

A Unified Interface for Benchmark

Tools on the Intel® Xeon Phi™

Processor X200 Product Family

 and

The Intel® Xeon Phi™ Coprocessor

X200 Product Family

Micperf User Guide

March 2017

Copyright © 2017 Intel Corporation

All Rights Reserved

Revision: 1.15

World Wide Web: http://www.intel.com

file:///C:/Users/sdwatsox/Documents/www.intel.com

Legal Disclaimer

Micperf User Guide March 2017
2

Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning

Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter

drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-

4725 or by visiting: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents

1 Introduction ... 6

1.1 Organization... 7
1.2 Conventions and Symbols .. 7

2 Novice User: Benchmark Execution... 8

2.1 Benchmark Selection ... 9
2.2 Memory Selection (Only available for the Intel® Xeon Phi™ Processor X200 Product

Family.) ... 10
2.3 Parameter Category Selection .. 10
2.4 Explicit Benchmark Parameter Specification ... 11
2.5 Offload Selection (Only available for the Intel® Xeon Phi™ Coprocessor X200

Product Family.) ... 11
2.6 Coprocessor Selection (Only available for the Intel® Xeon PhiTM Coprocessor X200

Product Family.) ... 12
2.7 Verbosity Selection ... 12

3 Expert User: Generating Collateral ... 14

3.1 Creating a micprun_stats File ... 14
3.2 Data Inspection with micpinfo... 14
3.3 Data Inspection with micpprint ... 14
3.4 Data Inspection with micpcsv ... 15

3.4.1 Summary Format ... 15
3.4.2 Long Format ... 15
3.4.3 Short Format ... 16

3.5 Data Inspection with micpplot .. 16

4 Hardware Tester: Executing Regression Tests .. 18

5 Systems Engineer: Creating Reference Data ... 20

6 Tinkerer: Benchmark Modifications .. 21

7 Test Developer: Integrating New Benchmarks.. 23

8 Summary .. 24

Appendix A References .. 25

Contents

Micperf User Guide March 2017
4

Figures
Figure 1 Example Summary Output from micpcsv as Displayed by Microsoft Excel 15
Figure 2 Example Output from micpplot .. 17

Tables
Table 1 Benchmarks ... 9
Table 2 Parameter Categories ... 11
Table 3 Offload Methods ... 12
Table 4 Verbosity Output .. 13
Table 5 micprun error codes .. 18

June 2016 Micperf User Guide
 5

Revision History

Date Revision Description

April 1.15 Added information about the Fio benchmark.

March 2016 1.14 Added information about the Deepbench suite.

September

2016

1.13 Added information on the micperf source RPM and how to rebuild it, Sections 2

and 6.

June 2016 1.12 Added new error code in Table 5

Added note to Section 2.2 Memory Selection

June 2016 1.11 Addressed internal feedback

May 2016 1.1 Added HPCG documentation

December

2015

1.0 Addressed internal feedback

Added HPLinpack documentation.

November

2015

0.51 Adding 2.2 Memory Selection

June 2015 0.5 Initial release.

§

Introduction

Micperf User Guide March 2017
6

1 Introduction

There are many benchmarks which can be used with the Intel® Xeon Phi™ Processor
X200 Product Family (hereafter referred to as the processor) and the Intel® Xeon Phi™
Coprocessor X200 Product Family (hereafter referred to as the coprocessor) to measure
performance. These have different developers, and consequently different user

interfaces, different methods of execution and different output. Micperf is designed to
incorporate a variety of benchmarks into a simple user experience with a single interface
for execution and a unified means of data inspection. The user interface to micperf
consists of five executables: one for execution of benchmarks (micprun), and four that

interpret the output of the first one. These executables are all well documented with
standard UNIX style command line interfaces. The results can be displayed as
professional quality plots, human readable text or comma separated values that can be

easily imported into a variety of other applications. Results of different runs can be
easily combined and compared. To support tracking of the performance impact of
changes to the system configuration, micperf stores detailed hardware and software
configuration information along with the performance data. Micperf also serves as a
harness to integrate a variety of benchmarks into automated testing for performance
regressions.

The micperf package targets a range of users including engineers interested in
performance regression testing while implementing modifications to hardware,
firmware, drivers or operating system software. In addition to these highly technical
customers, there are also application users and hardware manufacturers who use the
micperf software for demonstration and system verification purposes. This user guide

provides a description of the micperf user experience for a range of use cases. The

simplest use cases are identified in Chapter 2. The sections that follow identify more
sophisticated use cases for collateral generation, regression testing, benchmark
modification and extending the micperf package to include new benchmarks.

