

Order Number: 329687-007US

Intel® Quark™ SoC X1000
Board Support Package (BSP)

Build and Software User Guide

Release: 1.0.1

16 June 2014

Contents

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

2 Order Number: 329687-007US

Contents

1 About this document ...4

Part 1 Building the BSP software ...5

2 Before you begin ..5

3 Downloading software ...7

4 Building the EDKII firmware ...8

4.1 Dependencies ..8
4.2 Pre build setup ...8

4.2.1 Performing pre build steps in a Linux/gcc build environment9
4.2.2 Performing pre build steps in a Windows build environment9

4.3 Building all the EDKII Firmware validated build configurations [Linux build
environment only] .. 10

4.4 Building a single EDKII Firmware build configuration 11
4.5 EDKII firmware build standalone output files .. 12

5 Building the GRUB OS loader [Linux build environment only] 13

6 Creating a file system and building the kernel using Yocto

[Linux build environment only] ... 15

6.1 Applying a custom patch to the Linux kernel using Yocto (optional) 17

7 Building the Linux* cross compile toolchain using Yocto [Linux build environment only]18

8 Creating a flash image for the board [Linux build environment only] 20

8.1 Using the SPI Flash Tools .. 20

9 Patching flash binary files using platform data file .. 22

10 Programming flash on the board using serial interface .. 24

10.1 Programming flash using UEFI shell .. 24
10.2 Programming flash using Linux* run-time system 27

11 Programming flash on the board using DediProg .. 28

12 Booting the board from SD card .. 29

Part 2 Using the BSP Software .. 31

13 Capsule update ... 31

14 Capsule recovery .. 32

15 Signing files (secure SKU only) [Linux build environment only] 33

16 Enabling the OpenOCD debugger .. 35

Appendix A Related documents .. 36

Contents

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 3

Revision History ... 37

Legal Disclaimers .. 38

About this document

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

4 Order Number: 329687-007US

1 About this document

This document, the Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and

Software User Guide, is divided into two major sections:

 Part 1 Building the BSP Software contains instructions for installing and
configuring the Intel® Quark™ SoC X1000 Board Support Package sources.

 Part 2 Using the BSP Software provides information on BSP software features
and functionality.

Use this document to create an image to boot on your Quark-based board, and to

learn more about BSP software features.

The intended audience for this document are hardware/software engineers with

experience in developing embedded applications.

This software release supports the following software and hardware:

 Board Support Package Sources for Intel® Quark™ SoC X1000 v1.0.0

 Intel® Galileo Customer Reference Board (CRB) (Fab D with blue PCB)

 Kips Bay Customer Reference Board (CRB) (Fab C with green PCB)

 Intel® Quark™ SoC X1000 Industrial/Energy Reference Design (Cross Hill)

 Intel® Quark™ SoC X1000 Transportation Reference Design (Clanton Hill)

Before you begin

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 5

Part 1 Building the BSP software

This section contains the following topics:

Before you begin

Downloading software

Building the EDKII firmware

Building the GRUB OS loader [Linux build environment only]

Creating a file system and building the kernel using Yocto [Linux build environment only]

Building the Linux* cross compile toolchain using Yocto [Linux build environment only]

Creating a flash image for the board [Linux build environment only]

Patching flash binary files using platform data file

Programming flash on the board using serial interface

Programming flash on the board using DediProg

Booting the board from SD card

2 Before you begin

Before you begin:

 You need a host PC running either:
 - Linux*; Intel recommends a 64-bit Linux system
 - Microsoft* Windows* 7, x64

 You need an internet connection to download third party sources.

 The build process may require as much as 30 GB of free disk space.

 To program the board you can use:
 A serial interface using the UEFI shell or Linux* run-time (see Section 10)

 A DediProg* SF100 SPI Flash Programmer (or equivalent) and the associated
flashing software (see Section 11)

 An Intel® Galileo IDE (Galileo board only; see the Intel® Galileo Board Getting

Started Guide for details)

Note: Remove all previous versions of the software before installing the current version.

Individual components require very different environments (compiler options and

others). To avoid cross-pollution, the commands in each section below must
be run in a new command line window every time.

Before you begin

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

6 Order Number: 329687-007US

Note: If the commands fail or timeout, it may be due to your proxy settings. Contact your

network administrator. You may find answers here:

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

This release has been tested with Windows* 7, 64-bit and Debian* Linux* 7.0

(Wheezy), but will work with most other Linux distributions.

Linux builds have been validated on 64-bit Linux systems and may need additional

steps for operation on 32-bit systems.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Downloading software

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 7

3 Downloading software

Download the BSP sources zip file from the following location:

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197

Note: If you are using an Intel® Quark™ Reference Design board, see your Intel

representative for the appropriate software download URL.

This release is comprised of:

 Board Support Package (BSP) sources:

 Board_Support_Package_Sources_for_Intel_Quark_v1.0.1.7z (2.6 MB)

For customers using the Clanton Hill FFRD, additional CAN software must be

downloaded from Intel Business Link (IBL). See your Intel representative for the URL.
The CAN package comprises:

• Fujitsu CAN Firmware:

 CAN_Firmware_for_Intel_Quark_v1.0.1.zip (36 kB)

If building on a Debian host PC, use the Debian-provided meta package called build-

essential that installs a number of compiler tools and libraries. Install the meta

package and the other packages listed in the command below before continuing:

sudo apt-get install build-essential gcc-multilib vim-common

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197

Building the EDKII firmware

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

8 Order Number: 329687-007US

4 Building the EDKII firmware

You need to build the open source EDKII firmware for the Intel® Quark™ SoC.

