into the
pool configuration. The zpool therefore has a notion of system ownership written into its
configuration. If an attempt is made to import a zpool that has the hostid set to a value that
does not match the hostid of the system where the import is being executed, the attempt fails.
Exporting the zpool will clear the hostid.

The import can be forced, which will override the hostid check. When forcing the import of a
ZFS pool, be very careful to ensure that the volume is not currently imported anywhere else.

Unfortunately, the SPL, by default, sets the value of its internal hostid to 0 (zero), based on the
result of the gethostid() system call, and this is what is written into the zpool. This means
that, without any additional configuration of the operating system after installation of the ZFS
and SPL software, the SPL hostid will be 0 across all hosts, regardless of the actual system
hostid. When a zpool is created and imported, it will inherit this hostid value of zero and write
that into the zpool configuration. Now, any system with a hostid of 0 will be able to import the
zpool because the zpool import command will always succeed when the hostid of the system
matches the hostid of the zpool.

Therefore, by relying on the default configuration, the check against concurrent access by
multiple hosts is lost, leading to a corruption of the zpool and data loss. It cannot be
emphasized strongly enough that ZFS pools should never, ever be imported to two nodes at
the same time, as serious corruption will occur.

It is easy to be fooled by the operating system runtime that the hostid is configured, because
the hostid command in the GNU coreutils package will return a non-zero unique value.
Example output:

[root@rh7z-mds1 ~]# hostid
460a0be3

Unfortunately, the SPL cannot make use of this utility to derive the hostid of a system. To
determine the SPL’s active hostid value, it must be retrieved from
/sys/module/spl/parameters/spl_hostid in the kernel sysfs interface. In the
following example, the SPL hostid is 0 (zero):

[root@rh7z-mds1 ~]# cat /sys/module/spl/parameters/spl_hostid
0

Each host with ZFS storage must have a unique but persistent (i.e., unchanging) hostid that can
be used by the SPL. SPL can be provided with a hostid via the kernel command line on system
boot, or by using the genhostid command to create a random hostid which is written to the
file /etc/hostid. Note that the genhostid writes its output in binary to the file, so it is
not readable without translation by a utility such as hexdump, od or xxd.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

89

The genhostid command is the easiest option to implement and is recommended for
setting the hostid for SPL. Run the command as follows (the command does not generate any
output to the shell):

[root@rh7z-mds1 ~]# genhostid

Verify that data has been written to the file. This example uses xxd to convert the file content
to hexadecimal:

[root@rh7z-mds1 ~]# xxd -p /etc/hostid
e343ce58

The genhostid command must be run on every Lustre server that has or will have ZFS
volumes configured. Make sure that each server gets a unique hostid. Reboot each system
after the hostid is configured in order for the SPL kernel module to pick up the change.

The other essential step in protecting a ZFS pool from concurrent mounts across hosts is to
prevent the pool from being automatically imported on system boot. This is controlled by the
content of the system default ZFS pool configuration cache, or cache file, usually written to
/etc/zfs/zpool.cache.

The configuration cache keeps a record of the configuration of each zpool that is either
created or imported to a host. If a zpool is exported, it is removed from the configuration
cache. Note that any exported zpools that are detected by the host on system boot will be
automatically [re-]imported and added back into the default configuration cache.

The cache file is a generally useful feature that can speed up the “assembly” of zpools on
system boot, but special care must be taken when managed pools that are kept on shared
storage and participate in high availability server configurations.

Caution: Any zpool that has its configuration recorded in the default cache file will be
imported by the host on system boot automatically, even if that pool has already been
imported on a different host. The zpool command effectively assumes that the content of a
cache file is accurate and reliable, and so any pool configurations stored in the cache are valid
for importation without further checks. This is very dangerous for ZFS storage that is shared
across multiple hosts.

The behavior of the zpool command in an HA environment can be observed with the following
experiment.

Caution: Do not try this with any ZFS storage containing production data, as the experiment
will very likely lead to data corruption:

1. Connect two hosts to a shared storage enclosure and ensure that each host can access
the devices in the enclosure.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

90

2. Install ZFS onto each server and configure the hostid for each server as well. Reboot to
ensure all changes have been applied.

3. On the first host (A), create a zpool with the default cache file:

zpool create tank mirror sda sdb

4. Power down host A

5. On the second host (B), attempt to import the zpool without force:

zpool import tank

6. The command will fail and an error similar to the following will be produced:

[root@rh7z-mds2 system]# zpool import tank
cannot import tank: pool may be in use from other system, it was
last accessed by rh7z-mds1 (hostid: 0x58ce43e3) on Wed Mar 23
02:04:45 2016
use '-f' to import anyway

7. Force the import of the pool:

zpool import -f tank

8. Now the zpool will be imported onto host B.

9. Power on host A.

10. During system boot, the following command will be run by the zfs-import-cache
service:

/sbin/zpool import -c /etc/zfs/zpool.cache –aN

The effect of this command is to automatically import all zpools listed in the system
default cache file, /etc/zfs/zpool.cache. Because the zpool was not exported
from host A before it was powered off, the cache file still contains the configuration
information for the zpool, which is why it is automatically imported.

11. When host A has completed the boot process, the zpool that was created will now be
simultaneously imported on both host A and B. This puts the data held within the pool
at risk of corruption.

To prevent a zpool from being imported automatically on boot, use the cachefile option
to create a separate, unique cache file for the pool being created, or set cachefile=none.
This is only effective when the hostid has also been set correctly for SPL, as described earlier.

Note that the cachefile option has to be specified every time the zpool import
command is run, not just when creating the pool or running the import command for the first

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

91

time. It must also be specified when running the import command on a failover host in an
HA cluster. Also be aware that the value none is a reserved keyword and should not be used
as a file name. Setting the cachefile parameter equal to the empty string ('' or "") is the
same as telling ZFS to use the default cache file.

For high-availability clusters with ZFS storage shared between nodes as a failover resource, it
is recommended that each zpool is created and imported with the cachefile set equal to
the special value of none:

zpool create [-f] -O canmount=off -o cachefile=none \
 [-o ashift=<n>] \
 <zpool name> <zpool specification>

zpool import [-f] -o cachefile=none <zpool name>

If the hostid for the servers are set properly, and the cachefile property is set to none, then the
system boot services will not force an import of a zpool that has been imported on a different
server. However, for further safety, one can also disable the ZFS storage services from
attempting to automatically start on system boot. This will mean that the host will not attempt
any automated import of ZFS storage, which might prevent a double import of a pool onto
multiple hosts.

Note that if there are any non-Lustre storage devices formatted using ZFS, they will also be
affected by this change and will not be available until explicitly imported after system start-up.

The simplest way to disable the services is to disable the ZFS target milestone:

systemctl disable zfs.target

Using ZFS Properties to Protect Lustre OSDs

To protect the integrity of ZFS volumes used by Lustre, the zpool command should be
invoked with an option to set the property, canmount=off, when working with Lustre
storage volumes. This property will also be automatically applied to any ZFS datasets created
by the mkfs.lustre command.

The property canmount=off is used to prevent a dataset within a pool from being
mounted by the standard ZFS tools, e.g., by executing the zfs mount -a command, thus
preventing accidental and incorrect mounts of ZFS storage that is being used for Lustre.
Setting the property in the zpool command ensures that all of the datasets in the zpool inherit
this property. It will also ensure that the file system datasets that have been formatted for use
by Lustre will not get mounted on system boot by the ZFS services in systemd or
sysvinit (on hosts running RHEL 7, for example, the systemd zfs-mount service will
run “zfs mount -a” during system startup).

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

92

However, note that the canmount parameter will not prevent a zpool from being imported by
a host on system boot, it will only stop the datasets in an imported zpool from being mounted.
If ZFS detects a zpool on system startup that is eligible for import, it will do so automatically.
Users must be very careful when managing ZFS volumes to ensure that the zpools are only
imported onto a single host at a time.

The zfs command-line executed by mkfs.lustre also sets the xattrs=sa property. This
is used to improve performance of the ZFS storage, especially when using POSIX ACLs (Access
Control Lists). SA stands for System Attributes, and provides an alternative implementation to
the default Directory-based extended attributes. Storing extended attributes using system
attributes significantly decreases disk I/O and is recommended for systems that make use of
SELinux or POSIX ACLs. Refer to the ZFS manual page for a more detailed explanation.

Many of the ZFS properties can be altered after a zpool or dataset has been created, and
formatting a Lustre target using the ZFS OSD will always set the ZFS properties
canmount=off and xattrs=sa.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

93

Create the Management Service (MGS)
The Management Service, or MGS, is the most straightforward Lustre file system service to
create. The MGS is a global resource that can support multiple file systems in a service
domain.

The MGS has very resource-modest requirements compared to the Metadata Service (MDS)
and the Object Storage Service (OSS), as it is not a compute- or storage-intensive service. The
storage required for the MGT is somewhere in the region of 100-200MiB, and any physical
storage allocation is likely to far exceed this minimum requirement. Therefore the minimum
real-world requirement is a fault-tolerant storage device, ideally a two-disk, RAID 1 mirror.
Some storage arrays support the creation of a small virtual disk from a larger physical array
configuration. For example, one might create a physical storage array consisting of 24 disks in
a RAID 10 configuration, and split this into 2 vdisks: a small 1GB vdisk for the MGT, with the
remainder allocated to e.g. MDT0. Each vdisk is presented as an independent block device to
the servers, and can be managed independently from the point of view of failover
configuration.

The MGS can run on a standalone server, but like all Lustre services, if that host fails, the MGS
will be offline until the host can be restored. Therefore, the MGS is most often deployed into
an HA failover configuration, with a small shared storage device or volume that can be
mounted on more than one host. Because the MGS consumes only a small amount of a
server’s resources, it is unusual to create an HA cluster that contains only the MGS. Instead,
the MGS will typically be paired with the root MDS (i.e., the metadata service for MDT0, which
is the storage target that contains the root of a Lustre file system namespace).

For truly flexible high -availability configurations, where resources are somewhat autonomous
and can be managed independently, the MGT storage should be allocated to a device or
volume that is independent of the MDT storage, from the perspective of the OS (although
both MGT and MDT might be in the same physical storage enclosure). The intention is that
each service can migrate independently between hosts in a high availability server
configuration.

For ldiskfs-based storage, this generally means that the MGT and MDT are contained on
separate LUNs or vdisks in a storage array, and for ZFS, the MGT and MDT should be in
separate zpools (when using ZFS for the MGT and MDT storage in a high availability
configuration, do not configure the MGT and MDT as datasets in the same pool. The pool can
only be imported onto one host at a time, which will prevent the services from running on
separate hosts, and will not allow independent service migration or failover).

There can only be one MGS running on a node at one time. This means that one cannot have
multiple MGTs configured in the same HA cluster, because even if the services initially start on
separate nodes, if a failover occurs, they will both end up being located on the same host.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

94

Incoming client connections will not be able to determine which service to connect to, and
may be connected arbitrarily, resulting in the registration and other configuration data being
split in unpredictable ways across the competing resources, with the likely effect of corrupting
the configuration on both targets. There is no specific requirement in Lustre to create multiple
MGS; one MGS will suffice for many file systems in a subnet.

MGT Formatted as a ZFS OSD

Formatting the MGT using only the mkfs.lustre command

The syntax for creating a ZFS-based MGT using only the mkfs.lustre command is as
follows:

mkfs.lustre --mgs \
 [--reformat] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <zpool>/<dataset> <zpool specification>

This example uses the --servicenode syntax to create an MGT that can be run on two
servers as a high availability failover resource:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
 --servicenode 192.168.227.11@tcp1 \
 --servicenode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt mirror sda sdc

The command-line formats a new MGT that will be used by the MGS for storage. The
command further defines a mirrored zpool called mgspool (consisting of two devices) and
creates a ZFS dataset called mgt. Two server NIDs are supplied as service nodes for the MGS,
192.168.227.11@tcp1 and 192.168.227.12@tcp1.

The failnode syntax is similar, but is used to define only a failover target for the storage
service. For example:

[root@rh7z-mds1 ~]# mkfs.lustre --mgs \
 --failnode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt mirror sda sdc

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

95

Here, the failover host is identified as 192.168.227.12@tcp1, one server in an HA pair
(and which, incidentally, has the hostname rh7z-mds2). The mkfs.lustre command was
executed on rh7z-mds1 (NID: 192.168.227.11@tcp1), and the mount command must
also be run from this host when the MGS service starts for the very first time.

Formatting the MGT using zpool and mkfs.lustre

To create a ZFS-based MGT, create a zpool to contain the MGT file system dataset, then use
mkfs.lustre to actually create the file system inside the zpool:

zpool create [-f] -O canmount=off \
 [-o ashift=<n>] \
 -o cachefile=/etc/zfs/<zpool name>.spec | -o cachefile=none \
 <zpool name> <zpool specification>

mkfs.lustre --mgs \
 [--reformat] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset>

For example:

Create the zpool
zpool create -O canmount=off \
 -o cachefile=none \
 mgspool mirror sda sdc

Format the Lustre MGT
mkfs.lustre --mgs \
 --servicenode 192.168.227.11@tcp1 \
 --servicenode 192.168.227.12@tcp1 \
 --backfstype=zfs \
 mgspool/mgt

Use the zfs get command to retrieve comprehensive metadata information about the file
system dataset and to confirm that the Lustre properties have been set correctly:

zfs get all | awk '$2 ~ /lustre/'

Alternatively, use the following command to retrieve only those properties that have been
explicitly set:

zfs get all -s local

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

96

An MGT example:

[root@rh7z-mds1 ~]# zfs get all -s local
NAME PROPERTY VALUE SOURCE
mgspool canmount off local
mgspool/mgt canmount off local
mgspool/mgt xattr sa local
mgspool/mgt lustre:version 1 local
mgspool/mgt lustre:index 65535 local
mgspool/mgt lustre:failover.node 192.168.227.11@tcp1:192.168.227.12@tcp1 local
mgspool/mgt lustre:svname MGS local
mgspool/mgt lustre:flags 4132 local

Starting and stopping the MGS Service
The mount command is used to start all Lustre storage services, including the MGS. Therefore,
to start up the MGS, one must mount the MGT on the server. The syntax is:

mount -t lustre [-o <options>] \
 <ldiskfs blockdev>|<zpool>/<dataset> <mount point>

The mount command syntax is very similar for both LDISKFS and ZFS MGT storage targets.
The main difference is the format of the path to the storage. For ldiskfs, the path will resolve
to a block device, such as /dev/sda or /dev/mapper/mpatha, whereas for ZFS, the path
resolves to a dataset in a zpool, e.g., mgspool/mgt.

The following example starts a ZFS-based MGT:

Ignore MOUNTPOINT column in output: not used by Lustre
[root@rh7z-mds1 ~]# zfs list
NAME USED AVAIL REFER MOUNTPOINT
mgspool 1.67M 974M 19K /mgspool
mgspool/mgt 1.59M 974M 1.59M /mgspool/mgt

[root@rh7z-mds1 ~]# mkdir -p /lustre/mgt

[root@rh7z-mds1 ~]# mount -t lustre mgspool/mgt /lustre/mgt

[root@rh7z-mds1 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
mgspool/mgt 960M 1.7M 957M 1% /lustre/mgt

Note that the default output for zfs list shows the mount points for the MGS pool and
MGT dataset in the MOUNTPOINT column. The columns presented in the output can be
changed to simplify presentation of the table. For example:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

97

[root@rh7z-mds1 ~]# zfs list -o name,used,avail,refer
NAME USED AVAIL REFER
mgspool 2.20M 974M 19K
mgspool/mgt 2.09M 974M 2.09M

The content in the MOUNTPOINT column of the default output can be ignored, as the
referenced mount points are not used for mounting Lustre ZFS OSDs. Instead, create a mount
point explicitly, just as for an LDISKFS-based storage target.

The recommended convention for the mount point of the MGT storage is /lustre/mgt.

Remember that only the mount -t lustre command can start Lustre services. Mounting
storage as type ldiskfs or zfs will mount a storage target on the host, but it will not trigger
the startup of the requisite kernel processes.

To verify that the MGS is running, check that the device has been mounted, then get the Lustre
device list with lctl dl and review the running processes:

[root@rh7z-mds1 lustre]# df -ht lustre
File system Size Used Avail Use% Mounted on
mgspool/mgt 960M 2.0M 956M 1% /lustre/mgt

[root@rh7z-mds1 ~]# lctl dl
 0 UP osd-zfs MGS-osd MGS-osd_UUID 5
 1 UP mgs MGS MGS 5
 2 UP mgc MGC192.168.227.11@tcp1 5d62a612-f872-09a4-7da8-
4ce562af6e0c 5

[root@rh7z-mds1 ~]# ps -ef | awk '/mgs/ && !/awk/'
root 15162 2 0 02:44 ? 00:00:00 [mgs_params_noti]
root 15163 2 0 02:44 ? 00:00:00 [ll_mgs_0000]
root 15164 2 0 02:44 ? 00:00:00 [ll_mgs_0001]
root 15165 2 0 02:44 ? 00:00:00 [ll_mgs_0002]

To stop a Lustre service, umount the corresponding target:

umount <mount point>

The mount point must correspond to the mount point used with the mount -t lustre
command. For example:

[root@rh7z-mds1 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
mgspool/mgt 960M 2.0M 956M 1% /lustre/mgt
[root@rh7z-mds1 ~]# umount /lustre/mgt

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

98

[root@rh7z-mds1 ~]# df -ht lustre
df: no file systems processed
[root@rh7z-mds1 ~]# lctl dl
[root@rh7z-mds1 ~]#

Using the regular umount command is the correct way to stop a given Lustre service and
unmount the associated storage, both ldiskfs and ZFS-based Lustre storage volumes.

Do not use the zfs unmount command to stop a Lustre service. Attempting to use zfs
commands to unmount a storage target that is mounted as part of an active Lustre service will
return an error:

[root@rh7z-mds1 ~]# lctl dl
 0 UP osd-zfs MGS-osd MGS-osd_UUID 5
 1 UP mgs MGS MGS 5
 2 UP mgc MGC192.168.227.11@tcp1 be9fad27-107b-d165-8494-
9a723b90e863 5

[root@rh7z-mds1 ~]# mount -t lustre
mgspool/mgt on /lustre/mgt type lustre (ro)

[root@rh7z-mds1 ~]# zfs list
NAME USED AVAIL REFER MOUNTPOINT
mgspool 2.05M 974M 19K /mgspool
mgspool/mgt 1.97M 974M 1.97M /mgspool/mgt

[root@rh7z-mds1 ~]# zpool status
pool: mgspool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mgspool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 sda ONLINE 0 0 0
 sdc ONLINE 0 0 0

errors: No known data errors

[root@rh7z-mds1 ~]# zfs unmount mgspool/mgt
cannot unmount 'mgspool/mgt': not currently mounted

[root@rh7z-mds1 ~]# zfs unmount /lustre/mgt
cannot unmount '/lustre/mgt': not a ZFS file system

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

99

In the example, the MGS is up and running on a host, and the MGT storage is formatted as a
ZFS dataset in a mirrored zpool. The service is online and the storage is mounted as a Lustre
file system type. When an attempt is made to use ZFS to umount the volume, the command
fails, regardless of if one uses <zpool>/<dataset> or the mount point as the reference to
the storage volume.

