

Hierarchical Storage Management
Configuration Guide

Implementation Guide
High Performance Data Division

US

June 1, 2016

World Wide Web: http://www.intel.com

Intel® Confidential

http://www.intel.com/

Hierarchical Storage Management Configuration Guide

 Intel® Confidential i

Disclaimer and legal information

INTEL® CONFIDENTIAL. Copyright 2015 Intel® Corporation. All rights reserved.

Portions of the source code contained or described herein and all documents related to the source code
("Material") are owned by Intel® Corporation or its suppliers or licensors. Title to the Material remains with
Intel® Corporation or its suppliers and licensors. The Material contains trade secrets and proprietary and
confidential information of Intel® or its suppliers and licensors. The Material is protected by worldwide
copyright and trade secret laws and treaty provisions. No part of the Material may be used, copied,
reproduced, modified, published, uploaded, posted, transmitted, distributed, or disclosed in any way without
Intel’s prior express written permission.

No license under any patent, copyright, trade secret or other intellectual property right is granted to or
conferred upon you by disclosure or delivery of the Materials, either expressly, by implication, inducement,
estoppel or otherwise. Any license under such intellectual property rights must be express and approved by
Intel® in writing.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL® ASSUMES NO LIABILITY WHATSOEVER AND INTEL® DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel® Product could result, directly or
indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH
MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL® AND ITS SUBSIDIARIES,
SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR
DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL® OR
ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL®
PRODUCT OR ANY OF ITS PARTS.

Before using any third party software referenced herein, please refer to the third party software provider’s
website for more information, including without limitation, information regarding the mitigation of potential
security vulnerabilities in the third party software.

Intel® may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined". Intel® reserves these for Lustre Architecture future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is
subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request. Contact your local Intel® sales office or your distributor to obtain the latest specifications and before
placing your product order. Copies of documents which have an order number and are referenced in this
document, or other Intel® literature, may be obtained by calling 1-800-548-4725, or go to:
http://www.intel.com/design/literature.htm.

Intel® and the Intel® logo are trademarks of Intel® Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit.
(http://www.openssl.org/)

Hierarchical Storage Management Configuration Guide

 Intel® Confidential ii

Hierarchical Storage Management Configuration Guide

 Intel® Confidential iii

Contents

Introduction ... 1

Hierarchical Storage Management Architecture... 3

Configuring HSM .. 5

Enabling the HSM Coordinator .. 5

Enabling the HSM Coordinator for an Existing File System .. 5

Enabling the HSM Coordinator when Creating the File System .. 6

Verifying the Current Status of the Coordinator .. 7

HSM Coordinator States ... 7

Provision an HSM Agent with the POSIX Copytool .. 7

Preparation ... 8

Add an HSM Agent Host with Intel® Manager for Lustre* Software ... 9

Configure the HSM Copytool Daemon .. 12

Start the Copytool .. 13

Check that the Copytool Process is Running ... 14

Check that the Copytool Instance is Registered with the Coordinator 14

Running the POSIX Copytool Outside of Intel Manager for Lustre ... 14

Quick Verification Check and Introduction to the HSM Command Line 15

Working with HSM Archive Identifiers .. 19

The Default HSM Archive .. 19

Archive Zero – The "Any" Archive .. 20

Additional Notes ... 23

Robinhood Policy Engine Installation .. 23

Preparation .. 24

Provision the Robinhood Packages Using Intel® Manager for Lustre. .. 24

Mount the Lustre file system on the Robinhood Server .. 26

Configure MDS Changelogs ... 27

Prepare the Robinhood Database ... 28

Robinhood Initial Configuration .. 31

Create a Minimal Configuration .. 32

General ... 32

Hierarchical Storage Management Configuration Guide

 Intel® Confidential iv

Log .. 33

ListManager (Database) ... 33

ChangeLog .. 34

Robinhood Initial Configuration – Complete Example ... 34

Starting Robinhood for the First Time ... 35

Using Robinhood to Create Reports ... 36

Robinhood Daemon Activity .. 36

File System Statistics .. 38

High Level Report ... 38

Identify the Largest File System Consumers .. 38

Detailed Reports ... 39

Using Robinhood to Create HSM Policies ... 40

Quick-Start Robinhood Policy Configuration ... 41

General Syntax ... 44

Filesets – Defining Classes of Files ... 46

Specifying an Archive ... 47

Filesets – A Complete Example .. 47

Migrate – Archiving Files .. 49

Migration Parameters ... 49

Migration Policies ... 50

Migration_policies – Complete Example .. 51

Purge – Releasing Files That Have Been Archived .. 53

Purge Parameters ... 53

Purge Policies – Deciding What to Release ... 53

Purge_Policies – Complete Example .. 55

Purge Triggers – Deciding When to Release Files .. 56

Purge_trigger – Complete Example .. 57

Remove – Cleaning Up Archive Copies of Deleted Files .. 58

HSM_Remove_Policy & HSM_Remove_Parameters – Complete Example 58

Appendix A: Sample Robinhood Configuration File ... 59

Hierarchical Storage Management Configuration Guide

 Intel® Confidential v

About this Document
Document Purpose

This document describes how to configure a hierarchical storage management system for a
Lustre* file system created with Intel® Enterprise Edition for Lustre* software and Intel®
Manager for Lustre* software. This document introduces HSM, its functionality, and its various
components. It then describes how, using Intel® Manager for Lustre* Software, to:

1. Enable the HSM Coordinator process.

2. Provision an HSM Agent host.

3. Add the POSIX copytool instance to the HSM Agent host (and start copytool).

The document then discusses how to setup and configure the Robinhood HSM policy engine,
which is bundled with Intel® EE for Lustre.

Intended Audience

This guide is intended for systems integrators with a strong technical background in Linux
system administration as well as Lustre file system deployment and management, and who
have a requirement to support access to Lustre from Windows clients. The guide tries to make
no assumptions about the reader's experience HSM, but advanced concepts may require some
knowledge of Windows network services such as Active Directory or Windows NT4.

It is expected that readers have:

• experience administering file systems and storage infrastructure, and familiarity with
storage concepts such as RAID, SAN, and LVM

• system management experience sufficient to install and configure a storage platform
compatible with the requirements as defined in this guide

• proficiency in setting up, administering, and maintaining computer networks, including
Ethernet, TCP/IP and InfiniBand where necessary. Some knowledge of Lustre
networking (LNET) is required.

• some experience with installing and managing Lustre file systems

This document is not intended for end-users or application developers.
Conventions Used

Conventions used in this document include:

• # preceding a command indicates the command is to be entered as root.
• $ indicates a command is to be entered as a user.
• <variable_name> indicates the placeholder text that appears between the angle

brackets is to be replaced with an appropriate value.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential vi

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 1

Introduction
A Lustre* file system is a network-based, distributed parallel storage platform consisting of
metadata servers (MDS) and object storage servers (OSS). Metadata servers manage the file
system namespace (directory structure, file information – inodes), while object storage servers
contain the file contents. A management server (MGS) provides directory services, storing the
configuration information for Lustre file systems and presenting that information to the
population of Lustre servers and clients.

Intel® Manager for Lustre* software is an additional service supplied with Intel® Enterprise
Edition for Lustre* Software that enables administrators to create, manage and monitor
Lustre file systems. With this software, operators can configure and manage servers, as well as
monitor file system health and performance.

Figure 1 depicts the minimum configuration of an enterprise deployment of Lustre. The
metadata servers and object storage servers are configured in high availability (HA) cluster
pairs using a standard template based on Pacemaker and Corosync. Each pair has equal
access to shared external storage. Each pair shares a dedicated heartbeat network
interconnect (provided through a cross-link cable) and has access to a common management
network for communicating with the Intel® Manager for Lustre* software and for cluster-
management communications. Lustre file system traffic is sent over a high-performance
network, typically InfiniBand or 10Gb Ethernet.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 2

Figure 1. Intel® Enterprise Edition of Lustre* architecture

An HA storage server pair represents a single scalable unit in the Lustre file system. To expand
the capacity and throughput performance of the file system, add more OSS pairs. To improve
metadata performance, add more MDS pairs. This capability is provided by Lustre's Distribute
Namespace technology (DNE). (DNE is not available in the 1.0.x release of Intel® EE for Lustre.)
Storage servers can be added to the file system at any time without interrupting service to the
client population. By using an HA storage server pair as the scalable unit, the file system can
be safely expanded without compromising service and data availability to the client
population. In order to use Intel® Manager for Lustre* with Intel® Enterprise Edition for Lustre,
high-availability hardware configurations for the metadata servers and object storage servers
are required. Each server in an HA server pair must have a near-identical hardware and
software configuration.

For a comprehensive description of the system configuration requirements for Intel®
Enterprise Edition for Lustre, refer to the Intel® Enterprise Edition for Lustre* Software
Installation Guide.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 3

Hierarchical Storage Management Architecture
Hierarchical Storage Management (HSM) is a collection of technologies and processes
designed to provide a cost-effective storage platform that balances performance and capacity.
Storage systems are organized into tiers, where the highest-performance tier is on the
shortest path to the systems where applications are running; this is where the most active data
is generated and consumed. As the high-performance tier fills, data that is no longer being
actively used will be migrated to higher-capacity and generally lower-cost-per-terabyte
storage platforms for long-term retention. Data migration is ideally managed automatically
and transparently to the end user.

Intel® Enterprise Edition for Lustre* Software provides a framework for incorporating a Lustre
file system into an HSM implementation, as the high performance storage tier. When a new file
is created, a replica can be made on the associated HSM archive tier, so that two copies of the
file exist. As changes are made to the file, these are replicated onto the archive copy as well.
The process of replicating data between Lustre and the archive is asynchronous, so there will
be a delay in data generated on Lustre being reflected in the archive tier. As the available
capacity is gradually consumed on the Lustre tier, the older, least frequently used files are
"released" from Lustre, meaning that the local copy is deleted from Lustre and replaced with a
stub file that points to the archive copy. Applications are not aware of the locality of a file:
there is no distinction between a file on the archive and a file on the Lustre file system, from
the perspective of directory listings or the stat() system call. Crucially, applications do not
need to be re-written in order to work with data stored on an HSM system. If a system call is
made to open a file that has been released, the HSM software automatically dispatches a
request to retrieve the file from the archive and restore it to the Lustre file system. This may
be noticeable in the form of a delay, but is otherwise transparent to the application.

Figure 2 provides an overview of the hardware architecture for a typical IEEL HSM file system.
The metadata servers have an additional process called the HSM Coordinator that accepts,
queues and dispatches HSM requests (Other documents may refer to this as the MDT
Coordinator. The HSM Coordinator runs on the MDS/MDT). HSM requests are submitted from
Lustre clients, either through the command line or through a special-purpose third-party
application known as a Policy Engine. The Policy Engine software makes use of Lustre's HSM
API to interact with the HSM Coordinator. The HSM platform also requires an interface
between the Lustre file system tier and the archive tier. Servers called HSM Agents (also
known as Copytool servers) provide this interface.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 4

Figure 2. HSM Architecture

Intel® Enterprise Edition for Lustre* Software provides reference implementations of both the
Policy Engine and the HSM Copytool. The copytool supplied with Lustre uses POSIX interfaces
to copy data to and from the archive. While this implementation of copytool is completely
functional, it has been created principally as an example of how to develop copytools for
other archive types, which may use different APIs. The copytool included with this software is
intended as a reference implementation, and while it stable and reliable, it is not a high-
performance tool and for that reason, may not be suitable for a “production environment”.

