

Dynamic Device Personalization Guide:
Intel® Ethernet 700 Series Controller –
GTPv1 Profile

Application Note

2018

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and
roadmaps,

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade. Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology
capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system
configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more
information, see www.intel.com/technology/turboboost.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider
your purchase. For more complete information about performance and benchmark results, visit www.intel.com/performance.
Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided
to you for informational purposes. Any differences in your system hardware, software, or configuration may affect your actual
performance.

Copies of documents that have an order number and are referenced in this document may be obtained by calling 1-800-
548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and Intel® Xeon® are trademarks of Intel Corporation in the United States. and/or other countries.

*Other names and brands may be claimed as the property of others.
© Intel Corporation. All rights reserved.

http://www.intel.com/technology/turboboost
http://www.intel.com/performance
http://www.intel.com/design/literature.htm

Contents

1.0 Introduction .. 6
1.1 Terminology .. 7
1.2 Reference Documents .. 7

2.0 Dynamic Device Personalization... 9
2.1 Overview .. 9
2.2 Demystifying Dynamic Device Personalization ... 9

3.0 Utility / Use Case ...13
3.1 Application of Technology – vEPC ... 13

3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane. 14
3.2 Application of Technology – MEC .. 17

4.0 Enablement ...19
4.1 DPDK APIs ... 19
4.2 Using DDP profiles with test-pmd ... 20
4.3 Using GTP protocol with rte_flow API .. 26

5.0 Summary ...28

Figures
Figure 1: Dynamic Device Personalization firmware profile application 10
Figure 2: Packet header identification before application of GTPv1 profile 11
Figure 3: Packet header identification after application of GTPv1 profile.................................. 11
Figure 4: Dynamic reconfiguration of the Intel Ethernet 700 Series .. 12
Figure 5: Packet encapsulations in the wider network ... 13
Figure 6: Typical vEPC server node packet pipeline ... 14
Figure 7: Worker core identification inside vEPC .. 15
Figure 8: Data flow in vEPC configuration with RX core .. 15
Figure 9: Data flow in vEPC configuration with GTPv1 DDP profile ... 16
Figure 10: Typical MEC Deployment on S1 interface .. 17
Figure 11: Typical MEC Deployment on SGi interface .. 18
Figure 12: DDP offload on NEV SDK for MEC S1 interface .. 18
Figure 13: GTPv1 GTP-U packets configuration. .. 21
Figure 14: testpmd startup configuration. ... 21
Figure 15: Distribution of GTP-U packets without GTPv1 profile. .. 22
Figure 16: Applying GTPv1 profile to device. ... 22
Figure 17: Checking whether the device has any profiles loaded. .. 23
Figure 18: Getting information about the DDP profile. .. 24
Figure 19: New PCTYPEs defined by GTPv1 profile. ... 25

Figure 20: Mapping new PCTYPEs to DPDK flow types. .. 25
Figure 21: Distribution of GTP-U packets with GTPv1 profiles applied to the device. 26
Figure 22: Removing GTPv1 profile from the device. ... 26
Figure 23: rte_flow pattern and actions for directing GTP packets to a VF 27
Figure 24: rte_flow patter and actions to direct GTP packets to a queue 27

Tables
Table 1. Terminology .. 7
Table 2. Reference Documents .. 7
Table 3. Example of core utilization for vEPC DP instance .. 16

Revision History

Date Revision Description

November 2017 0.1 Initial release

February 2018 0.2 Addressing comments

April 2018 2.1 Branding corrections

§

DDP: Intel® Ethernet 700 Series GTPv1 Profile

6

1.0 Introduction

To address the ever-changing requirements for both Cloud and Network Functions
Virtualization, the Intel® Ethernet 700 Series was designed from the ground up to
provide increased flexibility and agility. One of the design goals was to take parts of the
fixed pipeline used in Intel® Ethernet 500 Series, 82599, X540 and X550, and move to a
programmable pipeline allowing the Intel® Ethernet 700 Series to be customized to
meet a wide variety of customer requirements. This programmability has enabled over
60 unique configurations all based on the same core silicon.

Even with so many configurations being delivered to the market, the expanding role
that Intel® Architecture is taking in the Telecommunication market requires even more
custom functionality. The most common of which is new packet classification types that
are not currently supported, are customer specific or maybe not even fully defined yet.
To address this, a new capability has been enabled on the Intel® Ethernet 700 Series
Network Adapters: Dynamic Device Personalization (DDP). This capability allows
dynamic reconfiguration of the packet processing pipeline to meet specific use case
needs. Reconfiguration is achieved dynamically via application of firmware patches,
herein labelled as “profiles”, which are specific to a use case.

The ability to classify new packet types inline, and distribute these packets to specified
queues on the device’s host interface, delivers a number of performance and core
utilization Optimizations:

1. Removes requirement for CPU cores on the host to perform classification and
load balancing of packet types for the specified use case

2. Increases packet throughput, reduces packet latency for the use case

In the case that multiple network controllers are present on the server, each controller
can have its own pipeline profile, applied without affecting other controllers and
software applications using other controllers.