These examples are provided to reinforce the point that many of the Lustre server
management tools are the same whether ldiskfs or ZFS is used for the underlying storage. Of
course there are storage-level differences, but where possible, the Lustre tools are common to
both storage target formats.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

100

Create the Metadata Service (MDS)
The Metadata Service, or MDS, provides the index, or namespace, service for a Lustre file
system. The metadata content is stored on object storage device (OSD) volumes called
Metadata Targets (MDTs); a Lustre file system’s namespace (the directory structure and file
names), permissions, extended attributes, and file layouts are recorded to the MDTs. Each
Lustre file system must have a minimum of one MDT, called MDT0, which contains the root of
the file system namespace, but a single Lustre file system can have many MDTs, providing a
scalable file system index for very large-scale name spaces with complex directory structures
and very large quantities of files.

The metadata service also controls the layout of files (number of stripes and stripe size), and is
responsible for object allocation on the OSTs. The MDS determines and allocates a file’s
layout, but an application or user on a Lustre client can override the default layout when a file
is created. It is possible to create layouts for each file in the file system in order to optimize the
IO for a given workload. For convenience, a default policy for the file layout can be assigned to
a directory so that each file created within that directory will inherit the same layout format.
Files do not share OST objects, so each individual file has a unique storage layout, although
many files will conform to the same layout policy.

The MDS is only involved in metadata operations for a file or directory. After a file has been
opened, the MDT does not participate in I/O transactions again until the file is closed, avoiding
any overheads that might be incurred by an application switching between throughput and
metadata work.

Prior to Lustre version 2.4, only a single MDT could be used to store the metadata for a Lustre
file system. With the introduction of the Distributed Name Space (DNE) feature, the metadata
workload for a single file system can be distributed across multiple MDTs, and consequently
multiple metadata servers. There are two implementations of distributed metadata available
to file system architects: remote directories, and striped directories.

DNE remote directories – sometimes referred to as DNE phase 1 or DNE1 – provide a way for
administrators to assign a discrete sub-tree of the overall file system namespace to a specific
MDT. In this way, the MDTs are connected into a virtual tree structure, with each MDT
associated with a specific sub-directory. MDT0 is always used to represent the root of the
name space, with all other MDTs as a child of MDT0.

While it is technically possible to create nested MDT relationships, this is disabled by default
and discouraged as an architecture, because loss of an MDT means loss of access to the
subdirectories hosted by that MDT and by extension, any content on MDTs that were serving
subdirectories more deeply nested in the tree than the failed MDT.

DNE striped directories – sometimes called DNE phase 2 or DNE2 – uses a more sophisticated
structure to load balance metadata operations across multiple servers and MDTs. With striped

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

101

directories, the structure of a directory is split into shards that are distributed across multiple
MDTs. The user defines the layout for a given directory. Directory entries are split across the
MDTs and the inodes for a file are created on the same MDT that holds the file name entry.

A single metadata server can serve the content of many MDTs, even MDTs for different file
systems. When metadata servers are grouped into high-availability cluster configurations, this
capability allows MDT resources to be configured to run on each host in the cluster
configuration, so that each server can be actively providing service to the network, with no idle
“standby” nodes. When a server fails or requires maintenance, its MDT resources can migrate
to other nodes without conflict, preserving operational continuity of the metadata services.

Hosting the MDTs for multiple file systems on a common set of servers is not unusual,
especially where there are budgetary or physical constraints, such as limited space or power in
a data center, or where there is a desire for multiple file systems to be established in a single
environment. This MDT hosting method provides a way to maximize utilization of the available
hardware infrastructure. As with any arrangement where resources are shared between
multiple services, care must be taken to ensure balance is maintained between the competing
processes.

The metadata service can be configured for high availability, as can all of the services of a
Lustre file system. The most common high-availability metadata server design pattern is a
two-node configuration that comprises an MGS and the MDS for MDT0:

Figure 6. Typical Two-Node Metadata Server Cluster

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

102

In this arrangement, two servers are connected to an external storage enclosure that has been
configured with two storage volumes: MDT0 for the Metadata service and one MGT for the
Management Service.

Because the node that normally just runs the MGS is underutilized on its own, there is
sufficient available capacity to run an addition MDS on the same host, provided care is taken
to ensure that the MGS and additional MDS resources can be operated and migrated
independently of one another within a cluster framework. This can be exploited to enable the
MDT of a second file system to be hosted within the same HA cluster configuration, or to
provide an additional MDT to an existing file system.

Figure 7 shows an example configuration where there are 2 MDT OSDs, in separate storage
enclosures, along with the MGT, which in this case has been created by mirroring 2 drives, one
from each enclosure. This maximizes the available storage for metadata bandwidth while still
leaving room for a spare drive in each enclosure.

Figure 7. Metadata Server Cluster with MGS and Two MDTs

The Metadata Service is very resource-intensive and systems will benefit from frequency-
optimized CPUs: clock speed and cache are more important than the number of CPU cores,
although when there are a large number of service threads running, spreading the work across
cores will also derive a benefit. The MDS will also exploit system memory to good advantage
as cache for metadata and for lock management. The more RAM a metadata server can access,
the better able it is to deliver strong performance for the concurrent workloads typical in HPC

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

103

environments. On ZFS-based platforms, system memory is also used extensively for caching,
providing significant improvements in application performance.

Services can scale from very small deployments for testing, such as VMs with perhaps 2 VCPU
cores and as little as 2GB or RAM, up to high-end production servers with 24 cores, 3 GHz
CPUs and 512GB RAM. Sizing depends on anticipated workload and file system working set
population, and as computing requirements evolve, requirements invariably become more
demanding. When a metadata target is formatted, the number of inodes for the MDT is
calculated using the ratio of 2KB-per-inode. The inode itself consumes 512 bytes, but
additional blocks can be allocated to store extended attributes when the initial space is
consumed. This happens for example, when a file has a lot of stripes. Using this 2KB-per-
inode ratio has proven to be a reliable way to allocate capacity for the MDT.

At the time of writing, a typical configuration for a metadata server is to allocate 16 cores and
256GB RAM. If it is assumed that to cache a single inode in RAM without a lock requires
approximately 2KB, this allows somewhere in the region of 130 million inodes to be cached in
memory, depending on the other operating system overheads, which would represent around
13% of a 1 billion inode name space. A subset of these files will also be part of an active
working set, which incurs an additional overhead for locking. Every client that accesses a file
will require a lock, which is around 1KB per file per client. For example, if a thousand clients
open a thousand files, this would incur an additional 1GiB of RAM for the locks. When sizing
memory requirements, aiming for an active working set in cache of between 10 - 20 per cent
of the total file system name space is a reasonable goal..

File systems with large active working sets may require an increase in RAM to achieve optimal
performance, and metadata-intensive workloads with high IOps activity will benefit from
additional CPU power, with the largest benefit being derived from higher clock speeds rather
than very large core counts.

Metadata storage is subjected to small, random I/O, that is very IOps-intensive and somewhat
transactional in nature, and MDT I/O bears many of the same attributes common for an OLTP
database. A metadata server with a large active dataset can process tens of thousands to
hundreds of thousands of very small I/O operations per second. High-speed storage is
therefore essential and SAS storage is commonly used, but there is an increase in the use of
flash storage for metadata.

Storage should be arranged in a RAID 1+0 (striped mirrors) layout to provide the best balance
between performance and reliability, without the overheads introduced by RAID 5/6 or
equivalent parity-based layouts. Metadata workloads are small, random IO operations, and
will perform poorly on RAID 5/6 layouts because the IO is very unlikely to fit neatly into a
single full stripe write, thus leading to read-modify-write overheads when recalculating parity
to write data to the storage. With ZFS, the IOps are spread across the virtual devices (vdevs) in
a zpool, which effectively means that the more datasets in the pool, the better the overall

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

104

performance. A pool containing many mirrored vdevs will provide better IOps performance
than a pool with a single vdev.

When formatting MDT storage, Lustre will assume a ratio of 2KB per inode and allocate the
on-disk format accordingly (note that the ratio of inodes to storage capacity is not the same as
the size of the inode itself, which is 512 bytes on LDISKFS storage. Additional space is used on
the MDT for extended attributes to contain the file layout and other information, which is one
of the reasons why this ratio is chosen). Metadata storage formatted using ldiskfs cannot
allocate more than 4 billion inodes, a limitation in the EXT4 file system upon which ldiskfs is
based. Because of the 2KB/inode allocation ratio, this puts the maximum volume size for an
ldiskfs MDT at 8TB. Attempting to format a storage volume for ldiskfs that is larger than 8TB
will fail. Even if the format were to succeed, capacity would be wasted. ZFS storage does not
suffer from this limitation.

When considering OSD formats for the MDT, be aware that ldiskfs will out-perform ZFS for
metadata-intensive workloads. This is in part due to the additional data-integrity checks and
data-protection overheads that are part of an IO transaction in ZFS: checksums calculated to
protect against data corruption must also be written out to the ZFS storage, and the volume
manager has to ensure that blocks get duplicated across mirrors (or parity calculations
generated and blocks written out for RAIDZ{1,2,3} storage layouts). Note that in ZFS,
checksums are stored in the block pointer to a block, not the block itself; when the checksum
is written, the checksum of the block pointer must also be updated, and so on up the file
system tree. Data integrity assurance and protection from corruption are not free.

Also consider allocating additional storage capacity for recording snapshots. Snapshots of
MDTs can be very useful for providing a means to create online backups of the metadata for a
file system, without incurring an outage of the file system. Catastrophic loss of the MDT means
loss of the file system name space, and consequently loss of the index to the data objects for
each file that are held on the Object Storage Servers. In short, loss of the MDT renders a Lustre
file system unusable. If, however, a regular backup is made of the metadata, then it is possible
to recover a file system back to production state. Using a snapshot makes it easier to take a
copy of the MDT while the file system is still online. ZFS snapshots are very efficient and
introduce very little overhead. Ldiskfs does not have any built-in snapshot capability, but it is
possible to use LVM to create a logical volume formatted for ldiskfs and use LVM to create
snapshots. Be aware that LVM snapshots can degrade the performance of storage
significantly, so snapshots should be destroyed after the backup has been successfully
completed.

It is technically possible to combine the MGT and MDT into a single LUN, however this is
strongly discouraged. It reduces the flexibility of both services, makes maintenance more
complex, and does not allow for distribution of the services across nodes in an HA cluster to
optimize performance. When designing Lustre high availability storage solutions, do not
combine the MGT and MDT into a single storage volume.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

105

MDT Formatted as a ZFS OSD
In common with all Lustre ZFS object storage devices, the process for formatting a new MDT
file system target can be encapsulated entirely within a single invocation of the
mkfs.lustre command, unless high availability is required (i.e., where the file system target
is held on devices in a shared storage enclosure, which is connected to 2 or more hosts).

When high availability is required, the creation of the zpool for the MDT must be separate
from formatting the ZFS dataset as a Lustre storage target.

Formatting an MDT using only the mkfs.lustre command

The syntax for creating a ZFS-based MDT using only the mkfs.lustre command is as
follows:

mkfs.lustre --mdt \
 [--reformat] \
 --fsname <name> \
 --index <n> \
 --mgsnode <MGS NID> [--mgsnode <MGS NID> …] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset> \
 <zpool specification>

The command line syntax for formatting an MDT incorporates several additional parameters
when compared to that of the much simpler MGT. First, the metadata target requires a record
of the NIDs that can provide the Lustre management service (MGS). The MGS NIDs are
supplied using the --mgsnode flag. If there is more than one potential location for the MGS
(i.e., it is part of a high availability failover cluster configuration), then the option is repeated
for as many failover nodes as are configured (usually there are two). Ordering is significant: the
first --mgsnode flag must reference the NID of the current active or primary MGS server. If
this is not the case, then the first time that the MDS tries to join the cluster, it will fail. The first
time mount of a storage target does not currently check the failover targets. When adding new
storage targets to Lustre, the MGS must be running on its primary NID.

The MDT must also be supplied with the name of the Lustre file system (maximum 8
characters), and a unique index number for the file system. There must always be an MDT with
index=0 (zero) for each file system, representing the root of the file system tree. For the
majority of Lustre file systems, a single MDT (referred to as MDT0) is sufficient.

This example uses the --servicenode syntax to create an MDT that can be run on two
servers as an HA failover resource:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

106

[root@rh7z-mds2 system]# mkfs.lustre --mdt \
> --fsname demo \
> --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.11@tcp1 \
> --backfstype=zfs \
> demo-mdt0pool/mdt0 \
> mirror sdb sdd

The command line formats a new MDT that will be used by the MDS for storage. The MDT will
provide metadata for a file system called demo, and has index number 0 (zero). There are two
NIDs defined as the nodes able to host the MDS service, denoted by the --servicenode
options, and two NIDs supplied for the MGS that the MDS will register with. The command
further defines a mirrored zpool called demo-mdt0pool consisting of two devices, and
creates a ZFS dataset called mdt0. Normally, it is expected that the MDT will be created from
a larger pool of storage, to maximize performance and required capacity; the above example is
provided for the purposes of outlining the command line syntax.

The --failnode syntax is similar, but is used to define only a failover target for the storage
service. For example:

[root@rh7z-mds2 system]# mkfs.lustre --mdt \
> --fsname demo --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --failnode 192.168.227.11@tcp1 \
> --backfstype=zfs \
> demo-mdt0pool/mdt0 mirror sdb sdd

Here, the failover host is identified as 192.168.227.11@tcp1, one server in an HA pair
(and which, incidentally, has the hostname rh7z-mds1). The mkfs.lustre command was
executed on rh7z-mds2 (NID: 192.168.227.12@tcp1), and the mount command must
also be run from this host when the service starts for the very first time.

Note that when creating a ZFS-based OSD using only the mkfs.lustre command, it is not
possible to set or change the properties of the zpool, such as the ashift property. For this
reason, it is highly recommended that the zpools be created independently of the
mkfs.lustre command, as shown in the next section.

Formatting an MDT using zpool and mkfs.lustre

To create a ZFS-based MDT, create a zpool to contain the MDT file system dataset, then use
mkfs.lustre to create the actual file system dataset inside the zpool:

zpool create [-f] -O canmount=off \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

107

 [-o ashift=<n>] \
 -o cachefile=/etc/zfs/<zpool name>.spec | -o cachefile=none \
 <zpool name> \
 <zpool specification>

mkfs.lustre --mdt \
 [--reformat] \
 --fsname <name> \
 --index <n> \
 --mgsnode <MGS NID> [--mgsnode <MGS NID> …] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset>

For example:

Create the zpool
Pool will comprise 3 mirrors each with 2 devices.
Mirrors will be concatenated (striped).
zpool create -O canmount=off \
 -o cachefile=none \
 demo-mdt0pool \
 mirror sdd sde mirror sdf sdg mirror sdh sdi

Format MDT0 for Lustre file system "demo"
mkfs.lustre --mdt \
 --fsname demo \
 --index 0 \
 --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
 --servicenode 192.168.227.12@tcp1 \
 --servicenode 192.168.227.11@tcp1 \
 --backfstype=zfs \
 demo-mdt0pool/mdt0

The output from the above example will look something like this:

The zpool command will not return output if there are no errors
[root@rh7z-mds2 system]# zpool create -O canmount=off \
> -o cachefile=none \
> demo-mdt0pool \
> mirror sdd sde mirror sdf sdg mirror sdh sdi

[root@rh7z-mds2 system]# mkfs.lustre --mdt \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

108

> --fsname demo \
> --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.11@tcp1 \
> --backfstype=zfs \
> demo-mdt0pool/mdt0

 Permanent disk data:
Target: demo:MDT0000
Index: 0
Lustre FS: demo
Mount type: zfs
Flags: 0x1061
 (MDT first_time update no_primnode)
Persistent mount opts:
Parameters: mgsnode=192.168.227.11@tcp1:192.168.227.12@tcp1
failover.node=192.168.227.12@tcp1:192.168.227.11@tcp1

checking for existing Lustre data: not found
mkfs_cmd = zfs create -o canmount=off -o xattr=sa demo-mdt0pool/mdt0
Writing demo-mdt0pool/mdt0 properties
 lustre:version=1
 lustre:flags=4193
 lustre:index=0
 lustre:fsname=demo
 lustre:svname=demo:MDT0000
 lustre:mgsnode=192.168.227.11@tcp1:192.168.227.12@tcp1
 lustre:failover.node=192.168.227.12@tcp1:192.168.227.11@tcp1

Use the zfs get command or tunefs.lustre to verify that the file system dataset has
been formatted correctly. For example:

[root@rh7z-mds2 ~]# zfs get all -s local
NAME PROPERTY VALUE SOURCE
demo-mdt0pool canmount off local
demo-mdt0pool/mdt0 canmount off local
demo-mdt0pool/mdt0 xattr sa local
demo-mdt0pool/mdt0 lustre:svname demo-MDT0000 local
demo-mdt0pool/mdt0 lustre:flags 4129 local
demo-mdt0pool/mdt0 lustre:failover.node 192.168.227.12@tcp1:192.168.227.11@tcp1 local
demo-mdt0pool/mdt0 lustre:version 1 local
demo-mdt0pool/mdt0 lustre:mgsnode 192.168.227.11@tcp1:192.168.227.12@tcp1 local
demo-mdt0pool/mdt0 lustre:fsname demo local
demo-mdt0pool/mdt0 lustre:index 0 local

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

109

Starting and stopping the MDS Service
The mount command is used to start all Lustre storage services, including the MDS. The
syntax is:

mount -t lustre [-o <options>] \
 <ldiskfs blockdev>|<zpool>/<dataset> <mount point>

The mount command syntax is very similar for both LDISKFS and ZFS MGT storage targets.
The main difference is the format of the path to the storage. For ldiskfs, the path will resolve
to a block device, such as /dev/sda or /dev/mapper/mpatha, whereas for ZFS, the path
resolves to a dataset in a zpool, e.g. demo-mdt0pool/mdt0.

The following example starts a ZFS-based MDS:

Ignore MOUNTPOINT column in output: not used by Lustre
[root@rh7z-mds2 ~]# zfs list -o name,used,avail,refer
NAME USED AVAIL REFER
demo-mdt0pool 2.87M 9.62G 19K
demo-mdt0pool/mdt0 2.79M 9.62G 2.79M

[root@rh7z-mds2 ~]# mkdir -p /lustre/demo/mdt0

[root@rh7z-mds2 ~]# mount -t lustre demo-mdt0pool/mdt0
/lustre/demo/mdt0

[root@rh7z-mds2 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
demo-mdt0pool/mdt0 9.7G 2.8M 9.7G 1% /lustre/demo/mdt0

Note that the output for zfs list shows the mount points for the MGS Pool and MGT
dataset in the MOUNTPOINT column. Just as for all ZFS-formatted OSDs, the content in this
column can be ignored.

The recommended convention for the mount point of the MDT storage is
/lustre/<fsname>/mdt<n>, where <fsname> is the name of the file system and <n> is
the index number of the MDT.

Remember that only the mount -t lustre command can start Lustre services. Mounting
storage as type ldiskfs or zfs will mount a storage target on the host, but it will not trigger
the startup of the requisite kernel processes.