The Policy Engine distributed with Intel® Enterprise Edition for Lustre* Software is called
Robinhood. Robinhood is an open-source application with support for Lustre HSM.
Robinhood tracks changes to the file system by registering with the Lustre MDT Changelogs
service, and records this information persistently in a relational database. Robinhood then
analyses this information and takes action based on a set of rules defined by the file system's

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 5

maintainers. These rules govern how files and directories will be managed by the HSM system,
and the conditions under which to take an action. Among other things, policies in Robinhood
determine how often to copy files to the archive tier, and the criteria for purging files from the
Lustre tier in order to release capacity for new data.

Configuring HSM
There are three central tasks required to setup basic HSM for a Lustre file system created and
managed by Intel® Manager for Lustre* software:

1. Enable the HSM Coordinator process.

2. Provision an HSM Agent host.

3. Add a copytool instance to the HSM Agent host (and start copytool).

Robinhood setup and configuration is described later in this guide.

Enabling the HSM Coordinator
Before a Lustre file system can be integrated into a hierarchical storage management platform,
the metadata server for the file system must be configured to run the HSM Coordinator
process. This must happen before Copytool agents can be registered and HSM transactions
can be processed.

Intel® Manager for Lustre* software offers two ways to activate the HSM Coordinator for a
Lustre file system:

• for existing file systems, by editing the advanced parameters of the file system's
Metadata Target (MDT), after the file system has been created

• when first creating the file system

Enabling the HSM Coordinator for an Existing File System
The HSM Coordinator can be enabled at any time after a file system has been created,
provided that the file system is based on Lustre 2.5.0 or later, the Metadata service is online,
and the MDT and MGT are mounted.

1. Log into Intel® Manager for Lustre* dashboard as a superuser.

2. Navigate to the File Systems window: Click Configuration > File Systems.

3. Select the file system for which HSM support is to be enabled from the list of file
systems.

4. Under Metadata Target, click the name of the metadata target.

5. Click the Advanced tab and look for the property hsm_control.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 6

6. Enter the string "enabled" into the text field. For example:

7. Click the Apply button. The background will briefly flash to grey then back to white to
indicate that the setting has been applied. Click Close when done.

Enabling the HSM Coordinator when Creating the File System
The HSM coordinator can be enabled when the Lustre file system is created using Intel®
Manager for Lustre* software. See the online Help for the Intel® Manager for Lustre* software
for complete instructions on creating a Lustre file system. Near the end of the process, after
adding servers, configuring HA failover, adding targets, etc., you will create the file system. At
this point, the HSM Coordinator can be enabled.

(The following instructions are borrowed from the Intel Manager for Lustre* online Help.)

To create the new Lustre file system:

1. At the menu bar, click the Configuration drop-down menu and click File Systems to
display the File System Configuration page.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 7

2. Click Create File System to display New File System Configuration.

3. In the File system name field, enter the name of the new file system. The name can be
no more than eight characters long and should conform to standard Linux naming
conventions.

4. If this file system is to utilize Hierarchical Storage Management, click the check-box
Enable HSM.

Verifying the Current Status of the Coordinator
The most reliable way to verify the status of the HSM Coordinator process is to log into the
metadata server that currently has the MDT mounted. Then enter the following command:

lctl get_param mdt.*.hsm_control

For example:

[root@ieel-mds1 ~]# lctl get_param mdt.*.hsm_control

mdt.demo-MDT0000.hsm_control=enabled

HSM Coordinator States
The hsm_control property has several options for managing the state of the process. These
are:

• enabled: start the coordinator thread

• disabled: pause the coordinator. New requests will be queued but not scheduled

• shutdown: stop the coordinator. New requests cannot be submitted

• purge: clear all currently recorded requests. Do not change the coordinator state

Please refer to the Lustre Operations Manual, Chapter 22, for a comprehensive description of
HSM features and the HSM Coordinator.

Provision an HSM Agent with the POSIX Copytool
HSM Agent hosts are special-purpose Lustre clients that have an interface to the HSM archive
storage tier. This interface is managed by a software service known as the copytool that runs

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 8

on each HSM Agent. Different archive storage platforms can have different interfaces or APIs,
each of which will require a specific copytool. This document covers the configuration of an
HSM Agent that will interface to a POSIX-compliant archive platform, using the POSIX
copytool included with Intel® Enterprise Edition for Lustre.

Note: The copytool included with this software is intended as a reference implementation,
and while it has performed acceptably at modest scale in our testing, it would be advisable to
test thoroughly before using in a production environment

The archive storage solution can be built using any one of a number of technologies, whether
based on a POSIX-compatible interface or another protocol. For scalability, multiple HSM
agents can be established for a single archive, provided that each agent has equivalent access
to the same archive tier.

In the examples that follow, the POSIX archive target is a locally-attached file system (this is
not a scalable solution but is sufficient for the purposes of demonstration). For testing
multiple agents connected to a single archive tier, a network-based POSIX target such as NFS
or another Lustre file system could be used.

Preparation
HSM Agent hosts provide a bridge between the Intel® EE for Lustre file system and the archive
storage tier. Prior to integrating the HSM Agent into an Intel® EE for Lustre file system, please
ensure that the following prerequisites have been satisfied:

• The HSM Coordinator service has been enabled on the MDT for the file system
(performed in chapter 2).

• The target HSM Agent host has been installed with a supported Linux-based operating
system.

• The HSM Agent is able to participate as a Lustre client on a high performance data
network. The HSM Agent must be able to communicate with the Lustre servers on this
network.

• The HSM Agent host can be reached by the Intel® Manager for Lustre* software server
over the management network and has been configured so that the manager can
provision software either through a passphrase-less SSH connection or equivalent
mechanism.

• The HSM Agent host has been configured with access to the archive storage platform.
For a POSIX-compatible archive, ensure that the archive is mounted on the HSM Agent
host and that the root superuser account has read- and write-privileges on that mount
point. Ideally, the archive storage should be available automatically at system boot.

For very small-scale testing purposes, a locally-attached storage volume for a single HSM
Agent is sufficient to act as the archive storage. One can create an EXT4 file system for this

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 9

purpose and create an entry in /etc/fstab so that it mounts on boot. For example, assuming
that a storage volume containing a single partition exists on /dev/sdb:

mkdir -p /archive/demo

mkfs.ext4 -L ARC1 /dev/sdb1

printf "LABEL=ARC1\t\t/archive/demo\text4\tdefaults\t0 0\n" \

 >>/etc/fstab

Or equivalently:

echo "LABEL=ARC1 /archive/demo ext4 default 0 0"
>>/etc/fstab

Then mount the file system as normal:

mkdir -p /archive/demo

mount -L ARC1

In the above example, the archive file system was given a label to help identify the storage
volume.

The above trivial example is suitable only for development and testing purposes, but it is
sufficient to provide system integrators and maintainers with exposure to the tools and
processes of Lustre's HSM implementation.

A production HSM archive may be far larger than the Lustre file system itself and will need to
be serviced by multiple HSM Agent nodes in order to be able to meet scalable performance
demands. This means that the archive platform should be accessible simultaneously from
multiple HSM agent servers. Implementation of a production-quality archive is beyond the
scope of this document.

Add an HSM Agent Host with Intel® Manager for Lustre* Software
Intel® Enterprise Edition for Lustre* Software version 2.4 and later uses the concept of worker
nodes. These are special-purpose systems that are not core Lustre file system servers (in other
words, these are systems that are not Metadata or Object Storage servers; usually, worker
nodes are special-purpose Lustre clients). HSM Agents are one of the worker node types that
can be configured and managed from the Intel® Manager for Lustre* GUI.

To add an HSM Agent:

1. Log into the Intel® Manager for Lustre* dashboard as a superuser.

2. Navigate to the Servers window: Click Configuration > Servers.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 10

3. Click +Add Server.

a. Enter the name of the host to be used as the HSM Agent.

b. Under Server profile, select POSIX HSM Agent Node.

c. Select the appropriate authentication scheme and click Continue.

4. When the target host passes the prerequisites check, click Confirm to provision the
HSM Agent. If any of the checks fail, please rectify before continuing. Common issues
include incorrect permissions (for example, a missing SSH key), incomplete host name
resolution and incorrect or incomplete YUM repository configuration.

5. The Add Server process will install the Lustre client software and kernel modules, and
automatically resolve all package dependencies during the installation process. The
software installation process relies on YUM and access to operating system
repositories, including update repositories, in order to successfully complete
installation. Note that the Linux kernel for the target host may also be updated by the
installation process if the currently-installed kernel does not match the version
required by the Lustre kernel modules.

Next, configure the LNET settings for this HSM Agent node:

1. At the menu bar, click the Configuration drop-down menu and click Servers.

2. Identify the HSM Agent node.

3. To set the NID for a network interface on a given server, the LNet State for that server
must indicate LNet up. To load and start LNet, click Actions and select Start LNet.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 11

4. When LNet has started, the LNet State indicates LNet up, and the Configure button
becomes active. Click Configure.

5. The NID Configuration for <server name> dialogue appears. This window applies to
this server only. Available network interfaces appear on the left, with their associated
IP addresses. Click the LNet button for the desired interface to select the Lustre
Network number you want to assign to this interface. Do this for each interface you
want to configure with an LNet NID.

6. Click Save. Click Close to close this dialogue.

Verify the settings by logging into the target host and viewing the contents of the file,
/etc/modprobe.d/iml_lnet_module_parameters.conf, and by running the command
lctl list_nids. For example:

[root@ieel-c004 ~]# cat
/etc/modprobe.d/iml_lnet_module_parameters.conf

This file is auto-generated for Lustre NID configuration by IML

Do not overwrite this file or edit its contents directly
options lnet networks=tcp0(eth1)

LNET Configuration Data

{

"state": "lnet_unloaded",

"modprobe_entries": [

"tcp0(eth1)"

],

"network_interfaces": [

[

"10.20.73.34",

"tcp",

0

]

]

}

[root@ieel-c004 ~]# lctl list_nids

10.20.73.34@tcp

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 12

Configure the HSM Copytool Daemon
The Intel® Manager for Lustre* software can configure and manage the HSM copytool
processes that run on Agent hosts, and this is the preferred method for deploying the
copytools within an Intel® EE for Lustre environment. This document discusses the POSIX
copytool provided as a reference implementation with Intel® EE for Lustre. Other copytool
applications may have different requirements and configurable options. Refer to the copytool
supplier for instructions specific to third-party implementations.

To configure the POSIX Copytool on an HSM Agent host managed by Intel® Manger for Lustre:

1. Log into the Intel® Manager for Lustre* dashboard using a superuser account.

2. Navigate to the HSM management window: Click Configuration >HSM.

3. At the bottom of the HSM window, click +Add Copytool.

4. At the Add Copytool form, enter the following:

a. File system: Specify file system for which this copytool will perform HSM
actions.

b. Worker: This is the POSIX HSM Agent node that was configured in Add an HSM
Agent node. Each copytool instance has its own Agent node, so there may be
several.

c. Path to the HSM agent binary: Enter the full command line path to the copytool
software. The POSIX copytool distributed in the Intel® EE for Lustre packages is
installed at the following path: /usr/sbin/lhsmtool_posix. If an alternative
copytool binary is to be used, or the copytool has been moved to a different
location, enter the appropriate path here.

d. HSM agents arguments (optional): While this field may be labeled as optional:
this is not strictly true. Some HSM copytools may not require additional inputs,
but the POSIX copytool must be told where the archive storage tier is located
(the archive mount point). To do this for the POSIX copytool, use the -p <path>
flag.