The micprun executable, the primary application in the micperf package, executes

several benchmarks: MKL [12] SMP Linpack [2], MKL HPLinpack [2], MKL HPCG1, MKL
SGEMM, MKL [12] DGEMM, SHOC download2, SHOC readback2, STREAM [10][11],
Deepbench [16] convolutions1 (libxsmm_layer, std_conv_bench) and fio1 [17]. These
benchmarks were carefully chosen to demonstrate performance in all of the major
bottlenecks in the system. The Vector and Floating Point Unit (VFU) in the processor
and the coprocessor excel at dense level three basic linear algebra [9] calculations, and

the Linpack, HPLinpack, HPCG, DGEMM, and SGEMM benchmarks demonstrate these
capabilities, Deepbench benchmarks exercise operations that are used in deep neural
networks. The fio benchmark assess performance of I/O operations.

SMP Linpack, HPLinpack, HPCG1 and DGEMM compute with double precision floating

point numbers and SGEMM computes in single precision. The SHOC download2 and
SHOC readback2 benchmarks test the performance of the PCIe bus in transferring data
between the host and the coprocessor. The STREAM benchmark measures the bus
bandwidth between the processor’s or the coprocessor’s main memory and the
computational registers. Deepbench1 tests performance of convolution operation

1 Only available for processor.
2 Only available for coprocessor.

Introduction

June 2016 Micperf User Guide
 7

performed using the Intel® MKL-DNN and libxsmm libraries. Fio1 checks the
performance of drive read operations.

1.1 Organization

This manual is organized into chapters that describe a different user’s experience with

the micperf package.

Chapter 1: Introduction

Chapter 2: Focuses on the final consumer of the processor and the coprocessor

products who use basic features of micperf.

Chapter 3: Discusses the experience of the advanced user who generates

professional quality content about the performance of the processor and coprocessor
for presentation.

Chapter 4: Describes the use case of the hardware validator performing performance
regression tests against Intel® Validation measurements.

Chapter 5: Details how a systems engineer uses micperf to run performance

regression tests on their system modifications.

Chapter 6: Describes how a curious user can inspect or make modifications to

benchmark source code.

Chapter 7: Describes a benchmark developer’s experience integrating new
benchmarks into the micperf infrastructure.

1.2 Conventions and Symbols

This type style Indicates an element of syntax, reserved word, keyword, filename,

computer output, command, or part of a program example. The text

appears in lowercase unless uppercase is significant.

This type style Used to highlight the elements of a graphical user interface such as

buttons and menu names.

This type style Indicates a placeholder for an identifier, an expression, a string, a

symbol, or a value. Substitute one of these items for the placeholder.

Also used to indicate new terms, URLs, email addresses, filenames,

and file extensions.

[items] Indicates that the items enclosed in brackets are optional.

{ item | item } Indicates to select only one of the items listed between braces. A

vertical bar (|) separates the items.

... (ellipses) Indicates that you can repeat the preceding item.

§

Novice User: Benchmark Execution

Micperf User Guide March 2017
8

2 Novice User: Benchmark

Execution

An important use case and category, which includes many micperf users, is the

customer who has just installed a processor or a coprocessor, or has just obtained
access to a system that has a processor or coprocessor installed. This customer is
interested in the product because of the performance boost it can provide, and they
would like to demonstrate the capabilities of this new piece of hardware. Micperf
provides a demonstration of functionality and performance numbers that serve as a

motivation to learn how to use the product.

For the coprocessor, the micperf package is distributed as an RPM [3] file within the
Intel® Manycore Platform Software Stack (Intel® MPSS). The micperf package is
distributed as a binary RPM, source code is distributed in the corresponding source
RPM. The Intel® MPSS general readme file includes instructions regarding micperf’s

software dependencies and installation instructions.

In the same way for the processor the micperf binaries and sources are distributed as
a binary RPM and a source RPM respectively within the Intel® Xeon Phi™ Processor
Software.

Once installed there is a readme file specific to micperf installed to:

/usr/share/doc/micperf-MPSSVERSION/README.txt on RHEL

or

/usr/share/doc/packages/micperf/README.txt on SUSE

This file describes what was installed, basic use instructions and references to other

sources of documentation. In the same directory, a change log (CHANGES.txt) is

posted, and installation instructions are given in a file called INSTALL.txt. The

micperf install procedure conforms to Linux conventions. For the purpose of

transparency the source code is distributed in the corresponding source RPM, source
code can be inspected, modified and re-build, for more details please refer to
Chapter 6.

The first step to using the micperf package is running micprun and reading the help
documentation that the application provides. This is accessed using the POSIX

standard [7] getopt style command line arguments in either long form: micprun --
help, or short form: micprun -h. The Unix convention for printing the version number

is also respected: micprun --version. The command line arguments that give basic
control over execution are -k, -c and -p. The amount of output created can be
controlled by the verbosity option, -v. For more fine-grained control of the output see
Chapter 3.