To verify that the MDS is running, check that the device has been mounted, then get the Lustre
device list with lctl dl, and review the running processes:

[root@rh7z-mds2 ~]# df -ht lustre

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

110

File system Size Used Avail Use% Mounted on
demo-mdt0pool/mdt0 9.7G 2.8M 9.7G 1% /lustre/demo/mdt0

[root@rh7z-mds2 ~]# lctl dl
 0 UP osd-zfs demo-MDT0000-osd demo-MDT0000-osd_UUID 7
 1 UP mgc MGC192.168.227.11@tcp1 1605562b-d702-9251-6f38-
1fd4a64e2720 5
 2 UP mds MDS MDS_uuid 3
 3 UP lod demo-MDT0000-mdtlov demo-MDT0000-mdtlov_UUID 4
 4 UP mdt demo-MDT0000 demo-MDT0000_UUID 5
 5 UP mdd demo-MDD0000 demo-MDD0000_UUID 4
 6 UP qmt demo-QMT0000 demo-QMT0000_UUID 4
 7 UP lwp demo-MDT0000-lwp-MDT0000 demo-MDT0000-lwp-MDT0000_UUID 5

[root@rh7z-mds2 ~]# ps -ef | awk '/mdt/ && !/awk/'
root 32320 2 0 Mar30 ? 00:00:00 [mdt00_000]
root 32321 2 0 Mar30 ? 00:00:00 [mdt00_001]
root 32322 2 0 Mar30 ? 00:00:00 [mdt00_002]
root 32323 2 0 Mar30 ? 00:00:00 [mdt_rdpg00_000]
root 32324 2 0 Mar30 ? 00:00:00 [mdt_rdpg00_001]
root 32325 2 0 Mar30 ? 00:00:00 [mdt_attr00_000]
root 32326 2 0 Mar30 ? 00:00:00 [mdt_attr00_001]
root 32327 2 0 Mar30 ? 00:00:00 [mdt_out00_000]
root 32328 2 0 Mar30 ? 00:00:00 [mdt_out00_001]
root 32329 2 0 Mar30 ? 00:00:00 [mdt_seqs_0000]
root 32330 2 0 Mar30 ? 00:00:00 [mdt_seqs_0001]
root 32331 2 0 Mar30 ? 00:00:00 [mdt_seqm_0000]
root 32332 2 0 Mar30 ? 00:00:00 [mdt_seqm_0001]
root 32333 2 0 Mar30 ? 00:00:00 [mdt_fld_0000]
root 32334 2 0 Mar30 ? 00:00:00 [mdt_fld_0001]
root 32340 2 0 Mar30 ? 00:00:00 [mdt_ck]

To stop a Lustre service, umount the corresponding target:

umount <mount point>

The mount point must correspond to the mount point used with the mount -t lustre
command. For example:

[root@rh7z-mds2 ~]# df -ht lustre
File system Size Used Avail Use% Mounted on
demo-mdt0pool/mdt0 9.7G 2.8M 9.7G 1% /lustre/demo/mdt0
[root@rh7z-mds2 ~]# umount /lustre/demo/mdt0
[root@rh7z-mds2 ~]# df -ht lustre

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

111

df: no file systems processed
[root@rh7z-mds2 ~]# lctl dl
[root@rh7z-mds2 ~]#

Using the regular umount command is the correct way to stop a given Lustre service and
unmount the associated storage, both ldiskfs and ZFS-based Lustre storage volumes.

Do not use the zfs unmount command to stop a Lustre service. Attempting to use zfs
commands to unmount a storage target that is mounted as part of an active Lustre service will
return an error.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

112

Create the Object Storage Services (OSS)
The Object Storage Servers (OSS) in a Lustre file system provide the bulk data storage for all
file content. Each OSS provides access to a set of storage volumes referred to as Object
Storage Targets (OSTs) and each object storage target contains a number of binary objects
representing the data for files in Lustre.

Files are composed of one or more OST objects, in addition to the metadata inode. The
allocation of objects to a file is referred to as the file’s layout, and is determined when the file
is created. The layout for a file defines the set of OST objects that will be used to hold the file’s
data. Each object for a given file is held on a separate OST, and data is written to the objects in
a round-robin allocation as a stripe. As an analogy, one can think of the objects of a file as
virtual equivalents of disk drives in a RAID-0 array. Data is written in fixed-sized chunks in
stripes across the objects. The stripe width is also configurable when the file is created, and
defaults to 1MiB.

Figure 8. Files are written to one or more objects stored on OSTs in a stripe pattern

Figure 8 shows some examples of file with different storage layouts. File A is striped across 3
objects, File B comprises 2 objects and File C is a single object. The number of objects and the
size of the stripe is configurable when the file is created.

The object layout specification for a file can be supplied directly by the user or application,
otherwise it will be assigned by the MDT based on either the file system default layout, or by a
layout policy defined for the directory in which the file has been created. The MDT is
responsible for the assignment of objects to a file.

Objects for a file are created when the file is created (although for efficiency, the MDT will pre-
create a pool of zero-length objects on the OSTs, ready for assignment to files as they are

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

113

created). Objects are initially empty when created and all objects for a file are created when
the file itself is created; objects are not allocated dynamically as data is written. This means
that if a file is created with a stripe count of 4 objects, all 4 of the objects will be allocated to
the file, even if the file is initially empty, or has less than one stripe’s worth of data.

Each object storage server can host several object storage targets, typically in the range 2-8
OSTs per active server, but sometimes more. There can be many object storage servers in a
file system, scaling up to hundreds of servers. Each OST can be several tens of terabytes in
size, and a typical OSS might serve anywhere from 100-500TB of usable capacity, depending
on the storage configuration.

The OSS population therefore determines the bandwidth and overall capacity of a Lustre file
system. A single file system instance can theoretically scale to 1 Exabyte of available capacity
using ZFS (EXT4/ldiskfs can scale to 512PB) across hundreds of servers, and there are
supercomputer installations with 50PB or more of online capacity in a single file system
instance. In terms of throughput performance, there are sites that have measured sustained
bandwidth in excess of 1TB/sec.

Each OST operates independently of all other OSTs in the file system and there are no
dependencies between objects themselves (a file may comprise multiple objects but the
objects themselves don’t have a direct relationship). This, along with a flat namespace
structure for objects, allows the performance of the file system to scale linearly as more OSTs
are added.

Figure 9. Performance and Capacity Scale with Linearly with Increasing Numbers of OSSs and OSTs

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

114

While there is no strict technical limitation that prevents OSTs from different file systems from
being accessed from a common object storage server, it is not a common or recommended
practice. As a rule, each OSS should be associated with a single Lustre file system. This
simplifies system planning and maintenance, and makes the environment more predictable
with regard to performance. A similar rule applies when working with high-availability
configurations.

As for other Lustre server components, object storage servers can be combined into high
availability configurations, and this is the normal practice for Lustre file system
implementations. Unlike the metadata and management services, object storage servers are
only grouped with other object storage servers when designing for HA.

A typical building block configuration will comprise two OSS hosts connected to a common
pool of shared storage. This storage may be a single enclosure or several, depending on the
requirements of the implementation: a site may wish to optimize the Lustre installation for
throughput performance, choosing lower capacity, high performance storage devices attached
to a relatively high number of servers, or it may place an emphasis on capacity over
throughput with high density storage connected to relatively fewer servers. Lustre is very
versatile and affords system architects flexibility in designing a solution appropriate to the
requirements of the site.

Figure 10. Object Storage Server Cluster with Four OSTs

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

115

OSS servers are throughput-oriented systems, and benefit from large memory configurations
and a large number of cores for servicing Lustre kernel threads. There is less emphasis on the
raw performance per core, as the workloads are not typically oriented around IOps.
Throughput bandwidth is the dominant factor in designed object storage server hardware.
This follows through to the storage hardware as well, which will typically comprise high-
capacity, high-density enclosures. Flash storage is currently less prevalent for object storage
due to the higher cost-per-terabyte of capacity.

Storage volumes are typically configured as RAID 6 volumes for ldiskfs OSDs, and RAIDZ2 for
ZFS OSDs. The volumes are usually configured in anticipation of a 1MiB I/O transaction, as this
is the default unit used by Lustre for all I/O. For a RAID 6 volume, this means creating a disk
arrangement that can accommodate a 1MiB full stripe write without any read-modify-write
overhead. Typically this means arranging the RAID 6 volumes in layouts where the number of
“data disks” is a power of 2, plus the 2 parity disks. (Parity is distributed in RAID 6, so this is not
an accurate representation of the data layout on the storage, but the idea is to describe the
amount of usable capacity in terms of the equivalent number of disks in the RAID 6 volume.)

The most common RAID 6 layout for ldiskfs is 10 disks (8+2).

Whereas RAID 6 volume or LUN for ldiskfs will be used as an individual object storage target,
ZFS OSTs will be created from a single dataset per zpool. The composition of the zpool in
terms of the vdevs will require experimentation to find the optimal arrangement balancing
capacity utilization and performance.

Each OST zpool must contain a minimum of one RAIDZ2 vdev, but may contain many, creating
a stripe of RAIDZ2 vdevs. This arrangement is occasionally referred to as RAID 6+0 (or RAID60)
when discussing non-ZFS volumes.

In theory, the same layout used for ldiskfs RAID6 (namely 10 disks, 8+2) should also apply to a
ZFS RAIDZ2 vdev, but this is not always the case. While ldiskfs OSDs with RAID-6 require 8+2
for best performance, ZFS + RAID-Z2 is much more flexible and the RAID geometry should be
chosen to best match the JBOD enclosure (also taking hot spare devices into account). For
example, a benchmarking study conducted by Intel® Corporation found that using an 11- or
12-disk RAIDZ2 vdev configuration can, in some circumstances, yield better overall
throughput results than a 10-disk allocation, particularly when working with large I/O block
sizes.

Experimenting with different RAIDZ layouts, such as using 11 or 12 disks for RAIDZ2 as well as
the more conventional or traditional 10 disk configuration, is therefore recommended in order
to identify the optimum structure for achieving strong performance.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

116

OST Formatted as a ZFS OSD

Formatting an OST using only the mkfs.lustre command

The syntax for creating a ZFS-based OST using only the mkfs.lustre command is as
follows (Do not use this method when working with ZFS OSDs in high-availability, failover
configurations):

mkfs.lustre --ost \
 [--reformat] \
 --fsname <name> \
 --index <n> \
 --mgsnode <MGS NID> [--mgsnode <MGS NID> …] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset> \
 <zpool specification>

The basic syntax is very similar to that for the MDT: in addition to specifying the target type,
the file system name and the NID[s] for the MGS are also supplied, along with the index
number of the OST that is being created. The servicenode or failnode command-line
options are used to identify the NIDs of the hosts that are able to run the target Lustre service
in a high-availability configuration.

This example uses the --servicenode syntax to create an OST that can be run on two
servers as an HA failover resource:

[root@rh7z-oss1 system]# mkfs.lustre --ost \
> --fsname demo \
> --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.21@tcp1 \
> --servicenode 192.168.227.22@tcp1 \
> --backfstype=zfs \
> demo-ost0pool/ost0 \
> raidz2 sda sdb sdc sdd sde sdf

The command line formats a new OST that will be used by the OSS for storage. The OST will
be part of to a file system called demo, with index number 0 (zero). The back-end storage is a
ZFS pool called demo-ost0pool comprising a RAIDZ2 vdev constructed from six physical
devices, with a ZFS file system dataset called ost0. Two server NIDs are supplied as service

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

117

nodes for the OSS, 192.168.227.21@tcp1 and 192.168.227.22@tcp1, and there are
NIDs for the MGS primary and failover hosts.

The failnode syntax is similar, but is used to define only a failover target for the storage
service. For example:

[root@rh7z-oss1 system]# mkfs.lustre --ost \
> --fsname demo --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --failnode 192.168.227.22@tcp1 \
> --backfstype=zfs \
> demo-ost0pool/ost0 mirror sdb sdd

Here, the failover host is identified as 192.168.227.22@tcp1, an OSS server in an HA pair
(and which, incidentally, has the hostname rh7z-oss2). The mkfs.lustre command was
executed on rh7z-mds1 (NID: 192.168.227.21@tcp1), and the mount command must
also be run from this host when the OSS service starts for the very first time.

Similarly to the MDT, note that when creating a ZFS-based OSD using only the
mkfs.lustre command, it is not possible to set or change the properties of the zpool, such
as the ashift property. For this reason, it is highly recommended that the zpools be created
independently of the mkfs.lustre command, as shown in the next section.

Formatting an OST using zpool and mkfs.lustre

To create a ZFS-based OST, create a zpool to contain the OST file system dataset, then use
mkfs.lustre to create the actual file system dataset inside the zpool:

zpool create [-f] -O canmount=off \
 [-o ashift=<n>] \
 -o cachefile=/etc/zfs/<zpool name>.spec | -o cachefile=none \
 <zpool name> \
 <zpool specification>

mkfs.lustre --ost \
 [--reformat] \
 --fsname <name> \
 --index <n> \
 --mgsnode <MGS NID> [--mgsnode <MGS NID> …] \
 [--servicenode <NID> [--servicenode <NID> …]] \
 [--failnode <NID> [--failnode <NID> …]] \
 --backfstype=zfs \
 [--mkfsoptions <options>] \
 <pool name>/<dataset>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

118

For example:

Create the zpool
Pool will comprise a single RAIDZ2 vdev with 6 devices
zpool create -O canmount=off \
 -o cachefile=none \
 demo-ost0pool \
 raidz2 sda sdb sdc sdd sde sdf

Format OST0 for Lustre file system "demo"
mkfs.lustre --ost \
 --fsname demo \
 --index 0 \
 --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
 --servicenode 192.168.227.21@tcp1 \
 --servicenode 192.168.227.22@tcp1 \
 --backfstype=zfs \
 demo-ost0pool/ost0

The output from the above example will look something like this:

The zpool command will not return output unless there are errors
[root@rh7z-oss1 system]# zpool create -O canmount=off \
> -o cachefile=none \
> demo-ost0pool \
> raidz2 sda sdb sdc sdd sde sdf

[root@rh7z-oss1 lz]# mkfs.lustre --ost \
> --fsname demo \
> --index 0 \
> --mgsnode 192.168.227.11@tcp1 --mgsnode 192.168.227.12@tcp1 \
> --servicenode 192.168.227.21@tcp1 \
> --servicenode 192.168.227.22@tcp1 \
> --backfstype=zfs \
> demo-ost0pool/ost0

 Permanent disk data:
Target: demo:OST0000
Index: 0
Lustre FS: demo
Mount type: zfs
Flags: 0x1062
 (OST first_time update no_primnode)
Persistent mount opts:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

119

Parameters: mgsnode=192.168.227.11@tcp1:192.168.227.12@tcp1
failover.node=192.168.227.21@tcp1:192.168.227.22@tcp1

checking for existing Lustre data: not found
mkfs_cmd = zfs create -o canmount=off -o xattr=sa demo-ost0pool/ost0
Writing demo-ost0pool/ost0 properties
 lustre:version=1
 lustre:flags=4194
 lustre:index=0
 lustre:fsname=demo
 lustre:svname=demo:OST0000
 lustre:mgsnode=192.168.227.11@tcp1:192.168.227.12@tcp1
 lustre:failover.node=192.168.227.21@tcp1:192.168.227.22@tcp1

Use the zfs get command or tunefs.lustre to verify that the file system dataset has
been formatted correctly. For example:

[root@rh7z-oss1 ~]# zfs get all -s local
NAME PROPERTY VALUE SOURCE
demo-ost0pool canmount off local
demo-ost0pool/ost0 canmount off local
demo-ost0pool/ost0 xattr sa local
demo-ost0pool/ost0 lustre:mgsnode 192.168.227.11@tcp1:192.168.227.12@tcp1 local
demo-ost0pool/ost0 lustre:flags 4130 local
demo-ost0pool/ost0 lustre:fsname demo local
demo-ost0pool/ost0 lustre:version 1 local
demo-ost0pool/ost0 lustre:failover.node 192.168.227.21@tcp1:192.168.227.22@tcp1 local
demo-ost0pool/ost0 lustre:index 0 local
demo-ost0pool/ost0 lustre:svname demo-OST0000 local

Starting and stopping the OSS Service
The mount command is used to start all Lustre storage services, including the OSS. The
syntax is:

mount -t lustre [-o <options>] \
 <ldiskfs blockdev>|<zpool>/<dataset> <mount point>

The following example starts a ZFS-based OSS:

[root@rh7z-oss1 ~]# zfs list -o name,used,avail,refer
NAME USED AVAIL REFER
demo-ost0pool 173M 48.0G 19K
demo-ost0pool/ost0 173M 48.0G 173M

[root@rh7z-oss1 lz]# mkdir -p /lustre/demo/ost0
[root@rh7z-oss1 lz]# mount -t lustre demo-ost0pool/ost0
/lustre/demo/ost0

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

120

[root@rh7z-oss1 lz]# df -ht lustre
File system Size Used Avail Use% Mounted on
demo-ost0pool/ost0 49G 2.9M 49G 1% /lustre/demo/ost0

The recommended convention for the mount point of the OST storage is
/lustre/<fsname>/ost<n>, where <fsname> is the name of the file system and <n> is
the index number of the OST. As with all Lustre storage targets, only the mount -t lustre
command can start Lustre services.

To verify that the OSS is running, check that the device has been mounted, then get the Lustre
device list with lctl dl and review the running processes:

[root@rh7z-oss1 lz]# lctl dl
 0 UP osd-zfs demo-OST0000-osd demo-OST0000-osd_UUID 5
 1 UP mgc MGC192.168.227.11@tcp1 4106d169-ed51-cd92-3361-
12800a73962d 5
 2 UP ost OSS OSS_uuid 3
 3 UP obdfilter demo-OST0000 demo-OST0000_UUID 7
 4 UP lwp demo-MDT0000-lwp-OST0000 demo-MDT0000-lwp-OST0000_UUID 5

[root@rh7z-oss1 lz]# ps -ef | awk '/ost/ && !/awk/'
root 1932 1 0 Apr04 ? 00:00:00
/usr/libexec/postfix/master -w
postfix 1984 1932 0 Apr04 ? 00:00:00 pickup -l -t unix -u
postfix 1985 1932 0 Apr04 ? 00:00:00 qmgr -l -t unix -u
root 24709 2 0 00:03 ? 00:00:00 [ll_ost00_000]
root 24710 2 0 00:03 ? 00:00:00 [ll_ost00_001]
root 24711 2 0 00:03 ? 00:00:00 [ll_ost00_002]
root 24712 2 0 00:03 ? 00:00:00 [ll_ost_create00]
root 24713 2 0 00:03 ? 00:00:00 [ll_ost_create00]
root 24714 2 0 00:03 ? 00:00:00 [ll_ost_io00_000]
root 24715 2 0 00:03 ? 00:00:00 [ll_ost_io00_001]
root 24716 2 0 00:03 ? 00:00:00 [ll_ost_io00_002]
root 24717 2 0 00:03 ? 00:00:00 [ll_ost_seq00_00]
root 24718 2 0 00:03 ? 00:00:00 [ll_ost_seq00_00]
root 24719 2 0 00:03 ? 00:00:00 [ll_ost_out00_00]
root 24720 2 0 00:03 ? 00:00:00 [ll_ost_out00_00]

To stop a Lustre service, umount the corresponding target:

umount <mount point>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

121

The mount point must correspond to the mount point used with the mount -t lustre
command. For example:

[root@rh7z-oss1 lz]# df -ht lustre
File system Size Used Avail Use% Mounted on
demo-ost0pool/ost0 49G 2.9M 49G 1% /lustre/demo/ost0
[root@rh7z-oss1 ~]# umount /lustre/demo/ost0
[root@rh7z-oss1 ~]# df -ht lustre
df: no file systems processed
[root@rh7z-oss1 ~]# lctl dl
[root@rh7z-oss1 ~]#

The regular umount command is the correct way to stop a given Lustre service and unmount
the associated storage, for both ldiskfs and ZFS-based Lustre storage volumes.