Note: Do not provide any flags that will cause the copytool process to be run in
the background (e.g. --daemon); this interferes with the ability of Intel® Manager
for Lustre* software to control and monitor the copytool process.

e. File system mount point: The Lustre file system mount point on the worker
node. Copytool instances require client access to the associated Lustre file
system.

f. Set the archive number appropriately: if there is only one archive available for
the file system, set the archive number to "1" (the default).

g. Click Save when ready to commit the configuration.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 13

The following is a completed example for configuring the POSIX copytool on a file system
called "demo" with an HSM Agent "ieel-c004.lfs.intl" that was previously added to the
Intel® Manager for Lustre* server configuration as an HSM Agent.

Start the Copytool
When a copytool is added to an Intel® EE for Lustre file system configuration, it is not
automatically activated. Instead, the copytool will initially be set to the state Unconfigured.
The configuration exists inside the Intel® Manager for Lustre* database, but it has not been
applied directly to the target HSM Agent.

At the bottom of the HSM configuration page, click the Actions drop down menu, next to the
required copytool instance, and select Start. The copytool status will change from
"Unconfigured" to "Idle" and the graph will register that a new idle copytool instance has been
added and is running on the file system.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 14

Check that the Copytool Process is Running

To verify that the copytool is actually running on the HSM Agent, log into the agent host and run the
following command:

ps -ef | grep hsm

If the copytool is running, the command will return output equivalent to the following:

[root@ieel-c004 /]# ps -ef | grep hsm
root 7126 1 0 01:40 ? 00:00:00 /usr/sbin/lhsmtool_posix --quiet --
update-interval 5 --event-fifo /var/spool/lhsmtool_posix-demo-1-0-events --archive 1 -
p /archive/demo /mnt/demo
root 7169 6298 0 01:43 pts/0 00:00:00 grep hsm

Notice that the Intel® Manager for Lustre* software has supplied a number of arguments to the
copytool application, in addition to the -p <path> for the storage archive and the archive
identifier. Please avoid trying to overload these parameters with their own options, as it may
have a negative impact on the stability of the copytool application.

Check that the Copytool Instance is Registered with the Coordinator
To verify that the copytool instance is registered with the HSM Coordinator for the file system,
log into the metadata server that has the MDT mounted as root and issue the following
command:

lctl get_param mdt.*.hsm.agents

This command will return a line of output for each copytool that is currently registered. For
example:

[root@ieel-mds1 ~]# lctl get_param mdt.*.hsm.agents

mdt.demo-MDT0000.hsm.agents=

uuid=3f9e4c18-46a7-cf21-7a6f-0d899b9a6ead archive_id=1
requests=[current:0 ok:0 errors:0]

Running the POSIX Copytool Outside of Intel® Manager for Lustre*
Software
It is possible to deploy HSM copytool processes to agent hosts without using the Intel®
Manager for Lustre* software. However, this is strongly discouraged and may lead to
inconsistencies in the deployment. Copytools that are not installed by Intel® EE Lustre*
software cannot be maintained by the Intel® Manager for Lustre* interface and it is not
possible to monitor copytool status, availability or performance.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 15

Quick Verification Check and Introduction to the HSM Command Line
When the copytool starts, the HSM coordinator will send HSM instructions for archiving and
restoring files from the archive through the copytools. If there are no copytools running on the
Lustre file system, the HSM coordinator will queue transaction requests until at least one
copytool for the archive comes online.

The following process can be used to verify the system is working correctly and to
demonstrate some of the features of Lustre HSM with the POSIX copytool:

1. Login to a Lustre client computer (but not an HSM Agent) and create a new file on the
Lustre file system. For example:

[root@c64-1 ~]# df -ht lustre

Filesystem Size Used Avail Use% Mounted on
10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 20G 876M 18G 5% /mnt/demo

[root@c64-1 ~]# cd /mnt/demo

[root@c64-1 demo]# dd if=/dev/zero of=f001 bs=1M count=1

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.00550202 s, 191 MB/s ?

2. Examine the HSM state of the newly created file:

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x00000000)

This is the normal condition for a newly created file that has not been registered with
the HSM archive. None of the flags have been set and the file has no reported state
with respect to HSM.

3. Archive the file:

[root@c64-1 demo]# lfs hsm_archive --archive 1 f001

4. Examine the file again on the Lustre client:

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x00000009) exists archived, archive_id:1

5. Log into the HSM Agent running the POSIX copytool and look at the contents of the
archive file system:

[root@c64-2a ~]# find /archive/demo/

/archive/demo/

/archive/demo/0001

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 16

/archive/demo/0001/0000

/archive/demo/0001/0000/0400

/archive/demo/0001/0000/0400/0000

/archive/demo/0001/0000/0400/0000/0002

/archive/demo/0001/0000/0400/0000/0002/0000

/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0.lov

/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

/archive/demo/shadow

/archive/demo/shadow/f001

With the POSIX copytool implementation, the FID of the file is mapped into the archive’s
directory structure and the content copied into the file: 0x200000400:0x1:0x0. Lustre
metadata information (including stripe information) is captured into the file:
0x200000400:0x1:0x0.lov. There is also a shadow directory. This provides a human-
readable view of the archive and replicates the file system structure (the name space) of the
Lustre file system as seen on the Lustre clients. Each file in the shadow tree is a soft link to the
FID reference in the archive. For example:

[root@c64-2a ~]# ls -l /archive/demo/shadow/f001

lrwxrwxrwx 1 root root 52 Aug 3 04:21 /archive/demo/shadow/f001
-> ../0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

6. Log into the normal Lustre client and change the content of the file. Observe the
change in state:

[root@c64-1 ~]# cd /mnt/demo

[root@c64-1 demo]# dd if=/dev/zero of=f001 bs=1M count=2

2+0 records in

2+0 records out

2097152 bytes (2.1 MB) copied, 0.010045 s, 209 MB/s

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x0000000b) exists dirty archived, archive_id:1

Notice that the archived copy is now marked as dirty.

7. Update the archive copy:

[root@c64-1 demo]# lfs hsm_archive --archive 1 f001

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x00000009) exists archived, archive_id:1

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 17

Now the dirty flag has been cleared.

8. Remove the file from the archive:

[root@c64-1 demo]# lfs hsm_remove f001

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x00000000), archive_id:1

[root@c64-1 demo]# ls

f001

The file has not been deleted from Lustre, but it is no longer archived. Note that the
archive identifier is still set on the file, even though it is no longer archived.

9. Create a new file, much larger than the last one and archive it:

[root@c64-1 demo]# dd if=/dev/zero of=f002 bs=1M count=2048

[root@c64-1 demo]# lfs hsm_archive --archive 1 f002

Notice that the archive command returns almost immediately.

10. It will take time to archive the file. Watch the progress through the IML manager or
directly on the HSM agent host. The lfs hsm_state command can also be used to
monitor the file from a Lustre client:

[root@c64-1 demo]# lfs hsm_state f002

f002: (0x00000001) exists, archive_id:1

...

[root@c64-1 demo]# lfs hsm_state f002

f002: (0x00000009) exists archived, archive_id:1

The copy to the archive is not complete until hsm_state lists both exists and
archived.

11. Run the lfs hsm_release command for the new file. Observe the reported file
system size before and after the command is run:

[root@c64-1 demo]# df -ht lustre

Filesystem Size Used Avail Use% Mounted on

10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 9.9G 2.5G 7.0G 27% /mnt/demo

[root@c64-1 demo]# lfs hsm_release f002

[root@c64-1 demo]# lfs hsm_state f002

f002: (0x0000000d) released exists archived, archive_id:1

[root@c64-1 demo]# df -ht lustre

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 18

Filesystem Size Used Avail Use% Mounted on

10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 9.9G 440M 9.0G 5% /mnt/demo

The released file has been removed from the Lustre file system and replaced with a stub file
referencing the archived copy. Capacity has been freed as a result. lfs hsm_release is
asynchronous, so this may not happen immediately.

12. Even though the file has been released, the perceived size of the file remains
unchanged:

[root@c64-1 demo]# ls -lh f002

-rw-r--r-- 1 root root 2.0G Aug 10 09:34 f002

To client applications, f002 still looks like a 2GiB file.

13. Restore the archived file to the Lustre file system. This can be done using the lfs
hsm_restore command, or by simply trying to open or access the file:

[root@c64-1 demo]# lfs hsm_restore f002

[root@c64-1 demo]# df -ht lustre

Filesystem Size Used Avail Use% Mounted on

10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 9.9G 2.5G 6.9G 27% /mnt/demo

[root@c64-1 demo]# lfs hsm_state f002

f002: (0x00000009) exists archived, archive_id:1

The lfs hsm_restore command is asynchronous, but attempting to access a
released file will block until the file is fully restored. For example:

[root@c64-1 demo]# ls -lh f002

-rw-r--r-- 1 root root 2.0G Aug 10 09:34 f002

[root@c64-1 demo]# lfs hsm_release f002

[root@c64-1 demo]# lfs hsm_state f002

f002: (0x0000000d) released exists archived, archive_id:1

[root@c64-1 demo]# df -ht lustre

Filesystem Size Used Avail Use% Mounted on

10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 9.9G 440M 8.9G 5% /mnt/demo

[root@c64-1 demo]# time file f002

f002: data

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 19

real 0m31.078s

user 0m0.025s

sys 0m0.006s

[root@c64-1 demo]# time file f002

f002: data

real 0m0.008s

user 0m0.003s

sys 0m0.003s

In this example, running the file command on the released file takes nearly 33 seconds the
first time it is run because the command is blocked until the HSM restore operation
completes. Running the file command a second time returns almost immediately because
the file has already been restored.

Working with HSM Archive Identifiers

The Default HSM Archive
The archive identifier is used to indicate that a copytool instance is bound to a specific archive.
If no archive is specified on the copytool command line, the default archive identifier is read
from the MDT for the Lustre file system. The Lustre file system client commands (lfs hsm_*)
also need to make reference to an archive identifier in order to inform the HSM Coordinator of
the intended target archive storage tier to use. As with the copytool, HSM client commands
will use the file system default archive identifier if one is not explicitly referenced.

To determine the default identifier, log into the MDS and run the following command:

lctl get_param mdt.*.hsm.default_archive_id

This will return the value of the default archive identifier for all the MDTs on the host. The
asterisk in the command line is a wild card character and can be replaced with the label of a
specific MDT instead. The default value for this parameter is 1. For example, on a newly
created file system, called demo:

[root@m64-1 ~]# lctl get_param mdt.*.hsm.default_archive_id

mdt.demo-MDT0000.hsm.default_archive_id=1

To change the value of the default archive identifier, use the lctl set_param command:

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 20

lctl set_param [-P] mdt.<fsname>-
MDT<index>.hsm.default_archive_id=<archive id>

For example, to set the default archive identifier to "2", on a Lustre file system called "demo":

lctl set_param -P mdt.demo-MDT*.hsm.default_archive_id=2

Please note that this parameter is volatile and will be lost when the MDT is unmounted, unless
the -P flag (for "persistent") is specified. Also note that in order to set the parameter
persistently, the command must be executed on the host that is running the MGS for the file
system, not the MDS.