This application note describes the use of a GPRS tunneling protocol (GTPv1) profile to
enhance performance and optimize core utilization for virtualized enhanced packet
core (vEPC) and multi-access edge computing (MEC) use cases.

Section 2 describes the Dynamic Device Personalization capability, section 3 describes
the application of the GTPv1 profile to meet vEPC and MEC requirements and section 4
describes the enablement of this capability through DPDK software.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

7

1.1 Terminology

Table 1. Terminology

Term Description

API Application program interface

DPDK Data Plane Development Kit

FIN Finish

GTP GPRS Tunneling Protocol

IPSec Internet Protocol Security

NFV Network Functions Virtualization

NIC Network Interface Controller

NVM Non-Volatile Memory

MAC Media Access Control

PF Physical Function

SCTP Stream Control Transmission Protocol

SYN Synchronized

TCP Transmission Control Protocol

UDP User Datagram Protocol

VF Virtual Function

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

1.2 Reference Documents

Table 2. Reference Documents

Document Document
No./Location

Intel® Ethernet Controller XL710 datasheet https://www.intel.com/content/dam/www/p
ublic/us/en/documents/datasheets/xl710-
10-40-controller-datasheet.pdf

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf

DDP: Intel® Ethernet 700 Series GTPv1 Profile

8

Document Document
No./Location

Intel® Ethernet 700 Series dynamic device
personalization presentation at DPDK summit,
video

https://www.youtube.com/watch?v=X8aMD
dAnnBI

Intel® Ethernet 700 Series dynamic device
personalization presentation at DPDK summit,
slides

https://www.slideshare.net/LF_DPDK/lfdpdk
17flexible-and-extensible-support-for-new-
protocol-processing-with-dpdk-using-
dynamic-device-personalization

Intel® Ethernet 700 Series firmware version
6.01

https://downloadcenter.intel.com/product/7
5021/Intel-Ethernet-Controller-XL710-
Series

Dynamic device personalization for Intel®
Ethernet 700 Series user guide

https://software.intel.com/en-
us/articles/dynamic-device-personalization-
for-intel-ethernet-700-series

Intel® Ethernet Controller
X710/XXV710/XL710 Adapters Dynamic
Device Personalization GTPv1 Package

https://downloadcenter.intel.com/download
/27587

§

https://www.youtube.com/watch?v=X8aMDdAnnBI
https://www.youtube.com/watch?v=X8aMDdAnnBI
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://www.slideshare.net/LF_DPDK/lfdpdk17flexible-and-extensible-support-for-new-protocol-processing-with-dpdk-using-dynamic-device-personalization
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://downloadcenter.intel.com/download/27587
https://downloadcenter.intel.com/download/27587

DDP: Intel® Ethernet 700 Series GTPv1 Profile

9

2.0 Dynamic Device Personalization

2.1 Overview

Most existing network controllers do not provide flexible reconfiguration of packet
processing engines. In the best case, processing of a new packet types or network
protocols can be added to the controller by upgrading firmware. Normally, the firmware
upgrade process includes total reset of the network controller and could include cold
restart of the server that the controller is installed in. In this case all Virtual Machines
(VMs) running on the server have to be detached from the Network Interface Controller
(NIC) and migrated to another server during firmware update.

The ability to reconfigure network controllers for different Network Functions on-
demand, without the need for migrating all VMs from the server, avoids unnecessary
loss of compute for VMs during server cold restart. It also improves packet processing
performance for applications/VMs by adding the capability to process new protocols in
the network controller at run-time.

This kind of on-demand reconfiguration is offered by Intel® Ethernet 700 Series’
Dynamic Device Personalization capability. This section describes the instantiation of
this device reconfiguration capability. At time of publication, GTPv1 profile is available
from Intel download center here: https://downloadcenter.intel.com/download/27587.
Further profiles, targeting border network gateway, cable and 5G use cases are at pre-
production stage. For more information on accessing the library of profiles or to
request new profile, contact your local Intel representative.

2.2 Demystifying Dynamic Device Personalization

Dynamic Device Personalization describes the capability in the Intel® Ethernet 700
Series devices to load an additional firmware profile on top of the device’s default
firmware image, to enable parsing and classification of additional specified packet
types so these packet types can be distributed to specific queues on the NIC’s host
interface using standard filters. Software applies these custom profiles in a non-
permanent, transaction-like mode, so that the original network controller’s
configuration is restored after NIC reset or by rolling back profile changes by software.
Using APIs provided by drivers, personality profiles can be applied by the Data Plane
Development Kit (DPDK). Support for kernel drivers and integration with higher level
management/orchestration tools is in progress.