Do not use the zfs unmount command to stop a Lustre service. Attempting to use zfs
commands to unmount a storage target that is mounted as part of an active Lustre service will
return an error.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

122

Lustre Clients
All end-user application I/O happens via a service called the Lustre client. The client is
responsible for providing a POSIX interface to applications, creating a coherent presentation
of the metadata (file system name space) and object data (file content) to applications running
on the client operating system. All Lustre file system IO is transacted over a network protocol.
Client specifications are entirely application-driven and vary widely across the spectrum of
applications, organisations and industries. Lustre clients must be running a Linux operating
system, and the software is comprised of kernel modules, with some user-space tools to assist
with configuration and management.

Starting and stopping the Lustre Client
Start a Lustre client using the mount command, the basic syntax of which is:

mount -t lustre \
 [-o <options>] \
 <MGS NID>[:<MGS NID>]:/<fsname> \
 /lustre/<fsname>

To stop the Lustre client, unmount the file system:

umount <path>

The mount and umount commands require super-user privileges to run.

When the mount command is invoked, the client first registers with the MGS to retrieve the
configuration information, also referred to as the log, for the file system that it wants to
mount. A single MGS can store the configuration information for more than one file system.

The following example shows the command line used to mount a file system named demo:

mkdir -p /lustre/demo
mount -t lustre \
 192.168.227.11@tcp1:192.168.227.12@tcp1:/demo \
 /lustre/demo

There are two MGS server NIDs supplied on the command line. The client will try to connect to
the MGS in the order of the addresses supplied on the command line. If connection to the first
NID fails, the client will attempt a connection using the second NID.

To verify that the file system is mounted on the client, use the df command:

[root@rh7z-c3 ~]# df -ht lustre
File system Size Used Avail
Use% Mounted on

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

123

192.168.227.11@tcp1:192.168.227.12@tcp1:/demo 49G 2.9M 49G 1%
/lustre/demo

The lctl dl command provides detail on the connections to the Lustre services:

[root@rh7z-c3 ~]# lctl dl
 0 UP mgc MGC192.168.227.11@tcp1 7f07b5f9-27e3-0b09-7456-
d83ae184d204 5
 1 UP lov demo-clilov-ffff8800bab6a000 c04fa65d-3f0b-9cbf-b373-
6a894da8e0be 4
 2 UP lmv demo-clilmv-ffff8800bab6a000 c04fa65d-3f0b-9cbf-b373-
6a894da8e0be 4
 3 UP mdc demo-MDT0000-mdc-ffff8800bab6a000 c04fa65d-3f0b-9cbf-
b373-6a894da8e0be 5
 4 UP osc demo-OST0000-osc-ffff8800bab6a000 c04fa65d-3f0b-9cbf-
b373-6a894da8e0be 5

If the MGS is unavailable, the mount command will return an error, similar to the following
example:

[root@rh7z-c3 ~]# mount -t lustre \
> 192.168.227.11@tcp1:192.168.227.12@tcp1:/demo \
> /lustre/demo
mount.lustre: mount 192.168.227.11@tcp1:192.168.227.12@tcp1:/demo at
/lustre/demo failed: Input/output error
Is the MGS running?

More detailed information on the failure will be in the syslog and kernel ring buffer:

[9996.909126] Lustre:
10199:0:(client.c:1967:ptlrpc_expire_one_request()) @@@ Request sent
has timed out for slow reply: [sent 1459822631/real 1459822631]
req@ffff8800ad298000 x1530734379532292/t0(0) o250-
>MGC192.168.227.11@tcp1@192.168.227.11@tcp1:26/25 lens 400/544 e 0
to 1 dl 1459822636 ref 1 fl Rpc:XN/0/ffffffff rc 0/-1
[10021.923403] Lustre:
10199:0:(client.c:1967:ptlrpc_expire_one_request()) @@@ Request sent
has timed out for slow reply: [sent 1459822656/real 1459822656]
req@ffff880138238000 x1530734379532308/t0(0) o250-
>MGC192.168.227.11@tcp1@192.168.227.12@tcp1:26/25 lens 400/544 e 0
to 1 dl 1459822661 ref 1 fl Rpc:XN/0/ffffffff rc 0/-1
[10027.155495] LustreError: 15c-8: MGC192.168.227.11@tcp1: The
configuration from log 'demo-client' failed (-5). This may be the
result of communication errors between this node and the MGS, a bad
configuration, or other errors. See the syslog for more information.
[10027.207044] Lustre: Unmounted demo-client

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

124

[10027.214618] LustreError:
10212:0:(obd_mount.c:1342:lustre_fill_super()) Unable to mount (-5)

The most common cause of failure is an improperly configured network interface, or LNet NID.
Verify that the LNet protocol is able to communicate with the MGS with lctl ping:

lctl ping <MGS NID>

If the ping fails, the command will return an I/O error:

[root@rh7z-c3 ~]# lctl ping 192.168.227.11@tcp1
failed to ping 192.168.227.11@tcp1: Input/output error

Check the LNet settings before continuing.

If the ping succeeds, but the mount still fails, verify that the Lustre services are running on the
target host. Also check to see if there are any services running on the client that might be
interfering with communication, such as a firewall or SELinux. While SELinux is supported in
Lustre 2.8, and Intel EE Lustre 3.0, older releases of Lustre are not compatible. Temporarily
disabling the firewall and SELinux can help narrow down the root cause of issues with Lustre
communications.

If there are no OSS services online, but the MGS and the MDS for MDT0 are running, then the
client mount command will hang indefinitely until an OSS service starts up.

There are options specific to Lustre that can be applied to the Lustre client mount command.
The most common of these are flock, localflock and user_xattr:

• flock: enable support for cluster-wide, coherent file locks. Must be applied to the
mount commands for all clients that will be accessing common data requiring lock
functionality. Cluster-wide locking will have a detrimental impact on file system
performance, and should only be enabled when absolutely required. For some
applications, the locking is only necessary on a sub-set of nodes. For example, the
CTDB cluster framework used by Samba to provide a parallel, high-availability SMB
gateway, relies on locking of a shared file when coordinating cluster start-up and
recovery. However, only the CTDB nodes need to mount the Lustre file system with the
flock option. This is an example of application or domain-specific lock requirements.

• localflock: enable client-local flock support. This is much faster than cluster-wide
flock support, but is only suitable for applications that require locks, but don’t run on
multiple hosts (or where the data will not be accessed in a manner that would require
locking across multiple hosts).

• user_xattr: Enable support for user extended attributes.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

125

Additionally, consider using the _netdev mount option when mounting the Lustre client,
especially when adding an entry into /etc/fstab. This option indicates to the operating
system that the file system has a dependency on the network such that it should not be
mounted before the network is online and should be unmounted on shutdown prior to
stopping the network stack. An example entry for /etc/fstab:

192.168.227.11@tcp1:192.168.227.12@tcp1:/demo /lustre/demo lustre defaults,_netdev 0 0

Refer to the mount.lustre man page for more information on the available options.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

126

Starting and Stopping Lustre Services

Lustre Start-up Sequence
The normal start-up sequence for a Lustre file system is as follows:

1. Start the Management Service (MGS):

<log into MGS host>
For ZFS OSDs only, must import the zpool
zpool import <zpool name>
mkdir -p /lustre/mgt
mount -t lustre <path to MGT> /lustre/mgt

2. Start the Metadata Service[s] (MDS):

<log into MDS host>
For ZFS OSDs only, must import the zpool
zpool import <zpool name>

mkdir -p /lustre/<fsname>/mdt<n>
mount -t lustre <path to MDTn> /lustre/<fsname>/mdt<n>

where <n> represents the MDT index number. There must be, at a minimum, an mdt0
storage target.

3. Start the Object Storage Services (OSS)

<log into OSS host>
For ZFS OSDs only, must import the zpool
zpool import <zpool name>

mkdir -p /lustre/<fsname>/ost<n>
mount -t lustre <path to OSTn> /lustre/<fsname>/ost<n>

where <n> represents the OST index number, starting from 0 (zero)

4. Mount the Lustre clients

<log into client host>
mkdir -p /lustre/<fsname>
mount -t lustre <MGS NID>[:<MGS NID>]:/<fsname> /lustre/<fsname>

The MGS NIDs are the LNet network identifiers for the MGS servers and should be
listed in preferred search order. The Lustre client software will attempt to connect to
each NID in the order specified on the command line (or in the /etc/fstab file). The
client will stop searching when it has successfully established a connection to the MGS.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

127

Note: the clients will connect to the Management Service (MGS) first, not the Metadata
Service (MDS). This is in fact common to all Lustre assets except the MGS itself, but it is
more obvious with the clients when mounting a file system.

If the two services are installed on an HA cluster, make sure to list the NIDs such that
the expected preferred primary node is listed first.

If there are no OSS services online, but the MGS and the MDS for MDT0 are running,
then the client mount will hang indefinitely until an OSS service starts up.

Lustre Shutdown Sequence
The shutdown sequence for a Lustre file system environment is:

1. Stop all of the Lustre clients

<Log into client host>
umount /lustre/<fsname>

2. Stop the Metadata Service[s] (MDS)

<Log into MDS host>
umount /lustre/<fsname>/mdt<n>

3. Stop the Object Storage Services (OSS)

<Log into OSS host>
umount /lustre/<fsname>/ost<n>

4. [Optional] Stop the Management Service (MGS)

<Log into MGS host>
umount /lustre/mgt

Note that for ZFS OSDs, it is not necessary to export the zpool when stopping Lustre services.
The services are stopped by the umount command. The zpools need only be exported when
migrating the ZFS pool for import on a different host.

Why not start the MDS after the OSSs?
The metadata server is the gateway for all I/O in a Lustre file system, as it controls all of the
namespace operations and is responsible for providing the layout of files across the object
storage. Stopping the MDS before the OSTs prevents any new IO during shutdown, and
starting the MDS after the OSTs prevents any new IO until all the services are online. In effect,
files cannot be created or destroyed if the metadata service is offline.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

128

As such it is reasonable to expect that the MDS is the last service component started in a
Lustre file system and the first service that is stopped on file system shutdown. However,
when considering expansion of a Lustre file system by adding more OSTs, the MDT services
must be online before the new storage targets are added.

If the file system is new, then the startup sequence must be MGS MDS OSS Client, and
if a new OST is to be added to the file system, the MDS must be online before the new OST is
started.

A startup sequence of MGS OSS MDS Client is acceptable only if the file system is
established and the server configuration is static. New storage targets can only be added to
Lustre when the MGS and MDT0 are online.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

129

High Availability and Failover

Controlling Service Failover Between Hosts
Service continuity, or high-availability of a service, is implemented in Lustre by means of a
mechanism called “failover”. A failover service is one that can be run in exactly one location at
a time, but has a choice of hosts on which to run. The hosts are usually identically similar in
configuration, and have some common infrastructure characteristics that permit the service to
start and stop in a predictable manner on each host. The service is therefore able to run with
the same configuration and data, regardless of the selected host. If the service is running on a
host that fails, it can be restarted on one of the surviving hosts in the common infrastructure
pool.

Lustre services are tightly coupled to the data storage. An MGS has a corresponding MGT,
each MDS has one or more corresponding MDTs, and each OSS has one or more
corresponding OSTs. Failover resources are defined in terms of the storage targets (MGT,
MDTs, OSTs). It is essentially the storage that migrates, or “fails over”, when a host develops a
fault. This is because Lustre services are governed by the mount and umount commands.
There are no user-space daemons like httpd or nfsd to start and stop; we simply mount the
Lustre storage target to start the service, and unmount the target to stop the service.

This also means that the storage targets must be reachable by more than one server.
Typically, Lustre file systems are assembled from multiple pairs of servers, each pair being
connected to shared external storage. Each host in a pair mounts a subset of the connected
storage, usually presented in the form of one or more LUNs (an aggregated set of devices
arranged in a RAID pattern or stripe) or, in the case of JBOD storage enclosures, discrete
devices.

For example, in a typical metadata server cluster pair, the storage will comprise one MGT
volume and one MDT volume. One server will act as the primary host for the MGT and
corresponding MGS, while the other server is the primary or preferred host for the MDT/MDS.
If there is a server failure, the affected services are restarted on the surviving host.

For failover to work with Lustre, the storage targets must be configured with the NIDs of the
hosts that are expected to be able to mount and provide storage services for that specific
storage target. These are specified using either the --failnode or --servicenode
command line options to mkfs.lustre.

For high-availability clusters with ZFS storage shared between nodes as a failover resource, it
is also required that each zpool is created and imported with the cachefile property set
equal to the special value of none:

zpool create [-f] -O canmount=off -o cachefile=none \
 [-o ashift=<n>] \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

130

 <zpool name> <zpool specification>

zpool import [-f] -o cachefile=none <zpool name>

Controlled Migration or Failover of a Lustre Service Between Hosts

The migration, or “failover”, of a Lustre service between hosts in a cooperative high-availability
cluster is straightforward. A Lustre service runs wherever the corresponding storage is
mounted (e.g., the MGS runs where the MGT has been mounted, similarly for MDS/MDT or
OSS/OST). A service is started when the storage targets are mounted, and stopped when the
storage targets are unmounted. So, we migrate a Lustre service by unmounting the storage
from one host and remounting it on a different host in the cluster framework.

The concept applies to both LDISKFS and ZFS object storage devices (OSDs). For ZFS storage,
there is some additional complexity due to the fact that ZFS is a volume management solution
as well as a file system, and because some care is required in the process to prevent storage
from being mounted on multiple hosts simultaneously.

The procedure for the controlled migration of a ZFS storage target, where both hosts are
online and active, is as follows:

1. Unmount the storage from the current (primary) host:

umount <path>
or

zfs unmount <path>

2. Use the zpool export command to remove the zpool from the configuration on the
current host:

zpool export <zpool name>

3. Log into the failover host.

4. Run the zpool import command, being sure to set cachefile=none:

zpool import [-f] -o cachefile=none <zpool name>

Do not use the -f flag unless absolutely necessary. The zpool should import cleanly if
it was exported from the primary host. If the import fails, and the output from zpool
import makes reference that the zpool may be in use on another host, check the host
that is referred to. Ensure that the zpool has been properly exported from the primary
host by running zpool list on the primary and verifying that the pool is no longer
present in the listed output.

If the pool is positively confirmed as being exported or at least not active on any other
host, then run the zfs import command again, including the -f flag.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

131

5. Check that the zpool is imported cleanly and that there are no active issues on the
pool:

zpool status
zfs list

6. Mount the storage on the failover host:

mkdir -p <mount point>
mount -t lustre <zpool name>/<dataset name> <mountpoint>

7. Verify that the services are running:

df -ht lustre
lctl dl

The failover host is now effectively the new primary for the migrated storage. To migrate the
service back to the original host, run the same procedure, with the roles of the hosts reversed
(original failover host is the new primary, and the original primary host is the new failover).

Forced Migration of a Lustre Service Between Hosts

If the primary host has failed, and it is not possible to log into the host or otherwise unmount
the ZFS storage and export the zpool, then a forced migration must be undertaken in order to
restore service using the failover node.

The process for a forced migration is very similar to a controlled migration, but has no
interaction with the original primary host, because the primary host is offline:

1. Remove power from the failed node or otherwise ensure that it is unable to render
access to the shared storage containing the ZFS file systems.

2. Log into the failover host.

Be absolutely certain that no other host has imported the dataset before continuing.
The zdb command can be useful in verifying the on disk configuration:

zdb -e <zpool name>

For a two-node HA failover group, if the hostname and hostid fields match the
identity of the host that has the fault, and the faulted host has been isolated from the
storage (e.g. powered off), then it is safe to proceed with the import. If there were more
than two hosts connected to the shared storage, make sure that no other host has
imported the zpool before continuing.

3. Run the zpool import command, being sure to set cachefile=none:

zpool import -f -o cachefile=none <zpool name>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

132

In this scenario, with the primary host offline, the -f flag will almost certainly have to
be used to successfully import the zpool.

4. Check that the zpool has been imported cleanly and that there are no active issues on
the pool:

zpool status
zfs list
zfs get all <zpool name>[/<dataset name>]
zdb -C <zpool name>[/<dataset name>]

The zdb output will show the updated hostname and hostid fields with values
corresponding to the failover host.

5. Mount the storage on the failover host:

mkdir -p <mount point>
mount -t lustre <zpool name>/<dataset name> <mountpoint>

6. Verify that the services are running:

df -ht lustre
lctl dl

To restore the service back to its original host, run through the controlled migration process
for active hosts.

Note: remember that setting the SPL hostid and the ZFS pool cachefile properties correctly
are both critical to protecting the ZFS storage pools from data corruption in high-availability
clusters.

Caution: Do not rely on the system defaults when working with shared ZFS storage in high-
availability clusters.

High Availability Automation – Pacemaker and Corosync
High availability, usually abbreviated to "HA", is a term used to describe systems and software
frameworks that are designed to preserve application service availability even in the event of a
failure of a component of the system. The failed component might be software or hardware;
the HA framework will attempt to respond to the failure such that the applications running
within the framework continue to operate correctly.

While the number of discrete failure scenarios that might be catalogued is potentially very
large, they generally fall into one of a very small number of categories:

1. Failure of the application providing the service itself

2. Failure of a software dependency upon which the application relies

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

133

3. Failure of a hardware dependency upon which the application relies

4. Failure of an external service or infrastructure component upon which the application
or supporting framework relies

HA systems protect application availability by grouping sets of servers and software into
cooperative units or clusters. HA clusters are typically groups of two or more servers, each
running their own operating system, that communicate with one another over a network
connection. HA clusters will often have multi-ported, shared external storage, with each server
in the cluster connected over redundant storage paths to the storage hardware.

A cluster software framework provides communication between the cluster participants
(nodes). The framework will communicate the health of system hardware and application
services between the nodes in the cluster and provide means to manage services and nodes,
as well as react to changes in the cluster environment (e.g., server failure).

HA systems are characterized as typically having redundancy in the hardware configuration:
two or more servers, each with two or more storage IO paths and often two or more network
interfaces configured using bonding or link aggregation.

Measurements of availability are normally applied to the availability of the applications
running on the HA cluster, rather than the hosting infrastructure. For example, loss of a
physical server due to a component failure would trigger a failover or migration of the services
that the server was providing to another node in the cluster. In this scenario, the outage
duration would be the measure of time taken to migrate the applications to another node and
restore the applications to running state. The service may be considered degraded until the
failed component is repaired and restored, but the HA framework has avoided an ongoing
outage.