Novice User: Benchmark Execution

June 2016 Micperf User Guide
 9

2.1 Benchmark Selection

One of the simplest modifications to the standard micprun execution is to select the

benchmarks that will be run (The list of available benchmarks is captured in Table 1.)
Benchmark selection is done with the -k command line option and by default when -k
is not specified, all benchmarks are executed. To list the names of all available
benchmarks, execute the command micprun -k help. More than one benchmark can
be selected by a colon-separated list, for example micprun -k linpack:dgemm:stream,

and the default option to run all workloads can be explicitly specified by micprun -k
all.

 Table 1 Benchmarks

Benchmark CLI Name Target Operations Component

MKL DGEMM3 dgemm Double precision

floating point

VFU

MKL SGEMM3 sgemm Single precision

floating point

VFU

MKL SMP Linpack linpack Double Precision

Floating Point

VFU

SHOC Download1 shoc download Bus transfer host to

device

PCIe bus

SHOC Readback1 shoc readback Bus transfer device

to host

PCIe bus

STREAM3 stream Round-trip memory

to registers

MCDRAM, GDDR and

caches

HPLinpack2 hplinpack Double precision

floating point

VFU

HPCG2,4 hpcg Double precision

floating point

VFU

Deepbench

convolutions2

libxsmm_layer

std_conv_bench

Single precision

floating point

VFU

Fio2,5 Fio Drive to CPU data

transfer

SATA bus

Note: 1 Only available for the coprocessor.
2 Only available for processor.
3 For the Intel® Xeon Phi™ processor micperf provides an MCDRAM and a DDR version
of this workload. See Section 2.2 for further details on memory selection.
4 Requires Intel® MPI Libraries, please refer to the INSTALL.txt for details.
5 The benchmark is not provided with the micperf package, please refer to the
INSTALL.txt file for details.

Novice User: Benchmark Execution

Micperf User Guide March 2017
10

2.2 Memory Selection (Only available for the Intel®

Xeon Phi™ Processor X200 Product Family.)

MCDRAM memory is one of the key features in the processor, depending on the
application the use of MCDRAM memory can help improve performance. The memkind

library provides an interface to allocate MCDRAM memory, the SGEMM, DGEMM and
STREAM workloads have been modified to demonstrate how performance can be
boosted by the use of MCDRAM memory. By default micprun will attempt to execute the
workloads that allocate MCDRAM memory on failure (e.g. memory mode set to Cache)
micperf will execute the DDR memory only workloads. -D forces micprun to use directly
DDR memory without performing any MCDRAM memory availability check. Please note

this option only works in Flat mode as in cache mode MCDRAM is used transparently.

When this option is combined with the –o option (See section 3.1), the name of
micprun_stats file created by micprun will include the word 'mcdram' or 'ddr' to indicate
the type of memory used to execute the workloads.

To learn more about the memkind library please refer to its manpages, on Linux after

installing the xppsl-memkind-devel run on a terminal:

 $ man memkind

2.3 Parameter Category Selection

Another basic modification to the standard micprun execution is to select the category
of parameters that will be passed to the benchmark executables by using the -c

option. The category names are purposefully abstract, as they are intended to apply to
all benchmarks included in the micperf package and also to any benchmarks that are

added as extensions to micperf. The three categories that all benchmarks, including
extensions, implement in some form are optimal, scaling, and test. Each benchmark
interprets the meaning of these categories differently, but typically optimal sets the
options that give nearly optimal performance, scaling runs at least one parameter
through a range of values, and test performs a self-check test where micprun gives a

non-zero return code if the test fails.

For some benchmarks, the exact parameters to achieve optimal performance depend
opaquely on the hardware or software configuration. For these benchmarks, several
parameter sets may be executed, but if a category begins with the string optimal then

only the best performing parameters in the set executed are included in micperf’s
summary reporting. This feature allows a benchmark to define a parameter space to
search for optimal performance.

The scaling category is especially useful for plotting performance as a function of an
input parameter to the benchmark. There are some benchmarks that can be scaled in

more than one parameter, and for these there are multiple scaling categories. For
example, the DGEMM benchmark’s scaling category runs through matrix sizes to show
data scaling while using all available cores, but strong core scaling [8] is also
implemented as the scaling_core category which runs through a range of core counts
while keeping the matrix size constant. If a category is selected along with a
benchmark that does not implement the category then an error is raised. All of the

benchmarks included in the micperf package implement the categories defined in
Table 2.

Novice User: Benchmark Execution

June 2016 Micperf User Guide
 11

 Table 2 Parameter Categories

Category Definition

optimal parameters that yield nearly optimal performance

scaling run one parameter, typically data size, through a range of

values

test execute a self-check

optimal_quick parameters that yield good performance, but with a short

run time

scaling_quick a subset of the scaling category: excludes long run time

parameters

2.4 Explicit Benchmark Parameter Specification

The parameter categories serve two functions: one is to abstract the specifics of the

benchmark parameters from the user, and the other is to define a common execution
purpose for all benchmarks so that they can be run together. There are times,
however, when the user wants to have fine-grained control over the parameters that
are passed to a particular benchmark. This functionality is accessed with the -p option
to micprun, and note that the -p option cannot be used on the command line with the
-c option. The benchmarks applications themselves have a number of different ways

of obtaining parameters from the user: long form command line options, short form
command line options, positionally defined command line arguments, environment
variables, or a parameter file. To distill these into a uniform interface, micprun takes
only long form command line options and maps this specification to the method that
each particular benchmark application uses for parameter input.