Dynamic Device Personalization can be used to optimize packet processing
performance for different network functions, native or running in virtual environment.
By applying a Dynamic Device Personalization profile to the network controller, the
following use cases could be addressed:

https://downloadcenter.intel.com/download/27587

DDP: Intel® Ethernet 700 Series GTPv1 Profile

10

• New Packet Classification types (flow types) for offloading packet classification to
network controller:

- New IP Protocols in addition to TCP/UDP/SCTP, for example, IP ESP, IP AH
- New UDP Protocols, for example, MPLSoUDP or QUIC
- New TCP subtypes, like TCP SYN-no-ACK
- New tunneling protocols like PPPoE, GTP-C/GTP-U

• New Packet Types for packets identification, reported on packet's RX descriptor
- IPv6, GTP-U, IPv4, UDP, PAY4
- IPv4, GTP-U, IPv6, UDP, PAY4
- IPv4, GTP-U, PAY4
- IPv6, GTP-C, PAY4
- MPLS, MPLS, IPv6, TCP, PAY4

The profile application process is illustrated in Figure 1 below. In this case, the Intel
Ethernet 700 Series device begins with the default firmware configuration. In this
configuration, the NIC supports classification of some default packet types (UDP, TCP,
VXLAN, GRE, etc), allowing these default packets to be identified and distributed to
queues in the NIC. Classification of other packet types, such as those listed above, is not
supported by default. To enable classification of GTP packets, the firmware profile
enabling GTP packet classification is selected and loaded to the device via a DPDK API.
This profile is loaded in run-time. With this additional firmware profile loaded, the NIC
now supports classification of GTP packets inline.

Figure 1: Dynamic Device Personalization firmware profile application

The NIC’s visibility of the packet header fields before and after the application of the
GTPv1 profile is indicated in Figures 2 and 3 below. With the default firmware image,
the GTP-encapsulated frame within the UDP outer header cannot be identified by the
device, and the GTP-encapsulated frame is effectively the payload in the outer UDP
packet. GTP is an unknown flow type here and so no receive side scaling (RSS) or flow
director (FDIR) capabilities are possible on the encapsulated frame. In this case,
classification and distribution of GTP packets must be performed by one or more cores
on the CPU.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

11

Figure 2: Packet header identification before application of GTPv1 profile

After the GTPv1 profile is loaded to the Intel® Ethernet Controller, the GTP flow type is
defined and encapsulated frame fields (including GTP TEID) can be used for RSS, Flow
Director or Cloud Filters. The NIC has full visibility of all header fields and can perform
load distribution to queues based on this improved classification capability.

Figure 3: Packet header identification after application of GTPv1 profile

DDP: Intel® Ethernet 700 Series GTPv1 Profile

12

With this firmware profile applied, the Intel® Ethernet 700 Series is performing
classification of GTP packets and carrying out load distribution inline, removing the
need for a load distribution core to perform the same function.

The profile is applied to the Intel® Ethernet 700 Series device in a transaction-like
mode, as illustrated in Figure 4, showing application and removal of a profile.

Figure 4: Dynamic reconfiguration of the Intel Ethernet 700 Series

The NIC does not need to be reset to restore the original configuration and the profile
can be applied/removed while traffic is present.

§

DDP: Intel® Ethernet 700 Series GTPv1 Profile

13

3.0 Utility / Use Case

The Dynamic Device Personalization capability can be used to optimize packet
processing performance for different network functions, native or running in a virtual
environment. Figure 5 below indicates typical packet types used at various locations in
the network, separated by network segment. GTP encapsulation is primarily used in the
wireless segment, with vEPC and MEC representing the dominant use cases. This
section describes these use cases and the application of the Dynamic Device
Personalization GTPv1 profile to improve performance.

Figure 5: Packet encapsulations in the wider network

3.1 Application of Technology – vEPC

The figure below illustrates a typical packet pipeline for the server node in a virtualized
EPC. Packets are classified and distributed across multiple parallel queues for further
processing (QoS, GTP processing, egress scheduling) before transmission. In a
virtualized implementation, typically the load distribution and classification functions
are performed by CPU cores. This is the case when an Intel® Ethernet 700 Series with
default firmware configuration is used as the server’s NIC.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

14

Figure 6: Typical vEPC server node packet pipeline

3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane.

vEPC implements the concept of control and user plane separation. The vEPC User
Plane (also referenced as Data Plane) consists of multiple instances with each instance
running on several CPU cores inside the VM. CPU cores in vEPC may act in one of two
main roles: receive (RX) core or worker core.

• Receive cores are responsible for fetching packets from the NIC RX rings, packet
classification and packet distribution to a particular worker core. That also includes
workload balancing between worker cores.

• Worker cores implement LTE EPC user plane stack functionality and handle both
uplink (UL, from UE/eNB to the PDN) and downlink (DL, from the PDN to eNB/UE)
traffic. Worker cores process packets in a run-to-completion mode.

The vEPC User Plane classifies each received packet to identify the worker core for
processing. In order to get better cache utilization and improve performance, vEPC
binds all data traffic to and from the same UE IP to one of the worker cores, so control
structures related to a particular UE IP are updated from a single worker core.