On systems running an operating system based on Linux, the most commonly used HA cluster
framework comprises two software applications used in combination: Pacemaker – used to
provide resource management – and Corosync – used to provide cluster communications and
low-level management, such as membership and quorum. Pacemaker can trace its genesis
back to the original Linux HA project, called Heartbeat, while Corosync is derived from the
OpenAIS project.

Pacemaker and Corosync are widely supported across the major Linux distributions, including
Red Hat Enterprise Linux and SuSE Linux Enterprise Server. Red Hat Enterprise Linux version 6
used a very complex HA solution incorporating several other tools, although this has been
simplified since the release of RHEL 6.4. Even so, RHEL 6 installations are complex and require
additional packages. Fortunately, with the release of RHEL 7, the high-availability framework
from Red Hat has been rationalized around Pacemaker and Corosync version 2, simplifying
the software environment. Red Hat also provides a command line tool called PCS (Pacemaker
and Corosync Shell) that is available for both RHEL version 6 and version 7. PCS unifies

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

134

system management for the high availability software and abstracts the underlying software
implementation by providing a common command interface.

Note that Lustre does not absolutely need to be incorporated into an HA software framework
such as Pacemaker, but doing so enables the operating platform to automatically make
decisions about failover/migration of services without operator intervention. HA frameworks
also help with general maintenance and management of application resources.

Red Hat Enterprise Linux HA Framework Configuration for Two- Node
Cluster
Red Hat Enterprise Linux version 6 has a complex history with regard to the development and
provision of HA software. Prior to version 6.4, Red Hat's high availability software was difficult
to install and maintain and comprised an almost bewildering array of components and
configuration tools. With the release of RHEL 6.4 and in all subsequent RHEL 6 updates, this
has been consolidated around three principal packages: Pacemaker, Corosync version 1, and
CMAN. The software stack was further simplified in RHEL 7 to just Pacemaker and Corosync
version 2.

Red Hat EL 6 HA clusters use Pacemaker to provide cluster resource management (CRM), while
CMAN is used to provide cluster membership and quorum services. Corosync provides
communications but no other services. CMAN is unique to Red Hat Enterprise Linux and is part
of an older framework. In RHEL 7, CMAN is no longer required and its functionality is entirely
accommodated by Corosync version 2, but for any HA clusters running RHEL 6, Red Hat
stipulates the use of CMAN in Pacemaker clusters.

The PCS application (Pacemaker and Corosync Shell) was also introduced in RHEL 6.4 and is
available in current releases of both RHEL 6 and 7. PCS simplifies the installation and
configuration of HA clusters in Red Hat.

Hardware and Server Infrastructure Prerequisites
This guide will demonstrate how to configure a Lustre high-availability building block using
two servers and a dedicated external storage array that is connected to both servers. This
design is in keeping with the standard blueprint for Lustre server components and is a suitable
basis for deployment of a production-ready, high-availability Lustre parallel file system
cluster.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

135

Figure 11. Lustre Server High-Availability Building Blocks

Each server depicted above requires three network interfaces:

1. A dedicated cluster communication network between paired servers, used as a
Corosync communications ring. This can be a cross-over / point-to-point connection,
or can be made via a switch.

2. A management network or public interface connection. This will be used by the HA
cluster as an additional communications ring for Corosync.

3. Public interface, used for connection to the high performance data network – this the
network from which Lustre services will normally be accessed by client computer
systems

An alternative architecture, not specifically covered in this guide, has a single Corosync
communications ring made from two network interfaces that are configured into a bond on a
private network. The bond is created per the operating system documented process, and then
added to the Corosync configuration just as for a discrete network interface.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

136

Software Prerequisites
In addition to the prerequisites previously described for Lustre, the operating system requires
installation of the HA software suite. It may also be necessary to enable the optional
repository. For RHEL systems, the subscription-manager command can be used to
enable the software entitlements for the HA software packages. For example:

subscription-manager repos \
 --enable rhel-ha-for-rhel-7-server-rpms \
 --enable rhel-7-server-optional-rpms

or:

subscription-manager repos \
 --enable rhel-ha-for-rhel-6-server-rpms \
 --enable rhel-6-server-optional-rpms

Refer to the documentation for the operating system distribution for more complete
information on enabling subscription entitlements.

Install the HA software

1. Login as the super-user (root) on each of the servers in the proposed cluster and
install the HA framework software:

yum -y install pcs pacemaker corosync fence-agents [cman]

Note: The cman package is only required for RHEL 6 servers.

2. On each server, add a user account to be used for cluster management and set a
password. The convention is to create a user account with the name hacluster. The
hacluster user should have been installed as part of the package installation (the
account is created during installation of the pacemaker-libs package). PCS will
make use of this account to facilitate cluster management: the hacluster account is
used to authenticate the command line application, pcs, with the pcsd configuration
daemon running on each cluster node. (pcsd is used by the pcs application to
manage distribution of commands and synchronize the cluster configuration between
the nodes.)

The following is taken from the pacemaker-libs package postinstall script and shows
the basic procedure for adding the hacluster account if it does not already exist:

getent group haclient >/dev/null || groupadd -r haclient -g 189
getent passwd hacluster >/dev/null || useradd -r -g haclient -u 189 -s
/sbin/nologin -c "cluster user" hacluster

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

137

3. Set a password for the hacluster account. This must be set, and there is no default.
Make the password the same on each cluster node:

passwd hacluster

4. Modify or disable the IPTables firewall on each server in the cluster. According to Red
Hat, the following ports need to be enabled:

• TCP: ports 2224, 3121, 21064

• UDP: ports 5405

5. In RHEL 7, the firewall software can be configured to permit cluster traffic as follows:

firewall-cmd --permanent --add-service=high-availability
firewall-cmd --add-service=high-availability

6. Verify the firewall configuration as follows:

firewall-cmd --list-service

7. Alternatively, disable the firewall completely. For RHEL 7:

systemctl stop firewalld
systemctl disable firewalld

8. And for RHEL 6:

chkconfig iptables off
chkconfig ip6tables off
service iptables stop
service ip6tables stop

9. Start the Pacemaker configuration daemon, pcsd, on all servers:

• RHEL 7: systemctl start pcsd.service

• RHEL 6: service pcsd start

10. Verify that the service is running:

• RHEL 7: systemctl status pcsd.service

• RHEL 6: service pcsd status

The following example is taken from a server running RHEL 7:

[root@rh7z-mds1 ~]# systemctl start pcsd.service
[root@rh7z-mds1 ~]# systemctl status pcsd.service
● pcsd.service - PCS GUI and remote configuration interface

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

138

 Loaded: loaded (/usr/lib/systemd/system/pcsd.service; enabled;
vendor preset: disabled)
 Active: active (running) since Wed 2016-04-13 01:30:52 EDT; 1min
11s ago
 Main PID: 29343 (pcsd)
 CGroup: /system.slice/pcsd.service
 ├─29343 /bin/sh /usr/lib/pcsd/pcsd start
 ├─29347 /bin/bash -c ulimit -S -c 0 >/dev/null 2>&1 ;
/usr/bin/ruby -I/usr/lib/pcsd /u...
 └─29348 /usr/bin/ruby -I/usr/lib/pcsd
/usr/lib/pcsd/ssl.rb

Apr 13 01:30:50 rh7z-mds1 systemd[1]: Starting PCS GUI and remote
configuration interface...
Apr 13 01:30:52 rh7z-mds1 systemd[1]: Started PCS GUI and remote
configuration interface.

11. Set up PCS authentication by executing the following command on just one of the

cluster nodes:

pcs cluster auth <node 1> <node 2> [...] -u hacluster

For example:

[root@rh7z-mds1 ~]# pcs cluster auth \
> rh7z-mds1.lfs.intl rh7z-mds2.lfs.intl \
> -u hacluster
Password:
rh7z-mds2.lfs.intl: Authorized
rh7z-mds1.lfs.intl: Authorized

When working with hostnames in Pacemaker and Corosync, it is recommended that
the fully qualified domain name be used to reference cluster nodes.

Configure the Basic HA Framework

The pcs command syntax is comprehensive, but not all of the functionality may be available
for RHEL 6 clusters. For example, the syntax for configuring the redundant ring protocol (RRP)
for Corosync communications has only recently been added to RHEL 6. Unless otherwise
stated, the commands in this section need only be executed on one node in the cluster.

The command line syntax is as follows:

pcs cluster setup [--start] --name <cluster name> \
 <node 1 specification> <node 2 specification> \
 [--transport {udpu|udp}] \
 [--rrpmode {active|passive}] \

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

139

 [--addr0 <address>] [--addr1 <address>] \
 [--mcast0 <address>] [--mcastport0 <port>] \
 [--mcast1 <address>] [--mcastport1 <port>] \
 [--token <timeout>] [--join <timeout>] \
 [...]

The node specification is a comma-separated list of hostnames or IP addresses for the host
interfaces that will be used for Corosync’s communications. The cluster name is an arbitrary
string and will default to pcmk if the option is omitted.

The minimum requirement is for a single interface in the cluster configuration to be used by
the cluster framework, but further interfaces can be added in order to increase the robustness
of the HA cluster’s inter-node messaging. Communications are organized into rings, with each
ring representing a separate network. Corosync enables multiple rings using a feature called
the Redundant Ring Protocol (RRP).

There are two transport types supported by the PCS command: udpu (UDP unicast) and udp
(used for multicast). It is recommended that the udp transport be used, as it is more efficient.
udpu, which is the default if no transport is specified, should only be selected for
circumstances where multicast cannot be used.

The rings for udpu are determined by the node specification, which is a comma-separated list
of hostnames or IP addresses associated with the ring interfaces. For example:

pcs cluster setup --name demo node1-A,node1-B node2-A,node2-B

When the udp transport is chosen, communications rings are defined by listing the networks
upon which the Corosync multicast traffic will be carried, along with an optional list of the
multicast addresses and ports that will be used. The rings are specified using the flags --addr0
and --addr1, for example:

pcs cluster setup --name demo node1-A node2-A --transport udp \
--addr0 10.70.0.0 --addr1 192.168.227.0

Use network addresses rather than host IP addresses for defining the udp interfaces, as this
will allow a common Corosync configuration to be used across all cluster nodes. If host IP
addresses are used, additional manual configuration of Corosync will be required on at least
one of the cluster nodes. PCS really only works seamlessly when network addresses are used.

Corosync cannot parse network addresses supplied in the CIDR (Classless Inter-Domain
Routing) notation, e.g., 10.70/16. Instead, use the full dot notation for specifying networks, e.g.
10.70.0.0 or 192.168.227.0.

The multicast addresses default to 239.255.1.1 for ring0 and 255.239.2.1 for
ring1. The default multicast port is 5405 for both multicast rings. Corosync actually uses
two multicast ports for communication in each ring. Ports are assigned in receive / send pairs,

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

140

but only the receive port number is specified when configuring the cluster. The send port is
one less than the receive port number (i.e. send port = mcastport - 1). Make sure that there is a
gap of at least 1 between assigned ports for a given multicast address in a subnet. Also, if
there are several HA clusters with Corosync rings on the same subnet, each cluster will require
a unique multicast port pair (different clusters can use the same multicast address, but not the
same multicast ports).

For example, if there are six OSSs configured into three HA pairs, and an MDS pair, then each
pair of servers will require a unique multicast port for each ring, and that there must be a gap
of at least one between the port numbers. So, a range of 49152, 49154, 49156, 49158 might
be suitable, provided there are no other services using port 49151 (since that will be used for
a send multicast port by the cluster assigned to use 49152 as the receive port). A range of
49152, 49153, 49154, 49155 is not valid because there are no gaps between the numbers to
accommodate the send port.

The redundant ring protocol (RRP) mode is specified by the --rrpmode flag. Valid options are:
none, active and passive. If only one interface is defined, then none is automatically
selected. If multiple rings are defined, one of active or passive must be used.

When set to active, Corosync will send all messages across all interfaces simultaneously.
Throughput is not as fast but overall latency is improved, especially when communicating over
faulty networks.

The passive setting tells Corosync to use one interface, with the remaining interfaces
available as standbys. If the interface fails, one of the remaining interfaces will be used
instead. This is also the default mode when creating an RRP configuration with pcs.

The active mode in theory provides better reliability across multiple interfaces, while
passive mode may be preferred when the messaging rate is more important. However, the
manual page for PCS makes the choice clear and straightforward: only passive mode is
supported by PCS and it is the only mode that receives testing.

The --token flag specifies the timeout in milliseconds after which a token is declared lost. If
no token is received within this interval, it is lost. The default is 1000 (1000ms or 1 second).
The value represents the overall length of time before a token is declared lost. Any
retransmits occur within this window.

On a Lustre server cluster, the default token timeout is generally too short to accommodate
variation in response when servers are under heavy load. An otherwise healthy server that is
busy can take longer to pass the token to the next server in the ring than when it is idle; if the
timeout is too short, the cluster might declare the token lost. Too many lost tokens from one
node and the cluster will consider the node dead.

It is recommended that the value of the token parameter be increased significantly from the
default. 17000ms is a reasonable, conservative value, but users will want to experiment to find
the optimal setting. If the cluster seems to failover too frequently under load, but without any

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

141

other symptoms, the value should be increased as a first step to see if it alleviates the
problem.

The following example uses the simplest invocation to create a cluster framework
configuration comprising two nodes. This example does not specify a transport, so the default
of udp is chosen for cluster communications:

pcs cluster setup --name demo-MDS \
 rh7z-mds1.lfs.intl rh7z-mds2.lfs.intl

The next example again uses udpu but incorporates a second, redundant, ring:

pcs cluster setup --name demo-MDS-1-2 \
 rh7z-mds1.lfs.intl,192.168.227.11 \
 rh7z-mds2.lfs.intl,192.168.227.12

The hostname specification is comma-separated and the node interfaces are specified in ring
priority order. The first interface in the list will join ring0, the second interface will join
ring1. In the above example, the ring0 interfaces correspond to the hostname rh7z-
mds1 for the first node, and rh7z-mds2 for the second node. The ring1 interfaces are
192.168.227.11 and 192.168.227.12 for node 1 and node 2 respectively. One could
also add the IP addresses for ring1 into the hosts table or DNS if it is preferred that the
interfaces be referred to by name rather than by address.

This final example demonstrates the syntax for creating a two-node cluster with two Corosync
communications rings using udp and multicast:

pcs cluster setup --name demo-MDS-1-2 \
 rh7z-mds1.lfs.intl rh7z-mds2.lfs.intl \
 --transport udp --rrpmode passive \
 --token 17000 \
 --addr0 10.70.0.0 --addr1 192.168.227.0 \
 --mcast0 239.255.1.1 --mcastport0 49152 \
 --mcast1 239.255.2.1 --mcastport1 49152

The above example will create different results when run on RHEL 6 versus RHEL 7. This is
because RHEL 6 uses an additional package called CMAN, which assumes some of the
responsibilities that on RHEL 7 are managed entirely by Corosync. Because of this difference,
RHEL 6 clusters may behave differently to RHEL 7 clusters, even though the commands used
to configure each might be identical.

If there are any unexpected or unexplained side-effects when running with RHEL 6 clusters, it
is recommended that the configuration be pared down. For example, change the RRP
configuration from udp multicast to the simpler udpu unicast configuration and use the
comma-separated syntax to define the node addresses, rather than using the --addr[0,1]
flags.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

142

Changing the default security key
Changing the default key used by Corosync and CMAN for communications is optional, but will
improve the overall security of the cluster installation. The different operating system
distributions and releases have different procedures for managing the cluster framework
authentication key, so the following information is provided for information only. Refer to the
OS vendor’s documentation for up to date instructions.

The default key can be changed by running the command corosync-keygen. The key will
be written to the file /etc/corosync/authkey. Run the command on a single host in the
cluster, then copy the resulting key to each node. The file must be owned by the root user and
given read-only permissions. Example output follows:

[root@rh7z-mds1 ~]# corosync-keygen
Corosync Cluster Engine Authentication key generator.
Gathering 1024 bits for key from /dev/random.
Press keys on your keyboard to generate entropy.
Writing corosync key to /etc/corosync/authkey.
[root@rh7z-mds1 ~]# ll /etc/corosync/authkey
-r-------- 1 root root 128 Apr 13 23:48 /etc/corosync/authkey

Note that if the key is not the same for every node in the cluster, then they will not be able to
communicate with each other to form a cluster. For hosts running Corosync version 2, creating
the key and copying to all the nodes should be sufficient.

For hosts running RHEL 6 with the CMAN software, the cluster framework also needs to be
made aware of the new key:

ccs -f /etc/cluster/cluster.conf \
 --setcman keyfile="/etc/corosync/authkey"

Starting and Stopping the cluster framework
To start the cluster framework, issue the following command from one of the cluster nodes:

pcs cluster start [<node> [<node> …] | --all]

To start the cluster framework on the current node only, run the pcs cluster start
command without any additional options. To start the cluster on all nodes, supply the --all
flag, and to limit the startup to a specific set of nodes, list them individually on the command
line.

To shut down part or all of the cluster framework, issue the pcs stop command:

pcs cluster stop [<node> [<node> …] | --all]

The parameters for the pcs stop command are the same as for pcs start.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

143

Do not configure the cluster software to run automatically on system boot. If an error occurs
during the operation of the cluster and a node is isolated and powered off as a consequence,
it is imperative that the node be repaired, reviewed and restored to a healthy state before
committing it back to the cluster framework. Until the root cause of the fault has been isolated
and corrected, adding a node back into the framework may be dangerous and could put
services and data at risk.

For this reason, ensure that the pacemaker and corosync services are disabled in the sysvinit
or systemd boot sequences:

RHEL 7:

systemctl disable corosync.service
systemctl disable pacemaker.service

RHEL 6:

chkconfig cman off
chkconfig corosync off
chkconfig pacemaker off

However, it is safe to keep the PCS helper daemon, pcsd, enabled.

Verify cluster configuration and status
To view overall cluster status:

pcs status [<options> | --help]

For example:

[root@rh7z-mds1 ~]# pcs status
Cluster name: demo-MDS-1-2
WARNING: no stonith devices and stonith-enabled is not false
Last updated: Thu Apr 14 00:58:29 2016 Last change: Wed Apr
13 21:16:13 2016 by hacluster via crmd on rh7z-mds1.lfs.intl
Stack: corosync
Current DC: rh7z-mds1.lfs.intl (version 1.1.13-10.el7_2.2-44eb2dd) -
partition with quorum
2 nodes and 0 resources configured

Online: [rh7z-mds1.lfs.intl rh7z-mds2.lfs.intl]

Full list of resources:

PCSD Status:

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

144

 rh7z-mds1.lfs.intl: Online
 rh7z-mds2.lfs.intl: Online

Daemon Status:
 corosync: active/disabled
 pacemaker: active/disabled
 pcsd: active/enabled

To review the cluster configuration:

pcs cluster cib

The output will be in the CIB XML format.