There is a special archive identifier, called archive 0 that was originally used as a default for
Lustre HSM transactions and to provide a catch-all archive. This is explained more fully in the
next section, but in general, it is not recommended to rely on or make use of archive
identifier 0.

On production systems, all archives should be explicitly allocated a positive integer identifier
(e.g. through the --archive flag for the POSIX copytool startup command) and, all lfs
hsm_* commands should reference this ID number when executing HSM instructions. This
approach makes the configuration easier to design, document and understand, particularly
when there are other applications that need to be configured, such as the Policy Engine, and
when there are multiple HSM archives registered with the Lustre file system.

If a request is sent to an archive ID that is not registered with the HSM coordinator, the request
will hang indefinitely, or until such time as a copytool instance for the archive becomes
available. So, if a user sends a request to a non-existent archive, the request will never
complete and the file will not be copied to the archive. This is unless there is a copytool for
archive 0, in which case the user can specify any archive ID they like and the data will always
be sent to the copytool[s] for archive 0. This is potentially dangerous behavior, as all of the
files may appear to be stored in different archives (according to Lustre) but will in fact be held
within a single data store. It is recommended that the default_archive_id is never set
equal to zero.

Archive Zero – The "Any" Archive
The zero archive has a special meaning in HSM: If a copytool running on an HSM Agent is
registered with the HSM coordinator thread using an archive identifier of 0, it means that the
copytool will accept HSM actions on behalf of any archive. Prior to the release of Lustre
version 2.5.0, archive 0 was also the default if an archive was not specified by the HSM
command line tools; this was changed for the 2.5 release of Lustre in order to make the
behavior of the HSM tools more consistent.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 21

Strictly speaking, there is no such thing as archive zero – it is effectively the "any" archive. To
illustrate this point, consider the following example.

Caution: The following example is for illustrative purposes only and may compromise the
HSM service if attempted in a live environment. Do not run this demonstration on a
production file system.

1. Log into Intel® Manager for Lustre* using a superuser account and shut down all of the
running copytool processes.

2. Log into the MDS server and make sure that the MDT has no copytool agents
registered:

lctl get_param mdt.*.hsm.agents

The list should be empty.

3. Return to the Intel® Manager for Lustre* configuration and create a new POSIX
copytool instance with an archive identifier of zero. Start the copytool.

4. Back on the MDS server, the HSM Coordinator will now have an entry for the copytool
agent in procfs, e.g.:

[root@m64-1 ~]# lctl get_param mdt.*.hsm.agents

uuid=c6bd632a-a92a-f13c-f15a-1674133497ac archive#=0 (all) r=0
s=0 f=0

Note that the third column has the word "all" parenthesized. This tells the coordinator to send
all HSM commands to this archive, regardless of the archive identifier referred to by the client
in its request.

5. Log into a standard Lustre client and create a new file on the Lustre file system, e.g.:

[root@c64-1 ~]# df -ht lustre

Filesystem Size Used Avail Use% Mounted on

10.70.73.12@tcp0:10.70.73.11@tcp0:/demo

 9.9G 438M 9.0G 5% /mnt/demo

[root@c64-1 ~]# cd /mnt/demo

[root@c64-1 demo]# dd if=/dev/zero of=f001 bs=1M count=1

1+0 records in

1+0 records out

1048576 bytes (1.0 MB) copied, 0.00676696 s, 155 MB/s

6. Use the HSM command line interface to archive the file, making sure to use the --
archive flag to select an archive identifier other than 0 (zero):

[root@c64-1 demo]# lfs hsm_state f001

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 22

f001: (0x00000000)

[root@c64-1 demo]# lfs hsm_archive --archive 1 f001

[root@c64-1 demo]# lfs hsm_state f001

f001: (0x00000009) exists archived, archive_id:1

7. Check the contents of the archive storage on the HSM Agent:

ls -l /archive/demo/shadow/f001

[root@c64-3a /]# find /archive

/archive

/archive/demo

/archive/demo/shadow

/archive/demo/shadow/f001

/archive/demo/lost+found

/archive/demo/0001

/archive/demo/0001/0000

/archive/demo/0001/0000/0400

/archive/demo/0001/0000/0400/0000

/archive/demo/0001/0000/0400/0000/0002

/archive/demo/0001/0000/0400/0000/0002/0000

/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0.l
ov

[root@c64-3a /]# ls -l /archive/demo/shadow/f001

lrwxrwxrwx 1 root root 52 Aug 1 19:40 /archive/demo/shadow/f001
-> ../0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

[root@c64-3a /]# ls -lL /archive/demo/shadow/f001

-rw-r--r-- 1 root root 1048576 Jul 31 23:02
/archive/demo/shadow/f001

[root@c64-3a /]# md5sum
/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

b6d81b360a5672d80c27430f39153e2c
/archive/demo/0001/0000/0400/0000/0002/0000/0x200000400:0x1:0x0

The md5sum ought to match the original file as well.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 23

8. To clean up, log into the Intel® Manager for Lustre* dashboard. Shut down and remove
the HSM copytool instance that was created using archive identifier 0 (zero). Restore
any previous copytools to their original run state.

From this it can be observed that the HSM Agent registered using an archive identifier of 0
processed a request that was specifically targeted at an archive with identifier 1. It would also
have processed requests for archive identifier 2, 3 or indeed, any archive identifier. While this
may have some useful applications, it can also cause confusion and may lead to unanticipated
results.

The order in which copytools and the archives are registered with the coordinator is also
significant. If an archive with ID 0 is registered with the HSM coordinator by a copytool before
any other archive, then all commands will always use archive 0, even if a different ID is
requested and that ID is listed in /proc/fs/lustre/mdt/<fsname>-<MDT>/hsm/agents
on the MDS.

Additional Notes
It is possible to run multiple copytools on the same HSM agent node; the software does not
prevent this behavior. However, running multiple copytools from the same HSM agent node is
not supported and is discouraged. This may be useful when testing the HSM mechanism and
there may be some environments where running multiple copytools per host delivers a
benefit. However, the general guidance is that copytools should be limited to one instance per
HSM agent.

The HSM command line tools only operate on files; any attempt to mark a directory for
archiving will fail. Newly-created files are not automatically archived and must be added
explicitly. For automated and comprehensive management of a Lustre HSM system, employ a
Policy Engine application such as Robinhood.

Robinhood Policy Engine Installation
A policy engine is a software application acting on behalf of a human operator in support of
storage management. The policy engine:

• collects data about the state of the Lustre file system by reading the MDT changelogs

• executes tasks based on rules applied to the collected data. The rules are referred to as
policies.

The Robinhood policy engine is a software application used to manage Lustre file systems that
participate in a Hierarchical Storage Management (HSM) tiered storage platform. Robinhood
provides administrators with tools to describe storage policies to actively manage the content
of Lustre file systems. Policies are used to make decisions about archiving files and managing

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 24

available storage capacity. Robinhood also provides monitoring functionality and keeps
records of Lustre's changelogs.

This chapter guides readers through the steps necessary to install and setup a Robinhood
server on a file system running Intel® Enterprise Edition for Lustre* Software

Preparation
Robinhood runs on a dedicated system that is participating on a computer network as a Lustre
client node. Prior to installing and configuring Robinhood, some preparation is required.
Please ensure that the following prerequisites have been satisfied:

• The operating system for the machine has been installed in accordance with general
best practice guidelines for the vendor's operating system distribution and the
requirements in Intel® Enterprise Edition for Lustre* Software Installation Guide. In that
guide, also see the section Creating a Managed Lustre File System – Configuring
Clients.

• Ensure that the Robinhood policy engine host can be reached by the Intel® Manager for
Lustre* server over the management network and has been configured so that the
manager can provision software either through a passphrase-less SSH connection or
other supported mechanism.

• An Intel® EE for Lustre file system has been created.

• The Policy Engine host is able to participate as a Lustre client on a high performance
data network. The Policy Engine host must be able to communicate with the Lustre
servers on this network.

• The HSM Coordinator has been enabled on the file system's MDS.

• At least one IEEL HSM Agent has been provisioned (e.g. POSIX copytool) and is
running.

Provision the Robinhood Packages Using Intel® Manager for Lustre*
Intel® EE for Lustre 2.4 and later uses the concept of worker nodes. These are special purpose
systems that provide services to clients, but are not core Lustre servers. In other words, these
are systems that are not Metadata or Object Storage servers. Robinhood is one of the worker
node types that are available in Intel® EE for Lustre and can be provisioned from the Intel®
Manager for Lustre* application. Intel® Manager for Lustre* software does not provide
configuration of Robinhood, but does provide a clean mechanism for installing Robinhood
along with its dependencies.

To install the Robinhood Policy Engine on a host:

1. Log into the Intel® Manager for Lustre* dashboard as a superuser.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 25

2. Navigate to the Servers management window (Configuration > Servers).

3. Click +Add Server, and fill in the form as follows:

a. Type in the name of the host to be used as the Robinhood server

b. Select the Robinhood Policy Engine server profile:

c. Select the appropriate authentication scheme and click Continue.

4. If the target host passes the prerequisites check, click Confirm to provision Robinhood.
If any of the checks fail, please rectify before continuing. Common issues include
incorrect permissions (for example, a missing SSH key), incomplete host name
resolution, and incorrect YUM repository configuration.

5. In addition to installing Robinhood and the MySQL relational database Robinhood uses
to record data, the Add Server process will also install the Lustre client software and
kernel modules, and will automatically resolve all package dependencies during the
installation process. Software installation relies on YUM, and requires access to
operating system repositories, including update repositories, to be able to successfully
complete installation. Note that the Linux kernel for the target host may also be
updated by the installation process if the currently installed kernel does not match the
version required by the Lustre kernel modules.

Next, you need to configure LNET settings for this Robinhood policy engine server. Perform
these steps:

1. At the menu bar, click the Configuration drop-down menu and click Servers.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 26

2. Identify the Robinhood policy engine server.

3. To set the NID for a network interface on a given server, the LNet State for that server
must indicate LNet up. To load and start LNet, click Actions and select Start LNet.

4. When LNet has started, the LNet State indicates LNet up, and the Configure button
becomes active. Click Configure.

5. The NID Configuration for <server name> dialogue appears. This window applies to
this server only. Available network interfaces appear on the left, with their associated
IP addresses. Click the LNet button for the desired interface to select the Lustre
Network number you want to assign to this interface. Do this for each interface you
want to configure with an LNet NID.

6. Click Save. Click Close to close this dialogue.

You can verify the settings by logging into the target host and viewing the contents of the file,
etc/modprobe.d/iml_lnet_module_parameters.conf, and by running the lctl
list_nids command. For example:

[root@ieel-pe ~]# cat
/etc/modprobe.d/iml_lnet_module_parameters.conf

This file is auto-generated for Lustre NID configuration by IML

Do not overwrite this file or edit its contents directly

options lnet networks=tcp0(eth1)

... [additional output omitted]

[root@ieel-pe ~]# lctl list_nids

10.20.73.34@tcp

Mount the Lustre file system on the Robinhood Server
The Lustre file system must be mounted on the Robinhood server. To obtain the command to
mount the file system, perform these steps:

1. At the manager Dashboard menu bar, click the Configuration drop-down menu and
click File Systems.

2. Each Lustre file system created using Intel® Manager for Lustre* is listed. Select the file
system to be mounted. A page opens showing information for that file system.