To pin UE IP to a worker core vEPC uses the UE IP address as a key for the core
identification. UL traffic is received on S1-U interface as GTP-U encapsulated IP
packets, so the UE IP address is extracted as a source address from the encapsulated IP

GTP Profile Intercept

GTP Profile Intercept

DDP: Intel® Ethernet 700 Series GTPv1 Profile

15

packet. DL traffic is received on SGi interface as regular IP packets, so UE IP address is
extracted as a destination IP address of the packet. The figure below shows the flow
diagram of a worker core identification process (case where both UL and DL packets are
received from the same NIC RX port).

 Figure 7: Worker core identification inside vEPC

Parce packet IP/GTP/InnerIP headers

GTP-U PDU

key = hash (InnerIP.SRC_ADDR)

Yes

key = hash (IP.DST_ADDR)

No

worker_id = F(key)
enque_to_worker(worker_id)

vEPC default configuration

In default configuration of vEPC, RX cores:

• fetch packets from S1U and SGi interfaces

• parse packets’ headers, classify packets and calculates worker_id

• dispatch packets to the identified worker cores over dedicated software queues

Worker cores fetch packets from the software queues and process them up to the
moment the packet goes into the TX queue of the NIC.

Figure 8: Data flow in vEPC configuration with RX core

NIC
port RX Core

Worker
Core 1

Worker
Core 2

Worker
Core N

vEPC configuration with GTPv1 DDP profile enabled

With the Dynamic Device Personalization GTPv1 profile applied to the Intel® Ethernet
700 Series in the server, the classification and load distribution functions can be
performed inline in the NIC, thus reducing the core requirement.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

16

Using DDP GTPv1 and modifying RSS inset configuration for selected packet
classification types (PCTYPEs), vEPC implements a work mode where the functionality
initially executed by the RX core is moved to the NIC. Here worker cores fetch packets
directly from the NIC RX rings.

Figure 9: Data flow in vEPC configuration with GTPv1 DDP profile

NIC
port

with loaded
GTPv1 DDP

Worker
Core 1

Worker
Core 2

Worker
Core N

This implementation saves one core (hyper-thread) for each instance of vEPC running.
Taking into consideration that multiple instances of vEPC User Plane are running on
one server, the DDP GTPv1 profile saves multiple cores. The table below shows
profiling results for one instance of vEPC User Plane running two configurations
described above

Table 3. Example of core utilization for vEPC DP instance

 Configuration
 Dedicated RX core GTPv1 DDP profile
Packet rate 3.9 MPPS
Bitrate 20.5 Gbps
RX cores (hyper-threads) 1 0
Worker cores (hyper-threads) 7 7
Total number cores used for packet
processing in vEPC User Plane 8 7

CPU utilization, receive core 40% -
CPU utilization, worker cores 71% 71%

Utilization of the DDP GTPv1 profile also reduces vEPC User Plane stack packet
processing time (latency) by removing the extra stage of packet processing in software
(packet classification on RX core) and eliminating time packets spend in the software
queue between RX core and Worker core.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

17

3.2 Application of Technology – MEC
Multi-access Edge Computing (MEC) is defined as “IT and cloud-computing
capabilities within the Access Network in close proximity to the mobile subscribers.”
MEC enabled deployment of intelligent devices at the edge of the network.

MEC incorporates the benefits of virtualization and cloud-computing in order to
place high-powered computing capabilities as close as possible to subscribers. Edge
computing offers a service environment with ultra-low latency and high-bandwidth.
This physical proximity could, as an example, reduce video stalling by storing video
content closer to the edge (35% backhaul capacity reduction), or reduce webpage
download time by 20 percent.) (Source: ETSI Industry Specification Group for Mobile
Edge Computing presentation at SDN World Congress)

Application developers and content providers can use direct access to real-time
network information (such as subscriber location, cell load, etc.) to offer context-
related services that are capable of differentiating the mobile broadband experience.
MEC allows content, services and applications to be accelerated, increasing
responsiveness from the edge. The mobile subscriber’s experience can be enriched
through efficient network and service operations, based on insight into the radio and
network conditions.

MEC can be deployed on the S1 interface or the SGI interface. With S1 deployment,
the MEC platform handles S1-U and S1-AP traffic, which is GTP and SCTP traffic.

Figure 10: Typical MEC Deployment on S1 interface

With SGi deployment MEC platform handles IP traffic.

http://www.etsi.org/images/files/technologies/MEC_Introduction_slides__SDN_World_Congress_15-10-14.pdf

DDP: Intel® Ethernet 700 Series GTPv1 Profile

18

Figure 11: Typical MEC Deployment on SGi interface

The DDP GTPv1 profile is applicable for S1 deployment. With GTP DDP profile
configured on the MEC platform, the entire MEC routing process can effectively be
bypassed, as demonstrated in the diagram below.

The diagram shows the reference implementation in Intel NEV SDK -
https://networkbuilders.intel.com/network-technologies/nev SDK for MEC
development.

Figure 12: DDP offload on NEV SDK for MEC S1 interface

The initial measurements show ~60% reduction in the latency for packet
processing using DDP profile for MEC. It should be noted that the DDP profile is
also applicable for SGi deployment, which can be used to implement advanced
filtering on the IP address and ports.