To print the long form command line options for a benchmark and the default values

run: micprun -k <benchName> -p help.

Note: The default values are the parameters for the optimal category for all of the
benchmarks included in the micperf package. In the case where the optimal

parameter category searches a list of parameters, the default values correspond to
the last parameter set in the search list. It is possible to substitute short form

command line options by using the first character of the long form option, but this

feature can only be used when each of the long form parameters identified with the
benchmark starts with a unique character.

2.5 Offload Selection (Only available for the Intel®

Xeon Phi™ Coprocessor X200 Product Family.)

Benchmarking the coprocessor differs from benchmarking on other platforms due to
the fact that it runs an independent Linux OS communicating with the host system

across the PCIe bus. As the name “coprocessor” implies, the use model is to offload
work from the host system. There are several methods for doing this and one of the
important features of micperf is the ability to compare performance characteristics of
a variety of offload methods on the same benchmark.

Novice User: Benchmark Execution

Micperf User Guide March 2017
12

These offload options include running natively on the Intel® Xeon Phi™ coprocessor

without any interaction with the host, using the Intel® Symmetric Communications
Interface (SCIF) low level API to connect a host and Intel® Xeon Phi™ coprocessor
application, and compiler assisted offload where snippets of code from within a host
application are offloaded to the Intel® Xeon Phi™ coprocessor during run-time in an
automated way. These options can be selected with the -x option to micprun, and

more than one method can be given in a colon separated list.

 Table 3 Offload Methods

Method Host Process Device Process Communication

native No Yes None

scif Yes Yes Intel® Symmetric

Communications

Interface

pragma Yes Yes Intel® Composer XE

Compiler Assisted

Offload

auto Yes No None

coi* Yes Yes Intel® Coprocessor

Offload Interface

myo* Yes Yes Intel® Shared

Memory Library for

MPSS stack

Note: * micperf does NOT provide any benchmark that uses this offload method but it
includes support for custom benchmarks that might use it, see Chapter 6 for details.

2.6 Coprocessor Selection (Only available for the
Intel® Xeon PhiTM Coprocessor X200 Product
Family.)

Many systems have more than one coprocessor installed. A single instance of micprun

is able to execute benchmarks on only one coprocessor at a time. The coprocessor
index can be selected with the -d option. The details about each of the coprocessors
and how they map to the coprocessor index can be seen with the Intel® MPSS tool
micinfo.

2.7 Verbosity Selection

The verbosity option to micprun gives coarse control of the output. The -v option takes

an integer from 0 (least verbose, default value) to 3 (most verbose). The details about
the output associated with each level can be found in the micprun --help
documentation and are outlined in Table 4 Verbosity Output.

In Table 4 the Summary column refers to a concluding section in the standard output

that reprints the performance data collected as it is displayed by micpprint. The Joint
Plot column refers to an attempt to create an additional plot that combines the data

Novice User: Benchmark Execution

June 2016 Micperf User Guide
 13

from all of the benchmarks. This aggregated plot will only be created in the case
where all the selected benchmarks are plotted with the same X and Y axes. The
infrastructure supports benchmarks that collect ancillary data that is not displayed by
default, but can be displayed if the user requests. The primary data is considered
rolled up, and the ancillary data is included when all data is requested.

 Table 4 Verbosity Output

CLI
Options

Summary Plots Joint Plot CSV Rolled CSV All

-v0 No No No No No

-v0 -o No No No No No

-v1 Yes No No No No

-v1 -o Yes No No Yes No

-v2 Yes Yes No No No

-v2 -o Yes Yes No Yes Yes

-v3 Yes Yes Yes No No

-v3 -o Yes Yes Yes Yes Yes

None of the benchmarks included in the micperf package create ancillary data, and
consequently CSV Rolled and CSV All refer to CSV files that have the same content for
all included benchmarks.

Expert User: Generating Collateral

Micperf User Guide March 2017
14

3 Expert User: Generating

Collateral

Some data inspection beyond the benchmark log is available by setting the verbosity

level (the -v option) of micprun above zero. For advanced usage it is recommended
that the -v option is avoided. More fine-grained control over the output is obtained by
using the file created with the -o option to micprun in conjunction with the micperf
helper applications: micpprint, micpplot, micpcsv, and micpinfo.