3. On the file system page, click View Client Mount Information. The mount command to
be used to mount the file system is displayed. Following is an example only:

mount -t lustre 10.214.13.245@tcp0:/test /mnt/demo

4. On the Robinhood server, create the mount point for the file system (this is the last
field in the mount command above). For example:

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 27

mkdir -p /mnt/demo

5. On the Robinhood server, enter the actual mount command from step 3, substituting
your mount point.

Configure MDS Changelogs
Robinhood relies on the MDT Changelogs feature in Lustre in order to track changes to the file
system. The Changelog records changes to the file system's metadata, such as creating and
deleting files, modifying a file's content, ownership, permissions, and other attributes.
Robinhood captures this data and stores it in a MySQL database for processing by its policy
engine. Applications that want to consume the Changelogs content need to register with the
MDT, which will return a unique identifier, referred to as a userid. This is not the same as a
UNIX user account identifier; it is internal to Lustre and is a token used to distinguish
registrations from multiple consumers. Each registered userid has its own view of the
Changelog register. Changelog entries are kept until each registered user has acknowledged
that the entry has been consumed.

The following steps will configure Changelogs for Robinhood:

1. Set the Changelog event mask on the MDS, ensuring that HSM-related events are
registered. This must be executed on the MDS server. Avoid setting the event mask to
"all", as some of the events (e.g. ATIME) can generate a large amount of changelog
activity, impacting performance. One may wish to re-enable the XATTR setting if
policies will be created based on this attribute. The following mask has been
recommended by the HSM developers:

lctl set_param [-P] \

 mdd.<fsname>-MDT*.changelog_mask="all-XATTR-MARK-ATIME"

This mask requests that all events except XATTR, MARK and ATIME are monitored by
the MDT Changelogs service. Use the -P flag to make sure that the changes are
recorded persistently in the MGT. Here is a complete example:

[root@m64-1 ~]# lctl set_param -P \

 mdd.demo-MDT*.changelog_mask="all-XATTR-MARK-ATIME"

mdd.demo-MDT0000.changelog_mask=all-XATTR-MARK-ATIME

Note: the lctl set_param -P command must be executed on the server that
currently has the MGT mounted, otherwise the command will fail and settings will not
be saved persistently. For temporary changes, run the lctl set_param command
directly on the metadata target being changed.

2. Verify that the changelog mask has been set (this command must be run on the MDS):

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 28

[root@m64-1 ~]# lctl get_param mdd.demo-MDT*.changelog_mask

mdd.demo-MDT0000.changelog_mask=

CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RENME RNMTO OPEN CLOSE
LYOUT TRUNC SATTR HSM MTIME CTIME

The setting may take a few seconds to update.

3. Register a Changelog user identifier on the MDS and keep a record of the name of the
userid that is returned (normally this will be "cl1", unless there is more than one
Changelog registration):

lctl --device <fsname>-<MDT index> changelog_register

A complete example follows:

[root@m64-1 ~]# lctl --device demo-MDT0000 changelog_register

demo-MDT0000: Registered changelog userid 'cl1'

This is not a UNIX user account; it is an identifier used to track Lustre changelog events.
Multiple userids can be registered and each will have their own view of the changelog
records (Changelogs are stored intelligently, so that there is no duplication of records.
However, the changelog register can still become large). Because records take up space
on the MDT, be careful to limit the number of registered users. Old Changelog records
are purged when each user acknowledges that the record has been read and is no
longer required.

Changelog userid registrations are persistent, although they can be deleted (unregistered).
The userid cannot be selected at registration: the next available userid in ascending numerical
order will be selected and returned. To de-register a userid (and stop changelog processing
for that userid), use this command:

lctl --device <mdt_device> changelog_deregister <user ID>

For example:

[root@m64-1 ~]# lctl --device demo-MDT0000 changelog_deregister cl1

demo-MDT0000: Deregistered changelog user 'cl1'

Note: lctl changelog_register takes no additional arguments (the userid is chosen by
Lustre) but you must specify a userid when running lctl changelog_deregister.

Prepare the Robinhood Database
Robinhood stores data in a MySQL RDBMS. The database instance must be reachable from the
Robinhood policy engine host. For the purposes of this document, it is assumed that the
Robinhood server is completely self-contained, hosting both the Robinhood software and the
MySQL database instance. Intel® EE for Lustre software will provision Robinhood and the
MySQL database onto the same host.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 29

Guidance on the configuration and tuning of MySQL is beyond the scope of this document.
Refer to the documentation on the MySQL WWW site (http://mysql.org) for detailed
information on establishing scalable and secure MySQL instances. Readers may also find the
MySQLTuner project on GitHub helpful (http://github.com/major/MySQLTuner-perl). The
Robinhood project mailing list is also a good source of advice on optimization. Refer to the
project page for contact information (http://robinhood.sf.net).

To set up a Robinhood database instance:

1. Log into the policy engine host as a user with superuser privileges or SuDO access and
ensure that the rbh-config command is installed and in the executable search PATH
(normally /usr/sbin):

[mjcowe@pe ~]$ rpm -ql robinhood-adm

/usr/sbin/rbh-config

[mjcowe@pe ~]$ which rbh-config

/usr/sbin/rbh-config

If these commands fail, then the package is not installed or the PATH environment
variable does not include /usr/sbin.

2. Start the MySQL daemon:

sudo service mysqld start

3. If this is the first time that the MySQL service has been started, run the secure
installation script that is shipped with MySQL:

sudo /usr/bin/mysql_secure_installation

Accept the defaults and ensure that a password is set for the root account of the
database instance. Note that this is the minimum requirement when attempting to
protect the database, and is by no means intended to represent a comprehensive
solution for database hardening.

4. Ensure that MySQL starts on system boot:

sudo chkconfig mysqld on

5. Verify that the Robinhood database basic prerequisites are satisfied:

sudo rbh-config precheck_db

This command checks the installation status of some important MySQL commands,
and whether or not the server daemon is running. If the server has been installed in
accordance with the instructions in this document, the check should pass.

6. Create the Robinhood database:

sudo rbh-config create_db

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 30

Without any additional arguments, rbh-config create_db will enter an interactive
mode and will ask for the following information:

a. A unique identifier for the database instance (use the file system name).

b. A list of hosts that can access the database (this uses SQL formatting, including
wildcards, and forms part of the SQL GRANT command; SQL syntax rules
apply). For systems where Robinhood and MySQL are co-located, set to
localhost. Set to % to allow any host access to the database.

c. A password for the database user. Robinhood will connect to the database as
user robinhood with the password you enter here.

d. The root user password for the MySQL database (required in order to be able to
create the new database and grant privileges).

7. Verify that the database has been created and that the user robinhood can connect:

mysql -p -h localhost -u robinhood

...

mysql> show grants;

mysql> use robinhood_<fsname>;

mysql> \q

Be careful with the command line syntax: the order of flags is important. A complete
example follows:

[mjcowe@c64-4p ~]$ mysql -p -h localhost -u robinhood

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 18

Server version: 5.1.69 Source distribution

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All
rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> show grants;

+--
------------+

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 31

| Grants for robinhood@localhost
|

+--
------------+

| GRANT SUPER ON *.* TO 'robinhood'@'localhost' IDENTIFIED BY
PASSWORD 'NNN' |

| GRANT ALL PRIVILEGES ON `robinhood_demo`.* TO
'robinhood'@'localhost' |

+--
------------+

2 rows in set (0.00 sec)

mysql> use robinhood_demo;

Database changed

mysql> show tables;

Empty set (0.00 sec)

mysql> \q

Bye

8. If no errors are returned, then the user can connect and use the database. There will be
no tables inside the database; Robinhood creates these automatically the first time it
starts.

9. Record the database password for the user robinhood in a file readable by the
Robinhood daemon, and make sure that the file is only readable by the process owner.
By convention, the password goes into the file /etc/robinhood.d/.dbpassword,
which is owned by root and with permissions set to 600, although the file location can
be changed in the Robinhood configuration.

Robinhood Initial Configuration
The configuration files for Robinhood Lustre HSM are kept in the directory
/etc/robinhood.d/lhsm. An annotated sample configuration file is supplied as a template
with the Robinhood package and can be found in /etc/robinhood.d/lhsm/templates.
On startup, the init script for Robinhood will scan the configuration directory for any files
ending in ".conf" and will create a new Robinhood management instance for each
configuration file found. This means that a single Robinhood server might be running a policy
engine daemon for several file systems simultaneously. It also means that care must be taken
when managing the configuration files to ensure that a single file system is not accidentally
managed by two conflicting configurations.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 32

The Robinhood startup script does not traverse subdirectories, so one can keep templates or
backup copies of configuration files in a subdirectory of /etc/robinhood.d/lhsm, although
it is in general preferable to keep development and backup copies of configuration files in
entirely separate locations.

Create a Minimal Configuration
The sample configuration template is:
/etc/robinhood.d/lhsm/templates/lhsm_detailed.conf. If this file is missing, a new
one can be generated as follows:

rbh-lhsm -T <filename>

For example:

rbh-lhsm -T /var/tmp/rhtemplate.conf

This file can be edited to meet the requirements of the system being configured and then
copied to /etc/robinhood.d/lhsm/.

The default template is very large and attempts to describe all of the available options for
managing a Robinhood policy engine instance. To begin with, create a minimal configuration
instead that is sufficient to establish a working database and capture Changelog events. To do
this, create a file in /etc/robinhood.d/lhsm called <fsname>-lustre-hsm.conf (e.g.:
/etc/robinhood.d/lhsm/demo-lustre-hsm.conf).

The minimum configuration requires four sections:

• General

• Log

• ListManager

• ChangeLog

The rest of this chapter shows how to create each section in turn. At the end of the chapter, a
complete example configuration is provided.

General
General

{

 # file system to be monitored

 fs_path = "/mnt/demo" ;

}

The only mandatory field in the General section is fs_path, which refers to the client mount
point of the Lustre file system to be monitored. In this example, a Lustre file system is
mounted at /mnt/demo.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 33

Log
Log

{

 # Log file

 log_file = "/var/log/robinhood/lustre_hsm_demo.log" ;

 # File for reporting purge events

 report_file = "/var/log/robinhood/lustre_hsm_demo_reports.log" ;

 # Alerts file

 alert_file = "/var/log/robinhood/lustre_hsm_demo_alerts.log" ;

}

The Log section can be left to the default values but it is good practice to have a unique set of
log files that are named after the file system being managed by Robinhood.

ListManager (Database)
ListManager

{

 commit_behavior = transaction ;

 MySQL

 {

 server = "localhost" ;

 db = "robinhood_demo" ;

 user = "robinhood" ;

 password_file = "/etc/robinhood.d/.dbpassword" ;

 engine = InnoDB ;

 }

}

The ListManager section refers to the database used to record the information that
Robinhood gathers. The commit_behaviour field can be set to one of autocommit,
transaction, or periodic. InnoDB with the transaction commit behavior provides
better guarantees of consistent data on disk, with the potential penalty of reduced
performance.