Additional details may be found here:

 www.tianocore.sourceforge.net

 http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Getting_Started
_with_EDK_II

4.1 Dependencies

Linux* build environment dependencies:

 Python 2.6 or 2.7 (Python 3.x not supported)

 GCC and G++ (tested with GCC 4.3 and GCC 4.6)

 subversion client

 uuid-dev

 iasl (https://www.acpica.org/downloads/linux)

Note: An ACPI5.0 compatible version is required.

Windows* build environment dependencies:

 Python 2.6 or 2.7 (Python 3.x not supported)

 Microsoft* Visual Studio* 2008 Professional.

 The Intel® Quark™ SoC EDKII build is validated with the Win7 x64 /

VS2008x86 option shown in
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Windows_syste
ms_ToolChain_Matrix

In addition, the quarkbuild.bat below enforces the x86 postfix onto the Visual

Studio* option for building under x64 Windows.

 TortoiseSVN (1.4.2.8580 or later) installed with optional SVN command line tools.

 iASL Windows binaries (https://www.acpica.org/downloads/binary-tools)

Note: An ACPI5.0 compatible version is required.

4.2 Pre build setup

The following steps are done once to prepare the EDKII workspace directory with the

required source code before commencing the actual firmware build.
1. Create the EDKII workspace directory and extract the contents of the Intel®

Quark™ SoC EDKII BSP into this directory. The file will have the name

Quark_EDKII_<version>.tar.gz. After the contents have been extracted the

http://www.tianocore.sourceforge.net/
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Getting_Started_with_EDK_II
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Getting_Started_with_EDK_II
https://www.acpica.org/downloads/linux
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Windows_systems_ToolChain_Matrix
http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=Windows_systems_ToolChain_Matrix
https://www.acpica.org/downloads/binary-tools

Building the EDKII firmware

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 9

files quarkbuild.sh and quarkbuild.bat should be in the root of the created

workspace directory.

2. Fetch the upstream core EDKII packages using svn_setup.py and the SVN

command line tool.

3. Optionally, if OpenSSL is required by the build configuration in Section 4.3 or

Section 4.4 following, then perform the steps in the

CryptoPkg/Library/OpensslLib/Patch-HOWTO.txt file.

4.2.1 Performing pre build steps in a Linux/gcc build

environment

Open a new terminal session and enter the following commands:

sudo apt-get install build-essential uuid-dev iasl subversion

tar -xvf Quark_EDKII_*.tar.gz

cd Quark_EDKII*

./svn_setup.py

svn update

4.2.2 Performing pre build steps in a Windows build

environment

Use a preferred tool to extract the Quark_EDKII_*.tar.gz to a user created EDKII

Workspace directory and run the cmd.exe Windows command. Then, issue the

following commands:

>cd %USER_SELECTED_EDKII_WORKSPACE_DIR%

>.\svn_setup.py

>svn update

Note: The svn update command can take a few minutes to complete depending on the

speed of your internet connection.

Note: If these commands fail, it may be due to your proxy settings. Contact your network

administrator. You may find answers about proxy settings here:

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Note: The examples above do not show the optional OpenSSL pre build step described in the

CryptoPkg/Library/OpensslLib/Patch-HOWTO.txt file.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Building the EDKII firmware

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

10 Order Number: 329687-007US

4.3 Building all the EDKII Firmware validated build

configurations [Linux build environment only]

This section is only supported in Linux Build environments. The buildallconfigs.sh

file is used to build all the validated EDKII build configurations. Open a terminal
window and cd to the Quark_EDKII* directory created in Section 4.2.1 above.

The script has the following options:

buildallconfigs.sh [GCC43 | GCC44 | GCC45 | GCC46 | GCC47] [PlatformName]

GCC4x GCC flags used for this build. Set to the version of GCC

you have installed.
Note: Validated with GCC43; tested on GCC46.

[PlatformName] Name of the platform package you want to build.

Example usage:

Create a build for an Intel® Quark™ SoC platform based on GCC version 4.6:

 ./buildallconfigs.sh GCC46 QuarkPlatform

Note: Ensure the selected version of GCC matches the one installed on the system by

running the gcc --version command.

The build output can be found in the following directories:

 Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/FlashModules/

Contains EDKII binary modules

 Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/Applications/

Contains UEFI shell applications, including CapsuleApp.efi

Where:

 <Config> = PLAIN | SECURE

 <Target> = DEBUG | RELEASE

 <Tools> = GCC43 | GCC44 | GCC45 | GCC46 | GCC47

In Section 8 you will run a script that creates a symbolic link to the directory where

the EDK binaries are placed.

Building the EDKII firmware

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 11

4.4 Building a single EDKII Firmware build

configuration

This section is supported in Linux and Windows build environments. Use

quarkbuild.sh in a Linux terminal window or quarkbuild.bat in a Windows

command prompt (created by running cmd.exe) and the cd command to change

directory to the root of the EDKII workspace directory created in Section 4.2 above.

Build usage:

quarkbuild [-r32 | -d32 | -clean]

[GCC43 | GCC44 | GCC45 | GCC46 | GCC47 | subst drive letter]

[PlatformName] [-DSECURE_LD (optional)] [-DTPM_SUPPORT (optional)]

The following is the list of options for the quarkbuild.sh and quarkbuild.bat build

commands:

-clean Delete the build files/folders

-d32 Create a DEBUG build

-r32 Create a RELEASE build

GCC4x LINUX ONLY: GCC flags used for this build. Set to the

version of GCC you have installed.

NOTE: Validated with GCC43; tested on GCC46.

subst drive letter WINDOWS ONLY: quarkbuild.bat uses the letter

specified here with the Windows subst command to

associate a drive letter with the EDKII workspace

directory path. Associating a drive letter with the
EDKII workspace directory reduces flash space
requirements for debug executables.