3.1 Creating a micprun_stats File

Understanding how to use the -o and -t options to micprun is the first step to data
inspection with the helper applications. The -o option specifies an output directory
where output files from micprun are created. Setting the verbosity to zero (the default

when -m is not given) results in only one file being created in the output directory. It
will be named micp_run_stats_TAG.pkl where TAG is the tag associated with the run.
This tag has a default value that describes some of the characteristics of the system
under test, but it can be set explicitly with the -t option. The tag will be displayed in a
number of places in the output, and should be chosen to be descriptive, as well as
different from any tags given to runs that are to be compared.

3.2 Data Inspection with micpinfo

A wealth of system information is included in a micprun_stats file, and micpinfo is the

helper application that is used for inspection of this data. The bundling of system
information with the performance data allows for the correlation of performance with

system configuration and provides a mechanism for comparison of the configurations
of two systems that were benchmarked. The system configuration data is collected by
running a set of system commands and the standard output of these commands is
recorded. The micpinfo application allows the user to inspect the log of any subset of
the commands using the --app option. By default, the application runs the command
set on the current system, and if a micprun_stats file is passed on the command line
then the log produced reflects what was recorded on the system just prior to the

execution of the benchmarks when the file was created.

3.3 Data Inspection with micpprint

The benchmark data recorded in a micprun_stats file can be displayed in human

readable form with the micpprint helper application. The output is organized by the
benchmark and offload method. Multiple micprun_stats files can be passed to the
command line of micpprint, and the output will be interleaved allowing for easy
comparison of the performance recorded in different micprun_stats files. Each section
of output is preceded by the tag that is associated with the file.

Note: The first file listed on the micpprint command line determines the set of benchmark
and offload methods that will be displayed. For this reason, when comparing a

targeted test to a comprehensive reference file, the targeted test file should be listed

Expert User: Generating Collateral

June 2016 Micperf User Guide
 15

first. This is true for the other helper applications that display performance data as
well: micpcsv and micpplot.

3.4 Data Inspection with micpcsv

The micpcsv helper application is used to create data that can be easily parsed by

applications external to micperf. In particular it produces comma separated value data
which is readily imported into a wide variety of applications such as spreadsheets and
databases. Since comma separated value output is an unstructured format, there are
several styles of output formatting from micpcsv which are chosen by passing flags to
the command line.

3.4.1 Summary Format

Running micpcsv with no arguments produces a single summary table. The data in this
table is derived by selecting the highest performance runs for each benchmark, offload
method and Intel® Xeon Phi™ coprocessor SKU from the scaling reference data
included in the micperf package. These data are displayed in a summary table that
includes performance information and the value of the independent variable in the

scaling parameter category. If the -o flag is given then the output file named
summary.csv is created in the output directory. See Figure 1 for an example of the

summary table.

 Figure 1 Example Summary Output from micpcsv as displayed by Microsoft

Excel

3.4.2 Long Format

If a micprun stats file is passed to micpcsv but the -o flag is not given then the
standard output is composed of blocks of tables which are separated by one or two

empty lines. Two tables separated by just one empty line are related: the first is the
identifying table, and the second is the run record table. The identifying table has just
a header row of the form KERNEL, OFFLOAD, TAG and a single row that describes the

benchmark, offload method and tag. These three identifiers apply to all of the run

records in the table that follows the identifying table. The run record table has a first
column of run descriptions. This is followed by columns giving the values of all
parameters passed (one column per parameter). The last column in these tables
provides the performance metric.

Note: For the optimal parameter category, the summary table for a given kernel will only
have two rows: one for the header and one for the values. When specifying the
optimal parameter category to micprun, the short format output (see Section 3.4.3

Expert User: Generating Collateral

Micperf User Guide March 2017
16

Short Format) can be more useful. When specifying the scaling run parameter
category to micprun, the tables will have multiple rows of values: one for each

execution of the benchmark.

If a micprun_stats file is passed to micpcsv and the -o flag is passed then each of the
paired tables described above are written to a separate file. The name of each file is
derived from the identifying table, and the entirety of the contents of each file is the
run record table. This is much more useful than the dump to standard output since

each file has a fixed column width.

3.4.3 Short Format

The short format is selected by passing the -s flag to micpcsv. This flag has no impact
on the summary format (for instance, when no micprun_stats files are given). The

short format is advantageous over the long form in that a single table with a fixed

column width is produced and disadvantageous in that all of the parameters are
stored in a single column and the tags are not included. If the -o flag is not given then
the table is written to standard output, and if it is given then a single file named

short form.csv is produced in the output directory.