The Corosync configuration can also be reviewed:

• RHEL 7 / Corosync v2: corosync-cmapctl

• RHEL 6 / Corosync v1: corosync-objctl

This can be very useful when verifying specific changes to the cluster communications
configuration, such as the RRP setup. For example:

[root@rh7z-mds1 ~]# corosync-cmapctl | grep interface
totem.interface.0.bindnetaddr (str) = 10.70.0.0
totem.interface.0.mcastaddr (str) = 239.255.1.1
totem.interface.0.mcastport (u16) = 49152
totem.interface.1.bindnetaddr (str) = 192.168.227.0
totem.interface.1.mcastaddr (str) = 239.255.2.1
totem.interface.1.mcastport (u16) = 49152

To check the status of the Corosync rings:

[root@rh7z-mds1 ~]# corosync-cfgtool -s
Printing ring status.
Local node ID 1
RING ID 0
 id = 10.70.227.11
 status = ring 0 active with no faults
RING ID 1
 id = 192.168.227.11
 status = ring 1 active with no faults

To get the cluster status from CMAN on RHEL 6 clusters:

[root@rh6-mds1 ~]# cman_tool status
Version: 6.2.0

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

145

Config Version: 14
Cluster Name: demo-MDS-1-2
Cluster Id: 28594
Cluster Member: Yes
Cluster Generation: 24
Membership state: Cluster-Member
Nodes: 2
Expected votes: 1
Total votes: 2
Node votes: 1
Quorum: 1
Active subsystems: 9
Flags: 2node
Ports Bound: 0
Node name: rh6-mds1.lfs.intl
Node ID: 1
Multicast addresses: 239.255.1.1 239.255.2.1
Node addresses: 10.70.206.11 192.168.206.11

If the cluster appears to start, but there are errors reported by pcs cluster status and
in the syslog related to Corosync totem, then there may be a conflict in the multicast address
configuration with another cluster or service on the same subnet. A typical error in the syslog
would look similar to the following output:

Apr 13 22:11:15 rh67-pe corosync[26370]: [TOTEM] Received message
has invalid digest... ignoring.
Apr 13 22:11:15 rh67-pe corosync[26370]: [TOTEM] Invalid packet
data

These errors indicate that the node has intercepted traffic intended for a node on a different
cluster.

Also be careful in the definition of the network and multicast addresses. PCS will often create
the configuration without complaint, and the cluster framework may even load without
reporting any errors to the command shell. However, a misconfiguration may lead to a failure
in the RRP that it not immediately obvious. Look for unexpected information in the Corosync
database and the cluster CIB. For example, if one of the cluster node addresses shows up as
localhost or 127.0.0.1, this indicates a problem with the addresses supplied to pcs with the -
-addr0 or --addr1 flags.

The pcs status command may error out if there is only one node in the cluster:

[root@rh67-pe ~]# pcs cluster status
Cluster Status:
 Last updated: Wed Apr 13 22:09:21 2016
 Last change: Wed Apr 13 22:09:07 2016

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

146

 Current DC: NONE
 1 Nodes configured
 0 Resources configured

PCSD Status:
Traceback (most recent call last):
 File "/usr/sbin/pcs", line 155, in <module>
 main(sys.argv[1:])
 File "/usr/sbin/pcs", line 137, in main
 cluster.cluster_cmd(argv)
 File "/usr/lib/python2.6/site-packages/pcs/cluster.py", line 47,
in cluster_cmd
 cluster_gui_status([],True)
 File "/usr/lib/python2.6/site-packages/pcs/cluster.py", line 224,
in cluster_gui_status
 bad_nodes = check_nodes(nodes, " ")
 File "/usr/lib/python2.6/site-packages/pcs/cluster.py", line 278,
in check_nodes
 pm_nodes = utils.getPacemakerNodesID(True)
 File "/usr/lib/python2.6/site-packages/pcs/utils.py", line 1970,
in getPacemakerNodesID
 pm_nodes[node_info[0]] = node_info[1]
IndexError: list index out of range

If a second node is added, or the cluster is destroyed and recreated it with two nodes, this
error does not appear.

The syslog may report an error similar to the following when the cluster is first started:

Apr 14 01:37:05 rh6-mds1 pengine[11209]: notice:
process_pe_message: Configuration ERRORs found during PE processing.
Please run "crm_verify -L" to identify issues.

By following the suggested instructions, the root cause is identified:

[root@rh6-mds1 ~]# crm_verify -L
Errors found during check: config not valid
 -V may provide more details
[root@rh6-mds1 ~]# crm_verify -LV
 error: unpack_resources: Resource start-up disabled since no
STONITH resources have been defined
 error: unpack_resources: Either configure some or disable
STONITH with the stonith-enabled option
 error: unpack_resources: NOTE: Clusters with shared data need
STONITH to ensure data integrity
Errors found during check: config not valid

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

147

This shows up because the cluster has not been configured with a fencing agent, which is a
piece of software used to isolate a host in the cluster framework when a fault is detected.
Fencing configuration is covered in the next section.

Pacemaker Server Fault Isolation with Fencing
When a server or a software application develops a fault in a high-availability software
framework, it is essential to isolate the affected component and remove it from operation in
order to protect the integrity of the cluster as a whole, and to protect data hosted by the
cluster from corruption. In shared-storage HA clusters, such as those running Lustre storage
services, data corruption is most likely to occur when multiple services on different nodes try
to access the same data storage concurrently. Each service assumes that it has exclusive
access to the data, which leads to a risk that one service might overwrite information
committed by another service on a different cluster node. There are some protections in place
in Ldiskfs (and to a lesser extent ZFS) that minimize the risk of concurrent access, but HA
software frameworks such as Pacemaker provide additional protections to further reduce
exposure to this risk.

The mechanism for isolating a failed component is called fencing. Fencing is the means by
which a node in a cluster is prevented from accessing the shared storage. This is usually
achieved by forcing the failed node to power off. In Pacemaker, once a fault is detected,
healthy nodes that are able to form a quorum create a new cluster configuration with the
faulty node removed. The faulty node is then fenced, and any services that were running on
the now isolated server are migrated to the surviving node or nodes.

In Pacemaker, the fencing mechanism most commonly used is STONITH, which stands for
Shoot the Other Node in the Head. STONITH relies on healthy cluster nodes detecting a fault
or failure in another node, and forcibly removing that faulted node from the cluster using a
brute force mechanism such as power cycling the host.

Pacemaker has a set of software components called fencing agents that are used for this
purpose. There are several such agents available, but most conform to the same basic
principal of fault isolation through power control. All such agents rely on supporting
infrastructure to facilitate power control, and each has its own specific requirements and
parameters. Some agents, such as fence_apc, provide an interface to intelligent power
distribution units (PDUs). These are vendor-specific interfaces, and provide a high level of
reliability in the mechanism, since they require only that there is access to the PDU control
interface.

There are also several vendor-specific BMC (Baseboard Management Controller) fence agents
as well as a generic, hardware-agnostic IPMI agent; these are also reliable but do require that

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

148

the BMC is itself responsive in order to work. That is, the BMC must still have a supply of
power.

There are several RPMs available that contain fencing agents. It is generally simplest to just
install the superset RPM package, called fence-agents-all. One can also just supply the
package name “fence-agents” to YUM and this will mark all of the fence agents in the RHEL OS
repositories for installation.

To obtain a full list of the available agents installed on a host with the PCS software installed:

pcs stonith list

To get more detailed information about a specific agent:

pcs stonith describe <agent>

Fencing is notoriously difficult to configure correctly, as it is difficult to anticipate and test all
of the potential failure modes. If the fencing agent does not exit cleanly and without reporting
an error, then the fencing operation will be regarded by Pacemaker as failed, and the
resources hosted by the failed node will not be migrated to a healthy cluster node. This is
because the agent did not report success when isolating the affected node. Rather than risk
compromising the integrity of any data associated with the resources by potentially running
multiple services on both the healthy and unhealthy cluster nodes, Pacemaker will refuse to
migrate resources until it can be sure that the faulty node has been isolated.

Configuring the IPMI Fence Agent For Pacemaker

Fencing is a complex topic and there are a number of parameters that can be set to control
the behavior of fencing in a Pacemaker cluster. This guide is not a comprehensive reference
on the topic, but provides an introduction to the basic mechanisms, illustrated by some
examples.

The fence_ipmilan agent is one of the more versatile fencing agents available in the
standard cluster software distribution. The typical required syntax for creating a fencing agent
for a Pacemaker cluster is as follows:

pcs stonith create <resource name> fence_ipmilan \
 ipaddr="X.X.X.X" \
 [lanplus=true] \
 login="XXXX" passwd="XXXXX" \
 pcmk_host_list="<cluster node>"

The command must be run for each node in the cluster (each cluster node must have its own
fence agent resource) but the commands can be run from a single node.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

149

• <resource name> should be descriptive and is usually the cluster node name with
the suffix “ipmi”

• fence_ipmilan is the name of the fence agent application

• ipaddr is the IP address of the BMC or equivalent target that will receive the IPMI
request from the agent. It is not the IP address of the host that will be fenced.

• lanplus is optional but usually required by newer devices that support IPMI, as it
represents an update to the protocol that improves the security of the connection. It
should always be used unless the IPMI target does not support lanplus.

• login and passwd are use to supply the login credentials to the IPMI device

• pcmk_host_list is the name of the host registered in the Pacemaker configuration
that will be controlled by this fencing agent. Some agents are able to control multiple
nodes using a single agent, which is why the parameter has the suffix _list. However,
for IPMI, there is a 1:1 correlation between the agent and the node to be fenced.

For example:

pcs stonith create rh7z-mds1-ipmi fence_ipmilan
ipaddr="10.10.10.111" \
 lanplus=true login="admin" passwd="newroot" \
 pcmk_host_list="rh7z-mds1.lfs.intl"

pcs stonith create rh7z-mds2-ipmi fence_ipmilan
ipaddr="10.10.10.112" \
 lanplus=true login="admin" passwd="newroot" \
 pcmk_host_list="rh7z-mds2.lfs.intl"

Be aware that the password will be recorded into the cluster’s information base (CIB). This
means that a user with suitable privileges on a cluster node will be able to retrieve the
password of the IPMI user. If this is a concern, there is an option to supply the password via a
script. Use the following command to review the available options:

pcs stonith describe fence_ipmilan

Creating Pacemaker Resources for Lustre Storage Services
Although Pacemaker is a commonly-used framework for providing high-availability for Lustre,
there are currently no off-the-shelf resource agents available for Pacemaker to manage ZFS
storage pools or Lustre file system OSDs that are based on ZFS, either from the ZFS on Linux
project or from the Lustre project. This is at least in part a consequence of the fact that prior to
the development of the ZFS OSD, Lustre’s Ext-based Ldiskfs storage target could use the
generic ocf:heartbeat:Filesystem resource agent, as no specific or special
development was required.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

150

Intel® has developed reference sample resource agents for Pacemaker and these have been
successfully deployed in production at several sites. They are provided as-is, in the
appendices of this document.

Lustre + ZFS Resource Agent Installation

To use the Lustre + ZFS resource agent, take the LustreZFS script from the appendix and
install on each server that has Lustre ZFS OSDs. Install the script into the following directory:

/usr/lib/ocf/resource.d/heartbeat/

The file must have the name LustreZFS, owner root, group root and the permissions 755:

[root@rh7z-mds1 ~]# cd /usr/lib/ocf/resource.d/heartbeat
[root@rh7z-mds1 heartbeat]# ls -l LustreZFS
-rwxr-xr-x 1 root root 7398 Apr 15 00:24 LustreZFS

Lustre + ZFS Resource Agent Configuration for MGT and MDT0

To create the MGT resource in Pacemaker, run the following command from one of the
metadata server cluster nodes:

pcs resource create lustreMGS ocf:heartbeat:LustreZFS \
 pool="<MGT pool name>" \
 volume="<MGT dataset>" \
 mountpoint="/lustre/mgt"

For example:

pcs resource create lustreMGS ocf:heartbeat:LustreZFS \
 pool="mgspool" \
 volume="mgt" \
 mountpoint="/lustre/mgt"

The syntax for creating a resource to manage an MDT is similar:

pcs resource create lustre-<fsname>MDT<n> ocf:heartbeat:LustreZFS \
 pool="<MDTn pool name>" \
 volume="<MDTn dataset>" \
 mountpoint="/lustre/<fsname>/mdt<n>"

For example:

pcs resource create lustre-demoMDT0 ocf:heartbeat:LustreZFS \
 pool="demo-mdt0pool" \
 volume="mdt0" \
 mountpoint="/lustre/demo/mdt0"

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

151

In theory, one could leave Pacemaker to determine the “best” way to manage the placement
of the services n the cluster nodes, but in practice this can make the behavior of the cluster
unpredictable. In addition, the Lustre clients will search for the Lustre services in a prescribed,
static order, so it is best to try and ensure that the services are organized by Pacemaker in a
manner that complies with the expectations of the Lustre clients.

What this means is that the Lustre services need to have constraints applied to them that
establish preferences for where the services ought to run, assuming that the cluster is healthy.

The syntax is as follows:

pcs constraint location <resource> prefers <node>=<weight>

For the MGS and MDT0, the commands will look like this:

pcs constraint location lustreMGS \
 prefers rh7z-mds1.lfs.intl=20
pcs constraint location lustreMGS \
 prefers rh7z-mds2.lfs.intl=10

pcs constraint location lustre-demoMDT0 \
 prefers rh7z-mds2.lfs.intl=20
pcs constraint location lustre-demoMDT0 \
 prefers rh7z-mds1.lfs.intl=10

Notice that the weighting is higher for the preferred primary node and that the MGS will prefer
to run on rh7z-mds1 and the MDS for MDT0 will prefer to run on rh7z-mds2.

Lustre + ZFS Resource Agent Configuration for the OSTs

The configuration for the OSTs is very similar to that for the MGT and MDT, except that there
are likely to be several OSTs running within a single OSS cluster pair:

pcs resource create lustre-<fsname>OST<n> ocf:heartbeat:LustreZFS \
 pool="<OSTn pool name>" \
 volume="<OSTn dataset>" \
 mountpoint="/lustre/<fsname>/ost<n>"

For example:
pcs resource create lustre-demoOST0 ocf:heartbeat:LustreZFS \
 pool="demo-ost0pool" \
 volume="ost0" \
 mountpoint="/lustre/demo/ost0"

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

152

Similar to the metadata server HA resource configuration, the Lustre OSTs need to have
constraints applied to them that establish preferences for where the services ought to run,
assuming that the cluster is healthy.

The syntax is as follows:

pcs constraint location <resource> prefers <node>=<weight>

For a cluster pair, rh7z-oss1 and rh7z-oss2, with OST0 and OST1, for example, the
commands will look like this:

pcs constraint location lustre-demoOST0 \
 prefers rh7z-oss1.lfs.intl=20
pcs constraint location lustre-demoOST0 \
 prefers rh7z-oss2.lfs.intl=10

pcs constraint location lustre-demoOST1 \
 prefers rh7z-oss2.lfs.intl=20
pcs constraint location lustre-demoOST1 \
 prefers rh7z-oss1.lfs.intl=10

Again, similarly to the metadata server configuration, notice that the weighting is higher for
the preferred primary node and that OST0 will prefer to run on rh7z-oss1 and OST1 will
prefer to run on rh7z-oss2.

Creating Additional Monitoring Resources In Pacemaker
The high-availability configuration can be extended to monitor the health of services running
in the Pacemaker cluster. Resource agents have been developed to monitor the health of LNet
and the status of Lustre services (MGS, MDS and OSS) running on the cluster nodes.

These additional agents are not specific to ZFS and can also be incorporated into a LDISKFS-
based Lustre file system.

The resource agents make use of Pacemaker’s resource clone feature to provide active/active
monitoring across the cluster nodes. The cloned resources actively monitor the health of LNet
and the Lustre services, updating specific variables in Pacemaker’s configuration, called the
Cluster Information Base (CIB). If a variable’s value falls below a specific threshold, a
Pacemaker constraint is triggered and all the resources that were running on the faulted node
are migrated to a healthy node.

Detection of LNET Outage

The healthLNET script (available in the Appendix) provides two principal checks: it monitors
the physical state of the network device that has been configured for LNet, and verifies
connectivity to Lustre resources via the LNet protocol using lctl ping.

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

153

The following example demonstrates how to create a resource in Pacemaker to monitor LNet
health:

pcs resource create healthLNET ocf:pacemaker:healthLNET \
 dampen=5s multiplier=1000 lctl=true device=eth1 \
 host_list="10.10.130.1@tcp1 10.10.130.2@tcp1" \
 --clone

The healthLNET resource provides health status information about the LNet interface, but it
does not, by itself, trigger a failover or fencing action. Instead, the monitoring resource is used
to create a constraint on the Lustre services configured in the cluster. This constraint will force
the services to migrate, if the monitoring resource reports a value that is lower than the
acceptable threshold for the resource.

Each Lustre resource configured in the cluster pair requires a constraint to be applied.

The syntax for creating a location constraint against the LNet health monitor is as follows:

#pcs constraint location <resource name> \
 rule score=-INFINITY pingd lt 1 or not_defined pingd

Option Description OCF variable
Default
Value

dampen

The time to wait (dampening)
further changes occur.

OCF_RESKEY_dampen 5s

multiplier The number by which to multiply
the number of connected ping
nodes by.

OCF_RESKEY_multipl
ier

1

attempts

Number of ping attempts, per
host, before declaring it dead.

OCF_RESKEY_attempt
s

3

timeout

How long, in seconds, to wait
before declaring a ping lost.

OCF_RESKEY_timeout 5

lctl

Option to enable lctl ping instead
the linux ping.

OCF_RESKEY_lctl True

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

154

device

Device used for the LNET network.
We assume the same device
across the cluster.

OCF_RESKEY_device

host_list List of IP or NID of the hosts to
test. IP are used if the linux ping is
selected. NID must be provided if
the lctl ping is used.

OCF_RESKEY_host_li
st

Detection of MDS/OSS/MGS services outages

The healthLUSTRE script (available in the Appendix) is used to verify the status of the
Lustre services running on a host by monitoring the content of the
file/proc/fs/lustre/health_check.

This file will report the following error conditions:

• LBUG (Lustre kernel bug, an irrecoverable error that halts execution of the kernel
thread to avoid potential further corruption of the system state. The system must be
rebooted to clear this state.