[PlatformName] Name of the Platform package you want to build

[-DSECURE_LD] Create a Secure Lockdown build (optional)

[-DTPM_SUPPORT] Create an EDKII build with TPM support (optional)

Note: This option has a one-time prerequisite
described in the
CryptoPkg\Library\OpensslLib\Patch-HOWTO.txt

file.

For more details on TPM (Trusted Platform Module),

see the Intel® Quark™ SoC X1000 UEFI Firmware

Writer’s Guide.

Building the EDKII firmware

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

12 Order Number: 329687-007US

Linux example usage:

Create a secure lockdown RELEASE build for an Intel® Quark™ SoC platform based on

GCC version 4.3:

./quarkbuild.sh -r32 GCC43 QuarkPlatform –DSECURE_LD

Windows example usage:

Create a DEBUG build for a Quark platform. After executing quarkbuild.bat, a virtual

drive S: is created which is rooted to EDKII workspace directory.

>.\quarkbuild.bat –d32 S QuarkPlatform

4.5 EDKII firmware build standalone output files

Chapter 8 “Creating a flash image for the board” is not required if the user only

requires EDKII firmware in the SPI Flash on Intel® Quark™ SoC Open SKU silicon.
Sections 4.3 and 4.4 above create the following EDKII standalone output files:

 .\Build\....\FV\FlashModules\Flash-EDKII-missingPDAT.bin

Full 8 MB image for manufacture with just the EDKII SPI flash images. The user is

still expected to use Section 9 following to create the final image for the board.
The platform data python script referenced in the Section 9 can be used in Linux*
or Windows* build environments.

 .\Build\....\FV\RemediationModules\Flash-EDKII.cap

Capsule with just EDKII flash images that can be used instead of the capsule file
referenced in Section 10. Applying this file only updates the EDKII components of

the SPI flash (as provided in the capsule). All other SPI flash assets remain intact.

Note: If programming Flash-EDKII.cap on a board, it is required that the SPI

Flash version of the target board is at production level V1.0.0 or later.

(Provided by the Flash-missingPDAT.cap or Flash+PlatformData.bin

files referenced in the sections following.)

 .\Build\....\FV\RemediationModules\CapsuleApp.efi

UEFI application referenced in Section 10.1 following.

 .\Build\....\FV\RemediationModules\FVMAIN.fv

Recovery file that can be used in Section 14 below. This version of the file only
has the EDKII SPI flash images.

Building the GRUB OS loader [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 13

5 Building the GRUB OS loader

[Linux build environment only]

Note: GRUB is provided in two places: inside the meta-clanton Yocto BSP or independently.

If you will run Yocto, skip this section and use the file output by Yocto in this

directory: yocto_build/tmp/deploy/images/grub.efi

If you are only interested in building a Flash image without Linux and not in using

Yocto, then proceed through this section.

Tip: If you want to build a Flash image without a Yocto Linux system (for example,

because you plan to boot a larger Yocto Linux system from an SD card or USB stick),

you should modify the appropriate layout.conf file and delete the sections for

bzImage and core-image-minimal-initramfs-clanton.cpio.gz.

Dependencies:

 GCC (tested with version 4.3.4 and 4.6.3, and libc6-dev-i386)

 gnu-efi library (tested with version >= 3.0)

 GNU Make

 Autotools (autoconf and libtool)

 Python 2.6 or higher

 git

 gcc-multilib

 texinfo

This GRUB build requires the 32 bit gnu-efi library which is included with many Linux

distributions. Alternatively, you can download the latest version from:

http://sourceforge.net/projects/gnu-efi/files

Unpack and compile the gnu-efi library using the commands:

tar -xvf gnu-efi*

cd gnu-efi*/gnuefi

make ARCH="ia32"

cd -

To build GRUB, first open a new terminal session, extract the grub package, and

run the gitsetup.py script. The script downloads all the upstream code required for

grub and applies the patch.

Note: If you are not using Debian and had to manually install gnu-efi in a non-system

location, then you must point GNUEFI_LIBDIR at the location where gnu-efi was

compiled or installed.

http://sourceforge.net/projects/gnu-efi/files

Building the GRUB OS loader [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

14 Order Number: 329687-007US

Run the following commands:
sudo apt-get install git autoconf

tar -xvf grub-legacy_*.tar.gz

cd grub-legacy_*

./gitsetup.py

cd work

autoreconf --install

export CC4GRUB='gcc -m32 -march=i586 -fno-stack-protector'

export GNUEFI_LIBDIR=/full/path/to/gnu-efi-3.0/gnuefi/

CC="${CC4GRUB}" ./configure-quark.sh

make

cd -

Note: If these commands fail, it may be due to your proxy settings. Contact your network

administrator. You may find answers about proxy settings here:

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

The required output from this build process is the work/efi/grub.efi file.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Creating a file system and building the kernel using Yocto [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 15

6 Creating a file system and

building the kernel using Yocto

[Linux build environment only]

Dependencies:

 git

 diffstat

 texinfo

 gawk

 chrpath

 file

Note: git requires proxy configuration. If these commands fail, it may be due to your proxy

settings. Contact your network administrator. You may find answers about proxy

settings here: https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Use Yocto to create a root file system and kernel that boots the system from an SD

card or USB key. Do not run any of the commands in this section as root.

Note: See Section 7 to build development tools (gcc) for the Linux* operating system.

To avoid a known issue unzipping packages with long file paths, extract the

meta-clanton tarball into a directory with a short path, for example /tmp.

First, open a new terminal session, extract the Yocto layer, and run the setup.sh

script to download the external sources required for the Yocto build:

sudo apt-get install diffstat gawk chrpath

tar -xvf meta-clanton*.tar.gz

cd meta-clanton*

./setup.sh

Note: The setup.sh script takes no parameters. To build the root file system and kernel for

the Intel® Galileo board, see the commands below.