3.5 Data Inspection with micpplot

The micperf package makes use of the matplotlib [6] Python visualization library if it is
installed. The matplotlib package is not required to be installed on the system being
benchmarked, and the micprun_stats file can be transferred to another machine for

visualization purposes. The micpplot application is used to visualize the data from runs
using scaling parameter categories, and especially for comparison of different
micprun_stats files. The application will plot the results from each benchmark on a

different graph, and will combine different methods of offload of the same benchmark
onto a single graph. As with the other helper applications that take multiple
micprun_stats files, the first file listed determines the benchmarks and offload
methods that will be plotted. In the case where all of the benchmarks that are plotted

have the same x and y axis then micpplot will produce a final image that plots all of
the benchmarks onto a single graph. By default the micpplot application generates
interactive plots that the user can re-size and save in the Portable Network Graphics
(PNG) [5] format with a user specified file name. As the user closes each plotting
window, the next one in the sequence appears. The micpplot application also accepts
the -o option which creates PNG files in the specified directory in a non-interactive
mode. An example of the output from micpplot is given in Figure 2.

Expert User: Generating Collateral

June 2016 Micperf User Guide
 17

 Figure 2 Example Output from micpplot

Hardware Tester: Executing Regression Tests

Micperf User Guide March 2017
18

4 Hardware Tester: Executing

Regression Tests

The micperf package is distributed with a set of reference micprun_stats files. These
files are accessible by using the -R command line option with micprun and all of the

micperf helper applications. When an application is called with -R help it will print the

list of tags that are available in the installed location. The user can specify one of the
tags from the list as the argument to the -R option. This feature is especially useful for

performing regression tests with micprun. The data stored in the distributed reference
files was measured by Intel® Validation and can be used as a reference mark to

determine if the Intel® Xeon Phi™ processor or Intel® Xeon Phi™ coprocessor are
performing up to specification. To execute this test regression the -m option can be
used to specify the acceptable margin allowed from the reference measurement given
as a percentage. If the performance measured by this run is lower than the reference
by more than the fractional margin an error message is printed and the return code
from micprun is 88, return codes are documented in the micprun -–help output, for
convenience the rest of the error codes are also presented in Table 5.

Table 5 micprun error codes

Error Code Meaning

0 No error

1 Unhandled python exception

2 Command line parse error

3 File I/O error

88 Performance regression error

89 MPSS service not available error

90 Kernel or offload lookup error

91 Linpack kernel could not be

executed (missing dependencies).

127 Missing shared object libraries error

The data that is distributed uses the default tag which contains the product stock
keeping unit (SKU), the Intel® MPSS version (for the coprocessor) or the Intel® Xeon
Phi™ processor software version (for the processor), the offload methods and the

parameter category. The Unix grep utility can be used to select the tag appropriate for
the regression test to be performed. For instance, to run a regression test on a 5110

SKU part using the optimal parameter category the user would run the following
command:

$ refTag=‘micprun -R help | grep 5110 | grep optimal‘ micprun -t test -o

. -m 0.04 -R $refTag

Hardware Tester: Executing Regression Tests

June 2016 Micperf User Guide
 19

Note: The -o and -t flags were given above which produces a micprun_stats file. It can be
very useful to inspect this output if a performance regression is detected.

Note: It is possible to run a subset of the benchmarks included in the reference file by
specifying the -k and/or -x flags (in fact all flags can be overridden).

To show how the micprun_stats file from the regression test can be used with the
helper applications we will give some examples here. The micpinfo application can be
used to compare the difference between the two system configurations using the Unix
diff tool:

$ micpinfo -R $refTag > ref_info.log

$ micpinfo micp_run_stats_test.pkl > test_info.log

$ diff ref_info.log test_info.log > diff_info.log

This will highlight any differences between the micpinfo logs and put this comparison

into the file diff_info.log. This comparison can be narrowed down by passing the --app
flag to micpinfo: for example, passing --app conf in the calls to micpinfo above will
show the differences in the mic configuration files. The micpprint utility can be used to
examine the performance data and compare with the reference:

 $ micpprint -R $refTag micp_run_stats_test.pkl

Similar results can be produced in a form more easily parsed by a computer program

using micpcsv. Note that the tags are not displayed in the CSV short form output
making the -s flag less useful when comparing multiple files. The micpplot application
can be used to inspect the regression; for example, the command:

 $ micpplot -R $refTag micp_run_stats_test.pkl

will plot the test lines against the reference lines.

Note: The identifying tag is displayed in the plot legend.

Systems Engineer: Creating Reference Data

Micperf User Guide March 2017
20

5 Systems Engineer: Creating

Reference Data

Chapter 4 showed how to use the reference data shipped with micperf to perform

regression tests. The way the user accesses the reference data in this case is through
selecting a tag with the -R flag, but all of the examples in Chapter 4 can be executed
with user created reference files as well. User-created reference files can be used to
determine how performance changes as an element of the system under test, as
opposed to complete system comparison against Intel validation measurements. A

simple example of this would be BIOS settings, and this example can be easily
extended to apply to changes to the operating system software.