§

MEC Compute Node

MEC IO (NES)
* 8K Flows with Hit – Mapping VM ID no lookup
* Miss flows will use the NIC created Hash per RSS for
lookup (this can be customized)

RSS

Intel NIC (With/Without Hardware offload) – Flow Director

Local
 Breakout

ENB EPC

10G 10G

MEC Application VM

MEC Routing Lookup (NIS)
* Inner src/dst IPv4 Lookup
* TEID lookup
* Inner src/dst Port Lookup
* Dynamic Profile loader
* Configure 8K Ematch Pri Rules

Physical Ethernet interface

Software DPDK ring
Vhost CUSE/User interface

WR vnic interface

Wifi
AP

10G

MEC Application VM

Local
 Breakout

GTP-U GTP-C SCTP IP Ex

8K
Rules

Missed flows

Hit flows

https://networkbuilders.intel.com/network-technologies/nev

DDP: Intel® Ethernet 700 Series GTPv1 Profile

19

4.0 Enablement

This section details how to install, configure and use the Dynamic Device
Personalization GTPv1 profile with DPDK.

Dynamic Device Personalization requires Intel® Ethernet Controller
XL710/X710/XXV710 based Intel Ethernet Network Adapter with the latest firmware
6.01, available here:

https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-
Series

Basic support for applying DDP profiles to Intel Ethernet 700 Series network adapters
was added to DPDK 17.05. DPDK 17.08 and 17.11 introduced more advanced DDP
APIs, including the ability to report a profile's information without loading a profile to
an Intel Ethernet 700 Series Network Adapter first. These APIs can be used to try out
new DDP profiles with DPDK without implementing full support for the protocols in the
DPDK rte_flow API.

The GTPv1 protocol is supported in rte_flow().

4.1 DPDK APIs
The following three i40e private calls are part of DPDK 17.08:

rte_pmd_i40e_process_ddp_package(): This function is used download a DDP profile
and register it or rollback a DDP profile and un-register it.

int rte_pmd_i40e_process_ddp_package(
 uint8_t port, /* DPDK port index to download DDP package to */
 uint8_t *buff, /* buffer with the package in the memory */
 uint32_t size, /* size of the buffer */
 rte_pmd_i40e_package_op op /* operation: add, remove, write profile */
);

rte_pmd_i40e_get_ddp_info(): This function is used to request information about a
profile without downloading it to a network adapter.

int rte_pmd_i40e_get_ddp_info(
 uint8_t *pkg_buff, /* buffer with the package in the memory */
 uint32_t pkg_size, /* size of the package buffer */
 uint8_t *info_buff, /* buffer to store information to */
 uint32_t info_size, /* size of the information buffer */
 enum rte_pmd_i40e_package_info type /* type of required information */
);

https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series
https://downloadcenter.intel.com/product/75021/Intel-Ethernet-Controller-XL710-Series

DDP: Intel® Ethernet 700 Series GTPv1 Profile

20

rte_pmd_i40e_get_ddp_list(): This function is used to get the list of registered profiles.

int rte_pmd_i40e_get_ddp_list (
 uint8_t port, /* DPDK port index to get list from */
 uint8_t *buff, /* buffer to store list of registered profiles */
 uint32_t size /* size of the buffer */
);

DPDK 17.11 adds some extra DDP-related functionality:
rte_pmd_i40e_get_ddp_info(): Updated to retrieve more information about the profile.

New APIs were added to handle flow type, created by DDP profiles:
rte_pmd_i40e_flow_type_mapping_update(): Used to map hardware-specific packet
classification type to DPDK flow types.

int rte_pmd_i40e_flow_type_mapping_update(
 uint8_t port, /* DPDK port index to update map on */
 /* array of the mapping items */
 struct rte_pmd_i40e_flow_type_mapping *mapping_items,
 uint16_t count, /* number of PCTYPEs to map */
 uint8_t exclusive /* 0 to overwrite only referred PCTYPEs */
);

rte_pmd_i40e_flow_type_mapping_get(): Used to retrieve current mapping of
hardware-specific packet classification types to DPDK flow types.

int rte_pmd_i40e_flow_type_mapping_get(
 uint8_t port, /* DPDK port index to get mapping from */
 /* pointer to the array of RTE_PMD_I40E_FLOW_TYPE_MAX mapping items*/
 struct rte_pmd_i40e_flow_type_mapping *mapping_items
);

rte_pmd_i40e_flow_type_mapping_reset(): Resets flow type mapping table.

int rte_pmd_i40e_flow_type_mapping_reset(

uint8_t port /* DPDK port index to reset mapping on */
);

4.2 Using DDP profiles with test-pmd

To demonstrate DDP functionality of Intel Ethernet 700 Series network adapters and
explain DDP APIs, the GTPv1 profile is used along with the testpmd application from
DPDK. Using this example and API explanations it is possible to integrate DDP to any
DPDK-based application.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

21

Although DPDK 17.11 adds GTPv1 with IPv4 payload support at rte_flow API level,
lower-level APIs are used here to demonstrate how to work with the Intel Ethernet 700
Series network adapter directly for any new protocols added by DDP and not yet
enabled in rte_flow.