Next, source the oe-init-build-env command to initialize the Yocto build

environment, and run bitbake <target> to build the root file system and kernel. You

will use SoC-specific <target> commands described below.

Note: If you need to patch the Linux kernel (optional), skip to Section 6.1 and apply the

patch before running the bitbake command.

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Creating a file system and building the kernel using Yocto [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

16 Order Number: 329687-007US

Two build methods are supported; the output is slightly different for each one. The

commands are different for the Intel® Galileo board.

Note: You cannot perform the following build methods sequentially, they are mutually

exclusive. If you want both builds, you must perform them on two completely different

and isolated directories.

Build a small Linux for SPI Flash

For the Intel® Galileo board, run:
source poky/oe-init-build-env yocto_build

bitbake image-spi-galileo

For the Intel® Galileo board, output files are found in ./tmp/deploy/images/ and

include:

 image-spi-galileo-clanton.cpio.gz

 image-spi-galileo-clanton.cpio.lzma

 bzImage

 grub.efi

For other supported boards (not Intel® Galileo), run:
source poky/oe-init-build-env yocto_build

bitbake image-spi

Output files are found in ./tmp/deploy/images/ and include:

 image-spi-clanton.cpio.gz

 image-spi-clanton.cpio.lzma

 bzImage

 grub.efi

Build a full-featured Linux for SD card or USB stick

Note: A complete Yocto build can take several hours to complete, depending on your

internet connection speed and your machine’s specifications.

For the Intel® Galileo board, run:
source poky/oe-init-build-env yocto_build

bitbake image-full-galileo

For the Intel® Galileo board, output files are found in ./tmp/deploy/images/ and

include:

 image-full-galileo-clanton.ext3

 core-image-minimal-initramfs-clanton.cpio.gz

 bzImage

 grub.efi

 boot (directory)

For other supported boards (not Intel® Galileo), run bitbake image-full as

shown below:
source poky/oe-init-build-env yocto_build

bitbake image-full

Output files are found in ./tmp/deploy/images/ and include:

 image-full-clanton.ext3

 core-image-minimal-initramfs-clanton.cpio.gz

Creating a file system and building the kernel using Yocto [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 17

 bzImage

 grub.efi

 boot (directory)

The kernel and root file system (bzImage and image-nnnn.gz, respectively) can be

copied onto a USB stick or SD card and booted from grub. Also, the file grub.conf

must be located in the /boot/grub/ directory of the USB stick or SD card.

6.1 Applying a custom patch to the Linux kernel using

Yocto (optional)

If you need any customization of your kernel (such as additional debug statements or

custom driver behavior), then you may need to patch the Linux kernel. This optional
step must be done before you run the bitbake command.

1. For customization of Yocto source code, extract the updates to a patch from git

using the git diff or git format-patch commands.

2. Copy the patch to the location below:
$ cp mypatch.patch /PATH/TO/MY_BSP/meta-clanton/meta-clanton-

bsp/recipes-kernel/linux/files/

3. Locate the bitbake recipe file:
/PATH/TO/MY_BSP/meta-clanton-bsp/recipes-kernel/linux/linux-yocto-

clanton_3.8.bb

4. Append the following line:
SRC_URI += "file://mypatch.patch"

For example:
printf '%s\n' 'SRC_URI += "file://mypatch.patch"' >> linux-yocto-

clanton_3.8.bb

5. Return to Section 6 and run the bitbake command to get new images.

More information can be found here:

 http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-

SRC_URI

 http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#platdev-
appdev-devshell

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#platdev-appdev-devshell

Building the Linux* cross compile toolchain using Yocto [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

18 Order Number: 329687-007US

7 Building the Linux* cross

compile toolchain using Yocto

[Linux build environment only]

The steps to build the cross compile toolchain are the same as the steps for the Yocto

root file system and kernel build as described in Section 6, with the exception of the

bitbake command arguments.

To build the tool chain, open a new terminal session and follow the steps in

Section 6 but modify the bitbake command as follows:
bitbake image-full -c populate_sdk

The same files can be used for both builds, however, you must source the

poky oe-init-build-env yocto_build every time you use a new terminal.

The output of the build process is a script that installs the toolchain on another

system:
clanton-tiny-uclibc-x86_64-i586-toolchain-1.4.2.sh

The script is located in ./tmp/deploy/sdk

Note: The script may change your environment significantly, thus breaking other, non-Yocto

tools you might be using (including anything which uses Python). You must open a

new terminal session to source the Yocto environment and run make, and run all

your other commands in other terminal sessions.

When you are ready to compile your application, first run the source command below

to define default values for CC, CONFIGURE_FLAGS, and other environment variables,

then you can compile:
source /opt/clanton-tiny/1.4.2/environment-setup-x86_32-poky-linux

${CC} myfile.c -o myfile

or
source /opt/clanton-tiny/1.4.2/environment-setup-x86_64-poky-linux

${CC} myfile.c -o myfile

For general details, see the Yocto Application Development Toolkit (ADT) information:

https://www.yoctoproject.org/tools-resources/projects/application-development-
toolkit-adt

Instructions about adding a package to the Linux build may be found here:

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#usingpoky-
extend-customimage-localconf

Quark Linux uses uclibc, which is a C library optimized for embedded systems. This

enables a very small Linux that can fit into SPI flash with the UEFI bootloader and
Grub OS loader.

https://www.yoctoproject.org/tools-resources/projects/application-development-toolkit-adt
https://www.yoctoproject.org/tools-resources/projects/application-development-toolkit-adt
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#usingpoky-extend-customimage-localconf
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#usingpoky-extend-customimage-localconf

Building the Linux* cross compile toolchain using Yocto [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 19

If you do not have any size constraints, you can change the C library to a more fully

featured C library. Detailed instructions are here:

http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

specifically how to change the TCLIBC variable selecting the C library to be used.