Let’s say the user wants to determine if changing a power management BIOS setting
on the host system will have an impact on performance. To test this, the user
generates a micprun stats file on the system with the original BIOS setting using the -

o option to micprun. The user then reboots the system, changes the BIOS setting and
then runs against the micprun stats file just created using the -r and -m options to
micprun. In this way, the user can isolate how specific changes in a system impact
performance. The BIOS setting is just one example of a change to a platform. This
change could be a software modification to the kernel or driver, or any change in the
design of a platform that includes a processor or a coprocessor. Any engineer involved

in the design of the platform that wants to elucidate the performance impact of a
design change can use the tool in this way.

Tinkerer: Benchmark Modifications

June 2016 Micperf User Guide
 21

6 Tinkerer: Benchmark

Modifications

Transparency is an important consideration in the distribution of benchmarking software

and one of the most important aspects of this transparency is using open source
benchmarks that are standards in the industry. With the exception of the Intel® MKL
benchmarks (SMP Linpack, HPLinpack and HPCG), all of the benchmarks that are
included in the micperf package are distributed with source code and make files for
compilation. The source files are included in the corresponding source RPM: xppsl-

micperf-<version>-<release>.src.rpm or mpss-micperf-<version>-<release>.src.rpm
depending on the software stack, source RPMs can be re-build to generate a new binary

RPM. Source code can be inspected and/or even modified an example of how to
recompile the micperf source RPM will be presented below, for further details on how to
apply a patch and re-build the soruce RPM please refer to [14] and [15]. Intel® MKL
benchmarks can be used with micperf; however, the binary is distributed by Intel® MKL,
and neither the source nor the binary are distributed with the micperf package.

To inspect the source code “install” the source RPM and change to the appropriate
directory (please note commands are executed as a non-root user):

 $ rpm –-ihv xppsl-micperf-<version>-<release>.src.rpm

 $ cd ~/rpmbuild/SOURCES/

 $ tar -xf xppsl-micperf-<version>.tar.gz

 $ cd xppsl-micperf-<version>

In order to re-build the source RPM, the Intel® Composer XE package must be

installed, and the compilervars script must be sourced using the following command
for bash:

source /PATH/TO/COMPOSER_XE_INSTALL_DIR/bin/compilervars.sh intel64

or for C shell:

source /PATH/TO/COMPOSER_XE_INSTALL_DIR/bin/compilervars.csh intel64

If these requirements are met then the user can simply run:

$ rpmbuild --rebuild mpss-micperf-<version>-<release>.src.rpm # coprocessor

Or

$ rpmbuild --rebuild xppsl-micperf-<version>-<release>.src.rpm # processor

Please note the commands above are executed as non-root user, the binary RPM
produced by rpmbuild is typically stored in the <HOME

Tinkerer: Benchmark Modifications

Micperf User Guide March 2017
22

DIRECTORY>/rpmbuild/RPMS/x86_64 directory, the exact location and name of the
binary RPM are reported by rpmbuild in its output, look for the line:

Note: ”Wrote: /PATH/TO/BINARY/RPM.rpm” When using rpmbuild and the spec file to re-
build the source RPM, it is needed to define three variables in the command line as

follows:

$ rpmbuild --bb <SPEC file> --define 'name <NAME>' --define 'version

<VERSION>' --define 'release <RELEASE>'

Where:

- <NAME> is xppsl-mipcerf or mpss-micperf depending on the software stack

- <VERSION> for instance 1.5.0 or 4.4.3

- <RELEASE> a single digit indicating the release number e.g. 1

For a concrete example:

$ rpmbuild --bb xppsl-micperf-1.5.0.spec --define 'name xppsl-micperf' -

-define 'version 1.5.0' --define 'release 1'

Note: The micperf make files respect the GNU standard DESTDIR and prefix variables that
can be used to relocate the install path; however, if the install path is relocated

micprun will not find the new executable at run time.

An example of a user modification to benchmark source code is changing the GEMM
benchmark so that it uses malloc rather than mmap or memkind_posix_memalign to
allocate the memory used for the computation. The user could replace the mmap call
in the utils.c file in the GEMM source directory, generate a patch and rebuild the

source RPM to produce a new binary RPM. This could even be done as a regression

test following the steps outlined in Chapter 5, where the benchmark is modified rather
than an element of the platform.

Test Developer: Integrating New Benchmarks

June 2016 Micperf User Guide
 23

7 Test Developer: Integrating

New Benchmarks

The micperf package is designed to be able to incorporate a wide range of

benchmarks, and can be used to wrap small computational kernels that are not fully
featured benchmarks. The micperf infrastructure is written in Python and the class
that is used for abstracting the requirements of a benchmark or computational kernel
is called micp.kernel.Kernel. If a user wants to extend the set of benchmarks used by

micprun they simply need to add a package to the Python environment (typically with
the PYTHONPATH environment variable, or by installing into the site-packages) where
this package has one module for each add-on benchmark, and each module has a

class that inherits from micp.kernel.Kernel. Each user defined class derived from the
micp.kernel.Kernel class must have the same name as the module that includes it. To

access a user defined add on package with micprun, the package name is passed with
the -e option. The kernels sub-directory of the micp package serves as an example of
how the add-on package should be structured including the __init__.py package file.