Note: the Robinhood ListManager configuration also references a file that contains the
database password. This file must be created before Robinhood starts and must contain a
single line with the password in plain text. When creating the file, ensure that the permissions
are set so that only the root superuser account can read the content. In the example above, a

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 34

file called /etc/robinhood.d/.dbpassword has been used for this purpose, with the
following permissions set:

[root@ieel-pe ~]# ls -l /etc/robinhood.d/.dbpassword

-r-------- 1 root root 7 Mar 19 21:52 /etc/robinhood.d/.dbpassword

ChangeLog
ChangeLog

{

 MDT

 {

 mdt_name = "MDT0000" ;

 reader_id = "cl1" ;

 }

 force_polling = ON ;

}

The ChangeLog section requires the MDT file system label (normally MDT0000) and the
userid that was returned by Lustre when Changelogs registration was requested (this will
normally be cl1). The force_polling flag is required for Lustre versions 2.0+ because the
Changelog readers need to perform active polling to get new events.

Robinhood Initial Configuration – Complete Example

General

{

 # file system to be monitored

 fs_path = "/mnt/demo" ;

}

Log

{

 # Log file

 log_file = "/var/log/robinhood/lustre_hsm_demo.log" ;

 # File for reporting purge events

 report_file = "/var/log/robinhood/lustre_hsm_demo_reports.log" ;

 # Alerts file

 alert_file = "/var/log/robinhood/lustre_hsm_demo_alerts.log" ;

}

ListManager

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 35

{

 commit_behavior = transaction ;

 MySQL

 {

 server = "localhost" ;

 db = "robinhood_demo" ;

 user = "robinhood" ;

 password_file = "/etc/robinhood.d/.dbpassword" ;

 engine = InnoDB ;

 }

}

ChangeLog

{

 MDT

 {

 mdt_name = "MDT0000" ;

 reader_id = "cl1" ;

 }

 force_polling = ON ;

}

Starting Robinhood for the First Time
1. Log into the Robinhood policy engine host either as root or as a user that has

superuser privileges granted by sudo.

2. Mount the Lustre file system.

3. Make sure that the directory for the log files exists before starting Robinhood:

sudo mkdir -m 0700 -p /var/log/robinhood

If the directory does not exist or is not writable by the Robinhood process, all log
entries will be written to stderr.

4. Scan the target Lustre file system. This is necessary in order to populate the database
with information about files that already exist on the file system. This only needs to be
done the first time that Robinhood is started and should ideally be run when the file
system is idle (not being used by any other processes):

sudo rbh-lhsm --scan --once \

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 36

 -f /etc/robinhood.d/lhsm/demo-lustre-hsm.conf

By default, the rbh-lhsm command will select the first configuration file it finds in the
/etc/robinhood.d directory. If there is more than one configuration, specify the
individual file using the -f flag, as shown above.

5. Start up the Robinhood service:

sudo service robinhood-lhsm start

6. Verify that the service is running:

service robinhood-lhsm status

7. Make sure that the Robinhood service is configured to start automatically on system
boot:

sudo chkconfig robinhood-lhsm on

8. If there are any problems, examine the log files in /var/log/robinhood.

Using Robinhood to Create Reports
With the basic configuration described previously, Robinhood does not have any policies
defined. However, the monitoring process will still be gathering information and it is possible
to interrogate the database and generate reports on the Lustre file system. This chapter gives
examples of a few of the commands available to view the information collected by Robinhood.
Not all command options are listed, and this chapter is not intended to be a comprehensive
manual on every feature of Robinhood. For a full break-down of all the features of the
Robinhood command line report tool, run the following command on the policy engine host:

rbh-lhsm-report --help

All of the commands described in the following sections work whether there are policies
defined or not.

Robinhood Daemon Activity
sudo rbh-lhsm-report --activity

or:

sudo rbh-lhsm-report -a

For example:

[mjcowe@pe ~]$ sudo rbh-lhsm-report -a

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 37

Using config file '/etc/robinhood.d/lhsm/demo-lustre-hsm.conf'.

Filesystem scan activity:

 Previous file system scan:

 start: 2013/07/25 01:00:25

 duration: 41s

 Last file system scan:

 status: done

 start: 2013/07/25 01:01:22

 end: 2013/07/25 01:02:01

 duration: 39s

 Statistics:

 entries scanned: 11614

 errors: 0

 timeouts: 0

 # threads: 2

 average speed: 318.98 entries/sec

Changelog stats:

 Last read record id: 59750

 Last read record time: 2013/07/21 05:26:28.195000

 Last receive time: 2013/07/25 03:08:46

 Last committed record id: 59749

 Changelog stats:

 type total (diff) (rate)

 MARK: 5

 CREAT: 18381

 MKDIR: 331

 HLINK: 0

 SLINK: 0

 MKNOD: 0

 UNLNK: 16381

 RMDIR: 111

 RENME: 0

 RNMTO: 0

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 38

 OPEN: 0

 CLOSE: 21461

 LYOUT: 0

 TRUNC: 0

 SATTR: 3080

 XATTR: 0

 HSM: 0

 MTIME: 0

 CTIME: 0

 ATIME: 0

Storage usage has never been checked

No migration was performed on this file system

If the activity report declares that the file system has never been scanned, re-run the scan step
described herein: Starting Robinhood for the First Time.

File System Statistics

High Level Report
sudo rbh-lhsm-report --fs-info

or:

sudo rbh-lhsm-report -i

For example:

[mjcowe@pe ~]$ sudo rbh-lhsm-report -i

Using config file '/etc/robinhood.d/lhsm/demo-lustre-hsm.conf'.

status , type, count, volume, avg_size

n/a , dir, 333, 2.15 MB, 6.62 KB

new , file, 2000, 1000.98 MB, 512.50 KB

Total: 2333 entries, 1051856896 bytes (1003.13 MB)

Identify the Largest File System Consumers
Display largest directories.

rbh-lhsm-report --top-dirs[=<count>], -d <count>

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 39

Display largest files.

rbh-lhsm-report --top-size[=<count>], -s <count>

Display oldest entries eligible for purge.

rbh-lhsm-report --top-purge[=<count>], -p <count>

Display top disk space consumers.

rbh-lhsm-report --top-users[=<count>], -U <count>

For example:

[mjcowe@pe ~]$ sudo rbh-lhsm-report --top-users

Using config file '/etc/robinhood.d/lhsm/demo-lustre-hsm.conf'.

rank, user , spc_used, count, avg_size

 1, root , 16.68 GB, 2000, 9.12 MB

Detailed Reports
Several options exist for dumping detailed statistics from the Robinhood database:

Dump all file system entries:

rbh-lhsm-report --dump, -D

Dump all entries for the given user:

rbh-lhsm-report --dump-user <user>

Dump all entries for the given group:

rbh-lhsm-report --dump-group <group>

Dump all entries on the given OST.

rbh-lhsm-report --dump-ost <ost_index>

Dump all entries with the given status

Status can be one of:

unknown

new

modified|dirty

retrieving|restoring

archiving

synchro

released

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 40

release_pending

rbh-lhsm-report --dump-status <status>

For example:

[mjcowe@pe ~]$ sudo rbh-lhsm-report --dump

Using config file '/etc/robinhood.d/lhsm/demo-lustre-hsm.conf'.

 type, status, size, user, group, migr. class,
purge class, path

...

 file, released, 1.00 MB, root, root, ,
, /mnt/demo/nd001/nsd001/nf003

 dir, n/a, 4.00 KB, root, root, ,
, /mnt/demo/nd001/nsd001

 dir, n/a, 4.00 KB, root, root, ,
, /mnt/demo/nd001/nsd002

 dir, n/a, 4.00 KB, root, root, ,
, /mnt/demo/nd001/nsd003

 file, synchro, 1.00 MB, root, root, ,
, /mnt/demo/nd001/nsd001/nf001

 file, synchro, 1.00 MB, root, root, ,
, /mnt/demo/nd001/nsd001/nf002

 file, new, 1.00 MB, root, root, ,
, /mnt/demo/nd001/nsd001/nf004

 file, new, 1.00 MB, root, root, ,
, /mnt/demo/nd001/nsd001/nf005

...

In the above output, one file is marked released and two files are marked as synchro.
synchro means that the archive copy is complete and synchronized with the live copy. Also,
two files have not been registered with the HSM (their status is new); no HSM action has been
taken for these new files.

Directories are not managed by HSM so their status is marked as n/a.

Using Robinhood to Create HSM Policies
Policies are the driving force behind the management of a large file system; the stakeholders
of a computing environment define the usage policies and this informs the data management
specification incorporated by system managers into the services they implement and support.
Policies exist to clearly articulate the requirements of users, owners, and operators of
compute and storage platforms.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 41

Lustre itself does not supply a policy management framework, usually referred to as a Policy
Engine. This allows system managers and end-users to make their own decisions about how to
employ Lustre's HSM technology. However, Robinhood is used as a Policy Engine reference
implementation and has an effective configuration language that can be used to translate
requirements into enforceable policies.

Robinhood HSM policies fall into three basic categories:

1. Migrate – To copy files to the high capacity archive storage. Migration of a file means to
copy the local active file to the remote archive. When a file is archived, two copies exist:
one on Lustre, one on the archive platform.

2. Purge – To release files that have been archived in order to free capacity in the Lustre
file system. When an archived file is released during a purge of Lustre, the file's data is
deleted, freeing up space. The metadata for the file still points to the archive copy.

3. Remove – To clean up archived copies of files deleted from Lustre. Also known as
"deferred rm". When a file is removed from Lustre, its archive copy is not deleted
immediately. Instead, a remove policy acts like a garbage collector process, cleaning up
data marked for deletion asynchronously. Some policies may allow deleted files to
remain in the archive for 24 hours, presenting users with an opportunity to "undelete"
data that may have been removed by accident.

In addition, Robinhood provides a feature in its configuration language that permits the
definition of file classes.

Quick-Start Robinhood Policy Configuration
The configuration example in this section defines a generally useful set of policies applicable
to managing a Lustre file system, and represents a good starting point for automating Lustre
HSM file management with Robinhood. Explanations for the syntax of this file can be found in
subsequent sections. This code block can be added to the base configuration defined earlier
for a complete and automated Robinhood installation for managing Lustre HSM file systems.

Note: Robinhood must be restarted whenever the configuration is changed.

Filesets {

 FileClass small_files {

 definition {

 tree == "/mnt/demo"

 and

 size <= 1KB

 }

 }

}

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 42

Migration_parameters {

 nb_threads_migration = 4;

 runtime_interval = 15min;

 max_migration_count = 10000;

 max_migration_volume = 10TB;

 check_copy_status_on_startup = TRUE;

}

Migration_policies {

 ignore_fileclass = small_files;

 policy default {

 condition {

 last_mod > 4h

 or

 last_archive > 12h

 }

 }

}

Purge_parameters {

 nb_threads_purge = 4;

 post_purge_df_latency = 1min;

 check_purge_status_on_startup = TRUE;

}

Purge_Policies {

 ignore {

 size == 0

 }

 policy default {

 condition {

 last_access > 12h

 and

 last_mod > 1d

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 43

 }

 }

}

Purge_trigger {

 trigger_on = global_usage;

 high_threshold_pct = 90%;

 low_threshold_pct = 85%;

 check_interval = 15min;

}

Purge_trigger {

 trigger_on = OST_usage;

 high_threshold_pct = 85%;

 low_threshold_pct = 80%;

 check_interval = 15min;

}

Purge_trigger {

 trigger_on = user_usage;

 high_threshold_vol = 1TB;

 low_threshold_vol = 750GB;

 check_interval = 4h;

}

hsm_remove_policy {

 hsm_remove = TRUE;

 deferred_remove_delay = 24h;

}

hsm_remove_parameters {

 nb_threads_rm = 4;

 max_rm_count = 10000;

 runtime_interval = 15min;

}

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 44

General Syntax
Properties are used to create Boolean expressions that define a class of objects. The syntax
allows for the creation of complex expressions with unions, intersections, and sub-
expressions.