To build an eglibc image, overwrite the default value of the DISTRO variable as

follows:
DISTRO="clanton-full" bitbake <image-name>

http://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

Creating a flash image for the board [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

20 Order Number: 329687-007US

8 Creating a flash image for the

board [Linux build environment

only]

Dependencies:

 GCC

 GNU Make

 EDKII Firmware Volume Tools (base tools)

 OpenSSL 0.9.8w

 libssl-dev

8.1 Using the SPI Flash Tools

The SPI Flash Tools, along with the metadata and flash image configuration in the

sysimage archive, are used to create a Flash.bin file that can be installed on the

board and booted.

Open a new terminal session and extract the contents of the sysimage archive:
tar -xvf sysimage_*.tar.gz

Extract and install SPI Flash Tools:
tar -xvf spi-flash-tools*.tar.gz

Note: Extract all files to a directory that does not include the original tar files.

The sysimage* directory contains the following preconfigured layout.conf files:

 release build base SKU (non-secure)

 debug build base SKU (non-secure

 release build secure SKU

 debug build secure SKU

Depending on what kind of image you want to build, you must be in either the

sysimage.CP-8M-debug or the sysimage.CP-8M-release directory.

The layout.conf file defines how the various components will be inserted into the

final Flash.bin file to be flashed onto the board. The layout.conf consists of a

number of [sections] with associated address offsets, file names, and parameters.

Each section must reference a valid file, so it is necessary to update the paths or
create symbolic links to the valid files.

Creating a flash image for the board [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 21

A script is provided that creates symbolic links. Run the script with the command:
./sysimage/create-symlinks.sh

Ensure there is no whitespace around the values defined in the layout.conf file.

Note: If you are using the Intel® Galileo board, you may need to modify the layout.conf

file in the [Ramdisk] section from image-spi-clanton.cpio.lzma

to image-spi-galileo-clanton.cpio.lzma to successfully generate your .cap file.

Once a valid layout.conf has been created, run the SPI Flash Tools makefile with the

command:
../../spi-flash-tools*/Makefile

The output of this build is located in either the sysimage.CP-8M-debug or the

sysimage.CP-8M-release directory (depending on what kind of image was selected).

The output of this build includes:

 Flash-missingPDAT.cap - standard capsule file.

Use this file to program your board using the serial interface by following the
Programming the Flash instructions in Section 10.

 Flash-missingPDAT.bin - flash file with no platform data.

Use this file to program your board with the platform data tool and a Dediprog, as
described in Section 9, then Section 11.

 FVMAIN.fv – board-specific recovery file.

See Section 14 for an overview of capsule recovery. If you are using the Intel®
Galileo board, refer to the Intel® Galileo Board User Guide for details. For other
boards, contact your Intel representative for details.

The capsule file contains a BIOS, bootloader, and compressed Linux run-time system

to allow a Quark-based board to boot. Use the capsule update mechanism described in

Section 10 to program the SPI flash on your board.

Note: The same build process and same image files are used for both secure and non-secure

board SKUs, however, secure SKUs have certain restrictions on where a capsule

update can be performed. If you have a secure SKU board (Industrial/Energy or

Transportation Reference Design), you must update your board using the Linux*

run-time system (Section 10.2).

For experienced users, you can build all sysimages configuration in just one command

by running the following command at the top-level directory of the sysimage package:
../spi-flash-tools/Makefile [-j] sysimages

Note: Be aware of the plural sysimages in the command.

The -j option builds concurrently, which completes in a shorter time, however

the output may be harder to read.

Patching flash binary files using platform data file

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

22 Order Number: 329687-007US

9 Patching flash binary files

using platform data file

Note: This section is required for users who wish to update flash contents using flash

programmers, for example, during a manufacturing process. The platform data file

provides platform personality values such as platform type and board personality

values such as Ethernet MAC addresses that must be patched into the previously

mentioned Flash-missingPDAT.bin and Flash-EDKII-missingPDAT.bin files. This

section is NOT applicable to .cap / FVMAIN.fv files programmed by firmware running

on the target.

Platform data is part-specific, unique data placed in SPI flash. Every binary image

flashed to the board must be patched individually to use platform data. A data
patching script is provided in this release.

The platform data patching script (platform-data-patch.py) is stored in the

platform-data directory within the spi-flash-tools tarball in the Intel® Quark™ SoC

BSP. The following text is written as if the user is executing the script on a Linux*
build machine, but the script may also be run on a Windows* build machine which has
Python 2.6 or Python 2.7 installed.

Before running the platform-data-patch.py script, open a new terminal session and

copy and edit the spi-flash-tools/platform-data/sample-platform-data.ini file

to include platform-specific data such as MAC address, platform type, and MRC
parameters.

On reference platforms, the MAC address to be programmed is printed on the product

label.

Note: The Intel® Quark™ SoC X1000 contains two MACs and each must be configured with

one address in the platform-data.ini file, even on boards (such as Galileo) that

have only one Ethernet port.

For Galileo, MAC 0 is the only MAC wired out. The default MAC 0 address value in the

platform-data.ini file is invalid and must be set to the value allocated to your

system, typically this is identified on a sticker.

MAC 1 must also have a valid UNICAST MAC address and the platform-data.ini file

contains a dummy but valid address for MAC 1.