For demonstration, GTPv1-U packets with the following configuration are used:

Source IP 1.1.1.1
Destination IP 2.2.2.2
IP Protocol 17 (UDP)
GTP Source Port 45050
GTP Destination Port 2152
GTP Message type 0xFF
GTP Tunnel id 0x11111111-0xFFFFFFFF random
GTP Sequence number 0x000001
-- Inner IPv4 Configuration --------------
Source IP 3.3.3.1-255 random
Destination IP 4.4.4.1-255 random
IP Protocol 17 (UDP)
UDP Source Port 53244
UDP Destination Port 57069

Figure 13: GTPv1 GTP-U packets configuration.

Clearly, the outer IPv4 header does not have any entropy for RSS as IP addresses and
UDP ports defined statically. But the GTPv1 header has random tunnel endpoint
identifier (TEID) values in the range of 0x11111111 to 0xFFFFFFFF, and the inner IPv4
packet has IP addresses randomly host-generated in the range of 1 to 255.

The pcap file with synthetic GTPv1-U traffic using configuration above can be
downloaded here: https://software.intel.com/en-us/articles/dynamic-device-
personalization-for-intel-ethernet-700-series

First, testpmd is started in receive only mode with four queues, and verbose mode and
RSS are enabled:

testpmd -w 02:00.0 -- -i --rxq=4 --txq=4 --forward-mode=rxonly
testpmd> port config all rss all
testpmd> set verbose 1
testpmd> start

Figure 14: testpmd startup configuration.

Using any GTP-U capable traffic generator, four GTP-U packets are sent. A provided
pcap file with synthetic GTPv1-U traffic can be used as well.

https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series
https://software.intel.com/en-us/articles/dynamic-device-personalization-for-intel-ethernet-700-series

DDP: Intel® Ethernet 700 Series GTPv1 Profile

22

As all packets have the same outer IP header, they are received on queue 1 and
reported as IPv4 UDP packets:

testpmd> port 0/queue 1: received 4 packets
src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0xd9a562 - RSS queue=0x1 - hw ptype: L2_ETHER
L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14
- l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0xd9a562 - RSS queue=0x1 - hw ptype: L2_ETHER
L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14
- l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0xd9a562 - RSS queue=0x1 - hw ptype: L2_ETHER
L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14
- l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

src=3C:FD:FE:A6:21:24 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0xd9a562 - RSS queue=0x1 - hw ptype: L2_ETHER
L3_IPV4_EXT_UNKNOWN L4_UDP - sw ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14
- l3_len=20 - l4_len=8 - Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

Figure 15: Distribution of GTP-U packets without GTPv1 profile.

Here, hash values for all four packets are the same: 0xD9A562. This happens because
IP source/destination addresses and UDP source/destination ports in the outer (tunnel
end point) IP header are statically defined and do not change from packet to packet.

Now the DDP GTPv1 profile is applied to the network adapter port. For the purpose of
the demonstration, it is assumed that the profile package file was downloaded and
extracted to the /home/pkg folder. The profile will load from the gtp.pkgo file and the
original configuration will be stored to the gtp.bak file:

testpmd> stop
testpmd> port stop 0
testpmd> ddp add 0 /home/pkg/gtp.pkgo,/home/pkg/gtp.bak

Figure 16: Applying GTPv1 profile to device.

The 'ddp add 0 /home/pkg/gtp.pkgo,/home/pkg/gtp.bak' command first loads the
gtp.pkgo file to the memory buffer, then passes it to
rte_pmd_i40e_process_ddp_package() with the RTE_PMD_I40E_PKG_OP_WR_ADD
operation, and then saves the original configuration, returned in the same buffer, to the
gtp.bak file.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

23

To confirm that the profile was loaded successfully:

testpmd> ddp get list 0
Profile number is: 1

Profile 0:
Track id: 0x80000008
Version: 1.0.2.0
Profile name: GTPv1-C/U IPv4/IPv6 payload

Figure 17: Checking whether the device has any profiles loaded.

The 'ddp get list 0' command calls rte_pmd_i40e_get_ddp_list() and prints the
returned information.

Track ID is the unique identification number of the profile that distinguishes it from any
other profiles.

To get information about new packet classification types and packet types created by
profile:

testpmd> ddp get info /home/pkg/gtp.pkgo
Global Track id: 0x80000008
Global Version: 1.0.2.0
Global Package name: GTPv1-C/U IPv4/IPv6 payload

i40e Profile Track id: 0x80000008
i40e Profile Version: 1.0.2.0
i40e Profile name: GTPv1-C/U IPv4/IPv6 payload

Package Notes:
This profile enables GTPv1-C/GTPv1-U classification
with IPv4/IPV6 payload
Hash input set for GTPC is TEID
Hash input set for GTPU is TEID and inner IP addresses (no ports)
Flow director input set is TEID