Robinhood supports the following operators:

• equality: ==, !=, <>, >, >=, <, <=

• union: or

• intersection: and

• invert: not

• sub-expressions: ()

and defines the following properties:

• tree

• fullpath

• name

• type

• owner, group

• size

• last_access

• last_mod

• ost_pool

• xattr

• external_command

For example:

tree == /mnt/demo/datasetA

and

(owner == mjcowe or owner == johnh)

This expression returns true if the target exists within the tree /mnt/demo/datasetA and
the owner is either mjcowe or johnh.

A complete list of properties supported by Robinhood is outlined next (taken directly from the
Robinhood policy engine manual):

• tree: entry is under a given path. Shell-like wildcards are allowed.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 45

e.g. tree == "/fs/subdir/*/dir1" matches entry
"/fs/subdir/foo/dir1/dir2/foo"

• fullpath: entry exactly matches the path. Shell-like wildcards are allowed. Wildcards
will not match the directory path separator ("/").

e.g. fullpath == "/fs/*/foo*" matches entry "/fs/subdir/foo123" but it
doesn’t match "/fs/subdir/foo4/file"

• name: entry name matches the given regular expression.

e.g. name == "*.log" matches entry "/fs/dir/foo/abc.log"

• type: entry has the given type (directory, file, symlink, chr, blk, fifo or sock).

e.g. type == "symlink"

• owner or group: entry has the given owner or group (name expected).

e.g. owner == "root"

• size: entry has the specified size. You can use suffixes like KB, MB, GB...

• last_access: condition based on the last access time of a file (for reading or writing).
This is the difference between current time and max(atime, mtime). The value can be
suffixed with sec, min, hour, day, week, …

e.g. last_access < 1h matches files that have been read or written within the last
hour.

• last_mod: condition based on the last modification time to a file. This is the difference
between current time and mtime.

e.g. last_mod > 1d matches files that have not been modified for more than a day.

• ost_pool: condition about the OST pool name where the file was created. Wild card
expressions are allowed.

e.g. ost_pool == "pool*"

• xattr.xxx.yyy: test the value of a user-defined extended attribute of the file.

e.g.: xattr.user.tag_no_purge == "1"

• xattr values are interpreted as text strings; regular expressions can be used to match
xattr values. e.g. xattr.user.foo == "abc.[1-5].*" would match a file having
xattr user.foo equal to "abc.2.xyz"

If an extended attribute is not set for a file, it matches empty string. e.g.
xattr.user.foo == "" means xattr "user.foo" is not defined.

• external_command: custom script for testing if an entry matches. Must return 0 if the
entry matches, a non-null value otherwise.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 46

N.B. special parameters can be used for when defining the command, e.g.
external_command("/usr/bin/do_match {fullpath}")

The comment marker is the # symbol. Any characters appearing after the comment marker are
ignored.

Filesets – Defining Classes of Files
File classes are all contained within the Filesets definition block. This allows administrators
to create a shortcut definition for a collection of files that have similar characteristics. Classes
can then be referenced in other sections of the policy definition. Each Robinhood policy
engine configuration has a single Filesets block, containing one or more FileClass
definitions:

Filesets {

 FileClass A {

 Definition {

 ...

 }

 }

 FileClass B {

 ...

 }

 ...

}

FileClass describes an arbitrary list of properties used to define a set of files. This is
commonly used to define to a set of files that belong to a particular user or are stored within a
certain directory structure. One of the simplest FileClass definitions just refers to anything
found under a specific directory tree:

FileClass all_lustre_files {

 definition {

 tree == "/mnt/demo"

 }

}

This may not be not very useful by itself, so other rules can be added. The following example
defines the set of files belonging to an individual user:

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 47

FileClass mjcowe_lustre_files {

 definition {

 tree == "/mnt/demo"

 and

 owner == "mjcowe"

 }

}

Specifying an Archive
A Lustre file system can be served by more than one HSM archive target and FileClass
definitions can be associated with specific archives to indicate where to migrate files that
match a given definition. Archives may also be specified in the migration policy definitions,
which override any archive number referred to in a FileClass. The following example shows
how to specify the archive for a FileClass:

FileClass mjcowe_lustre_files {

 definition {

 tree == "/mnt/demo"

 and

 owner == "mjcowe"

 }

 archive_id = 1;

}

Notes: The archive_id property is not nested within the definition property. The semi-
colon terminating the archive_id statement is required. The archive identifier in this
statement must be a positive integer greater than zero. If archive_id is not specified, the
default Lustre archive identifier is used. See Working with HSM Archive Identifiers herein for
details regarding the archive identifier.

Robinhood does not support setting the archive identifier to 0 (zero). Archive 0 has a special
meaning in Lustre's HSM implementation, representing a "catch-all" archive that will service
any archive commands irrespective of the actual archive identifier in the request. This can lead
to confusion and use of archive ID 0 is strongly discouraged. Instead, make sure that the
Lustre HSM has been configured with a default archive that has a non-zero archive identifier. If
Lustre is configured with an archive that has ID 0, do not set an archive ID in Robinhood.

Filesets – A Complete Example
Filesets {

 FileClass all_files {

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 48

 definition {

 tree == "/mnt/demo"

 }

 }

 FileClass root_files {

 definition {

 tree == "/mnt/demo"

 and

 owner == root

 }

 }

 FileClass user_files {

 definition {

 tree == "/mnt/demo"

 and

 owner != root

 }

 }

 FileClass results_files {

 definition {

 tree == "/mnt/demo/data_sets/results"

 }

 }

 FileClass small_files {

 definition {

 tree == "/mnt/demo"

 and

 size <= 1KB

 }

 }

 FileClass do_not_release {

 definition {

 tree == "/mnt/demo/libraries"

 }

 }

}

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 49

Migrate – Archiving Files
Migration policies define the sets of files that are to be archived, based on a set of conditions.
Migration policies can also optionally specify which HSM archive platform to migrate files to
and any files that are to be ignored. The definition of migration policies is optional: if no policy
is specified, then files are migrated based on modification time; least-frequently-accessed files
are migrated first.

In addition to the policies that define what files to archive, there is a set of global parameters
governing data migration in Robinhood. These rules are kept within the
Migration_parameters block of the configuration file.

Migration Parameters
The following block is an example showing the global migration options for Robinhood HSM:

Migration_parameters {

 # numbers of threads used for performing archive requests

 nb_threads_migration = 4;

 # check for files to be copied-out every 15min

 runtime_interval = 15min;

 # Maximum number of copy operations that can be run per pass

 max_migration_count = 10000;

 # Maximum volume of data to archive per pass

 max_migration_volume = 10TB;

 # Archive newly created files that contain no data: TRUE/FALSE

 backup_new_files = FALSE;

 # Check running copies when the daemon restarts: TRUE/FALSE

 check_copy_status_on_startup = TRUE;

 # The amount of time to wait before checking copy status

 # if no feedback has been received

 check_copy_status_delay = 1h;

}

Some experimentation is required to establish the correct balance between user requirements
and system performance. Consider looking at the average rate-of-change of candidate data,
along with the maximum and average file sizes and the amount of time it takes to migrate data
to the archive. In the above example, it is assumed that the migration process can safely
archive 10TB of data within a 15-minute window, up to a maximum of 10000 requests running
across 4 concurrent threads.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 50

Migration Policies
Migration policies are used to specify archiving strategies for one or more sets of files. Each
policy sets the conditions under which a set of files is archived and can also optionally tell
Robinhood which archive target to use. One can also specify those files that are not to be
archived. Policies are evaluated in the order presented in the configuration file. The first policy
that matches the file under evaluation is used.

Migration_policies {

 ignore {

 ...

 }

 policy <name> {

 target_fileclass = <class>;

 ...

 condition {

 ...

 }

 }

 ...

}

The Migration_policies block starts with an optional section that lists the set of files to
be ignored by the archiving process. Files can be referred to by a specific filter, or they can be
listed using a FileClass reference. The ignore block uses the same syntax as FileClass
definitions. For example:

ignore {

 size <= 1KB

 and

 owner == mjcowe

}

The above statement tells Robinhood not to archive any small files owned by the user
mjcowe.

FileClasses can also be referenced:

ignore_fileclass = small_files;

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 51

Multiple ignore_fileclass statements can be included within the Migration_policies
block.

Policy definitions contain a list of FileClasses and the conditions under which the files
will be archived. For example:

policy archive_user_files {

 target_fileclass = user_files;

 condition {

 last_mod > 3h

 or

 last_archive > 12h

 }

}

In this example, the policy will apply to any file matching the user_files class. Matching
files will be migrated to the archive if they have not been modified for at least 3 hours or if
they were last archived more than 12 hours ago. The last_archive clause covers files that
are continuously or frequently updated, and therefore always have a modification time that is
lower than the threshold. The last_archive clause ensures that these frequently updated
files will eventually be copied to the archive.

A default policy can also be defined. This will be applied to any files that do not match any
statement in the ignore block or ignore_fileclass statements, and which do not match
the target_fileclass statements of the other defined policies. The default policy must
appear at the end of the Migration_policies block. Any policies or ignore statements that
appear after the default definition will be ignored.

policy default {

 condition {

 last_mod > 6h

 }

}

Migration_policies – Complete Example
Migration_policies {

 ignore {

 tree == "/mnt/demo/logs"

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 52

 }

 # Can also use file classes

 ignore_fileclass = small_files;

 policy archive_user_files {

 target_fileclass = user_files;

 condition {

 last_mod > 3h

 or

 last_archive > 12h

 }

 }

 policy high_priority_copy {

 target_fileclass = results_files;

 condition {

 last_mod > 1h

 or

 last_archive > 6h

 }

 }

 # Default migration policy

 # Applies to files that don't match previous fileclasses, i.e.:

 # - don't match the 'ignore' block

 # - don't match a fileclass of 'ignore_fileclass' directives

 # - don't match any 'target_fileclass' of migration

 # policies above

 policy default {

 condition {

 last_mod > 6h

 }

 }

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 53

}

Purge – Releasing Files That Have Been Archived
A purge is run whenever the file system exceeds a specified threshold, and is used to free up
capacity by releasing previously archived files. Purge definitions have two components:
policies and triggers. A policy defines the set or sets of files that are to be purged and a trigger
defines the threshold that will cause a purge event to take place. Triggers can also limit the
effect of a purge, for example to a specific user or an OST.

Purges are also governed by a set of global parameters, defined in the Purge_parameters
block.