If you do not set a valid MAC address, the following error message is returned:

HALT: Multicast Mac Address configured for Ioh MAC

Galileo / Kips Bay Fab D example is below, recommended values are shown in bold

text:
[Platform Type]

id=1

desc=PlatformID

data.type=hex.uint16

ClantonPeak 2, KipsBay 3, CrossHill 4, ClantonHill 5, KipsBay-fabD 6

data.value=6

Patching flash binary files using platform data file

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 23

Note: In the [Mrc Params] section below, the MRC data.value MUST correspond to

the platform data.value used above.
[Mrc Params]

id=6

ver=1

desc=MrcParams

data.type=file

#data.value=MRC/clantonpeak.v1.bin

#data.value=MRC/kipsbay.v1.bin

#data.value=MRC/crosshill.v1.bin

#data.value=MRC/clantonhill.v1.bin

data.value=MRC/kipsbay-fabD.v1.bin

[MAC address 0]

id=3

desc=1st MAC

data.type=hex.string

data.value=001320FDF4F2 #replace with MAC address from sticker on board

[MAC address 1]

id=4

desc=2nd MAC

data.type=hex.string

data.value=02FFFFFFFF01

Next, run the script as follows:

cd spi-flash-tools/platform-data/

platform-data-patch.py -p sample-platform-data.ini \

 -i ../../sysimage_*/sysimage.CP-8M-release/Flash-missingPDAT.bin

cd -

This creates a Flash+PlatformData.bin file to be programmed on the board, as well

as a sample-platform-data.bin file containing the same data that was inserted in

the Flash image.

To program your board using Dediprog, skip to Section 11.

Programming flash on the board using serial interface

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

24 Order Number: 329687-007US

10 Programming flash on the

board using serial interface

Dependencies: CapsuleApp.efi (built in Section 4, located in

Build/QuarkPlatform/<Config>/<Target>_<Tools>/FV/Applications/)

The BSP provides a mechanism to update SPI flash contents based on EDKII capsules.

These capsules contain a BIOS, bootloader, and compressed Linux run-time system
sufficent to boot a Quark-based board, such as the Intel® Galileo board.

The capsule update mechanism can be triggered from an EDKII shell (Section 10.1) or

from a Linux* run-time system (Section 10.2). In both situations, you must have root
privileges on the system.

If you have a secure SKU board (Industrial/Energy or Transportation Reference

Design), you must update your board using the Linux* run-time system
(Section 10.2).

10.1 Programming flash using UEFI shell

This procedure cannot be used for a secure SKU board (Industrial/Energy or

Transportation Reference Design) because the UEFI shell is not available on secure

SKU boards. Follow the Section 10.2 procedure instead.

Perform the steps below:

1. Use the files created in Section 8.

2. Copy CapsuleApp.efi and Flash-missingPDAT.cap to a microSD card (or USB

stick) and insert it into the slot on the board.

3. Connect the serial cable between the computer and the board. Set up a serial

console session (for example, PuTTY) and connect to the board’s COM port at
115200 baud rate.

4. Configure the serial console session to recognize special characters. For example,

if you are using PuTTY, you must explicitly enable special characters. In the PuTTY

Configuration options, go to the Terminal > Keyboard category and set the

Function keys and Keypad option to SCO. You may also set Backspace to the

Control-H key.

5. Power on the board. Enter the EFI shell before grub starts by pressing F7.

Programming flash on the board using serial interface

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 25

6. The serial console displays a boot device selection box (below).

Select UEFI Internal Shell.

You will see a display similar to this:

6. You will see a print out, the top line of which looks like this:
fs0 :HardDisk - Alias hd7b blk0

This is your SD card. To mount it, type: fs0:

7. Verify you are using the correct version of CapsuleApp.efi by using the -v

option. You must use version 1.01 or later.

8. Enter the following command:
CapsuleApp.efi Flash-missingPDAT.cap

Note: You must enter the full filename of the Flash-missingPDAT.cap file.

Programming flash on the board using serial interface

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

26 Order Number: 329687-007US

You will see a display similar to this:

The CapsuleApp will update your SPI flash image. This process takes about 5

minutes.

Warning: DO NOT remove power or try to exit during this process. Wait for the prompt to

return, otherwise your board will become non-functional.

9. When the update completes, the board will automatically reboot. You will see a
display similar to this:

Programming flash on the board using serial interface

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 27

10.2 Programming flash using Linux* run-time system

If you are updating from an earlier release of the BSP software (0.7.5 and 0.8.0), you

need a release-specific kernel module. Note that a 0.7.5 kernel module cannot be
loaded on a 0.8.0 BSP and vice-versa.

Open a new terminal session and perform the following steps:

1. Use the files created in Section 8.

2. Copy Flash-missingPDAT.cap from the sysimage directory onto an SD card (or

USB stick) and insert it into the board.

3. Release 0.7.5 and Release 0.8.0 only:
Run the command:
insmod /tmp/<release>/efi_capsule_update.ko

where: <release> = 0.7.5 or 0.8.0

4. Release 0.9.0, Release 1.0.0, and later:
Run the command:
modprobe efi_capsule_update

5. All releases:
Run the following commands:
modprobe sdhci-pci

modprobe mmc-block

mkdir /lib/firmware

cd /media/mmcblk0p1/

cp Flash-missingPDAT.cap /lib/firmware/Flash-missingPDAT.cap

echo -n Flash-missingPDAT.cap >

 /sys/firmware/efi_capsule/capsule_path

echo 1 > /sys/firmware/efi_capsule/capsule_update

reboot

Note: Make sure you use the reboot command; removing/reinserting the power cable will

not work.

Warning: It is critical to ensure that the older sysfs entries used by Release 0.7.5 and Release

0.8.0 are not used due to known issues:
/sys/firmware/efi/capsule_update

/sys/firmware/efi/capsule_path

The capsule update method for Release 0.9.0 and later uses the following corrected

entries:
/sys/firmware/efi_capsule/capsule_update

/sys/firmware/efi_capsule/capsule_path

Programming flash on the board using DediProg

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

28 Order Number: 329687-007US

11 Programming flash on the

board using DediProg

You can use a DediProg* SF100 SPI Flash Programmer and the associated flashing

software to program your board.