• Any I/O error on the target

The following example demonstrates the syntax for configuring the healthLUSTRE resource:

pcs resource create healthLUSTRE \
 ocf:pacemaker:healthLUSTRE dampen=5s --clone

After the clone resource is created, create a constraint on each of the Lustre resources
configured in the Pacemaker framework, such that an error reported by healthLUSTRE will
trigger a failover of the resources. The syntax is as follows:

pcs constraint location <resource name> \
 rule score=-INFINITY lustred lt 1 or not_defined lustred

Option Description OCF variable Default Value

dampen

The time to wait
(dampening) further
changes occur

OCF_RESKEY_dampen 5s

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

155

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

156

Appendix A: RHEL / CentOS Kickstart Template
install
text
poweroff
lang en_US.UTF-8
keyboard us

The next entry sets the network interface during installation
Lustre servers will require statically allocated IP addresses
Additional network interfaces to be configured as required
network --hostname=<name> --onboot=yes --device <dev> --bootproto dhcp --
noipv6 --nameserver 8.8.8.8 --gateway 0.0.0.0
Disable the firewall
If the firewall must be in place and Lustre is using TCP/IP
for comms, then enable traffic on port 988.
firewall --disabled
Disable SELinux
selinux --disabled

Set the basic authentication algorithm and set initial root password
authconfig --enableshadow --passalgo=sha512
rootpw --iscrypted <password hash; create with grub-crypt --sha-512>

timezone --utc America/New_York
bootloader --location=mbr --driveorder=sda --append="crashkernel=auto
console=ttyS0,115200 rd_NO_PLYMOUTH"
zerombr
clearpart --all --initlabel --drives=sda
autopart

%packages
@core
@base
The following are optional but commonly used on Lustre servers
Not normally required for Lustre clients
device-mapper-multipath
device-mapper-multipath-libs
%end

%pre
%end

%post
%end

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

157

Appendix B: Lustre ZFS Pacemaker Resource Agent
The following script can be used to manage ZFS and Lustre on shared storage. For each host,
save this script as “LustreZFS” to the location:
/usr/lib/ocf/resource.d/heartbeat/

and set the script’s permissions to 755.

#!/bin/sh

License: GNU General Public License (GPL)v2
Description: Manages ZFS and Lustre on a shared storage
Written by: Gabriele Paciucci
Release Date: 01 June 2016
Release Version: 0.98
Copyright © 2016, Intel Corporation

This program is free software; you can redistribute it and/or modify
it under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.

This program is distributed in the hope it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

usage: ./LustreZFS {start|stop|status|monitor|validate-all|meta-data}

OCF parameters are as follows
OCF_RESKEY_pool - the pool to import/export
OCF_RESKEY_volume - the volume to mount/umount
OCF_RESKEY_mountpoint - the mountpoint to use

Initialization:

: ${OCF_FUNCTIONS_DIR=${OCF_ROOT}/lib/heartbeat}
. ${OCF_FUNCTIONS_DIR}/ocf-shellfuncs

Defaults

Variables used by multiple methods

USAGE

usage() {
usage: $0 {start|stop|status|monitor|validate-all|meta-data}
}

META-DATA

meta_data() {
cat <<END

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

158

<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="LustreZFS">
<version>0.98</version>
<longdesc lang="en">
This script manages ZFS pools and Lustre volumes. The script is able to import and export ZFS
pools and mount/umount Lustre.
</longdesc>
<shortdesc lang="en">Lustre and ZFS management</shortdesc>

<parameters>

<parameter name="pool" unique="1" required="1">
<longdesc lang="en">
The name of the ZFS pool to manage.
</longdesc>
<shortdesc lang="en">ZFS pool name</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="volume" unique="1" required="1">
<longdesc lang="en">
The name of the volume created during the Lustre format on the ZFS pool.
</longdesc>
<shortdesc lang="en">Lustre volume name in the pool</shortdesc>
<content type="string" default="" />
</parameter>

<parameter name="mountpoint" unique="1" required="1">
<longdesc lang="en">
The mount point where the Lustre target will be mounted.
</longdesc>
<shortdesc lang="en">Mount point for Lustre</shortdesc>
<content type="string" default="" />
</parameter>

</parameters>

<actions>
<action name="start" timeout="300s" />
<action name="stop" timeout="300s" />
<action name="monitor" depth="0" timeout="300s" interval="20s" />
<action name="validate-all" timeout="30s" />
<action name="meta-data" timeout="5s" />
</actions>
</resource-agent>
END
 exit $OCF_SUCCESS
}

FUNCTIONS

zpool_is_imported () {
 zpool list -H "$OCF_RESKEY_pool" > /dev/null
}

lustre_is_mounted () {
Verify if this is consistent
 grep -q "$OCF_RESKEY_mountpoint" /proc/mounts
}

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

159

zpool_import () {
 if ! zpool_is_imported; then
 ocf_log info "Starting to import $OCF_RESKEY_pool"

We start with the assumption that the pool is "protected" by the ZFS's hostid mechanism
We try first to import without forcing
If the zpool import return an error, we try again to be sure
If we got another error, we fencing the other node using stonith_adm -F <name node>
At this point we can import the pool using the -f option
The meanings of the options to import are as follows:
-f : import even if the pool is marked as imported
-o cachefile=none : the import should be temporary

Try to import clean
 if zpool import -o cachefile=none "$OCF_RESKEY_pool" ; then
 ocf_log info "$OCF_RESKEY_pool imported successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_pool import failed with this error $? we
are trying again after 5 seconds!"
 sleep 5
 fi
Try to import clean again JIC

 if zpool import -o cachefile=none "$OCF_RESKEY_pool" ; then
 ocf_log info "$OCF_RESKEY_pool imported
successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_pool import failed with
this error $? we are fencing the other node"
 WhoAmI=$(crm_node -n)
Valid only in a 2 node cluster
 WhoIsMyPair=$(crm_node -l| grep -v $WhoAmI|
cut -f2 -d" ")

 if stonith_admin -F $WhoIsMyPair ; then
 ocf_log info "$WhoIsMyPair fenced
successfully"

Try to import forced after stonith

 if zpool import -f -o
cachefile=none "$OCF_RESKEY_pool" ; then
 ocf_log info
"$OCF_RESKEY_pool imported successfully"
 return
$OCF_SUCCESS
 else
 ocf_log err
"$OCF_RESKEY_pool FORCED import failed with this error $? "
 return
$OCF_ERR_GENERIC
 fi

 else
 ocf_log err "$WhoIsMyPair fenced
failed with this error $? Please contact the support, safe import is not possible"
 return $OCF_ERR_GENERIC

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

160

 fi

 fi
 fi
}

zpool_export () {
 if zpool_is_imported; then
 ocf_log info "Starting to export $OCF_RESKEY_pool"

The meanings of the options to export are as follows:
-f : export in every case

 if zpool export -f "$OCF_RESKEY_pool" ; then
 ocf_log info "$OCF_RESKEY_pool exported successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_pool export failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

lustre_mount () {
 if ! lustre_is_mounted; then
 ocf_log info "Starting to mount $OCF_RESKEY_volume"

The meanings of the options to export are as follows:

 if mount -t lustre "$OCF_RESKEY_pool/$OCF_RESKEY_volume"
$OCF_RESKEY_mountpoint ; then

 ocf_log info "$OCF_RESKEY_volume mounted successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_volume mount failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

lustre_umount () {

 if lustre_is_mounted; then
 ocf_log info "Starting to unmount $OCF_RESKEY_volume"

The meanings of the options to export are as follows:
-f : force umount

 if umount -f $OCF_RESKEY_mountpoint; then

 ocf_log info "$OCF_RESKEY_volume unmounted successfully"
 return $OCF_SUCCESS
 else
 ocf_log err "$OCF_RESKEY_volume unmount failed"
 return $OCF_ERR_GENERIC
 fi
 fi
}

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

161

zpool_monitor () {

If the pool is not imported, then we can't monitor its health
 if ! zpool_is_imported; then
 ocf_log warn "$OCF_RESKEY_pool not imported"
 return $OCF_NOT_RUNNING
 fi

ATTENTION zpool status can hang in some conditions we disable at the moment this test
in order to find a way to monitor a pool better

Check the pool status
Possible status:
DEGRADED
FAULTED
OFFLINE
ONLINE
REMOVED
UNAVAIL

HEALTH=$(zpool list -H -o health "$OCF_RESKEY_pool")
case "$HEALTH" in
ONLINE) #to debug ocf_log info "$OCF_RESKEY_pool is
$HEALTH"
return $OCF_SUCCESS
;;
DEGRADED) ocf_log warn "$OCF_RESKEY_pool is $HEALTH"
return $OCF_SUCCESS
;;
FAULTED) ocf_log err "$OCF_RESKEY_pool is $HEALTH"
return $OCF_ERR_GENERIC
;;
*) ocf_log err "$OCF_RESKEY_pool is $HEALTH"
return $OCF_ERR_GENERIC
;;
esac

 return $OCF_SUCCESS

}

lustre_monitor () {

 if ! lustre_is_mounted; then
 ocf_log err "$OCF_RESKEY_volume is not mounted"
 return $OCF_NOT_RUNNING

 else
to debug ocf_log info "$OCF_RESKEY_volume is mounted"
 return $OCF_SUCCESS

 fi

}

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

162

all_start () {

 zpool_import
 imp_success=$?
 if ["$imp_success" != "$OCF_SUCCESS"]; then
 ocf_log err "$OCF_RESKEY_pool can not be imported with this error: $imp_success"
 return $OCF_ERR_GENERIC
 else
 sleep 5
 lustre_mount
 mnt_success=$?

 if ["$mnt_success" != "$OCF_SUCCESS"]; then
 ocf_log err "$OCF_RESKEY_volume can not be mounted with this error:
$mnt_success"
 return $OCF_ERR_GENERIC
 fi
 fi

 return $OCF_SUCCESS

}

all_stop () {

 lustre_umount
 mnt_success=$?
 if ["$mnt_success" != "$OCF_SUCCESS"]; then
 ocf_log err "$OCF_RESKEY_volume can not be unmounted with this error:
$mnt_success"
 return $OCF_ERR_GENERIC
 else
 sleep 5
 zpool_export
 exp_success=$?

 if ["$exp_success" != "$OCF_SUCCESS"]; then
 ocf_log err "$OCF_RESKEY_volume can not be exported with this error:
$exp_success"
 return $OCF_ERR_GENERIC
 fi
 fi

 return $OCF_SUCCESS

}

all_monitor () {

ATTENTION zpool status can hang in some conditions we disable at the moment this test
in order to find a way to monitor a pool better

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

163

if zpool_monitor return OCF_SUCCESS then execute lustre monitoring
 zpool_monitor
 zpool_result=$?

 case "$zpool_result" in
 $OCF_SUCCESS) lustre_monitor
 lustre_result=$?
 if ["$lustre_result" == $OCF_SUCCESS]; then
 return $OCF_SUCCESS
 fi
 return $OCF_NOT_RUNNING
 ;;
 $OCF_NOT_RUNNING) # skip any additional tests and return
 return $OCF_NOT_RUNNING
 ;;
 $OCF_ERR_GENERIC) # skip any additional tests and return the error
 return $OCF_ERR_GENERIC
 ;;
 *) ocf_log err "Unexpected result from the zpool_monitor
function"
 return $OCF_ERR_GENERIC
 ;;
 esac

}

validate () {

Maybe we can implement some validation
 return $OCF_SUCCESS

}

case $1 in
meta-data) meta_data;;
start) all_start;;
stop) all_stop;;
status|monitor) all_monitor;;
validate-all) validate;;
usage) usage
exit $OCF_SUCCESS
;;
*) exit $OCF_ERR_UNIMPLEMENTED;;
esac

exit $?

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

164

Appendix C: LNet monitor Pacemaker Resource Agent
The following script can be used to manage ZFS and Lustre on shared storage. For each host,
save this script as “healthLNET” to the location:
/usr/lib/ocf/resource.d/pacemaker/

and set the script’s permissions to 755.

#!/bin/sh

LNet OCF RA that utilizes the system ping

License: GNU General Public License (GPL)v2
Description: Manages ZFS and Lustre on a shared storage
Written by: Gabriele Paciucci
Release Date: 01 June 2016
Release Version: 0.98

Copyright (c) 2009 Andrew Beekhof

Copyright © 2016, Intel Corporation

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.

This program is distributed in the hope that it would be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Further, this software is distributed without any warranty that it is
free of the rightful claim of any third person regarding infringement
or the like. Any license provided herein, whether implied or
otherwise, applies only to this software file. Patent licenses, if
any, provided herein do not apply to combinations of this program with
other software, or any other product whatsoever.

You should have received a copy of the GNU General Public License
along with this program; if not, write the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.

Initialization:

: ${OCF_FUNCTIONS=${OCF_ROOT}/resource.d/heartbeat/.ocf-shellfuncs}
. ${OCF_FUNCTIONS}
: ${__OCF_ACTION=$1}

meta_data() {
 cat <<END
<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="healthLNET">
<version>0.98</version>

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

165

<longdesc lang="en">
Every time the monitor action is run, this resource agent records (in the CIB) the current number
of lctl ping nodes the host can connect to.
</longdesc>
<shortdesc lang="en">LNet connectivity</shortdesc>

<parameters>

<parameter name="pidfile" unique="0">
<longdesc lang="en">PID file</longdesc>
<shortdesc lang="en">PID file</shortdesc>
<content type="string" default="$HA_VARRUN/ping-${OCF_RESOURCE_INSTANCE}" />
</parameter>

<parameter name="dampen" unique="0">
<longdesc lang="en">
The time to wait (dampening) further changes occur
</longdesc>
<shortdesc lang="en">Dampening interval</shortdesc>
<content type="integer" default="5s"/>
</parameter>

<parameter name="name" unique="0">
<longdesc lang="en">
The name of the attributes to set. This is the name to be used in the constraints.
</longdesc>
<shortdesc lang="en">Attribute name</shortdesc>
<content type="string" default="pingd"/>
</parameter>

<parameter name="multiplier" unique="0">
<longdesc lang="en">
The number by which to multiply the number of connected ping nodes by
</longdesc>
<shortdesc lang="en">Value multiplier</shortdesc>
<content type="integer" default=""/>
</parameter>

<parameter name="host_list" unique="0" required="1">
<longdesc lang="en">
The list of ping nodes to count.
</longdesc>
<shortdesc lang="en">Host list</shortdesc>
<content type="string" default=""/>
</parameter>

<parameter name="attempts" unique="0">
<longdesc lang="en">
Number of ping attempts, per host, before declaring it dead
</longdesc>
<shortdesc lang="en">no. of ping attempts</shortdesc>
<content type="integer" default="2"/>
</parameter>

<parameter name="timeout" unique="0">
<longdesc lang="en">
How long, in seconds, to wait before declaring a ping lost
</longdesc>
<shortdesc lang="en">ping timeout in seconds</shortdesc>
<content type="integer" default="2"/>
</parameter>

<parameter name="lctl" unique="0">
<longdesc lang="en">
Option to enable lctl ping. The default is true
</longdesc>
<shortdesc lang="en">Extra Options</shortdesc>
<content type="string" default="true"/>
</parameter>

<parameter name="device" unique="0">

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

166

<longdesc lang="en">
Device used for the LNET network. We assume the same device accross the cluster
</longdesc>
<shortdesc lang="en">LNET device</shortdesc>
<content type="string" default=""/>
</parameter>

<parameter name="options" unique="0">
<longdesc lang="en">
A catch all for any other options that need to be passed to ping.
</longdesc>
<shortdesc lang="en">Extra Options</shortdesc>
<content type="string" default=""/>
</parameter>

<parameter name="failure_score" unique="0">
<longdesc lang="en">
Resource is failed if the score is less than failure_score.
Default never fails.
</longdesc>
<shortdesc lang="en">failure_score</shortdesc>
<content type="integer" default=""/>
</parameter>

<parameter name="debug" unique="0">
<longdesc lang="en">
Enables to use default attrd_updater verbose logging on every call.
</longdesc>
<shortdesc lang="en">Verbose logging</shortdesc>
<content type="string" default="false"/>
</parameter>

</parameters>

<actions>
<action name="start" timeout="300s" />
<action name="stop" timeout="300s" />
<action name="reload" timeout="300s" />
<action name="monitor" depth="0" timeout="300s" interval="20s"/>
<action name="meta-data" timeout="5" />
<action name="validate-all" timeout="30" />
</actions>
</resource-agent>
END
}

ping_conditional_log() {
 level=$1; shift
 if [${OCF_RESKEY_debug} = "true"]; then
 ocf_log $level "$*"
 fi
}

ping_usage() {
 cat <<END
usage: $0 {start|stop|monitor|migrate_to|migrate_from|validate-all|meta-data}

Expects to have a fully populated OCF RA-compliant environment set.
END
}

ping_start() {
 ping_monitor
 if [$? = $OCF_SUCCESS]; then
 return $OCF_SUCCESS
 fi
 touch ${OCF_RESKEY_pidfile}
 ping_update

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

167

}

ping_stop() {

 rm -f ${OCF_RESKEY_pidfile}

 attrd_updater -D -n $OCF_RESKEY_name -d $OCF_RESKEY_dampen $attrd_options

 return $OCF_SUCCESS
}

ping_monitor() {
 if [-f ${OCF_RESKEY_pidfile}]; then
 ping_update
 if [$? -eq 0]; then
 return $OCF_SUCCESS
 fi
 return $OCF_ERR_GENERIC
 fi
 return $OCF_NOT_RUNNING
}

ping_validate() {
 # Is the state directory writable?
 state_dir=`dirname "$OCF_RESKEY_pidfile"`
 touch "$state_dir/$$"
 if [$? != 0]; then
 ocf_log err "Invalid location for 'state': $state_dir is not writable"
 return $OCF_ERR_ARGS
 fi
 rm "$state_dir/$$"

Pidfile better be an absolute path
 case $OCF_RESKEY_pidfile in
 /*) ;;
 *) ocf_log warn "You should use an absolute path for pidfile not: $OCF_RESKEY_pidfile" ;;
 esac

Check the host list
 if ["x" = "x$OCF_RESKEY_host_list"]; then
 ocf_log err "Empty host_list. Please specify some nodes to ping"
 exit $OCF_ERR_CONFIGURED
 fi

 check_binary ping

 return $OCF_SUCCESS
}

lctl_check() {
 active=0
 for host in $OCF_RESKEY_host_list; do
 lctl_exe="lctl ping"

 lctl_out=`$lctl_exe $host $OCF_RESKEY_timeout 2>&1`; rc=$?
debug
#ocf_log info "$lctl_exe $host $OCF_RESKEY_timeout"

 case $rc in
 0) active=`expr $active + 1`;;
 1) ping_conditional_log warn "$host is inactive: $lctl_out";;
 *) ocf_log err "Unexpected result for '$lctl_exe $host $OCF_RESKEY_timeout' $rc:
$p_out";;
 esac
 done
 return $active

}

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

168

ping_check() {
 active=0
 for host in $OCF_RESKEY_host_list; do
 p_exe=ping

 case `uname` in
 Linux) p_args="-n -q -W $OCF_RESKEY_timeout -c $OCF_RESKEY_attempts";;
 Darwin) p_args="-n -q -t $OCF_RESKEY_timeout -c $OCF_RESKEY_attempts -o";;
 *) ocf_log err "Unknown host type: `uname`"; exit $OCF_ERR_INSTALLED;;
 esac

 case $host in
 :) p_exe=ping6
 esac

 p_out=`$p_exe $p_args $OCF_RESKEY_options $host 2>&1`; rc=$?

 case $rc in
 0) active=`expr $active + 1`;;
 1) ping_conditional_log warn "$host is inactive: $p_out";;
 *) ocf_log err "Unexpected result for '$p_exe $p_args $OCF_RESKEY_options $host' $rc:
$p_out";;
 esac
 done
 return $active
}

ping_update() {

first I'm testing if I have the physical link up. If not I give up without any additional
tests.
but first we need to find which is the device we are using on the local host, this is very
difficult with NID
we need to add another variable

CARRIER=/sys/class/net/$OCF_RESKEY_device/carrier
OPERSTATE=/sys/class/net/$OCF_RESKEY_device/operstate