List of supported devices:
 8086:1572 FFFF:FFFF
 8086:1574 FFFF:FFFF
 8086:1580 FFFF:FFFF
 8086:1581 FFFF:FFFF
 8086:1583 FFFF:FFFF
 8086:1584 FFFF:FFFF
 8086:1585 FFFF:FFFF
 8086:1586 FFFF:FFFF
 8086:1587 FFFF:FFFF
 8086:1588 FFFF:FFFF
 8086:1589 FFFF:FFFF
 8086:158A FFFF:FFFF
 8086:158B FFFF:FFFF

List of used protocols:
 12: IPV4
 13: IPV6

DDP: Intel® Ethernet 700 Series GTPv1 Profile

24

 17: TCP
 18: UDP
 19: SCTP
 20: ICMP
 21: GTPU
 22: GTPC
 23: ICMPV6
 34: PAY3
 35: PAY4
 44: IPV4FRAG
 48: IPV6FRAG

List of defined packet classification types:
 22: GTPU IPV4
 23: GTPU IPV6
 24: GTPU
 25: GTPC

List of defined packet types:
 167: IPV4 GTPC PAY4
 168: IPV6 GTPC PAY4
 169: IPV4 GTPU IPV4 PAY3
 170: IPV4 GTPU IPV4FRAG PAY3
 171: IPV4 GTPU IPV4 UDP PAY4
 172: IPV4 GTPU IPV4 TCP PAY4
 173: IPV4 GTPU IPV4 SCTP PAY4
 174: IPV4 GTPU IPV4 ICMP PAY4
 175: IPV6 GTPU IPV4 PAY3
 176: IPV6 GTPU IPV4FRAG PAY3
 177: IPV6 GTPU IPV4 UDP PAY4
 178: IPV6 GTPU IPV4 TCP PAY4
 179: IPV6 GTPU IPV4 SCTP PAY4
 180: IPV6 GTPU IPV4 ICMP PAY4
 181: IPV4 GTPU PAY4
 182: IPV6 GTPU PAY4
 183: IPV4 GTPU IPV6FRAG PAY3
 184: IPV4 GTPU IPV6 PAY3
 185: IPV4 GTPU IPV6 UDP PAY4
 186: IPV4 GTPU IPV6 TCP PAY4
 187: IPV4 GTPU IPV6 SCTP PAY4
 188: IPV4 GTPU IPV6 ICMPV6 PAY4
 189: IPV6 GTPU IPV6 PAY3
 190: IPV6 GTPU IPV6FRAG PAY3
 191: IPV6 GTPU IPV6 UDP PAY4
 113: IPV6 GTPU IPV6 TCP PAY4
 120: IPV6 GTPU IPV6 SCTP PAY4
 128: IPV6 GTPU IPV6 ICMPV6 PAY4

Figure 18: Getting information about the DDP profile.

The 'ddp get info gtp.pkgo ' command makes multiple calls of
rte_pmd_i40e_get_ddp_info() to get different information about the profile, and prints
it.

DDP: Intel® Ethernet 700 Series GTPv1 Profile

25

There is a lot of information, including the new packet classifier types:

List of defined packet classification types:
 22: GTPU IPV4
 23: GTPU IPV6
 24: GTPU
 25: GTPC

Figure 19: New PCTYPEs defined by GTPv1 profile.

There are four new packet classification types created in addition to all default
PCTYPEs available (see Table 7-5. Packet classifier types and its input sets of the latest
datasheet
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-
10-40-controller-datasheet.pdf).

To enable RSS for GTPv1-U with the IPv4 payload, packet classifier type 22 is mapped
to the DPDK flow type. Flow types are defined in rte_eth_ctrl.h; the first 21 are in use in
DPDK 17.11 and so can map to flows 22 and up. After mapping to a flow type, the port
is restarted and RSS enabled for flow type 22:

testpmd> port config 0 pctype mapping update 22 22
testpmd> port start 0
testpmd> start
testpmd> port config all rss 22

Figure 20: Mapping new PCTYPEs to DPDK flow types.

The 'port config 0 pctype mapping update 22 22' command calls
rte_pmd_i40e_flow_type_mapping_update() to map new packet classifier type 22 to
DPDK flow type 22 so that the 'port config all rss 22' command can enable RSS for this
flow type.

When GTP traffic is resent, the packets are classified as GTP in the NIC device and
distributed to multiple queues:

port 0/queue 1: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0x342ff376 - RSS queue=0x1 - hw ptype:
L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN
packet: packet type =32912, Destination UDP port =2152, VNI = 3272871 -
Receive queue=0x1
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

port 0/queue 2: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0xe3402ba5 - RSS queue=0x2 - hw ptype:
L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN
packet: packet type =32912, Destination UDP port =2152, VNI = 9072104 -
Receive queue=0x2
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xl710-10-40-controller-datasheet.pdf