Note: These steps require the Flash+PlatformData.bin file that was created in Section 9.

Once the software has been installed and the programmer is connected to the board,

open a new terminal session, and run the DediProg Engineering application.

Use the following steps to flash the board:

1. Select the memory type if prompted when the application starts.

2. Select the File icon and choose the *.bin file you wish to flash.

3. Optionally select the Erase button to erase the contents of the SPI flash.

4. Select raw file format.

5. Select the Prog icon to flash the image onto the board.

6. Optionally select the Verify icon to verify that the image flashed correctly.

Note: Intel recommends that you disconnect the programmer before booting the system.

Booting the board from SD card

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 29

12 Booting the board from SD card

To boot your board from an SD card and enable persistent rootfs, follow these steps.

You can also use this procedure to boot your board from a USB stick.

If you are using an Intel® Galileo board, this setup allows you to save your Arduino*

sketch to the board, so it will be able to repeat sketches after board power-down. This

also enables a persistent /sketch folder and rootfs.

Dependencies:

 You ran the command bitbake image-full in Section 6

(or bitbake image-full-galileo if using an Intel® Galileo board)

 Your SD card must meet the following requirements:
 SD card must be formatted as FAT or FAT32.

 SD card size must be 32GB (or smaller) and SDHC format.
SDXC format is not supported.

1. The output of the build process in Section 6 is found in ./tmp/deploy/images/

Copy the following kernel and root file system files to an SD card:

 boot (directory)

 bzImage

 core-image-minimal-initramfs-clanton.cpio.gz

 image-full-clanton.ext3 or

image-full-galileo-clanton.ext3 for the Intel® Galileo board

Be sure to set up your SD card with the files and structure shown below.

2. Insert the SD card, then power on the board.

Note: The first time you boot the board may take several minutes. This is expected behavior

due to the SSH component creating cryptographic keys on the first boot.

Booting the board from SD card

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

30 Order Number: 329687-007US

Troubleshooting tips:

To boot from SD/USB, the grub instance embedded in the SPI flash is hardcoded to

search for a boot/grub/grub.conf file in partition 1 on the SD/USB card. This is

compatible with the factory formatting of most SD/USB devices. By default, the UEFI
firmware does not try to boot from SD or USB, it is handled by grub.

If you use an SD or USB device that has been reformatted after manufacturing, you

might experience problems booting from it. First, try to boot with a different memory

device and see if the problem goes away. If you isolate the problem to a specific SD
card, you can restore the factory formatting using this tool from the SD association:
https://www.sdcard.org/downloads/formatter_4/

It is not recommended to use normal operating system tools to format flash memory
devices.

https://www.sdcard.org/downloads/formatter_4/

Capsule update

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 31

Part 2 Using the BSP Software

This section contains the following subsections:

Capsule update

Capsule recovery

Signing files (secure SKU only)

Enabling the OpenOCD debugger

13 Capsule update

The BSP software provides a mechanism to update SPI flash contents based on EDKII

capsules. These capsules contain a BIOS, bootloader, and compressed Linux run-time

system sufficent to boot a Quark-based board, such as the Intel® Galileo board.
Capsule update is comprised of the following high-level steps:

 Building a Flash-missingPDAT.cap capsule file

 Connecting a USB key or SD card that contains this file to the board

 Running the capsule update mechanism as described in Section 10.1 or

Section 10.2.

Note: If you have a secure SKU board (Industrial/Energy or Transportation
Reference Design), you must update your board using the Linux* run-time

system (Section 10.2).

Capsule recovery

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

32 Order Number: 329687-007US

14 Capsule recovery

The BSP software provides a mechanism for the SPI flash contents to be recovered if

the board will not boot. For example, if power was lost during a normal SPI flash

update, the board would be unbootable.

Capsule recovery is comprised of the following high-level steps:

 building a FVMAIN.fv recovery file

 connecting a USB key with this file to the board

 booting the board in recovery mode

Note: If you are using the Intel® Galileo board, refer to the Intel® Galileo Board User

Guide for details. For other boards, contact your Intel representative for
details on how to boot in recovery mode.

 waiting for the recovery firmware to update the SPI flash and reboot the board

Booting in recovery mode is board specific. Please refer to the board user guide for

details.

Alternatively, the SPI flash contents can be recovered using a DediProg* SF100 SPI

Flash Programmer and the associated flashing software to program your board as
described in Section 11.

Signing files (secure SKU only) [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 33

15 Signing files (secure SKU only)

[Linux build environment only]

This step is optional for most users; it is only needed for booting on a secure SKU.

Dependencies: libssl-dev

All files located by grub require signature files for verification. This includes kernel,

grub.conf, bzImage, and core-image-minimal-initramfs-clanton.cpio.gz.

The SPI Flash Tools package includes the Asset Signing Toolset, an application used

for signing assets for secure boot. Follow the steps below to compile the signing tool,
then sign assets.

For complete details on the Asset Signing Toolset, including all of the command line
options, refer to the Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference

Manual (see Appendix A).

Note: For convenience during development, the software release includes a default Private

Key key.pem file. During development, all assets are signed with the default key that

is stored in the config directory. The default key cannot be used in a production

system; it is not secure due to its inclusion in the release package. Contact your Intel

representative for details.