CAR_STAT=$(cat $CARRIER)
OPER_STAT=$(cat $OPERSTATE)

debug
ocf_log info "$CAR_STAT - $OPER_STAT"

if ["$CAR_STAT" == "1"] && ["$OPER_STAT" == "up"]; then
 if [${OCF_RESKEY_lctl} = "true"]; then
 lctl_check
 active=$?
 else
 ping_check
 active=$?
 fi
else
 active=0
fi

debug
#ocf_log info "$active"

 score=`expr $active * $OCF_RESKEY_multiplier`
 attrd_updater -n $OCF_RESKEY_name -v $score -d $OCF_RESKEY_dampen $attrd_options
 rc=$?
 case $rc in
 0) ping_conditional_log debug "Updated $OCF_RESKEY_name = $score" ;;
 *) ocf_log warn "Could not update $OCF_RESKEY_name = $score: rc=$rc";;
 esac
 if [$rc -ne 0]; then
 return $rc
 fi

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

169

 if [-n "$OCF_RESKEY_failure_score" -a "$score" -lt "$OCF_RESKEY_failure_score"]; then
 ocf_log warn "$OCF_RESKEY_name is less than failure_score($OCF_RESKEY_failure_score)"
 return 1
 fi
 return 0
}

: ${OCF_RESKEY_name:="pingd"}
: ${OCF_RESKEY_dampen:="5s"}
: ${OCF_RESKEY_attempts:="3"}
: ${OCF_RESKEY_multiplier:="1"}
: ${OCF_RESKEY_debug:="false"}
: ${OCF_RESKEY_lctl:="true"}
#: ${OCF_RESKEY_device:="eth1"}
: ${OCF_RESKEY_failure_score:="0"}

: ${OCF_RESKEY_CRM_meta_timeout:="20000"}
: ${OCF_RESKEY_CRM_meta_globally_unique:="true"}

integer=`echo ${OCF_RESKEY_timeout} | egrep -o '[0-9]*'`
case ${OCF_RESKEY_timeout} in
 [0-9]ms|[0-9]msec) OCF_RESKEY_timeout=`expr $integer / 1000`;;
 [0-9]m|[0-9]min) OCF_RESKEY_timeout=`expr $integer * 60`;;
 [0-9]h|[0-9]hr) OCF_RESKEY_timeout=`expr $integer * 60 * 60`;;
 *) OCF_RESKEY_timeout=$integer;;
esac

if [-z ${OCF_RESKEY_timeout}]; then
 if [x"$OCF_RESKEY_host_list" != x]; then
 host_count=`echo $OCF_RESKEY_host_list | awk '{print NF}'`
 OCF_RESKEY_timeout=`expr $OCF_RESKEY_CRM_meta_timeout / $host_count /
$OCF_RESKEY_attempts`
 OCF_RESKEY_timeout=`expr $OCF_RESKEY_timeout / 1100` # Convert to seconds and finish 10%
early
 else
 OCF_RESKEY_timeout=5
 fi
fi

if [${OCF_RESKEY_timeout} -lt 1]; then
 OCF_RESKEY_timeout=5
elif [${OCF_RESKEY_timeout} -gt 1000]; then
 # ping actually complains if this value is too high, 5 minutes is plenty
 OCF_RESKEY_timeout=300
fi

if [${OCF_RESKEY_CRM_meta_globally_unique} = "false"]; then
 : ${OCF_RESKEY_pidfile:="$HA_VARRUN/ping-${OCF_RESKEY_name}"}
else
 : ${OCF_RESKEY_pidfile:="$HA_VARRUN/ping-${OCF_RESOURCE_INSTANCE}"}
fi

attrd_options='-q'
if ocf_is_true ${OCF_RESKEY_debug} ; then
 attrd_options=''
fi

Check the debug option
 case "${OCF_RESKEY_debug}" in
 true|True|TRUE|1) OCF_RESKEY_debug=true;;
 false|False|FALSE|0) OCF_RESKEY_debug=false;;
 *)
 ocf_log warn "Value for 'debug' is incorrect. Please specify 'true' or 'false' not:
${OCF_RESKEY_debug}"
 OCF_RESKEY_debug=false
 ;;
 esac

case $__OCF_ACTION in
meta-data) meta_data

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

170

 exit $OCF_SUCCESS
 ;;
start) ping_start;;
stop) ping_stop;;
monitor) ping_monitor;;
reload) ping_start;;
validate-all) ping_validate;;
usage|help) ping_usage
 exit $OCF_SUCCESS
 ;;
*) ping_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
esac
exit $?

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

171

Appendix D: Lustre services monitor Pacemaker Resource Agent
The following script can be used to manage ZFS and Lustre on shared storage. For each host,
save this script as “healthLUSTRE” to the location:
/usr/lib/ocf/resource.d/pacemaker/

and set the script’s permissions to 755.

#!/bin/sh

HealthLUSTRE OCF RA that utilizes the lustre /proc/fs/lustre/health_check

License: GNU General Public License (GPL)v2
Description: Manages ZFS and Lustre on a shared storage
Written by: Gabriele Paciucci
Release Date: 01 June 2016
Release Version: 0.97

Copyright (c) 2009 Andrew Beekhof

Copyright © 2016, Intel Corporation

This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.

This program is distributed in the hope that it would be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Further, this software is distributed without any warranty that it is
free of the rightful claim of any third person regarding infringement
or the like. Any license provided herein, whether implied or
otherwise, applies only to this software file. Patent licenses, if
any, provided herein do not apply to combinations of this program with
other software, or any other product whatsoever.

You should have received a copy of the GNU General Public License
along with this program; if not, write the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.

Initialization:

: ${OCF_FUNCTIONS=${OCF_ROOT}/resource.d/heartbeat/.ocf-shellfuncs}
. ${OCF_FUNCTIONS}
: ${__OCF_ACTION=$1}

meta_data() {
 cat <<END
<?xml version="1.0"?>
<!DOCTYPE resource-agent SYSTEM "ra-api-1.dtd">
<resource-agent name="healthLUSTRE">
<version>1.0</version>

<longdesc lang="en">

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

172

Every time the monitor action is run, this resource agent records (in the CIB) the current number
of healthy lustre server
</longdesc>
<shortdesc lang="en">lustre servers healthy</shortdesc>

<parameters>

<parameter name="pidfile" unique="0">
<longdesc lang="en">PID file</longdesc>
<shortdesc lang="en">PID file</shortdesc>
<content type="string" default="$HA_VARRUN/healthLUSTRE-${OCF_RESOURCE_INSTANCE}" />
</parameter>

<parameter name="dampen" unique="0">
<longdesc lang="en">
The time to wait (dampening) further changes occur
</longdesc>
<shortdesc lang="en">Dampening interval</shortdesc>
<content type="integer" default="5s"/>
</parameter>

<parameter name="name" unique="0">
<longdesc lang="en">
The name of the attributes to set. This is the name to be used in the constraints.
</longdesc>
<shortdesc lang="en">Attribute name</shortdesc>
<content type="string" default="lustred"/>
</parameter>

<parameter name="debug" unique="0">
<longdesc lang="en">
Enables to use default attrd_updater verbose logging on every call.
</longdesc>
<shortdesc lang="en">Verbose logging</shortdesc>
<content type="string" default="false"/>
</parameter>

</parameters>

<actions>
<action name="start" timeout="60" />
<action name="stop" timeout="20" />
<action name="reload" timeout="100" />
<action name="monitor" depth="0" timeout="60" interval="10"/>
<action name="meta-data" timeout="5" />
<action name="validate-all" timeout="30" />
</actions>
</resource-agent>
END
}

lustre_conditional_log() {
 level=$1; shift
 if [${OCF_RESKEY_debug} = "true"]; then
 ocf_log $level "$*"
 fi
}

lustre_usage() {
 cat <<END
usage: $0 {start|stop|monitor|migrate_to|migrate_from|validate-all|meta-data}

Expects to have a fully populated OCF RA-compliant environment set.
END
}

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

173

lustre_start() {
 lustre_monitor
 if [$? = $OCF_SUCCESS]; then
 return $OCF_SUCCESS
 fi
 touch ${OCF_RESKEY_pidfile}
 lustre_update
}

lustre_stop() {

 rm -f ${OCF_RESKEY_pidfile}

 attrd_updater -D -n $OCF_RESKEY_name -d $OCF_RESKEY_dampen $attrd_options

 return $OCF_SUCCESS
}

lustre_monitor() {
 if [-f ${OCF_RESKEY_pidfile}]; then
 lustre_update
 if [$? -eq 0]; then
 return $OCF_SUCCESS
 fi
 return $OCF_ERR_GENERIC
 fi
 return $OCF_NOT_RUNNING
}

we worked on this later
#ping_validate() {
 # Is the state directory writable?
state_dir=`dirname "$OCF_RESKEY_pidfile"`
touch "$state_dir/$$"
if [$? != 0]; then
ocf_log err "Invalid location for 'state': $state_dir is not writable"
return $OCF_ERR_ARGS
fi
rm "$state_dir/$$"

Pidfile better be an absolute path
case $OCF_RESKEY_pidfile in
/*) ;;
*) ocf_log warn "You should use an absolute path for pidfile not: $OCF_RESKEY_pidfile" ;;
esac

Check the host list
if ["x" = "x$OCF_RESKEY_host_list"]; then

ocf_log err "Empty host_list. Please specify some nodes to ping"
exit $OCF_ERR_CONFIGURED
fi

check_binary ping

return $OCF_SUCCESS
#}

lustre_check() {

 active=0

added head -1 due the LU-7486
 l_out=`cat /proc/fs/lustre/health_check | head -1 |grep -w healthy 2>&1`; rc=$?

 case $rc in
 0) active=`expr $active + 1`;;
 1) lustre_conditional_log warn "Lustre is not healthy: $l_out";;
 *) ocf_log err "Unexpected result for '/proc/fs/lustre/health_check' $rc: $l_out";;

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

174

 esac
 return $active
}

lustre_update() {

 lustre_check
 active=$?

 attrd_updater -n $OCF_RESKEY_name -v $active -d $OCF_RESKEY_dampen $attrd_options
 rc=$?
 case $rc in
 0) lustre_conditional_log debug "Updated $OCF_RESKEY_name = $active" ;;
 *) ocf_log warn "Could not update $OCF_RESKEY_name = $active: rc=$rc";;
 esac
 if [$rc -ne 0]; then
 return $rc
 fi
 return 0
}

: ${OCF_RESKEY_name:="lustred"}
: ${OCF_RESKEY_dampen:="5s"}
: ${OCF_RESKEY_attempts:="3"}
: ${OCF_RESKEY_debug:="false"}

: ${OCF_RESKEY_CRM_meta_timeout:="20000"}
: ${OCF_RESKEY_CRM_meta_globally_unique:="true"}

I don't think we need to care about timeout

#integer=`echo ${OCF_RESKEY_timeout} | egrep -o '[0-9]*'`
#case ${OCF_RESKEY_timeout} in
[0-9]ms|[0-9]msec) OCF_RESKEY_timeout=`expr $integer / 1000`;;
[0-9]m|[0-9]min) OCF_RESKEY_timeout=`expr $integer * 60`;;
[0-9]h|[0-9]hr) OCF_RESKEY_timeout=`expr $integer * 60 * 60`;;
*) OCF_RESKEY_timeout=$integer;;
#esac

#if [-z ${OCF_RESKEY_timeout}]; then
if [x"$OCF_RESKEY_host_list" != x]; then
host_count=`echo $OCF_RESKEY_host_list | awk '{print NF}'`
OCF_RESKEY_timeout=`expr $OCF_RESKEY_CRM_meta_timeout / $host_count /
$OCF_RESKEY_attempts`
OCF_RESKEY_timeout=`expr $OCF_RESKEY_timeout / 1100` # Convert to seconds and finish 10%
early
else
OCF_RESKEY_timeout=5
fi
#fi

#if [${OCF_RESKEY_timeout} -lt 1]; then
OCF_RESKEY_timeout=5
#elif [${OCF_RESKEY_timeout} -gt 1000]; then
ping actually complains if this value is too high, 5 minutes is plenty
OCF_RESKEY_timeout=300
#fi

if [${OCF_RESKEY_CRM_meta_globally_unique} = "false"]; then
 : ${OCF_RESKEY_pidfile:="$HA_VARRUN/healthLUSTRE-${OCF_RESKEY_name}"}
else
 : ${OCF_RESKEY_pidfile:="$HA_VARRUN/healthLUSTRE-${OCF_RESOURCE_INSTANCE}"}
fi

attrd_options='-q'
if ocf_is_true ${OCF_RESKEY_debug} ; then
 attrd_options=''
fi

Check the debug option

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

175

 case "${OCF_RESKEY_debug}" in
 true|True|TRUE|1) OCF_RESKEY_debug=true;;
 false|False|FALSE|0) OCF_RESKEY_debug=false;;
 *)
 ocf_log warn "Value for 'debug' is incorrect. Please specify 'true' or 'false' not:
${OCF_RESKEY_debug}"
 OCF_RESKEY_debug=false
 ;;
 esac

case $__OCF_ACTION in
meta-data) meta_data
 exit $OCF_SUCCESS
 ;;
start) lustre_start;;
stop) lustre_stop;;
monitor) lustre_monitor;;
reload) lustre_start;;
validate-all) lustre_usage
 exit $OCF_SUCCESS
 ;;
usage|help) lustre_usage
 exit $OCF_SUCCESS
 ;;
*) lustre_usage
 exit $OCF_ERR_UNIMPLEMENTED
 ;;
esac
exit $?

Lustre* Installation and Configuration using Intel® EE for Lustre* Software and OpenZFS

176

References
High Performance Parallel I/O, Chapman and Hall/CRC Press, Prabhat, Koziol (Editors), ISBN:
978-1-4665-8234-7

Lustre Operations Manual: https://wiki.hpdd.intel.com/display/PUB/Documentation

Pacemaker project: http://clusterlabs.org/

Corosync project: http://corosync.github.io/corosync/

Linux-HA project: http://linux-ha.org/

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s1-config-rrp-cli-CA.html

https://access.redhat.com/solutions/162193

https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

https://wiki.hpdd.intel.com/display/PUB/Documentation
http://clusterlabs.org/
http://corosync.github.io/corosync/
http://linux-ha.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s1-config-rrp-cli-CA.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Cluster_Administration/s1-config-rrp-cli-CA.html
https://access.redhat.com/solutions/162193
https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

	About this Document
	Conventions Used
	Related Documentation

	Introduction to Lustre*
	Overview
	Architecture
	Metadata Server
	Management Server
	Object Storage Server
	Clients
	Networking

	High Availability and Data Storage Reliability
	Lustre Storage
	High Availability for Lustre Service Continuity
	High Availability and GNU/Linux

	Lustre Reference Architecture in this Guide
	Overview
	Network
	Software
	Operating System
	Intel® Enterprise Edition for Lustre* Software

	Metadata and Management Servers
	Object Storage Servers
	Clients
	Lustre Server Platform Preparation
	Overview
	Network Configuration
	Storage Preparation

	Lustre Client Platform Preparation
	Overview
	Network Configuration

	Operating System Configuration
	Overview
	Network Addresses
	Date and Time Synchronization with NTP
	Identity Management
	SELinux and Firewall Configuration
	Operating System Software Package Management

	Using YUM to Manage Software Distribution
	Device Drivers for High Performance Network Fabrics (RDMA, OFED)
	Installing the Lustre Software
	Installing Lustre Servers with OpenZFS
	Lustre Client Software Installation

	Configure Lustre Networking (LNet)
	Introduction to Lustre Networks
	LNet Configuration Overview
	Configuration of LNet Using Modprobe Options Files
	LNet networks syntax
	LNet ip2nets syntax

	Starting and Stopping LNet
	Optimizing o2iblnd Performance
	Dynamic LNet Configuration and lnetctl
	LNet automated startup and shutdown using sysvinit or systemd

	Multi-rail LNet Topologies
	Enabling InfiniBand (o2ib) Bonding
	Restrictions for Multi-rail LNet Topologies

	LNet Configuration Edge Case Behaviors and Side-Effects

	Lustre Storage Devices
	Formatting Lustre Storage
	Defining Service Failover (--failnode vs --servicenode)

	Lustre Device and Mount Point Naming Conventions
	ZFS OSDs
	ZFS Storage Pool Basics
	Simple stripe across two physical vdevs:
	Two-disk mirror:
	Striped mirrors (equivalent to RAID 1+0):
	Pool with single RAIDZ2 vdev (equivalent to RAID 6):
	Pool with two RAIDZ2 vdevs (equivalent to RAID 6+0):

	Formatting a ZFS OSD using only the mkfs.lustre command
	Formatting a ZFS OSD using zpool and mkfs.lustre
	Working with ZFS Imports
	Lustre and ZFS File System Datasets
	Examining ZFS Pools with zdb
	Optimizing Performance of SSDs and Advanced Format Drives with zpool ashift
	ZFS recordsize Property

	Protecting File System Volumes from Concurrent Access
	Using ZFS Properties to Protect Lustre OSDs

	Create the Management Service (MGS)
	MGT Formatted as a ZFS OSD
	Formatting the MGT using only the mkfs.lustre command
	Formatting the MGT using zpool and mkfs.lustre

	Starting and stopping the MGS Service

	Create the Metadata Service (MDS)
	MDT Formatted as a ZFS OSD
	Formatting an MDT using only the mkfs.lustre command
	Formatting an MDT using zpool and mkfs.lustre

	Starting and stopping the MDS Service

	Create the Object Storage Services (OSS)
	OST Formatted as a ZFS OSD
	Formatting an OST using only the mkfs.lustre command
	Formatting an OST using zpool and mkfs.lustre

	Starting and stopping the OSS Service

	Lustre Clients
	Starting and stopping the Lustre Client

	Starting and Stopping Lustre Services
	Lustre Start-up Sequence
	Lustre Shutdown Sequence
	Why not start the MDS after the OSSs?

	High Availability and Failover
	Controlling Service Failover Between Hosts
	Controlled Migration or Failover of a Lustre Service Between Hosts
	Forced Migration of a Lustre Service Between Hosts

	High Availability Automation – Pacemaker and Corosync
	Red Hat Enterprise Linux HA Framework Configuration for Two- Node Cluster
	Hardware and Server Infrastructure Prerequisites
	Software Prerequisites
	Install the HA software
	Configure the Basic HA Framework
	Changing the default security key
	Starting and Stopping the cluster framework
	Verify cluster configuration and status
	Pacemaker Server Fault Isolation with Fencing
	Configuring the IPMI Fence Agent For Pacemaker

	Creating Pacemaker Resources for Lustre Storage Services
	Lustre + ZFS Resource Agent Installation
	Lustre + ZFS Resource Agent Configuration for MGT and MDT0
	Lustre + ZFS Resource Agent Configuration for the OSTs

	Creating Additional Monitoring Resources In Pacemaker
	Detection of LNET Outage
	Detection of MDS/OSS/MGS services outages

	Appendix A: RHEL / CentOS Kickstart Template
	Appendix B: Lustre ZFS Pacemaker Resource Agent
	Appendix C: LNet monitor Pacemaker Resource Agent
	Appendix D: Lustre services monitor Pacemaker Resource Agent
	References