Purge Parameters
The following block is an example showing the global purge options for Robinhood HSM:

Purge_parameters {

 # numbers of threads used for performing release requests

 nb_threads_purge = 4;

 # Immediately after releasing data, 'df' and 'ost df' may not

 # return exact values, especially if freeing disk space is

 # asynchronous. Thus, it is necessary to wait after a purge

 # before performing 'df' or 'ost df' commands.

 post_purge_df_latency = 1min;

 # check status of previous purge operations on startup

 check_purge_status_on_startup = TRUE;

}

This example is taken from the Robinhood default template and is a reasonable starting point
for experimentation. The number of running threads will directly impact the responsiveness of
Robinhood to purge requests, but must be balanced against the resources available and the
number of other actions likely to be executing at the same time.

Purge Policies – Deciding What to Release
A purge policy is used to define the set of archived files to release when a purge event is
triggered. Purge events are triggered by capacity constraints on the Lustre file system and are
resolved by the policies defined in the Purge_policies block. Policies are evaluated in the
order presented in the configuration file. The first policy that matches is used.

Purge_policies {

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 54

 ignore {

 ...

 }

 policy <name> {

 target_fileclass = <class>;

 ...

 condition {

 ...

 }

 }

 ...

}

The structure of the Purge_policies block is very similar to that of the
Migration_policies block. A section at the start of the block defines a set of files to
ignore, followed by a list of policies that determine what files are to be released from the
active file system. A final block defines the default policy for any files that do not match the
previous entries.

Let's take a look at the ignore block:

ignore {

 size == 0

 or

 (

 tree == "/mnt/demo/bin" or tree == "/mnt/demo/sbin"

)

}

In the above example, empty files or files contained within bin or sbin will not be released
when a purge is triggered. One can also use FileClass references:

ignore_fileclass == do_not_release;

Policy definitions contain one or more FileClass targets, followed by a set of conditions under
which to release files:

policy purge_user_data {

 target_fileclass user_files;

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 55

 condition {

 last_access > 1d

 and

 last_mod > 5d

 }

}

The above policy tells Robinhood to release any user files that have not been accessed within
the last day and which have not been modified for at least five days.

The default policy can be used to catch any files not previously matched:

policy default {

 condition {

 last_access > 2d

 }

}

Purge_Policies – Complete Example
Purge_Policies {

 # files that are never to be released

 ignore {

 size == 0

 or

 (

 tree == "/mnt/demo/bin"

 or

 tree == "mnt/demo/sbin"

)

 }

 ignore_fileclass == do_not_release;

 policy purge_user_data {

 target_fileclass user_files;

 condition {

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 56

 last_access > 1d

 and

 last_mod > 5d

 }

 }

 policy default {

 condition {

 last_access > 2d

 }

 }

}

Purge Triggers – Deciding When to Release Files
Files are released by Robinhood when the Lustre file system exceeds a threshold. These
thresholds are defined by one or more "purge triggers" in Robinhood's configuration file.
Trigger definitions have a simpler structure and there can be several definitions. There are no
default triggers and if no trigger definition exists, the purge policies will never execute.

The following example represents a typical purge trigger:

Purge_trigger {

 trigger_on = global_usage;

 high_threshold_pct = 85%;

 low_threshold_pct = 80%;

 check_interval = 1h;

}

The trigger_on parameter indicates scope: any purge policies will be limited to the initial
scope defined by this parameter, regardless of any file class definitions in the policies
themselves. In other words, trigger_on determines the initial scope and the ignore and
target_fileclass definitions inside each purge policy further refine this.

There are four options for trigger_on:

1. global_usage: trigger is evaluated based on the entire file system.

2. OST_usage: capacity is measured relative to individual OSTs. If any single OST
exceeds the threshold, then a purge is initiated on that OST, and only that OST. All
OSTs are evaluated, but purges only execute on those individual targets that exceed
the threshold.

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 57

3. user_usage[(user1[[, user2],...])]: purge is evaluated against individual
users. If the space consumed by an individual user exceeds the threshold, a purge is
evaluated against that user's files. Only users that exceed the threshold will have their
files purged. One can optionally specify a comma-separated list of users that are to be
monitored. This method may be used to enforce a form of quota.

4. group_usage[(group1[[, group2],...])]: purge is evaluated against UNIX
groups. The syntax and mechanism are equivalent to user_usage.

Purges are triggered by start conditions and are concluded by stop conditions and both must
be present in the trigger's definition. There can be only one start condition and one stop
condition.

The start condition can be one of:

• high_threshold_pct: a purge will be triggered when the used capacity of a file
system, measured as a percentage, exceeds this value.

• high_threshold_vol: a purge will be triggered when the used capacity of a file
system, measured as a fixed value in bytes (the default unit of measure), KB, MB, GB or
TB, exceeds this value.

The stop condition can be one of:

• low_threshold_pct: a purge will stop when the used capacity of a file system,
measured as a percentage, is less than or equal to this value.

• low_threshold_vol: a purge will stop when the used capacity of a file system,
measured as a fixed value in bytes, KB, MB, GB or TB, is less than or equal to this value.

The purge conditions for a file system will be checked by Robinhood at a frequency set by
check_interval. Each trigger has its own check_interval definition.

Purge_trigger – Complete Example
Purge_trigger {

 trigger_on = global_usage;

 high_threshold_pct = 90%;

 low_threshold_pct = 85%;

 check_interval = 15min;

}

Purge_trigger {

 trigger_on = OST_usage;

 high_threshold_pct = 85%;

 low_threshold_pct = 80%;

 check_interval = 15min;

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 58

}

Purge_trigger {

 trigger_on = user_usage;

 high_threshold_vol = 1TB;

 low_threshold_vol = 750GB;

 check_interval = 4h;

}

Remove – Cleaning Up Archive Copies of Deleted Files
When a file is deleted from the active file system, a copy still remains on the archive tier until a
cleanup is requested. This is referred to as deferred removal or "soft rm". It is possible to
influence the file removal policy using the following configuration block:

hsm_remove_policy {

 # enable deferred removal in the archive

 hsm_remove = TRUE;

 # delay before object removal

 deferred_remove_delay = 24h;

}

If this block is not set, files are not automatically deleted from the archive, even if they are no
longer present on the Lustre file system. File removal is also influenced by another block
called hsm_remove_parameters:

hsm_remove_parameters {

 nb_threads_rm = 4;

 max_rm_count = 10000;

 runtime_interval = 15min;

}

This block is very similar to the other parameter blocks:

• nb_threads_rm: the number of threads to dedicate to the remove task

• max_rm_count: the maximum number of files to delete from the archive in a single
pass

• runtime_interval: the frequency with which to sweep the archive.

HSM_Remove_Policy & HSM_Remove_Parameters – Complete Example
hsm_remove_policy {

 # enable deferred removal in the archive

 hsm_remove = TRUE;

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 59

 # delay before object removal

 deferred_remove_delay = 24h;

}

hsm_remove_parameters {

 nb_threads_rm = 4;

 max_rm_count = 10000;

 runtime_interval = 15min;

}

Appendix A: Sample Robinhood Configuration File

General {

 # file system to be monitored

 fs_path = "/mnt/demo" ;

}

Log {

 # Log file

 log_file = "/var/log/robinhood/lustre_hsm_demo.log" ;

 # File for reporting purge events

 report_file = "/var/log/robinhood/lustre_hsm_demo_reports.log" ;

 # Alerts file

 alert_file = "/var/log/robinhood/lustre_hsm_demo_alerts.log" ;

}

ListManager {

 commit_behavior = transaction ;

 MySQL {

 server = "localhost" ;

 db = "robinhood_demo" ;

 user = "robinhood" ;

 password_file = "/etc/robinhood.d/.dbpassword" ;

 engine = InnoDB ;

 }

}

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 60

ChangeLog {

 MDT {

 mdt_name = "MDT0000" ;

 reader_id = "cl1" ;

 }

 force_polling = ON ;

}

Filesets {

 FileClass small_files {

 definition {

 tree == "/mnt/demo"

 and

 size <= 1KB

 }

 }

}

Migration_parameters {

 nb_threads_migration = 4;

 runtime_interval = 15min;

 max_migration_count = 10000;

 max_migration_volume = 10TB;

 check_copy_status_on_startup = TRUE;

}

Migration_policies {

 ignore_fileclass = small_files;

 policy default {

 condition {

 last_mod > 4h

 or

 last_archive > 12h

 }

 }

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 61

}

Purge_parameters {

 nb_threads_purge = 4;

 post_purge_df_latency = 1min;

 check_purge_status_on_startup = TRUE;

}

Purge_Policies {

 ignore {

 size == 0

 }

 policy default {

 condition {

 last_access > 12h

 and

 last_mod > 1d

 }

 }

}

Purge_trigger {

 trigger_on = global_usage;

 high_threshold_pct = 85%;

 low_threshold_pct = 80%;

 check_interval = 15min;

}

Purge_trigger {

 trigger_on = OST_usage;

 high_threshold_pct = 95%;

 low_threshold_pct = 90%;

 check_interval = 15min;

}

hsm_remove_policy {

Hierarchical Storage Management Configuration Guide

 Intel® Confidential 62

 hsm_remove = TRUE;

 deferred_remove_delay = 24h;

}

hsm_remove_parameters {

 nb_threads_rm = 4;

 max_rm_count = 10000;

 runtime_interval = 15min;

}

	Introduction
	Hierarchical Storage Management Architecture
	Configuring HSM

	Enabling the HSM Coordinator
	Enabling the HSM Coordinator for an Existing File System
	Enabling the HSM Coordinator when Creating the File System
	Verifying the Current Status of the Coordinator
	HSM Coordinator States

	Provision an HSM Agent with the POSIX Copytool
	Preparation
	Add an HSM Agent Host with Intel® Manager for Lustre* Software
	Configure the HSM Copytool Daemon
	Start the Copytool
	Check that the Copytool Process is Running
	Check that the Copytool Instance is Registered with the Coordinator

	Running the POSIX Copytool Outside of Intel® Manager for Lustre* Software
	Quick Verification Check and Introduction to the HSM Command Line

	Working with HSM Archive Identifiers
	The Default HSM Archive
	Archive Zero – The "Any" Archive
	Additional Notes

	Robinhood Policy Engine Installation
	Preparation
	Provision the Robinhood Packages Using Intel® Manager for Lustre*
	Mount the Lustre file system on the Robinhood Server
	Configure MDS Changelogs
	Prepare the Robinhood Database

	Robinhood Initial Configuration
	Create a Minimal Configuration
	General
	Log
	ListManager (Database)
	ChangeLog
	Robinhood Initial Configuration – Complete Example

	Starting Robinhood for the First Time
	Using Robinhood to Create Reports
	Robinhood Daemon Activity
	File System Statistics
	High Level Report
	Identify the Largest File System Consumers
	Detailed Reports

	Using Robinhood to Create HSM Policies
	Quick-Start Robinhood Policy Configuration
	General Syntax
	Filesets – Defining Classes of Files
	Specifying an Archive
	Filesets – A Complete Example

	Migrate – Archiving Files
	Migration Parameters
	Migration Policies
	Migration_policies – Complete Example

	Purge – Releasing Files That Have Been Archived
	Purge Parameters
	Purge Policies – Deciding What to Release
	Purge_Policies – Complete Example
	Purge Triggers – Deciding When to Release Files
	Purge_trigger – Complete Example

	Remove – Cleaning Up Archive Copies of Deleted Files
	HSM_Remove_Policy & HSM_Remove_Parameters – Complete Example

	Appendix A: Sample Robinhood Configuration File