Open a new terminal session and use the following commands:
cd spi-flash-tools

make asset-signing-tool/sign

After compiling the signing tool, you can sign assets as shown in the following

example:
path/to/spi-flash-tools/asset-signing-tool/sign –i <input file>

-s <svn> -x <svn index> -k <key file>

The output for this example is a signed binary file called <input file>.signed in

the same directory as the <input file>.

To create a separate signature file, pass the –c command line option which creates

<input file>.csbh as output in the same directory as the <input file>.

To get a full list of command line options, run the signing tool with no option.

The signature files can be copied onto a USB stick or SD card and must comply with

the following requirements:

 Each .csbh file must be in the same directory as the corresponding non-signed

file.

 grub.conf must be located in the /boot/grub/ directory.

 Other files can be placed anywhere as long as grub.conf is configured with their

location.

Signing files (secure SKU only) [Linux build environment only]

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

34 Order Number: 329687-007US

The screenshots below show an example SD card with signature files:

 Copy signature files core-image-minimal-initramfs-clanton.cpio.gz.csbh

and bzImage.csbh to the root directory.

 Copy grub.cbsh to the /boot/grub/ directory.

Enabling the OpenOCD debugger

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 35

16 Enabling the OpenOCD

debugger

Complete instructions for using the OpenOCD debugger can be found in the Source

Level Debug using OpenOCD/GDB/Eclipse on Intel® Quark™ SoC X1000 Application
Note, see Appendix A.

Related documents

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

36 Order Number: 329687-007US

Appendix A Related documents

The documents below provide more information about the software in this release.

Document Name Number

Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User

Guide (this document)
329687

Intel® Quark™ SoC X1000 Software Release Notes 330232

Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual 330234

Intel® Quark™ SoC X1000 Linux* Programmer’s Reference Manual 330235

Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide 330236

EDKII Update for Intel® Quark™ SoC X1000 Software Release Notes 330729

Source Level Debug using OpenOCD/GDB/Eclipse on Intel® Quark™ SoC X1000

Application Note

https://communities.intel.com/docs/DOC-22203

330015

Intel® Quark™ SoC X1000 Datasheet

https://communities.intel.com/docs/DOC-21828
329676

Intel® Quark™ SoC X1000 Core Developer’s Manual

https://communities.intel.com/docs/DOC-21826
329679

Intel® Quark™ SoC X1000 Core Hardware Reference Manual

https://communities.intel.com/docs/DOC-21825
329678

Intel® Galileo Board User Guide

https://communities.intel.com/docs/DOC-22475
330237

https://communities.intel.com/docs/DOC-22203
https://communities.intel.com/docs/DOC-21828
https://communities.intel.com/docs/DOC-21826
https://communities.intel.com/docs/DOC-21825
https://communities.intel.com/docs/DOC-22475

Revision History

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

Order Number: 329687-007US 37

Revision History

Date Revision Description

16 June 2014 007 General updates to coincide with the EDKII Update 1.0.2 release including:

Updated Section 4, Building the EDKII firmware (added Windows* build

environment).

22 May 2014 006 General updates for software release 1.0.1 including:

Updated Section 4, Building the EDKII firmware (added TPM).

Added Section 6.1, Applying a custom patch to the Linux kernel using Yocto

(optional).

Updated Section 9, Patching flash binary files using platform data file

(corrected platform-data.ini filename).

Updated Section 14, Capsule recovery (added DediProg information).

Updated with trademarked term: Intel® Quark™ SoC.

04 March 2014 005 General updates for software release 1.0.0 including:

Added Section 13, Capsule update.

Added Section 14, Capsule recovery.

20 January 2014 004 General updates for software release 0.9.0 including:

Added Section 4, Building the EDKII firmware.

Added Section 10.2, Programming flash using Linux* run-time system.

Updated Section 15, Signing files (secure SKU only).

Removed OpenOCD details because patch is now open source.

Added Appendix A Related documents.

15 November 2013 003 Added CapsuleApp.efi to Section 3, Downloading software.

07 November 2013 002 General updates for software release 0.8.0 including:

Added supported boards to list of hardware.

Section 8: Changed SPI Flash tools path from clanton_peak_EDK2 to

Quark_EDKII

Moved Signing files (secure SKU only) section to later in the document.

15 October 2013 001 First release with software version 0.7.5.

Legal Disclaimers

Intel® Quark™ SoC X1000

BSP Build and Software User Guide

38 Order Number: 329687-007US

Legal Disclaimers

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, and Quark are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

	1 About this document
	Part 1 Building the BSP software
	2 Before you begin
	3 Downloading software
	4 Building the EDKII firmware
	4.1 Dependencies
	4.2 Pre build setup
	4.2.1 Performing pre build steps in a Linux/gcc build environment
	4.2.2 Performing pre build steps in a Windows build environment

	4.3 Building all the EDKII Firmware validated build configurations [Linux build environment only]
	4.4 Building a single EDKII Firmware build configuration
	4.5 EDKII firmware build standalone output files

	5 Building the GRUB OS loader [Linux build environment only]
	6 Creating a file system and building the kernel using Yocto [Linux build environment only]
	6.1 Applying a custom patch to the Linux kernel using Yocto (optional)

	7 Building the Linux* cross compile toolchain using Yocto [Linux build environment only]
	8 Creating a flash image for the board [Linux build environment only]
	8.1 Using the SPI Flash Tools

	9 Patching flash binary files using platform data file
	10 Programming flash on the board using serial interface
	10.1 Programming flash using UEFI shell
	10.2 Programming flash using Linux* run-time system

	11 Programming flash on the board using DediProg
	12 Booting the board from SD card
	Part 2 Using the BSP Software
	13 Capsule update
	14 Capsule recovery
	15 Signing files (secure SKU only) [Linux build environment only]
	16 Enabling the OpenOCD debugger
	Appendix A Related documents
	Revision History
	Legal Disclaimers