The micp.kernel.Kernel class is an abstract base class with a supporting factory class
[4]. Each method of the base class has a doc string that defines the requirements of

the method, and each method has a default implementation with the exception of
__init__(). The default implementations are designed to support simple computational
kernel function calls that were wrapped with an executable that uses positional
command line arguments and prints performance data with a format styled after the
Google Test framework. To the extent that a workload deviates from this simple case
the base class methods must be overridden.

The default implementations provided by the Kernel base class should not be used

when adapting an existing benchmark if doing so would require alteration of the
benchmark; rather, the method implementations of the derived Kernel class should be
adapted to the behavior of the existing benchmark. The requirements and definitions
of the class methods can be obtained by looking at the help for this class. This can be
done by invoking a Python interpreter that has micp included in the PYTHONPATH and

run:

>>> import micp.kernel

>>> help(micp.kernel.Kernel)

The user can also refer to the kernels sub-directory of micp which contains examples of

how the class was adapted to run the benchmarks included in micp.

Summary

Micperf User Guide March 2017
24

8 Summary

The micperf package provides benchmarking solutions for the users and developers of
the processor and coprocessor. The material presented here gives a holistic view of
the users and use cases, but is not a substitute for the specific detailed documentation
provided by the --help message from the micperf executables or the other

documentation included in the package. In this paper the reader has learned how to
run benchmarks and create presentation material from those runs. The paper has
covered how to do regression testing against Intel validation performance
measurements, and how to do regression testing against the user’s own
measurements. Some of the details on how to modify the source code for the included
benchmarks and how to extend micperf to include new benchmarks were discussed.

The micperf package appeals to community standards for benchmark inclusion, open

source distribution, GNU standard build, Unix command line interfaces and established
object oriented design patterns. The use of standards allows the micperf package to
be intuitive for users who are familiar with the Unix environment and industry
benchmarks. Appealing to standards also improves transparency while lending

credibility to the results. The micperf package allows for modular extension by using
the object oriented design offered by Python while decoupling the Python
infrastructure from the build of the benchmark executables. The users and use cases
discussed cover a wide range of benchmarking needs, and this paper will facilitate
wider and more effective use of the tool.

§

References

June 2016 Micperf User Guide
 25

Appendix A References

[1] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth,
Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heterogeneous
computing (shoc) benchmark suite. In Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units, GPGPU ’10, pages 63–74, New

York, NY, USA, 2010. ACM.

[2] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: past,

present and future. Concurrency and Computation: Practice and Experience,

15(9):803–820, 2003.

[3] E. Foster-Johnson. Red Hat RPM Guide. Linux solutions from the experts at Red Hat.

Wiley, 2003.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[5] Michael J. Hammel. Png: The definitive guide. Linux J., 2000(69es), January 2000.

[6] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &

Engineering, 9(3):90–95, 2007.

[7] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable

Operating System Interface (POSIX) Shell and Utilities, Issue 6. 2001. Revision of

IEEE Std 1003.11996 and IEEE Std 1003.2-1992) Open Group Technical Standard
Base Specifications, Issue 6.

[8] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to

parallel computing: design and analysis of algorithms. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1994.

[9] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, September
1979.

[10] John D. McCalpin. Stream: Sustainable memory bandwidth in high performance

computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991-

2007. A continually updated technical report. http://www.cs.virginia.edu/stream/.

[11] John D. McCalpin. Memory bandwidth and machine balance in current high

performance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pages 19–25, December 1995.

[12] Intel® Math Kernel Library (Intel® MKL). http://software.intel.com/en-us/intel-mkl.

[13] https://software.intel.com/en-us/articles/intel-optimized-technology-preview-for-
high-performance-conjugate-gradient-benchmark

http://www.cs.virginia.edu/stream/
http://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/articles/intel-optimized-technology-preview-for-high-performance-conjugate-gradient-benchmark
https://software.intel.com/en-us/articles/intel-optimized-technology-preview-for-high-performance-conjugate-gradient-benchmark

References

Micperf User Guide March 2017
26

[14] https://wiki.centos.org/HowTos/RebuildSRPM

[15] https://fedoraproject.org/wiki/Packaging:Guidelines?rd=Packaging/Guidelines#Patc
h_Guidelines

[16] https://github.com/baidu-research/DeepBench

[17] https://github.com/axboe/fio

§

https://wiki.centos.org/HowTos/RebuildSRPM
https://fedoraproject.org/wiki/Packaging:Guidelines?rd=Packaging/Guidelines#Patch_Guidelines
https://fedoraproject.org/wiki/Packaging:Guidelines?rd=Packaging/Guidelines#Patch_Guidelines
https://github.com/baidu-research/DeepBench
https://github.com/axboe/fio