DDP: Intel® Ethernet 700 Series GTPv1 Profile

26

port 0/queue 0: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0x6a97ed3 - RSS queue=0x0 - hw ptype:
L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN
packet: packet type =32912, Destination UDP port =2152, VNI = 5877304 -
Receive queue=0x0
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

port 0/queue 3: received 1 packets
 src=00:01:02:03:04:05 - dst=00:10:20:30:40:50 - type=0x0800 - length=178 -
nb_segs=1 - RSS hash=0x7d729284 - RSS queue=0x3 - hw ptype:
L3_IPV4_EXT_UNKNOWN TUNNEL_GTPU INNER_L3_IPV4_EXT_UNKNOWN INNER_L4_UDP - sw
ptype: L2_ETHER L3_IPV4 L4_UDP - l2_len=14 - l3_len=20 - l4_len=8 - VXLAN
packet: packet type =32912, Destination UDP port =2152, VNI = 1459946 -
Receive queue=0x3
 ol_flags: PKT_RX_RSS_HASH PKT_RX_L4_CKSUM_GOOD PKT_RX_IP_CKSUM_GOOD

Figure 21: Distribution of GTP-U packets with GTPv1 profiles applied to the device.

Now, the Intel Ethernet 700 Series parser knows that packets with UDP destination port
2152 should be parsed as GTP-U tunnel, and extra fields should be extracted from GTP
and inner IP headers.

If the profile is no longer needed, it can be removed from the network adapter and the
original configuration restored:

testpmd> port stop 0
testpmd> ddp del 0 /home/pkg/gtp.bak
testpmd> ddp get list 0
Profile number is: 0

testpmd>

Figure 22: Removing GTPv1 profile from the device.

The 'ddp del 0 gtp.bak' command first loads the gtp.bak file to the memory buffer, then
passes it to rte_pmd_i40e_process_ddp_package() but with the
RTE_PMD_I40E_PKG_OP_WR_DEL operation, restoring the original configuration.

4.3 Using GTP protocol with rte_flow API

Generic rte_flow API can be used to steer GTP traffic to different Virtual Functions or
queues.

For example, to direct GTP packets with TEID 4 to VF 1, queue 2, an application should
use following rte_flow pattern and action:

const struct rte_flow_item pattern [] = {
 {RTE_FLOW_ITEM_TYPE_ETH, NULL, NULL, NULL},
 {RTE_FLOW_ITEM_TYPE_IPV4, NULL, NULL, NULL},

DDP: Intel® Ethernet 700 Series GTPv1 Profile

27

 {RTE_FLOW_ITEM_TYPE_UDP, NULL, NULL, NULL},
 {RTE_FLOW_ITEM_TYPE_GTP, {.teid = 4}, NULL, {. teid = UINT32_MAX}},
};

const struct rte_flow_action actions [] = {
 {RTE_FLOW_ACTION_TYPE_VF, {.id = 1}},
 {RTE_FLOW_ACTION_TYPE_QUEUE, {.id = 2}},
 {RTE_FLOW_ACTION_TYPE_END, NULL},
};

Figure 23: rte_flow pattern and actions for directing GTP packets to a VF

Pattern and actions will be parsed by i40e PMD and corresponding tunnel filter entry
will be added to direct GTP packets to the VF.

In case if only queue action had been defined, Flow Director rule will be added. For
example:

const struct rte_flow_item pattern [] = {
 {RTE_FLOW_ITEM_TYPE_ETH, NULL, NULL, NULL},
 {RTE_FLOW_ITEM_TYPE_IPV4, NULL, NULL, NULL},
 {RTE_FLOW_ITEM_TYPE_UDP, NULL, NULL, NULL},
 {RTE_FLOW_ITEM_TYPE_GTP, {.teid = 4}, NULL, {. teid = UINT32_MAX}},
};

const struct rte_flow_action actions [] = {
 {RTE_FLOW_ACTION_TYPE_QUEUE, {.id = 2}},
 {RTE_FLOW_ACTION_TYPE_END, NULL},
};

Figure 24: rte_flow patter and actions to direct GTP packets to a queue

DDP: Intel® Ethernet 700 Series GTPv1 Profile

28
337377-001US

5.0 Summary

This new capability provides the means to accelerate packet processing for different
network segments providing needed functionality of the network controller
on-demand by applying Personalization Profiles. The same underlying infrastructure
(servers with already installed standard NICs) can be used for optimized processing of
traffic of different network segments (wireline, wireless, enterprise) without the need of
resetting NICs/restarting the server.

This capability delivers a number of performance and core utilization Optimizations:

1. Removes requirement for CPU cores on the host to perform classification and
load balancing of packet types for the specified use case

2. Increases packet throughput, reduces packet latency for the use case

The application of the GTPv1 DDP profile in EPC and MEC use cases has been shown to
reduce core requirement by at least 1 core per application instance and also to reduce
packet latency.

§

	1.0 Introduction
	1.1 Terminology
	1.2 Reference Documents

	2.0 Dynamic Device Personalization
	2.1 Overview
	2.2 Demystifying Dynamic Device Personalization

	3.0 Utility / Use Case
	3.1 Application of Technology – vEPC
	3.1.1 DDP GTPv1 profile use case for LTE vEPC User Plane.

	3.2 Application of Technology – MEC

	4.0 Enablement
	4.1 DPDK APIs
	4.2 Using DDP profiles with test-pmd
	4.3 Using GTP protocol with rte_flow API

	5.0 Summary

